

Excerpt from the upcoming book by C.J. Date.

What Not How
The Business Rules Approach
to Application Development

chapter 1

What’s the Problem?

When they first began to appear, in the early 1950s or so, computers were very hard to use–they
required very specialized skills, and you really had to be a computer technician in order to use
them at all; originally, in fact, you probably had to be a hardware engineer. Over time, however,
computer systems have become much more "user-friendly" and easy to use, thanks to a
continual raising of the level of abstraction: so much so, in fact, that now you can use a
computer effectively even if you have almost no knowledge of how its internals work at all
(much as you can drive a car effectively even if you don't know what goes on under the hood).
Here are a few familiar examples of that "raising of the level of abstraction" that have taken
place over the years:

l 1GLs f 2GLs f 3GLs f 4GLs

Programming languages have evolved through several "generations," from first generation
languages (1GLs) to at least a fourth generation (4GLs). Just to remind you: 1GLs were
machine languages; 2GLs were assembler languages; 3GLs were the so-called "high-
level" languages(COBOL, Fortran, and the rest); 4GLs were various proprietary
languages, such as FOCUS from Information Builders, Inc. Some people regard SQL
as a 4GL [15].*

* Throughout this book, numbers in square brackets refer to publications listed in the appendix.

l Sequential files f indexed (ISAM) files f hierarchic
and network databases f SQL tables

Over the years, more and more of the details of storing and managing data have been
taken over by the system; in a word, they've been automated. Nowadays, it's the system,
not the user, that's responsible for finding data as and when required (and finding it fast);
it's the system, not the user, that's responsible for recovering data in the event of failure;
it's the system, not the user, that's responsible for protecting data from concurrent update;
and so on.

l Specialized languages and interfaces: for example, RPG, SQL, QBE, "visual
programming" (QBF, ABF), spreadsheets, ...

This one is more or less self-explanatory. However, I'd like to elaborate briefly on QBF
and ABF, because they're directly relevant to some of the ideas we'll be examining in the

3

next few chapters. QBF–Query By Forms–allows you to do database queries and
updates* by making simple entries in a form on the screen. ABF–Applications By Forms–
allows you to develop applications in the same kind of way, and those applications in turn
also use on-screen forms as the interface with the user. Note: QBF and ABF both grew out
of work originally done in the early 1980s at the University of California at Berkeley [25];
they were first commercialized in the Ingres product, originally from Relational
Technology Inc., now–under the name Ingres II–from Computer Associates International Inc.

* In accordance with normal usage, this book uses the term "update" generically to include
all three of the familiar operators INSERT, DELETE, and UPDATE.

Let me add a word on spreadsheets, too. Spreadsheets raised the level of abstraction,
in their particular field of application, by getting away from writing programs entirely
(nobody today would use Fortran to write an application to perform spreadsheet-style
processing). There's a very direct parallel here with business rule systems, as we'll see.

In a nutshell, then, it should be clear that the historical trend has clearly always been away from
procedural and toward declarative–that is, from HOW to WHAT. HOW means saying how,
step by step, the work is to be done; WHAT just means saying what the work to be done is.

So why is this trend A Good Thing? The answer is, of course, that declarative (WHAT) means
the system does the work, while procedural (HOW) means the user does it. In a nutshell:

Declarative is better than procedural!

So wouldn't it be nice if we could do all of our application development work declaratively?
Such has indeed been a goal for many, many years (people have been talking about the
possibility of fully compilable and executable specifications ever since the 1970s, if not
earlier [27]). In other words, wouldn't it be great if we could simply specify our applications
precisely, and get the system to compile those specifications into executable code?

Well, we're getting there. As we'll see.

The advantages are obvious: Productivity, of course–the work gets done much more easily and
much more quickly; and numerous subsidiary benefits follow, including in particular various
kinds of independence. One familiar kind is data independence, which lets us make changes (for
performance reasons, for example) to the way the data is physically stored on the disk, without
having to make any corresponding changes in applications that use that data. And there are

4

many other kinds of independence too, some of which we'll be looking at later in this book. The
basic advantage in all cases is that they make applications immune to certain kinds of change (in
particular, immune to certain kinds of business change). And that's a good thing, because–as we
all know–the only thing that's constant in life is change.

But what exactly is an application? Obviously, it's the implementation of some business
function–for example, "insert an order line item," "delete an order line item," "update the
quantity on hand of some part." In general, an application involves three parts or components:

1. Presentation aspects
2. Database aspects
3. Aspects specific to the business function per se

Presentation aspects are the ones having to do with the end-user interface–displaying forms to
the end user, accepting filled-out forms from the end user, displaying error messages, producing
printed output, and so forth. Database aspects are the ones having to do with retrieving and
updating database data in response to end-user requests and end-user entries on forms (they're
the portions that interact with the database server, also known as the DBMS). Finally, "aspects
specific to the business function per se" might be thought of as the application proper–they're
the ones that specify the actual processing to be carried out in order to implement the business
function, or in other words the ones that effectively implement the business's policies and
practices.

Now, of these three components, the first two have been largely automated for some
considerable time. Application developers no longer write detailed code to paint screens or look
for changes in forms on screens–they just invoke builtin presentation services to get those tasks
done. Likewise, they don't write detailed code to manage data on the disk, they just invoke
certain builtin database services to get those tasks done.

But the third component–the aspects specific to the business function per se–those are still
mostly done "by hand," meaning that somebody typically still has to write a lot of procedural
code. And, of course, that's the problem ... It's time to automate that third component! And
that's really what "business rules" are all about: automating the business processing.

The following back-of-the-envelope analysis might help to give some idea of the magnitude of
what we're talking about. A typical database table might need, say, five pages of supporting
procedural code; a typical database (not a large one) might contain 100 tables; a good hand-
coder might produce a page of code per day. Net: 500 person-days for a hand-coded system. By

5

contrast, simply specifying that same system might be a matter of, say, five or six weeks–and if
those specifications are executable, then we've effectively reduced the development time by an
order of magnitude.

As you can see, automating the business processing, if it could be done, really would be a
quantum leap forward. (Sorry about the cliché, but I really do think what we're talking about
here deserves the description–much more so, indeed, than certain other "quantum leaps" that
have been much discussed in the past.) Writing procedural code is tedious, and time-consuming,
and error-prone, and leads to the well-known application backlog problem, as well as many
other related problems that we'll get to later. And the "in principle" solution to all of these
problems is obvious:

Eliminate the coding!

That is, specify business processing declaratively, via business rules–and get the system to
compile those rules into the necessary procedural (and executable) code. And just how we might
actually be able to do this is the subject of the next few chapters.

Having set the scene, as it were, let me close this introductory chapter with a quote to support
some of the things I've been saying. It's taken from an interview with Val Huber of Versata Inc.,
formerly known as Vision Software [14].

Years of experience with information system development have taught us
two important lessons–it takes far too long to turn a relatively simple set
of requirements into a system that meets user needs, and the cost of
converting existing applications to new technologies is prohibitive ...
The factor underlying both of these problems is the amount of code it
takes to build a system ... If code is the problem, the only possible answer
is to eliminate the coding by building systems directly from their
specifications. That's what the rule-based approach does.

–Val Huber

As you can see, Huber is effectively suggesting, again, that what we should be aiming for is
compilable and executable specifications. Observe in particular that he touches on two separate
problems with the old-fashioned way of doing things:

l The time it takes to build applications in the first place;

l The difficulty of migrating existing applications to take advantage of new technologies as
they become available (for example, moving a client/server application on to the Web).

I'll come back to both of these problems in Chapter 6.

6

chapter 2

Business Rules Are the Solution!

To repeat from Chapter 1, the problem we're faced with is, in essence, the problem of having to
write procedural code. And business rules really are the solution to that problem, because they
allow us to specify applications declaratively instead of procedurally.* As I put it in that
chapter, business rules allow us to automate the business processing.

* By the same token, object technology is not the solution, in my very firm opinion. Object
languages–Java, C++, and so forth–are still essentially just procedural programming languages
(and so someone, somewhere, is still writing a lot of procedural code), and they seem to have no
concept of declarative rules of any kind.

Let's take a closer look at what the business rules approach involves. Suppose we have a
database involving customers and orders–more precisely, customers, orders, order line items,
and parts–that looks like this:

Just to be definite, let's assume this database is an SQL database specifically. Then the boxes in
the figure correspond to SQL tables, and the arrows correspond to foreign keys that relate those
tables to one another, logically speaking. For example, there's a foreign key from the ORDER
table to the CUSTOMER table, corresponding to the fact that every individual order must be
placed by some customer.

By the way, if you'd rather think of CUSTOMER and the rest not as SQL tables as such but
rather as entity types, well, that's fine; in some ways, in fact, it might be better to talk in such
terms, since they're not so specific. Business rules aren't specific to SQL databases! But I'll
stick to SQL, for the reason already given.

CUSTOMER

ORDER

LINE_ITEM

PART

8

Observe now that:

l Each customer has many orders (but each order is from just one customer); each order has
many line items (but each line item belongs to just one order); each part is involved in
many line items (but each line item involves just one part).

l The foreign key relationships can be thought of, in part, as existence dependencies: An
order can't exist unless the corresponding customer exists, an order line can't exist unless
the corresponding order and part both exist.

l Those existence dependencies are business rules! Indeed, foreign key constraints in
particular are an important special case of business rules in general, and I'll have quite a
lot more to say about them in Part II of this book.

Here then, in outline, are SQL definitions–that is, CREATE TABLE statements–for the four
tables in the customers and orders database:

9

CREATE TABLE CUSTOMER
(CUST# ... ,

ADDR ... ,
CREDIT_LIMIT ... ,
... ,

PRIMARY KEY (CUST#)) ;

CREATE TABLE ORDER
(ORDER# ... ,

CUST# ... ,
PAID ... , ––––––––––––––– yes or no
SHIPPED ... , –––––––––––––- yes or no
... ,

PRIMARY KEY (ORDER#) ,
FOREIGN KEY (CUST#) REFERENCES CUSTOMER) ;

CREATE TABLE LINE_ITEM
(ORDER# ... ,

LINE# ... ,
PART# ... ,
QTY_ORD ... ,
ORD_PRICE ... , –––––– fixed at time of order
... ,

PRIMARY KEY (ORDER#, LINE#) ,
FOREIGN KEY (ORDER#) REFERENCES ORDER ,
FOREIGN KEY (PART#) REFERENCES PART) ;

CREATE TABLE PART
(PART# ... ,

CURRENT_PRICE ... ,
QTY_ON_HAND ... ,
REORDER_LEVEL ... ,
... ,

PRIMARY KEY (PART#)) ;

10

Some points to note regarding these definitions:

l The CUSTOMER table includes a CREDIT_LIMIT column, with the obvious semantics.

l The ORDER table includes two yes/no columns, PAID and SHIPPED, that indicate
whether the customer has paid for the order and whether the order has been shipped,
respectively.

l The LINE_ITEM table includes the part number (PART#), the quantity ordered
(QTY_ORD), and the corresponding order price (ORD_PRICE). The order price is
locked in at the time the order is placed and doesn't change, even if the current price
of the part does subsequently change.

l The PART table includes the current price, the quantity on hand, and the reorder level,
all with the obvious semantics.

l Finally, note that the PRIMARY KEY and FOREIGN KEY clauses correspond to business
rules (and of course they're stated declaratively). For example, it's a business rule that
every customer has a unique customer number; as mentioned earlier, it's also a business
rule that every order involves exactly one customer; and similarly for all of the other
primary and foreign key declarations.

Now let's consider a typical business function involving this database–"insert line item,"
say. The way it works goes something like this:

l By clicking on a menu item or something of that nature, the end user asks for a form
corresponding to the LINE_ITEM table to be displayed on the screen.

l You can think of that form as a form in the style of QBF (recall that we discussed QBF
briefly in the previous chapter): It will include among other things fields corresponding
to the customer number, the order number, the part number, and the quantity ordered.

l The end user fills in those fields appropriately–that is, he or she provides the necessary
information regarding the new order line–and clicks on "enter" or "save" or something
of that kind.

The "insert line item" application is now invoked and carries out the following tasks (among
many others, of course):

A. It checks the customer's credit limit.

B. It computes the order total.

C. It determines whether the part needs to be reordered.

A., B., and C. here are business requirements that must be met in order to carry out the overall
business function. Incidentally, there's an important point here that I'll come back to in a little
while (when I discuss reuse): Those very same business requirements might also need to be met
as part of certain other business functions–for example, "change line item" or "delete line item."
But let's concentrate on the "insert line item" function for the time being.

For each of these three business requirements, then, the application developer will have to
specify a corresponding set of business rules. In the case of the "check credit limit"
requirement, for example, the rules might look something like this (of course, I'm simplifying
the syntax considerably, for obvious reasons):*

* It's worth mentioning that–as will quickly become clear–the process of developing these rules
precisely mirrors the "analysis interview" process: The analyst gets the business user (a) to state
the business objectives and (b) to provide definitions of terms that get introduced in step (a).

1. If TOTAL_OWED > CREDIT_LIMIT, reject

The meaning of this rule, obviously enough, is that the new line item must be rejected if it has
the effect of carrying the total owed by this customer over the customer's credit limit. But what
do we mean by "the total owed"? Clearly, we need another rule:

2. TOTAL_OWED = Sum (ORDER_TOTAL where not PAID)

Note that there isn't any "total owed" column in the CUSTOMER table, so the total needs to be
computed as indicated.

Observe now that this second rule refers to the order total. So this rule leads us directly into the
second business requirement, "compute order total," for which the rules might look like this:

3. ORDER_TOTAL = Sum (LINE_ITEM_AMOUNT)

4. LINE_ITEM_AMOUNT = QTY_ORD * ORD_PRICE

11

12

QTY_ORD and ORD_PRICE are both specified as part of the line item (the line item to be
inserted, in the case of the "insert line item" business function), so LINE_ITEM_AMOUNT
can be computed directly.

Finally, here's the rule for the third business requirement, "determine whether reorder
is required":

5. If QTY_ON_HAND - QTY_ORD < REORDER_LEVEL, reorder

"Reorder" here can be thought of as the name of another application, part of the same overall
integrated application system (or what we used to call the application suite). Alternatively–and
this is a very important point–"reorder" might mean "send an email message to some external
agency." So we're not just talking about calling subroutines!–and we're not just talking about
applications in the classical sense. I'll have a little more to say on this point in Chapter 8.

As you can see, then, these rules are fairly declarative (nonprocedural). But they can be
compiled into procedural code. In other words, the rules are executable (loosely speaking).
So we've specified the application in a purely declarative way–we haven't explicitly written any
of the usual procedural code at all–and yet we've still wound up with running code: an
application that can be executed on the machine.

By the way, the procedural code produced by the compiler isn't just executable code–it is (or
should be) optimized code as well. That is, the rules compiler is (or should be), specifically, an
optimizing compiler. I'll have more to say on this particular point in several subsequent
chapters.

That's the end of the example for now (though we'll be coming back to it at several points in the
next few chapters). To repeat, we've just built an application without writing any procedural
code! And there are many immediately obvious advantages that accrue from this way of doing
things. Here are some of them:

l First of all, of course, the declarative rules replace many pages of hand-written procedural
code. Each of those rules could easily correspond to a couple of hundred lines of 3GL
code! This is the source of the productivity benefit, of course.

l Next, the rules are applied and enforced–"fired," to use the jargon–on all relevant
updates. I touched on this point before, when I observed that the very same business
requirements might need to be met as part of several different business functions. To be
more specific, although the rules we looked at in the example were specified as part of the
process of building the application called "insert line item," they're relevant to other

applications too. For example, the application called "delete line item" should clearly also
cause the rule "compute order total" to fire, and so it does.

To put the point more simply: The application developer doesn't specify when the rules
are to fire, or what events have to occur in order to trigger them. (We don't want to have
to specify those triggering events, for all kinds of reasons. One obvious and important
reason is that we might get them wrong.) Rather, we simply say what the rules are, and
the system itself–the "rule engine," as it's sometimes called–figures out when they should
fire. Productivity!

l It follows from the previous bullet item that there's no need for the application developer
to get into the business of writing that complicated "on event" hand-code that's required
with certain 4GLs. (It's relevant to mention too that those 4GLs were often still fairly
procedural–not to mention proprietary–even when they were "event-driven," as it were.)
And there's another point here as well: Not only is that "on event" hand-code difficult to
write, it's also difficult to debug and maintain. What's more, the events in question tend to
be, specifically, database events–for example, "when this record is updated"–rather than
business events like "when an order line is entered."

Note: Actually the foregoing paragraph is slightly overstated. Sometimes we do
effectively have to define "on event" rules after all. Rule 5 above, the reorder rule, might
be regarded as a case in point; in that example, the triggering event is basically "when the
quantity on hand falls below the reorder level" (though the rest of the rule can hardly be
described as "complicated hand-code"!). Be that as it may, I propose to ignore such cases
from this point forward, until we get to the discussion of stimulus/response rules in Chapter 5.

l It also follows from the previous bullet item that rules are automatically shared across
applications and reused across applications. It's rather like the situation with the database
itself: The data in the database is also shared and reused across applications, as we all
know. And the advantages of such sharing and reuse for rules are analogous to those for
sharing and reuse for the data itself. In effect, just as the relational model originally
allowed us to integrate, share, and reuse data, so business rule technology allows us to
integrate, share, and reuse applications (or pieces of applications, anyway).

l Another advantage of declarative rules is what might be called the "single-level store"
advantage. To be more specific, the rules make no mention of any kind of artificial
boundary between the database and main memory; data is data, wherever it resides, and
there's no need to move data out of the database and into main memory in order to process
it. (No need so far as the user's concerned, that is. Of course the data does have to be
moved under the covers. But why should the user care? Let the system do it!)

13

l Finally, note that the rules can be stated in any sequence. To say it another way, we have
ordering independence for the rules. Business rule technology allows us to get away from
the tyranny of the von Neumann architecture, which forced us to think everything out in a
highly procedural manner, one step at a time. As Gary Morgenthaler has said [20]:

"[With the business rules approach,] programmers ... are freed from the
burdensome task of having to redefine their business problems in the deadening
pursuit of stepwise instructions for the program counter."

Down with the program counter!

Of course, the procedural code that's compiled from the rules does have to pay attention
to the program counter (the rules do have to fire in some well-defined sequence). So
how is it done? How does the rule engine figure out that sequence? Basically, it does so
by means of what's called a dependency graph. In the example:

1. In order to check the credit limit, the system needs to know the total owed;

2. In order to compute the total owed, it needs to know the line item amounts;

3. In order to compute the line item amounts, it needs to know the line item quantity and
price. But it does–these values are given by columns in the LINE_ITEM table (or are
provided by the end user, in the case of a new line item that's currently being inserted).

So the dependency graph shows that 1. depends on 2. and 2. depends on 3.–so
(obviously enough) the system fires the rules in the sequence 3., then 2., then 1.

By the way, note the reliance in the foregoing on the foreign key constraints (which are
rules too, of course, as we already know). For example, the rule

TOTAL_OWED = Sum (ORDER_TOTAL where not PAID)

implicitly makes use of the foreign key from ORDER to CUSTOMER (the order totals
to be summed for a given customer are precisely those for orders that have a foreign key
relationship to the customer in question). Note: Foreign keys can also be referenced
explicitly, of course, where such explicit reference is necessary.

14

I'll have more to say regarding the advantages (and potential disadvantages) of the business rules
approach in Chapters 6 and 7. For now, I'd like to close this chapter with a brief remark on the
question of terminology. The fact is, the term "rules" might be convenient, but it's hardly very
precise, or even very descriptive. After all, we already deal with all kinds of rules in the
database world, or the application world, or both. Here are a few examples:

l Security rules
l Integrity rules
l Codd's "12 relational rules"
l Foreign key rules
l BNF production rules
l Type inference rules
l Armstrong's functional dependency rules
l Expression transformation rules
l Logical inference rules

I'm sure you can provide many more examples of your own.

What's more, the same goes for the term "business rules" as well; that term also is neither very
precise nor very descriptive. Note in particular that not all enterprises are businesses! But it
doesn't seem to be easy to come up with any better terms–at least, not ones that are so
succinct–so I'll go with the flow in this book and stick with the term "business rules"
(which I'll abbreviate to just "rules," usually). However, the key point is really declarativeness;
the important thing is really that we're talking about a declarative technology, not a procedural one.*

* However, to quote Paul Irvine, who reviewed a preliminary draft of this book: "The term
business rules gives the concept a very marketable tag ... declarative programming just won't
sell!" A sad comment but undoubtedly true.

So what exactly is a business rule? As this book uses the term, it can be any of the following
(but be warned that not everybody uses the term in exactly the same way):

1. A presentation rule
2. A database rule
3. An application rule

In other words, rules apply to all three aspects of applications as identified in Chapter 1.
In the next couple of chapters, we'll take a closer look at each of these three kinds of rules.

15

