
Budget Based Dynamic State Update Aggregation

Lutz Behnke1, Qi Wang2, Christos Grecos2, and Kai von Luck1

1Dept. of Computer Science, University of Applied Sciences Hamburg
2School of Computing, Univ. of the West of Scotland, Paysley, Great Britain

ABSTRACT
Distributed Virtual Environments (DVEs) can handle large
numbers of participants by optimizing the routing of state
update messages sent to the computer of the individual par-
ticipant. Often Area of Interest (AoI) management is used
to limit the information an avatar can observe and thus the
necessary state update messages that are sent to the client
which the avatar represents.

If the avatars are roughly evenly distributed through out
the virtual environment, AoI enables the support for very
large numbers of participants. But once a sufficient number
of avatars gather in a small area of the virtual space, com-
munication overhead grows on a n2 scale as they observe
each other.

Instead on optimizing the overall number of messages, we
limit the number of messages sent to a single client. We
propose a novel approach to dynamically aggregate state
update messages. It can support a very high numbers of
avatars in restricted spaces. We decouple the management
of the global state of the DVE from amount of detail sent
to the client. Our approach exploits information about the
specific DVE and its current state to maximize the ratio of
bandwidth reduction to state update fidelity. It is intended
to provide rich user experience for clients that connect via
limited network links, like mobile users or consumer grade
DSL.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MMVE’15 March 18-20 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3354-2/15/03 ...$15.00
http://dx.doi.org/10.1145/2723695.2723696

Keywords
DVE, MMOG, Mobile

1. INTRODUCTION
Multiple techniques for managing Areas of Interest (AoI)

and filtering state change messages based on these areas have
been proposed in recent years. A good overview is provided
by [3]. Approaches for client/(multi-)server, as well as peer-
to-peer architectures have been proposed. Independent of
the underlying architecture the usually aim to reduce the
state update messages sent to a given client by limiting them
to those that can actually be observed by an avatar and thus
are required by the client.

[4] considers the need to verify MMO Architectures for
varying avatar concentration and movement patterns. From
his work, we take the concept of the Avatar Density (AD),
the number of avatars in a given spatial area. The global AD
represents the total number of client connections and thus
avatars supported by a DVE. In contrast we focus on the
maximum supported local AD, the number of the avatars
in high density situation. Work like [5] has shown that the
tight clustering of human players is the norm rather than
the exception.

For a high local AD the nimbus’ of the avatars overlap
and they can each see each other, resulting a n2 commu-
nication overhead. Handling this by dynamically reducing
the observation range may render avatars effectively blind.
It also results in a restriction of the avatars abilities due to
technical reasons and is likely to be perceived as a service
degradation by the user.

We present Dynamic Budget Based State Aggregation
(DyBubSA ), a mechanism for fast discovery of applicable
aggregators from a repository to handle local overload sce-
narios. While most aggregators are based on common algo-
rithms as reducing the update ratio or the detail of informa-
tion sent, DyBubSA allows the integration of DVE specific
aggregators, that exploit elements of the content within the
DVE (see section 2.2 for some examples).

We also introduce a novel way to select applicable aggre-
gators and apply them to specific avatars and their context.

Our work is complementary to aggregate network packets,
like [2], that allow the combination of multiple messages into
single network packets.

2. APPROACH
The prototype of DyBubSA is based on QuP ( [1]), a sys-

tem for persisting a unified DVE state, distributing state

25



updates to networked game servers, using eventual consis-
tency to provide resilience to component failure. Figure 1
shows the software elements of a single instance of a set of
game server nodes.

The aggregators behave as avatars, subscribing to state
updates that are element of the aggregate. The aggrega-
tors will only actually subscribe to update messages and
process these if at least one avatar or other object (e.g. an-
other aggregator) is subscribed to the event stream that the
aggregator produces. QuP makes this simple, as the list of
subscribed entities is a published attribute available to other
subscribers.

Upon activating an aggregator, the avatar will be informed
of the covered objects, unsubscribe from the objects and
subscribe to the avatar. By subscribing to it, the aggregator
will be activated, should it have been dormant.

Game
Client 1

Aggregate
Manager

Persistence

Rules
Engine

Object
Cache

Game
Client n

Control
Client

C
onnec tion
H

andler

…

C
onnec tion
H

andler…

C
onnec tion
H

andler

Game
Client 2

C
onnec tion
H

andler

Message 
Statistics

Game
Messages

Extended
Spatial

Pub/Sub

S
tate U

pdates

Visibility
Control

G
am

e R
eques ts

A
ggreg ate O

ve rlay
C

ontrol

A
ggreg ator 1 …

A
ggreg ator 2

A
ggreg ator n

Aggregate
Control

State Change Requests
and State Updates

State Change Requests
and State Updates

Single Game
Server Instance

Set of Storage Server Instances

Set of Game
Clients

Figure 1: software components of system

2.1 Budget
For each client connection a message budget is set. Ap-

propriate values of connection can be obtained from various
sources, e.g. a) an arbitrary value set by the DVE operator,
e.g. to limit bandwidth costs; b) information on end-to-end
network bandwidth, as congestion messages or an IP address
block assigned to mobile service provider.

DyBubSA tracks the message rate sent to each client. For
our prototype the length of each message is fixed and thus
the number of messages provides a sufficient approximation
of the required bandwidth.

2.2 Types of aggregators
DyBubSA supports two basic classes of aggregators. The

first are global aggregators, which are applicable to any ob-
ject and can be dynamically instantiated and applied to any
object generating update messages. They usually support

sending fewer updates per time or ignoring certain types of
updates. The most basic of these aggregators simply for-
wards only every nth update message.

The second class of aggregators are application specific
and support the collation of multiple objects into a com-
pound object that generates resultant update messages on
a much more coarse level. Good examples for this are tight
military formations of many soldiers, acting as a single en-
tity. Or a train composed of a locomotive and a number of
carriages.

2.3 Aggregator Selection
The compound aggregators are positioned according to

their spatial dimensions as any other object managed by
QuP. The resultant axis aligned bounding box (AABB) is
updated by the aggregator according to the distribution of
the objects it covers. By traversing the octree downward
from the node representing the vision range of an object,
applicable aggregators can be found. By choosing the ap-
plicable aggregator with the greatest distance to the avatar,
the impact on the user experience can be minimized as well,
as details further away are displayed smaller and are not as
likely to be in the focus of the user as much.

Each aggregator also publishes a message reduction ratio
as as well. Additional aggregators are selected until the pro-
jected aggregates message rate is below the intended rate.

Global aggregators are registered with the top node of the
octree and will perform their filtering for each avatar that
subscribes to them instead of a specific original object.

3. SUMMARY
We are currently evaluating a prototype for this approach

to support very large sets of avatars in potentially close prox-
imity. This is work and progress.

4. REFERENCES
[1] L. Behnke, C. Grecos, and K. V. Luck. QuP : Graceful

Degradation in State Propagation for DVEs. In Proc. of
MMVE 2014, Singapore, 2014. ACM.

[2] W. Jinzhong. On packet aggregation mechanism for
improving Massive Multiplayer Online Game
performance in P2P network. 2011 3rd International
Conference on Computer Research and Development,
pages 337–339, Mar. 2011.

[3] H. Liu, M. Bowman, and F. Chang. Survey of state
melding in virtual worlds. ACM Computing Surveys,
44(4):1–25, Aug. 2012.

[4] P. Morillo, J. M. Orduna, and J. Duato. A scalable
synchronization technique for distributed virtual
environments based on networked-server architectures.
In Proceedings of the International Conference on
Parallel Processing Workshops, pages 74–81. RAND
Europe/Ofcom, 2006.

[5] S. Shen and A. Iosup. Modeling Avatar Mobility of
Networked Virtual Environments. In Proceedings of
International Workshop on Massively Multiuser Virtual
Environments (MMVE’14), pages 1–6, Singagapore,
2014. ACM Press.

26




