Proving Correctness of Graph Programs Relative to Recursively Nested Conditions

Nils Erik Flick

Universität Oldenburg

February 2017
1 Correctness and Graph Programs
 - Verification Framework
 - Graph Programs
 - Recursively Nested Conditions

2 Results
 - Weakest Precondition Calculus
 - Proof Calculus
 - Expressive Power

3 Related Concepts
Aim of program verification: development of correct systems by establishing program correctness via logical deduction.

Partial correctness: whenever P is run from a state satisfying c, if P terminates then the resulting state satisfies d.

Proving correctness of a program P under a specification (c, d). c and d specify state properties.
Proving correctness of a program P under a specification (c, d).

Checking **correctness**: compute the **weakest precondition** $W_{pP}(d)$: to postcondition d, this assigns precondition such that

- P is correct with respect to $(W_{pP}(d), d)$
- Any c' such that P is correct wrt. (c', d) implies $W_{pP}(d)$

Then check whether $c \Rightarrow W_{pP}(d)$.
Graph programs are imperative programs that operate on graphs, for example:

\[
\text{Sel}(\emptyset \leftrightarrow \bullet \rightarrow \bullet) \; ; \; \text{Del}(\bullet \rightarrow \bullet \leftarrow \bullet \bullet) \; ; \\
\text{Add}(\bullet \bullet \rightarrow \bullet \rightarrow \bullet) \; ; \; \text{Uns}(\bullet \rightarrow \bullet \leftarrow \emptyset)
\]

Elementary programs: select, unselect, add, delete.
Composition: disjunction, sequence, iteration.
We want to prove correctness of graph programs relative to specifications \((c, d)\). **Nested graph conditions** are expressions like this:

\[
\forall \left(\circ \rightarrow, \exists \left(\circ \rightarrow \circ\right) \lor \exists \left(\circ \rightarrow \circ\right)\right)
\]

Unavoidable theoretical limitations:

Implication of nested conditions \((c \Rightarrow c')\) is **undecidable**.

Weakest precondition for iteration requires **invariant** finding, which cannot be fully automatic nor complete.

But in practice, verification is often possible.
Extending Nested Conditions

Many properties of interest cannot be expressed by nested conditions, for example:

- Connectedness
- Absence of cycles
- Chains of even, odd or equal length
- Chains of length 4^n (of theoretical interest)
- Balancedness of binary trees (useful!)

Recursively nested conditions (μ-conditions) are nested conditions with **recursive** specifications.

Recursively nested conditions can express all of the above.
Recursively Nested Conditions

Example of a μ-condition:

$$\forall(\circ \circ, \text{path}(\circ \circ) \Rightarrow \exists(\circ \circ, \text{paths}(\circ \circ)))$$

$$\text{path}(\circ \circ) = \exists(\rightarrow) \lor \exists(\circ \circ, \text{path}(\circ \circ))$$

$$\text{paths}(\circ \circ) = \exists(\rightarrow) \lor \exists(\circ \circ, \text{paths'}(\circ \circ))$$

$$\text{paths'}(\circ \circ) = \exists(\rightarrow) \lor \exists(\circ \circ, \text{paths'}(\circ \circ))$$
Theorem: the weakest precondition of a μ-condition relative to an iteration-free program is again a μ-condition, which can be computed.

In other words, there is a sound construction for weakest preconditions, defined for all iteration-free programs.

Method: a construction which transforms a finite μ-condition into a finite μ-condition. Soundness is proven with respect to the semantics.

Significance: the weakest precondition calculus is the core of the verification framework.
The Proof Calculus \mathcal{K}_μ (I)

Theorem

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists (a, c) \land d$</td>
<td>$\exists (a, c \land \exists^{-1}(a, d))$</td>
</tr>
<tr>
<td>(Supporting) Lift</td>
<td></td>
</tr>
<tr>
<td>$\neg \exists (a)$</td>
<td>$\exists (b, d)$</td>
</tr>
<tr>
<td>$\neg \exists (m^*)$</td>
<td></td>
</tr>
</tbody>
</table>

If $\exists m \in \mathcal{M}$, $m \circ b = a$ and (m^*, b^*) is \mathcal{M}-pushout complement of (b, m), $d \neq \bot$

Partial Resolve

\mathcal{K} [Pennemann, 2009] (adapted); structural & logical rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \vdash \Delta$</td>
<td>$D, \Gamma \vdash \Delta$</td>
</tr>
<tr>
<td>Thinning</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, A$</td>
<td>$\Gamma \vdash \Theta, B$</td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, A \land B$</td>
<td>$\Gamma \vdash \Theta, A \land B$</td>
</tr>
<tr>
<td>UES</td>
<td></td>
</tr>
<tr>
<td>$\Delta, D, E, \Gamma \vdash \Theta$</td>
<td>$\Delta, E, D, \Gamma \vdash \Theta$</td>
</tr>
<tr>
<td>Contraction</td>
<td></td>
</tr>
<tr>
<td>$\Delta, E, D, \Gamma \vdash \Theta$</td>
<td>$\Delta, E, D, \Gamma \vdash \Theta$</td>
</tr>
<tr>
<td>UEA</td>
<td></td>
</tr>
<tr>
<td>$A, \Gamma \vdash \Theta$</td>
<td>$B, \Gamma \vdash \Theta$</td>
</tr>
<tr>
<td>$A \land B, \Gamma \vdash \Theta$</td>
<td>$A \land B, \Gamma \vdash \Theta$</td>
</tr>
<tr>
<td>OEA</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, D$</td>
<td>$D, \Delta, \vdash \Lambda$</td>
</tr>
<tr>
<td>Interchange</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, D$</td>
<td>$D, \Delta, \vdash \Lambda$</td>
</tr>
<tr>
<td>$\Gamma, \Delta \vdash \Theta, \Lambda$</td>
<td>$\Gamma, \Delta \vdash \Theta, \Lambda$</td>
</tr>
<tr>
<td>Cut</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, A$</td>
<td>$\Gamma \vdash \Theta, A \lor B$</td>
</tr>
<tr>
<td>$\Gamma \vdash \Theta, A \lor B$</td>
<td>$\Gamma \vdash \Theta, A \lor B$</td>
</tr>
<tr>
<td>OES</td>
<td></td>
</tr>
</tbody>
</table>
The Proof Calculus \mathcal{K}_μ (II)

Rules for handling variables and recursion:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{F} : c \vdash c'$ (resp. $c' \vdash c$)</td>
<td>(CTX)</td>
</tr>
<tr>
<td>$\mathcal{F} \uplus \mathcal{F}' : Ctx[\mathbf{x}/c] \vdash Ctx[\mathbf{x}/c']$ if Ctx is monotonic (antitonic) in \mathbf{x}</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{F} : \Gamma \vdash \Delta, x_i^{(n)}$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{F} : \Gamma \vdash \Delta, \mathcal{F}(\vec{x}^{(n-1)})$ $\mathcal{F}(\vec{x})$ is the right hand side for x_i in \mathcal{F}</td>
<td>(UNROLL$_1$)</td>
</tr>
<tr>
<td>$\forall i \in I. \mathcal{H}_i(\vec{x}^{(n)}) \vdash \mathcal{G}(\mathcal{H}(\vec{x}^{(n')}))$ $\mathcal{G}(\perp) = \perp$</td>
<td>(EMPTY)</td>
</tr>
<tr>
<td>$\forall i \in I. \mathcal{H}_i(\vec{x}) = \perp$ $\vec{n}' < \vec{n}$; \mathcal{G} monotonic.</td>
<td></td>
</tr>
</tbody>
</table>

Further structural rules for morphism and nesting manipulation:

- $\exists (a \circ a', c)$, $\exists (a, \iota \circ \iota', c)$ and vice versa, $\exists (id, id, c)$, $\exists^{-1}(\iota, c)$, $\exists (a, c)$.
Soundness of \mathcal{K}_μ

Theorem: the proof calculus \mathcal{K}_μ for refutation of μ-conditions is sound.

Method: extension of the resolution-like calculus \mathcal{K} by a well-founded induction rule.

Significance: this is the “prover” part of the verification framework. The proof calculus allows the verification of programs by attempting to prove the implication $c \Rightarrow \text{Wp}_P(d)$.
Theorem: the expressiveness of μ-conditions is the same as first order least fixed point logic, properly extends nested conditions and is incomparable to other known formalisms.

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>MSO</th>
<th>FO+lfp</th>
</tr>
</thead>
<tbody>
<tr>
<td>\approx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: \approx – incomparable; $=$ – equal.

Method: by showing the inexpressibility of counterexamples; by translation from and to fixed point logic.

Significance: μ-conditions are distinct from other formalisms and describe polynomial-time checkable properties.
Abstract model checking:
temporal logic specification, reduction to finite state space by
suitable state abstractions.

[Gadducci et al., 1998]
[Baldan et al., 2003]
[König and Kozioura, 2006]
[Rensink and Distefano, 2006]

This notion of correctness differs considerably from ours and no
direct comparison was attempted.
Related Concepts: Proof-Based Approaches

<table>
<thead>
<tr>
<th>reference</th>
<th>(1)</th>
<th>(here)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>conditions</td>
<td>Nested</td>
<td>μ-</td>
<td>HR*</td>
<td>MSO</td>
</tr>
<tr>
<td>wlp</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>proof calculus</td>
<td>complete</td>
<td>yes</td>
<td>future work</td>
<td>Hoare logic</td>
</tr>
<tr>
<td>theorem prover</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1): [Pennemann, 2009]
(2): [Radke, 2016]
(3): [Poskitt and Plump, 2014]

git:
//omega.informatik.uni-oldenburg.de/wptk.git
Conclusion

Goals achieved:

- Dijkstra-style verification approach for non-local conditions:
 - Specification language (μ-conditions)
 - Weakest precondition calculus
 - Proof calculus
- Correctness under adverse conditions (2-player programs)
- Specialized results on structure-changing workflow nets (not in this talk)

Future work:

- Semi-automated prover
- Investigate proof calculus:
 - Simplification
 - Completeness
Verification of sequential and concurrent programs. Springer.

A logic for analyzing abstractions of graph transformation systems.

A discipline of programming.
Prentice Hall.

A fully abstract model for graph-interpreted temporal logic.

Correctness of high-level transformation systems relative to nested conditions.

Weakest preconditions for high-level programs.

\[\mathcal{F} : x^n_1 \land \neg x^n_2 \vdash \mathcal{F}_1(\bar{x}^{(n-1)}) \land \neg \mathcal{F}_2(\bar{x}^{(n-1)}) \quad \mathcal{H}_{1,2}(\bar{x}) = x_1 \land \neg x_2 \quad (1) \]

\[\mathcal{F} : x^n_1 \land \neg x^n_2 \vdash (\exists(1 \leftarrow 2) \lor \exists(1(3) \leftarrow 2(2), x_1^{(n-1)}[1 \leftarrow 2]) \land \neg \exists(1 \leftarrow 2) \land \neg \exists(1(3) \leftarrow 2(2), x_2^{(n-1)}[1 \leftarrow 2]) \quad (2) \]

\[\mathcal{F}' : \ldots \vdash \exists(1 \leftarrow 2, x_1^{(n-1)}[1 \leftarrow 2]) \land \neg \exists(1(3) \leftarrow 2(2), x_2^{(n-1)}[1 \leftarrow 2]) \quad (3) \]

\[\mathcal{F}' : x^n_1 \land \neg x^n_2 \vdash \exists(1 \leftarrow 2, x_1^{(n-1)}[1 \leftarrow 2] \land \neg x_2^{(n-1)}[1 \leftarrow 2]) \quad (3) \]

\[\mathcal{F} : x_1 \land \neg x_2 \vdash \bot \]
Adversity: the Role of Nondeterminism

The semantics \semantics{P} assigns to P the set of all possible pairings (input, output) that correspond to executions of P.

Graph programs are nondeterministic:
1) There may be several ways to make a selection.
2) **Disjunctive** composition: $\semantics{P + Q} = \semantics{P} \cup \semantics{Q}$.
3) **Loops** may be executed arbitrarily often.

Addition, deletion and unselection are deterministic.

The weakest precondition transformation takes nondeterminism into account.
Operational **semantics** is introduced and related to $\llbracket P \rrbracket$: intermediary states appear as (current graph, remaining program).

A model of adversity:

Each intermediary state belongs **either** to **sys** (+) or to **env** (−).

Difference between system and environment lies in the **treatment of nondeterminism**.

Semantics $\llbracket P \rrbracket$ is the same but can be restricted ($\llbracket P \rrbracket_\chi$) by a choice function $\chi : (+)-states \rightarrow successor\ states$.
In the definition of the weakest precondition construction:

Nondeterminism resolved by `sys` has existential quantifiers / disjunction where nondeterminism resolved by `env` has universal ones / conjunction.

Otherwise, the framework did not need to be modified.

Soundness of the newly defined weakest precondition was checked against the operational semantics, which in turn is equivalent to the “denotational” semantics.
Theorem: the extended weakest precondition construction for two-player programs (with \textit{sys} and \textit{env}-constructors) is sound.

This result on \textbf{system correctness under adverse conditions} holds for \textbf{\(\mu \)-conditions}, for which the weakest precondition was first proven in the one-player case.

The classical situation already models \textbf{adversity}, but nothing else. The new part is the interaction of \((+/−)\)-nondeterminism.
Adversity: Future Work

Definition of **parallel composition** to be used within the same framework. This poses additional problems such as $(+/−)$-race conditions, but could be worthwhile for modeling.

Controller synthesis. Knowing that a choice function χ exists is distinct from actually obtaining such a function.