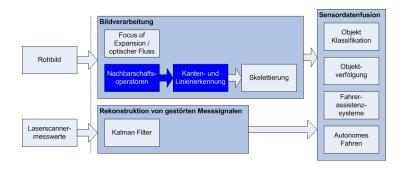
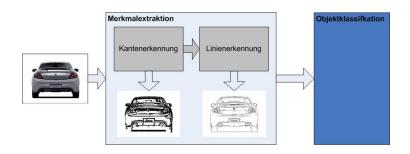
Einleitung Kantenerkennung von Objekten Linienerkennung von Objekten Zusammenfassung Ausblick für die Masterarbeit Literatur

"Kanten- und Linienerkennung in Grauwertbildern für Bildverarbeitungsstufen im Antikollissionssystem des Faustfahrzeugs"

Ning Liu


HAW-Hamburg Seminarvortrag

December 15, 2006


Das Faustfahrzeug

Motivation

Ziel: Informationen extrahieren um später Objekte zu erkennen

3 / 33

Inhaltsverzeichnis

- Einleitung
 - Technische Entwicklung in der Bildverarbeitung
 - Matrixform von digitalen Bildern
 - Nachbarschaftoperatoren
- 2 Kantenerkennung von Objekten
 - Mathematische Idee zur Erkennung einer Kante
 - Kantenfilter 2.Ordnung
 - Kantenfilter 1.Ordnung
- 3 Linienerkennung von Objekten
 - Rangoperatoren mit Betrag und Richtung des Gradienten
 - Sequentielle Linienverfolgung
- 4 Zusammenfassung
- 6 Ausblick für die Masterarbeit
- 6 Literatur

Technische Entwicklung in der Bildverarbeitung

- Auflösung
- Taktfrequenz
- Speicherkapazität
- Übertragungsgeschwindigkeit

Technische Entwicklung in der Bildverarbeitung Matrixform von digitalen Bildern Nachbarschaftoperatoren

Flächenkameras

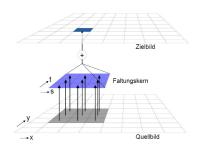
Area Scan	A201b	A404k	
Schnittstelle	Channel Link	Camera Link	
Auflösung	1 Megapixel	4 Megapixel	
Chip	CCD	CMOS	
Framerate	30 fps	96 fps	
Pixelclock	42MHz oder 21 MHz im	50 MHz	
	Dual Channel Betrieb		

Matrixform von digitalen Bildern

M x N Matrix

$$f(x,y) = \begin{pmatrix} f(0,0) & f(1,0) & \dots & f(M-1,0) \\ f(0,1) & f(1,1) & \dots & f(M-1,1) \\ \dots & \dots & \dots & \dots & \dots \\ f(0,N-1) & f(1,N-1) & \dots & f(M-1,N-1) \end{pmatrix}$$

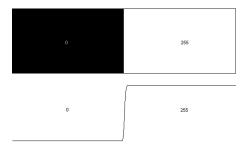
Literatur



Literatur

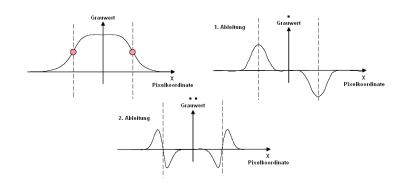
Technische Entwicklung in der Bildverarbeitung Matrixform von digitalen Bildern Nachbarschaftoperatoren

Faltung


$$f_{out}(x,y) = \sum_{s=-2}^{a} \sum_{t=-b}^{b} w(s,t) \cdot f(x+s,y+t)$$

- w(s,t) = Faltungskern
- f(x,y) = Quellbild
- $f_{out}(x,y) = Zielbild$

Detektion von Diskontinuitäten


Ziel: Erkennung von Kanten und Linien

- ein starker Anstieg in der Helligkeit
- mathematische Herleitung durch eine Ableitung

Ableitung 2.Ordnung

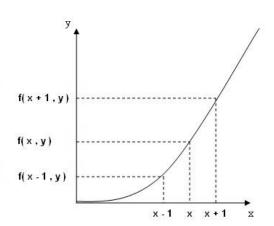
Der Laplace Faltungskern

Laplace Formel

$$\frac{\partial f^2(x,y)}{\partial x^2} + \frac{\partial f^2(x,y)}{\partial y^2}$$

Laplace Faltungskern

•
$$L_x = f(x+1, y) - 2f(x, y) + f(x-1, y)$$


•
$$L_y = f(x, y + 1) - 2f(x, y) + f(x, y - 1)$$

$$L_X = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} L_Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix} L_X + L_Y = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Herleitung

Mathematische Herleitung

Für X

$$\frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial x} \right) \Rightarrow \frac{f(x+1,y) - f(x-1,y)}{(x+1) - x}$$
$$\frac{\partial^2 f}{\partial x^2} \Rightarrow \frac{f(x+1,y) - f(x,y)}{(x+1) - x} - \frac{(f(x,y) - f(x-1,y))}{x - (x-1)}$$
$$\Rightarrow f(x+1,y) - 2f(x,y) + f(x-1,y)$$

Für Y

• analog wie für X

Vor- und Nachteile des Laplaceoperators

Vorteile

sehr sensitiv

Nachteile

• hohe Anfälligkeit gegenüber Rauschen

Sobel Operator

$$G_X = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \ G_Y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

 Faltungssummen richtungsabhänigig, deswegen 2 separate Kerne

Mathematische Herleitung

Mathematische Formel des Sobel Operators

$$G_X = \frac{\partial f(x,y)}{\partial x}, G_Y = \frac{\partial f(x,y)}{\partial y}$$
$$\frac{\partial f(x,y)}{\partial x} \Rightarrow \frac{f(x+1,y)-f(x,y)}{(x+1)-x} \Rightarrow \frac{f(x+1,y)-f(x,y)}{1}$$

Faltungskern des Sobel Operators

•
$$G_x = f(x+1,y) - f(x,y), G_y = f(x,y+1) - f(x,y)$$

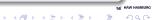
$$G_X = \begin{pmatrix} 1 & -1 \end{pmatrix} G_Y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- Faltungskerne werden um einen Bezugspunkt 0 erweitert
- Sobel Operator berechnet einen Gradienten

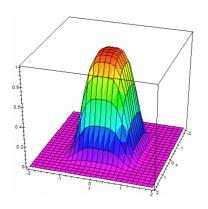
Vektor

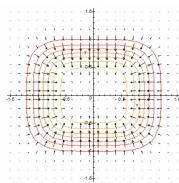
Betrag und Richtung des Gradienten

$$G = \sqrt{G_X^2 + G_Y^2}$$


$$\alpha = \arctan \frac{G_X}{G_Y}$$

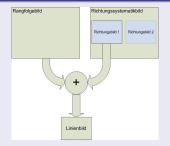
Vorteile


- Maßzahl für die Steigung des Grauwertes
- Richtung der Steigung


Nachteil

Gradientbetrag = Relevanz der Kante

Vektorfeld



Positionsrangfolgebild und Richtungssystematikbild

Ziel: Erkennung einer fortlaufenden Linie

- Setzt einen Gradientenfilter vorraus
- Zusammenführung von Positionsrangfolge- und Systematikbilder

Positionsrangfolgebild

Gradientenbeträge, Rangfolgebild und Binarisiertes Bild

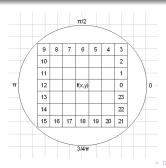
$$|G| = \begin{pmatrix} 54 & 16 & 176 \\ 43 & 4 & 243 \\ 95 & 145 & 14 \end{pmatrix} R = \begin{pmatrix} 5 & 3 & 8 \\ 4 & 1 & 9 \\ 6 & 7 & 2 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Problemstellungen

- Schwellwert Positionsrang
- Positionsrang von gleichen Grauwertbeträgen

Lösungen

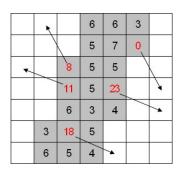
- Schwellwert durch Mittlung
- gleiche Grauwertbeträge erhalten einen mittleren Postionsrang


20 / 33

Richtungssystematikbild

Problem und Lösung

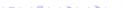
- Richtung des Gradienten verwendet arctan Funktion
- Skalierung der Grauwertbeträge auf ein umgebendes Quadrat



Beispiel für das Richtungssystematikbild

9	8	7	6	5	4	3
10						2
11			/			1
12			,5			0
13			/			23
14						22
15	16	17	18	19	20	21

- Richtungen entlang des grauen Pfades werden untersucht
- Richtungstoleranz notwendig

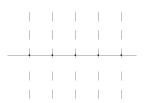


Alternative

9	8	7	6	5	4	3
10 ¹						2
11	1	2				1
12			10 ²			0
13				2	3	23
14						22 ³
15	16	17	18	19	20	21

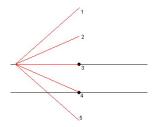
- durchschnittliche Richtung auf einem Teilabschnitt
- Summe der absoluten Abweichung von der Hauptrichtung

Zusammenfassung


Bewertung

- Mit dem Sobel Operator zusammenhängender Verarbeitungsschritt
- Adaptierung des Schwellwertes für das Rangfolgebild
- Vorgang rechenintensiv, aber parallel ausführbar

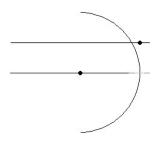
Setzen von Ansatzpunkten einer Linienverfolgung


Fragestellungen

- Unterbrechung von Linien
- Verzweigungen
- Parallele Linien
- Helligkeits- und Kontraständerungen

Suchstrahlen

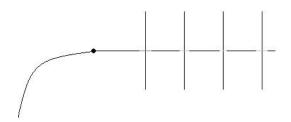
Ziel: Finden von Nachfolgepunkte auf einer Linie



Vorgehensweise

- Suchstrahlen
- Mittelwert des Grauwerts entlang der Suchstrahlen
- Nachfolgepunkte werden auf verzweigende und parallele Linien gesetzt

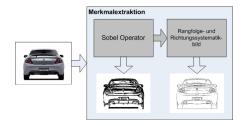
Kreisbogen



Vorgehensweise

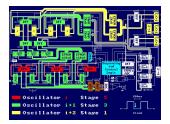
- Kreisbogen erzeugt einen Radius und untersucht den Grauwerts
- Verfahren schlägt bei Kontrast- und Helligkeitsänderungen entlang des Bogens fehl

Gitternetz


Vorgehensweise

- Verkleinern des Suchradius in Gittern
- individuelle Anpassung des Grauwertprofils

Zusammenfassung


Erkenntnis

- Merkmalextraktion: Linien
- Qualitätssteigerung der Information
- Datenreduktion

Mögliche Themengebiete

- Sensorfusion
- Objekterkennung
- Entwicklung von spezieller Bilderkennungs Hardware

Einleitung Kantenerkennung von Objekten Linienerkennung von Objekten Zusammenfassung Ausblick für die Masterarbeit Literatur

Gefahren

- Bildverarbeitung ist ein weites Gebiet
- Robustheit dieser Kette

Literatur

- Alfred Nischwitz, Peter Haberäcker Masterkurs Computergrafik und Bildverarbeitung. Vieweg, 2004.
- Bernd Jähne Digitale Bildverarbeitung. Springer, 2005.
- Andreas Meisel

 WP Robot Vision.

Einleitung Kantenerkennung von Objekten Linienerkennung von Objekten Zusammenfassung Ausblick für die Masterarbeit Literatur

Vielen Dank für Ihre Aufmerksamkeit!

