

ibm.com/redbooks

Draft Document for Review September 20, 2001 4:46 pm SG24-6510-00

Application Development Using
Versata Business Logic
Automation for WebSphere

Jackie McAlexander
Wilbert Kho

Learn options for automating business
logic in the EJB-layer

Explore declarative logic design
using rules

Understand Versata Logic
services in WebSphere

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Application Development Using Versata Business
Logic Automation for WebSphere, Patterns for
e-Business Series

November 2001

International Technical Support Organization

Draft Document for Review September 20, 2001 4:46 pm 6510edno.fm

SG24-6510-00

6510edno.fm Draft Document for Review September 20, 2001 4:46 pm

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 2001)

This edition applies to the Versta Business Logic Server x.x and IBM WebSphere Enterprise
Server x.x for use with the on Windows NT 4.0/2000 operating system.

This document created or updated on September 20, 2001.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. 5KNA Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 89.

Draft Document for Review September 20, 2001 4:46 pm 6510chang.fm
Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-6510-00
for Application Development Using Versata Business Logic Automation for
WebSphere
as created or updated on September 20, 2001.

Edition, month year
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
�
�

Changed information
�
�

© Copyright IBM Corp. 2001 iii

6510chang.fm Draft Document for Review September 20, 2001 4:46 pm
iv Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510TOC.fm
Contents

Summary of changes . iii
Edition, month year . iii

Figures . ix

Tables . xi

Preface . xiii
The team that wrote this redbook. xiv
Special notice . xiv
IBM trademarks . xiv
Comments welcome. xiv

Chapter 1. Overview of the Self-Service Pattern - Topology 1 17

Chapter 2. Trade Application Overview . 19
2.1 Trade Application Functionality . 20

2.1.1 The Trade Client Design Using MVC . 21
2.1.2 Multiple Runtime Modes . 22

2.2 Versata - A New Option . 23
2.3 Details of the Trade EJB Implementation . 23

2.3.1 Database Schema. 24
2.3.2 Container Managed EJBs . 24
2.3.3 Use of Copy Helper Access Beans . 25
2.3.4 The Basic Business Logic in Trade. 25

2.4 Potential Enhancements to Trade Business Logic 26

Chapter 3. Business Logic Automation Using Rules. 27
3.1 Design and Runtime Environment . 30
3.2 Transaction Rules - the Basis for Automated Business Logic 31

3.2.1 Example of a Rule. 31
3.2.2 Characteristics of Rules . 32
3.2.3 Rules and EJB Domains . 34
3.2.4 Classification of Declarative Logic (Rules) . 35

3.3 Business Uses of Rules . 41
3.4 What the Versata Logic Suite Is Not . 46

Chapter 4. Architecture of the Versata Logic Server within WebSphere . 49
4.1 Most Frequent Question - What is it really? . 50
4.2 Managing the Versata Logic Server in WebSphere. 51
© Copyright IBM Corp. 2001 v

6510TOC.fm Draft Document for Review September 20, 2001 4:46 pm
4.3 Versata Business Objects . 52
4.4 Versata Logic Server Classes . 54

4.4.1 Persistence as a Layer in the Server MVC . 55
4.4.2 Rule-enabled Objects as WebSphere Components 56
4.4.3 ResultSet access and Just-in-time Object instantiation 57

4.5 Look to the Future - EJB 2.0 and JCA . 61
4.5.1 EJB 2.0 --- Container Managed Relationships (CMR) 62
4.5.2 EJB 2.0 --- Local Interfaces. 63
4.5.3 Java Connector Architecture (JCA). 63
4.5.4 Other J2EE standards used by the Logic Server 64
4.5.5 Recap of the Versata Logic Services . 65

Chapter 5. Beginning Rules-based Development 69

Chapter 6. Rules to Implement Core Trade Application Transactions . . . 71

Chapter 7. Automating the Presentation Layer with Versata 73

Chapter 8. Deploying Business Objects and Client Applications 75

Chapter 9. Enhancing Business Logic with Rules 77

Chapter 10. Accessing the Logic Server through non-Versata Clients . . 79

Chapter 11. Beyond Topology 1 and Conclusions 81

Appendix A. Additional material . 83
Locating the Web material . 83
Using the Web material . 83

System requirements for downloading the Web material 84
How to use the Web material . 84

Using the CD-ROM or diskette. 84
System requirements for using the CD-ROM or diskette 84
How to use the CD-ROM or diskette. 85

Related publications . 87
IBM Redbooks . 87

Other resources . 87
Referenced Web sites . 87
How to get IBM Redbooks . 88

IBM Redbooks collections. 88

Special notices . 89

Abbreviations and acronyms . 91
vi Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510TOC.fm
Index . 93
 Contents vii

6510TOC.fm Draft Document for Review September 20, 2001 4:46 pm
viii Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510LOF.fm
Figures

2-1 Trade User’s Home Page . 21
2-2 To be inserted . 22
2-3 To be inserted . 22
2-4 To be inserted . 23
2-5 To be inserted . 23
2-6 To be inserted . 24
2-7 To be inserted . 24
2-8 Insert ServerComponents.jpg ? . 25
2-9 Insert WebComponents.jpg ? . 25
3-1 The rule specifying the value of ACTIVE_HOLDING. 32
3-2 Based on GUIDE Business Rule Project . 36
3-3 Validation from a cached list of values. 42
3-4 Account relationships and referential integrity . 44
4-1 Versata Logic Server Components Created by Installation 50
4-2 Versata Logic Server EJBs and Servlet Engine in WebSphere 51
4-3 Firewall and Hot Backup Configuration . 52
4-4 Data Objects (left) in the Versata Studio. Account Attributes and rules
(right) 53
4-5 Query Object in Trade shows a Profit_Loss attribute calculated at runtime
54
4-6 The MVC Architecture of the Versata Logic Server 55
4-7 Business Object Deployed as Local Classes with EJB faces 57
4-8 Value-based Access Through Versata Client Libraries 59
4-9 Standards used for WebSphere version 3.5 . 64
© Copyright IBM Corp. 2001 ix

6510LOF.fm Draft Document for Review September 20, 2001 4:46 pm
x Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510LOT.fm
Tables
© Copyright IBM Corp. 2001 xi

6510LOT.fm Draft Document for Review September 20, 2001 4:46 pm
xii Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510pref.fm
Preface

Patterns for e-business are a group of proven, reusable assets that can help

speed the process of developing applications. This redbook demonstrates a

method of developing and managing the business logic in the "self-service busi-

ness pattern" (formerly known as the user-to-business pattern). The book

describes the process of developing a stock trading application, based on the

IBM "Trade" benchmark, using business logic rules to automate the construction

and interaction of the transactional (EJB) components. It demonstrates substan-

tially enhancing the business logic of the application through rule changes. Two

methods of constructing the presentation layer of the application are examined.

The first uses Versata presentation automation techniques. The second adopts

the Model-View-Controller (MVC) framework of the existing IBM Trade applica-

tion. The redbook demonstrates how to use the JSP's, servlets and Java beans

of the existing Trade application to interface to the EJB-based business logic and

explains the role of the runtime Versata logic services installed into the Web-

Sphere Application Server. This redbook is organized into four parts. Part 1 pre-

sents background on Topology One of the IBM self-service pattern, which

describes situations where users interact with a business applications to view or

update data. Part 2 presents the Trade application as an example of this topol-

ogy. Part 3 examines constructing and enhancing the Trade application function-

ality using business logic rules. Part 4 examines porting the existing Trade

presentation layer to the new business logic layer. At the conclusion of the red-

book the reader should understand how to develop and manage the business

logic layer of a WebSphere application using rules-based business logic automa-

tion.
© Copyright IBM Corp. 2001 xiii

6510pref.fm Draft Document for Review September 20, 2001 4:46 pm
The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at Versata Incorporated and IBM.

Jackie McAlexander is a Senior Marketing Manager for Versata Incorporated.

Wilbert Kho is a Worldwide WebSphere / Versata Technical Sales Specialist for
IBM.

Thanks to the following people for their contributions to this project:

Joe DeCarlo, Manager
International Technical Support Organization, San Jose Center

Special notice
This publication is intended to help application developers need to learn how to
use Versata Business Logic Automation for WebSphere. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by Versata ann WebSphere. See the PUBLICATIONS section
of the IBM Programming Announcement for WebSphere for more information
about what publications are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

e (logo)®
IBM ®
Versata

Redbooks
Redbooks Logo
xiv Application Development Using Versata Business Logic Automation for WebSphere

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Draft Document for Review September 20, 2001 4:46 pm 6510pref.fm
� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
 Preface xv

http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

6510pref.fm Draft Document for Review September 20, 2001 4:46 pm
xvi Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch01.fm
Chapter 1. Overview of the Self-Service
Pattern - Topology 1

1

© Copyright IBM Corp. 2001 17

6510ch01.fm Draft Document for Review September 20, 2001 4:46 pm
18 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch02.fm
Chapter 2. Trade Application Overview

Understanding application topology 1 gives us a starting point for understanding
the Trade application, an IBM created benchmark available at
http://www-4.ibm.com/software/webservers/appserver/wpbs_download.html.
The business logic in Trade will be automated using rules as a part of the
activities for this redbook.

Trade is an end-to-end web application modeled after an online brokerage.
Trade leverages J2EE components such as servlets, JSPs, EJBs, and JDBC to
provide a set of user services such as login/logout, stock quotes, buy, sell,
account details, etc., through a standards based HTTP protocol.

2

© Copyright IBM Corp. 2001 19

6510ch02.fm Draft Document for Review September 20, 2001 4:46 pm
2.1 Trade Application Functionality
As illustrated on the Home Page below (Figure 2-1), Trade provides HTML
buttons to initiate the following functions:

� Register a new user to establish an account and profile

� Login to the application. The user name and password are validated from a
database table and a session is created.

� View the Home Page. Page is displayed with the user's current balance and
current market conditions.

� Review and update an account. Allows the user to view and modify his profile.

� Obtain security quotes and purchase stock. Each purchase establishes a new
portfolio "holding" for the user.

� View the portfolio. Page is displayed with all of the user's holdings. Holdings
may be sold from the portfolio. Holdings must be sold in their entirety (i.e
can't sell 10 shares from a 100 share holding.)

� Log-off from the Trade application and close the user session
20 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch02.fm
Figure 2-1 Trade User’s Home Page

Although Trade was primarily designed to test specific aspects of WebSphere
performance, it has a well-designed Model-View-Controller architecture that is
very useful as a case study of J2EE programming techniques.

2.1.1 The Trade Client Design Using MVC
As described in the Self-service Pattern Redbook [ReferenceHere], the
Model-View-Controller (MVC) architecture is a common way of partitioning
applications for maximum flexibility, maintainability, and reuse.
 Chapter 2. Trade Application Overview 21

6510ch02.fm Draft Document for Review September 20, 2001 4:46 pm
In MVC, a Model component represents an application object that implements
the application data and business logic. A View component is responsible for
formatting the application results and dynamic page construction. The Controller
component is responsible for receiving client requests, invoking the appropriate
business logic, and based on the results, selecting the appropriate view to be
presented to the user.

Figure 2-2 To be inserted

In the Trade application, the Controller is implemented as a servlet and several
Java classes. The main controller servlet, TradeAppServlet, provides a standard
Web interface to Trade users. It maps user input, such as requests to "Buy" or
"Update Account", to actions handled by an event handler class,
TradeServletAction. When an action is sent to TradeServletAction, it invokes the
appropriate method from an implementation class, TradeAction, and matches
the output of the action to its specific JSP.

In the Trade client, JSPs provide the Views. The TradeAction class also
interfaces to the Model, which, as we shall see below, can be configured in a
number of ways. This four-step process, while seeming a little more complex
than normal, allows for maximum flexibility when configuring the runtime
behavior of the Trade application.

Figure 2-3 To be inserted

2.1.2 Multiple Runtime Modes
One of the most interesting features of Trade is the ability to choose, through
set-up parameters, a runtime "mode" of the application. One mode of operation
implements business logic and transactions (the Model in the MVC architecture)
in the client-tier using simple Java classes. In this mode, data is accessed
directly from the database through JDBC.

Two other modes implement business logic and transactions in the EJB-tier,
using a stateless sesssion EBJ, TradeBean, to implement most of the business
methods. Database access is implemented using an entity bean for each of the
database tables. Persistence is managed through the WebSphere EJB container
using container managed persistence (CMP). The two EJB modes differ in the
way that they access the Trade session and entity EJBs. One mode uses
optimized EJB access beans, generated by VisualAge for Java. The other uses
direct, remote, EJB access from the client.

The purpose of multiple Trade modes is to compare the performance of JDBC
versus both forms of EJB access. Readers can also examine each
implementation to judge its relative ease-of-use.
22 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch02.fm
In the application documentation, Trade developers discuss the tradeoffs
between JDBC and EJB access. They note that well written JDBC code will
generally outperform the EJB equivalent, while JDBC may be significantly more
complex to develop and maintain. Most of the JDBC complexity comes from the
need to explicitly manage transactions and difficulty with logic re-use when
business logic is placed in the client-tier.

In summary, data for the Trade application is kept in a relational database and
Trade provides three, distinct, paths to the data:

� JDBC to database access using direct JDBC calls from the Web tier (no
EJBs)

� EJB to DB access using EJB container managed persistence leveraging IBM
VisualAge for Java EJB Access Beans for EJB access.

� EJB to DB access using direct EJB access with leveraging EJB Acess Beans

Figure 2-4 To be inserted

2.2 Versata - A New Option
The reason for choosing the Trade application as a starting point for this
Redbook is the flexibility provided by the MVC architecture. Because of this, we
can easily implement a fourth and fifth option -- accessing the database through
business objects managed by the Versata Logic Server. As we shall see in
Chapter 4, these objects contain business logic designed through declarative
rules. The rule-enabled objects are installed into a WebSphere EJB container
where they execute using runtime services provided by the Versata Logic
Server.

Versata rule-enabled EJBs can be accessed from the Trade client, through their
EJB interfaces and through the Versata Logic Server client libraries. The client
library option is most closely examined for its potential to bridge the EJB-JDBC
gap, encapsulating business logic in the EJB tier while providing higher-speed
access from client applications.

Figure 2-5 To be inserted

2.3 Details of the Trade EJB Implementation
We finish this chapter by examining the Trade EJB implementation in more
detail. This will allow us to understand the Versata implementation more easily.
 Chapter 2. Trade Application Overview 23

6510ch02.fm Draft Document for Review September 20, 2001 4:46 pm
2.3.1 Database Schema
The database schema to support Trade is straightforward. There are five
database tables.

� Account - holds the user ID and current balance

� Profile - provides more information about the user such as address and e-mail

� Quote - holds stock symbols, and descriptions

� Holding - holds the result of a Buy operation. A holding row contains the user
ID, the stock symbol, quantity purchased and the purchase price of the stock
(per share).

� Registry - holds the user ID, password and status. Authentication and
authorization in Trade is done through the application. This is a departure
from a normal Topology 1 design that relies on WebSphere to authenticate of
users.

Figure 2-6 To be inserted

2.3.2 Container Managed EJBs
There are five container managed entity EJBs that correspond to each of the
Trade database tables. Each EJB implements the get and set methods for its
own attributes. In addition, each entity EJB provides a findByPrimaryKey()
method that allows the database row corresponding to the object to be retrieved
by its unique index.

EJBs that need to support more complex queries use "Finder Helper" classes for
each potential query structure. An example is the HoldingBeanFinderHelper
class, which implements methods to find holdings by user id, find the maximum
holding index number and so on.

Each of the five entity EJBs have a corresponding Access Bean "wrapper",
generated by VisualAge for Java. When accessing an entity EJB directly from the
client, these access bean wrappers reduce the complexity of remote access
through a simplified client API and improve EJB performance through a number
of techniques.

In general, however, entity EJBs are not directly manipulated by the Trade client,
even when operating in EJB mode. Instead, operations go through the session
bean, TradeBean, through its access bean wrapper, the TradeAccessBean.

An example of end-to-end processing follows is illustrated below.

Figure 2-7 To be inserted
24 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch02.fm
2.3.3 Use of Copy Helper Access Beans
Some business functions, however, bypass the TradeBean. Business functions
that update several items of client data at the same time need a more efficient
way of setting EJB attributes. This is the case, for instance, when a user updates
his personal profile.

Profiles are maintained by the doAccountUpdate() method. To optimize
doAccountUpdate(), the TradeAction class directly calls the ProfileAccessBean.
The ProfileAccessBean is a VisualAge for Java copy helper access bean. This
bean provides optimizations designed specifically for updates. It allows individual
attributes of an object to be updated in the client tier before committing the entire
updated row in a single remote call.

As we can see from the diagrams below, to optimize performance, Trade
designers have employed a sophisticated mix of session EJBs, entity EJBs, plus
wrapper and helper classes for their business logic. This is in addition to the
various JSP, servlets, classes and other components used for the MVC
architecture of the client tier.

Figure 2-8 Insert ServerComponents.jpg ?

Figure 2-9 Insert WebComponents.jpg ?

2.3.4 The Basic Business Logic in Trade
Compared to the operations of a real life brokerage application, the business
logic in the basic Trade application is minimal. Of course, this is because Trade
was designed for performance testing, and not as a fully operational business
application.

If we consider that business logic is the data processing that must occur to carry
out organizational functions and policies, we can summarize the main,
transactional business logic in Trade.

For the buy() method, whose signature is "public double buy(String userID,
String symbol, double quantity)"

� Find the account for the current userID, error check if no account or
non-existing account

� Find the quote price for the stock symbol, error check if no symbol or
non-existing symbol

� Multiply the quote price by the quantity

� Create a holding object with for the specified user with the amount, stock and
quantity
 Chapter 2. Trade Application Overview 25

6510ch02.fm Draft Document for Review September 20, 2001 4:46 pm
� Within the same transaction, debit the user's account balance by the amount
of the transaction. (The debit function will need to be added to the Account
EJB too supplement the default get and set methods.)

For the sell method, the logic is just similar but reversed, although more
sophisticated coding may be needed to find the correct holding to sell.

2.4 Potential Enhancements to Trade Business Logic
The remainder of this Redbook will examine, not just how the initial business
functionality in Trade can be automated using the Versata Logic Server, but
examines how the application might be enhanced to meet more real life
requirements. Such enhancements will include:

� Allowing users to sell partial holdings. This will include adding a transaction
table to save the buy and sell operations for each holding

� Controlling "margin selling". Checking balances and margin rules before sell
operations

� Much more extensive checking and validations in the EJB tier. The current
Trade application implements most data validation and error checking in the
client tier (in the TradeAction class). Placing field length, data type, and other
validations in the business logic will allow it to be shared among multiple
applications.

� Adding a flexible commission system that can maintained by business
managers.

We will examine the ease of automating this functionality with high level
declarative rules.
26 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
Chapter 3. Business Logic Automation
Using Rules

The Versata Logic Suite is a business logic automation engine and design studio
that captures business logic rules and executes them as J2EE components
running within WebSphere. It is designed to simplify WebSphere application
development and to make J2EE systems more general, flexible, understandable,
and reusable.

Versata defines the process of creating and executing systems directly from their
high level rule specifications as automation. Automation allows the developer to
specify “what” the logic should do, not “how” it is to be implemented.

Because Versata rules are easier to understand, write, change and debug than
the hand-coded programs they replace, software systems can be built faster and
with more consistent quality. In addition, the time and quality benefits should
increase over the entire software life cycle, since new requirements can usually
be handled by simple rule changes and additions. These changes are applied
consistently during re-automation by Versata and typically do not introduce new
bugs or errors --- the downfall of most software maintenance efforts.

There are two scenarios for automating WebSphere applications using the
Versata Logic Suite.
© Copyright IBM Corp. 2001 27

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
In the first scenario, the Versata Logic Suite is used to automate the business
logic of a WebSphere system and is also used to create the Versata-automated
client application. This scenario is examined in Chapter 6, which introduces the
Versata Presentation Server (part of the Versata Logic Suite).

In the second scenario, the Versata Logic Suite is used to create the
transactional business logic (EJB tier) of a WebSphere application while
non-Versata components are integrated to provide the presentation logic (Web
tier). This scenario is examined in Chapter 10, where the existing Trade client,
built with WebSphere Studio and VisualAge for Java, is integrated with Versata's
rule based business logic.
28 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
Note: In either client scenario, VisualAge for Java can have an important role
in a Versata-automated system. For instance to, integrate Versata business
logic to enterprise resources, Versata rules can call Visual Age for Java
components such as Enterprise Access Beans. This ability allows new,
rule-based logic to interact with legacy applications, MQSeries middleware,
and other specialized EJB's. In addition, VisualAge for Java can be used as
the Java debugging environment for the Versata Logic Server. These, and
other potential integration points, are explored in Chapters 10 and 11.
 Chapter 3. Business Logic Automation Using Rules 29

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
3.1 Design and Runtime Environment
The Versata Logic Suite includes a design environment, the Versata Logic
Studio, and a runtime environment, the Versata Logic Server.

The Versata Logic Studio includes a transaction rules designer to specify
business logic, and an optional presentation designer to specify complete HTML
or Java client applications. The Versata Logic Studio runs as a desktop
application.

The Versata Logic Server includes a transaction rules engine to execute
business logic, and an optional presentation engine to execute client application
logic. The Versata Logic Server installs into an EJB container provided by the
WebSphere application server. A development copy of the Logic Server is
provided with the Versata Logic Studio for testing.

As noted above, the Versata Transaction Rules Designer and Engine can be
used with or without the Versata Presentation Designer and Engine. Both use a
high level development approach.

The remainder of this chapter examines some characteristics of Versata rules
created in the Transaction Rules Designer.
30 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
3.2 Transaction Rules - the Basis for Automated
Business Logic

In the software industry, the term "rule" has been used to describe several
technologies. Within messaging systems such as IBM MQSeries, rules are used
to direct the routing of messages. For web personalization, such as that provided
by modules in the WebSphere Application Server, rules are used to control the
presentation of content. Finally, within Artificial Intelligence (AI)-like inference
engines, rules are used to leverage "expert knowledge" to solve a specific
business problem.

For clarity, we will distinguish Versata Logic Server rules from other rule
technologies.

Unlike messaging systems, they do actual logic execution. Unlike
personalization add-ons, they carry out the core business functions of a
WebSphere application. And, unlike inference engines, they are not situated
"outside" of the system to provide inferred conclusions.

3.2.1 Example of a Rule
Having said that Versata rules are assertions about data, here is an example of
an assertion:

Example 3-1

For an object Account,
the value of the attribute ActiveHolding
is
the number of Holding objects associated with this Account where the
QuanityOnHand of the Holding is greater than zero.

Here is the picture of the rule within the Versata Studio.

Important: Versata Logic Server rules are high level, unordered assertions
about data used to formulate and direct the transactions within a J2EE
application server.
 Chapter 3. Business Logic Automation Using Rules 31

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
Figure 3-1 The rule specifying the value of ACTIVE_HOLDING

The transactional effect of this assertion is that, when the QuanityOnHand of a
Holding is changed (when buying or selling a stock, for instance), the
ActiveHoldings count in the Account object will be automatically examined. If a
new Holding is added, or if the shares of a Holding drop to zero, it will be adjusted
up or down as needed.

3.2.2 Characteristics of Rules
Here are some important points to notice about the rule:

� It implements logic for multiple objects. From what we have seen, the rule
affects at least two entities -- Account and Holding. In fact, the rule will also
involve a third entity - a new Transaction object. Logic in the third object will
be automatically created because Holding has a rule to derive its
QuantityOnHand from the Transaction entity.

Note: The number of ActiveHoldings will be used as part of a personalized
commission calculation in the rule-enhanced Trade application
32 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
� It is declarative. This means that the designer did not specify how the
system is to get this result. The developer did not need to decide whether the
"count" function resides in the Holding EJB, or the Account EJB or a third,
session EJB. He did not need to implement arrays of Holdings, counters, or
cross-object get and set methods.

� It is transaction independent. There are several transactions that affect the
on-hand quantity of a stock in a holding. A buy transaction will increase the
quantity: A sell transaction will decrease it. In addition, new transactions may
be added in the future (to convert options to stock, for instance.) These all
may affect the on-hand quantity of a stock. The important thing is that the rule
to re-calculate ActiveHoldings will be applied automatically, to any transaction
that requires it. No developer analysis is needed to determine when to apply
the rule.

� It is unordered. Although a specific sequence of operations will be
implemented (Holding will be updated before Account), the developer need
not worry about the ordering of operations. A rules compiler in the Versata
Logic Server will unravel the dependency between objects and sequence
operations correctly.

� It will be automatically optimized for runtime. As we saw in the original
Trade application, performance is frequently a concern when utilizing EJB
remote interfaces and container managed persistence. The Versata Logic
Server provides services within the WebSphere Application Server to
overcome many of these concerns.

For instance, the Versata Logic Server maintains a transaction cache for
cross-entity interactions inside of WebSphere. This means that the appropriate
Transaction, Holding and Account objects will be brought into the Logic Server
cache in a single read from the database. The entire rule chain will execute from
this cache, speeding execution while guaranteeing data integrity.

In addition, all the interactions between Transactions, Holdings, and Accounts will
be done with simple Java method calls, rather than with expensive EJB access.
Current EJB containers (those adhering to the EJB 1.1 specification) impose
significant overhead on EJB calls, even between beans using the same Virtual
Machine. This overhead includes RMI call-by-value semantics, permission
checks, and transaction control. To avoid this overhead, the Versata Logic Server
implements business object rules in lightweight Java class “helpers” --- one for
each entity EJB. Thus, all Versata rule processing will use simple Java method
calls, greatly improving the performance of rule processing versus hand-coded
EJB transactions.
 Chapter 3. Business Logic Automation Using Rules 33

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
Chapter 4 details the runtime architecture of the Versata Logic Server within
WebSphere and explains these performance features in more detail.

3.2.3 Rules and EJB Domains
From the example above, we can make these additional observations about
Versata rules.

The first observation is that rules apply to data, specifically they apply to data
when it changes. From this we can see that, in applications where persistent data
does not change, this type of rule will not be very useful.

The second thing we observe about Versata logic rules is that they govern the
interactions of a set of business objects (and their attributes) in a J2EE
application. Here we will coin a new phrase - this set can be thought of as a
domain of EJBs, where the domain is a collection of entity-type EJBs that will be
needed to carry out a series of common business functions.

The specification of this domain usually begins with an object model (or a
database schema.). In fact, the Versata Logic Suite, has utilities to import both
object models (from Rational Rose, for instance) and schemas (from relational
databases). These jump-start the definition of the domain. The remainder of the
domain specification is done through rules.

Note: EJB 2.0 compliant servers are expected to adopt this approach to local
object access.

Note: This characteristic is one of the main differences between "inference
rule engines" and "transactional rule engines". Inference engines collect their
data and make decisions independent of transactions. The result of the
decision may or may not be used in a transaction. With most inference
engines, the transaction will be designed and coded by the developer using
traditional coding methods.

Transactional rules engines, on the other hand, drive transaction logic.
Automated transactions proceed (or don't proceed) because of rules. These
automated transactions may be customized with hand-coded logic, but the
bulk of the calculations, validations and evaluations come directly from the
executing rule.
34 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
The complete specification for all of the domain objects and their interactions is
stored as "metadata". This metadata is kept in an XML-formatted repository and
is available, at design time, to the Versata Logic Server and other applications
accessing objects in the domain.

What remains then is to classify the types of rules that can control the behavior of
a domain of EJBs.

3.2.4 Classification of Declarative Logic (Rules)
In the business rules community, there has been considerable analysis of the
types of rules needed to specify the logic of business functions. As early as 1995,
the GUIDE Business Rule Project established a vocabulary and taxonomy
(classification) of rules on which Versata’s definitions are largely based.

Note: For those familiar with software engineering domain analysis, a
repository of Versata business objects and rules capture both the
commonalities and variabilities of a set of applications to be deployed in the
enterprise.

Tip: A paper describing this is available at
http://www.businessrulesgroup.org/first_paper/
 Chapter 3. Business Logic Automation Using Rules 35

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
Figure 3-2 Based on GUIDE Business Rule Project

� Relationship rules specify the association between entities. Rather than
controlling transaction behavior itself, they enable other rules to be designed
and enforced.

� Derivation rules are algorithms that derive attributes from other attributes. In
Versata, derived attributes can be persisted or non-persisted (in which case
they represent runtime only values).

� Inference rules use one or more truths to arrive at a new truth. The new truth
usually derives an attribute.

� Constraint rules specify the policies of a business. They govern under what
conditions operations can proceed.

� Action rules initiate another business event, message, or activity based on
some condition.

Here are some examples from the Trade application.

Relationship Example

� Relationships typically imply a parent-child association between entities.
Through the use of intermediate entities, they can also be used for more

Note: Because the Project did not tie their vocabulary to a specific technology,
we have narrowed their definitions to make them more relevant to Java
developers. For instance, a business “term” is narrowed to mean a Java class,
entity, or business object (all synonymous) and its fields or attributes (also
synonymous).
36 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
complex relationships. An example of a parent-child association in the Trade
application is a rule that says,

“An Account Has Holdings.”

As we will see, the Versata Logic Server automates can almost all operations
between related entities. For instance, an Account can automatically count and
"sum" all of its Holdings. Holdings can automatically check for sufficient funds in
the related Account.

Furthermore, as they are entered, Holdings can automatically check to ensure
they are associated with valid Accounts. These are only some object behaviors
enabled by relationships

Derivation Example

� Derivations are computational, which means that the value of that attribute is
arrive at by a formula. An example is a rule that says, for a Holding, the

"QuantityOnHand = QuanityPurchased - QuantitySold".

In addition, computational derivations can specify sophisticated qualifications
and can navigate to other objects to use their values in computations. An
example of this is a rule that says, for a sales Transaction,

 "The Price used to calculate the Amount of the Transaction is the Price
(from the Quote Object) of the associated Stock (specified in the Holding
Object)"

From the Versata Logic Studio, the rule looks like this:
 Chapter 3. Business Logic Automation Using Rules 37

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
Inference Example

� Inference rules can be thought of as a specialized type of derivation, where
an attribute is derived from a truth. An example is a rule that says, for an
Account,

"if Balance is greater than $500K, then the AccountType is 'wholesale'."

Like computational derivation, inference derivations can chain together
evaluations and calculations from several entities. It is possible, for instance, for
a rule to say that, for an Account,

"An AccountType is "wholesales" if the Account Balance is greater than
$100K [Account entity], AND the number of ActiveHoldings is greater than
20 [Holding entity], AND the average TransactionSize is > $10K
[Transaction Entity]."
38 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
Constraint Example

� Constraints define legal states in the system. For transactional systems they
define legal values of data that are allowed to exist. A rule to restrict
(constraint) margin selling in the Trade application is one such state. It says,
on Account

"Balance can't be less than zero"

This simple-sounding constraint rule will automatically included in any rule chain
that can potentially affect the Account Balance. For instance, here's a "Buy" rule
chain, seen in more detail in Chapter 9, which will be constrained by the margin
rule above.

When buying a stock the following happens:

1) First the Logic Server begins to create a new Holding for this Symbol, Date
and Quantity

2) It next finds the stock's price from the associated Quote

3) It then begins to insert an initial "Buy" Transaction object

4) Next, it calculates the cost of the stock [multiply Price times Quantity]

5) Then it finds the Commission [by checking the Account entity to see whether
the AccountType is a wholesale or retail account, checking the current
CommissionRate for that Account Type and multiplying the CommissionRate
times the TransactionAmount]

6) Then it calculates the total Transaction Amount

7) Next, it begins to Update the Transaction Count for this Holding

8) Then it begins to debit the Account Balance with the Transaction Amount

9) Finally, it encounters the constraint

10) If the constraint is violated (if the new Balance will be less than zero)

11) It unwinds the entire operation [rolls back changes to the Holding,
Transaction, and Account objects.

This example reinforces three important characteristics about rules.
 Chapter 3. Business Logic Automation Using Rules 39

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
First, notice that we did not have to write a "Buy" method to perform this chain of
events. A simple change [insertion] to a Holding object began the process. The
Logic Server understood all of the objects involved. It understood all of the rules
and all of the cross-logic between the object attributes. It understood all of the
dependencies, including which was the "inner-most" and "outer most" object. It
understood how to optimize the chain of events, including caching the Account,
Holding, Transaction and Quote objects during the transaction because their
attributes were needed several times. Finally, it understood where to put
transaction boundaries and how to deploy the transaction into the WebSphere
application server.

Next, notice that the rule is not tied to any particular transaction. Instead, it
applies to the "state" of the system. The rule would apply also if the user tried to
withdraw money from his account - his would be prevented from withdrawing
more funds than he had. The Logic Server is responsible for maintaining the
declared state and the Logic Server is responsible for identifying all the possible
transactions that affect that state.

Finally notice that the declaration of rules was completely unordered. We
actually created this rule to constrain margin selling before we even knew how
the Balance would be derived. Similarly, declared how Commission was derived
before worrying about how the stock price was going to be found.

This is "what" not "how" that Chris Date talks about when categorizing
declarative logic rules.

There is another type of constraint rules --- a transition constraint.

� Transition constraints define legal transitions, or changes from one state to
another. An example is a rule that says,

"Old QuantitySold cannot be more than New QuantitySold" (In other words,
in the Trade application, it is not possible to "un-sell" a stock)

During rules processing, the Logic Server performs maintains old and new
values of all attributes. This allows rules to easily check and constrain transitions
between object states.

Action Example

� The final type of rule are action rules, more completely called an
Event/Condition/Action. The Event is the operation and entity being watched
by the Logic Server. The Condition must be met in order to proceed. The
Action is the side-effect that should of an condition being met: An example
of this is a rule that says,
40 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
"When adding a new Transaction, if the TransactionType is "sell", credit the
related Holding's related Account Balance".

The Logic Server will take an action when all other rules leading up this
event/condition have evaluated "true".

3.3 Business Uses of Rules
It is also helpful to classify the business use of rules. Although there are many
more, here are six business uses of transactional rules.

1. Rules can automate data validation. Data and transactions are more accurate.
Validation coding is eliminated.

2. Rules can preserve the association between related objects when they
change. System consistency is assured. Coding to check and maintain
relationships is eliminated.

3. Rules can automatically synchronize related attributes in different objects.
Complex transactions are always implemented correctly. Performance is
optimized.

4. Rules can enforce operational policies and respond to change when policies
change. Logic is defined in well-understood declarations. Policies are enforced
uniformly.

5. Rules can identify interesting data. Flagged data can be used for
personalization or cross-marketing.

6. Rules can initiate asynchronous events. Events integrate the rule-based
system with external applications. Events can also initiate exception processing.

Details and examples of the EJB hand coding code they replace follow.

1. Rules can automate data validation. Data and transactions are more
accurate. Validation coding is eliminated.

A fundamental use of rules in the Versata Logic Server is for data validation.
Validation rules are a type of constraint.

Although validation is frequently overlooked when estimating the amount of
business logic in an application, it's design and development consumes costly
programming resources. Moreover, validation (and related error handling) code
is usually sprinkled throughout various client-tier and logic-tier components. This
makes logic difficult to re-use and maintain.
 Chapter 3. Business Logic Automation Using Rules 41

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
The Trade application, for example, checks user input first in the
TradeAppServlet, validates the parameters in the TradeAction class, and finally
confirms them in the Trade session EJB. If the Trade application were to do more
extensive validations, or if the datatypes in the entity EJB's were to change, many
components would require maintenance.

Versata rules allow data validations to be attached to objects directly, as part of
their metadata. This is illustrated below, where the Account Type (wholesale,
retail or new) is validated from a list of values. (To optimize performance, Versata
Logic services can cache this list in the Web-tier of the application server and
share it among users.)

Figure 3-3 Validation from a cached list of values

Other validations for the Account_Type attribute shown here are:

� The User must enter a value
42 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
� The value will be translated, using the validation list, to a Java long integer
(this is stored in the database).

Using rules to specify attribute validations with rules has several benefits. First,
validations, like all rules, will be applied consistently across all applications. This
increases system integrity.

In addition, validation metadata, like other rule-based metadata, can be
accessed through object methods. This makes it possible for a client
components to derive their behavior from business entity metadata. This extends
the use of the "Model" in the Model-View-Controller architecture and could allow
client components to adapt automatically to changes in business logic.

2. Rules can preserve the association between related objects when they
change. System consistency is assured. Coding to check and maintain
relationships is eliminated.

Referential integrity refers to the need to maintain consistency between one
business object and all of the other objects that refer to it. For example, in the
Trade application, where there is a relationship between an Account and its
Holdings, it would not be good business policy to allow an Account to be deleted
if it had active Holdings. Similarly, the business undoubtedly has a policy
ensuring that Holdings are created only if the user has a valid Account.

In applications where all data is kept in the same relational database, enforcing
referential integrity can be left to the database management system. If, however,
there is the potential for data to come from more than one source, integrity must
be assured through application code. In J2EE applications, the place for this
code is in EJBs (Whether it should be placed in the parent entity EJB or the child
entity EJB, or in a third, session EBJ is frequently debated.)

Versata business logic rules provide an easy and consistent way to enforce
relationships and integrity, even between objects in different databases or legacy
applications.

The screen below shows a Trade referential integrity rule specified in the Versata
Studio. Here, the Account entity has two relationships defined: one to the
Holding entity and one to the Profile entity. Versata rules specify how the
relationship between Account and Holding should be formed (by userID) and
specifies the types of referential integrity that will be enforced.
 Chapter 3. Business Logic Automation Using Rules 43

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
Figure 3-4 Account relationships and referential integrity

Versata rules can enforce very sophisticated integrity. For instance, to perform
automatic clean-up, a rule could be define that, when deleting an Account, the
user's Profile should be deleted as well.

Enforcing referential integrity in EJB's greatly increases integrity of data entered.
Automating this behavior with rules improves the functionality of systems without
tedious hand-coding.

3. Rules can automatically synchronize related attributes in different
objects. Complex transactions are always implemented correctly.
Performance is optimized.

One of the most common patterns coded into EJB logic is getting and setting the
attributes in related objects within the scope of transactions. The IBM-version of
the Trade application "Buy" function is a simple example. Given a UserID, stock
Symbol and Quanity, the Buy operation:
44 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
� Finds the related stock from the Quote entity (the developer first defines a find
method to do this)

� Checks that the Quote is valid and gets its price

� Find the related account for that UserID (the developer first defines a find
method to do this)

� Checks that the account is valid and gets its balance

� Creates a holding and checks to see that this succeeds

� Debits the account balance (the developer first defines a debit method to do
this)

(The Trade code notes that the logic to check that there are sufficient funds to
buy the holding has not been implemented.)

As we see in Chapter 6, rules can be used to automate this transaction. The
relationship rule between the Holding and Quote entity allow us to automatically
get the price of a stock. The relationship between the Holding and Account allow
us to automatically get and update the Account balance. And as we saw earlier,
logic to check for sufficient funds can also be implemented with a simple
constraint.

One of the most effective uses of Versata Logic Server rules is to automatically
implement complex, cross-entity transaction logic. Rules assure that the logic is
implemented correctly, and that it can be enhance with simple rule modifications.

4. Rules can enforce operational policies and respond to change when
policies change. Logic is defined in well-understood declarations. Policies
are enforced uniformly.

Often, organizations begin to look at rule-based systems when they need comply
with government or industry regulations, especially when those regulations
change. Constraint rules are useful for this purpose.

In the rule-based implementation of the Trade application, we will add a rule to
control margin accounts. For each user, a margin limit will be calculated based
on the current SEC regulation for that account type. Buy operations will be
permitted or rejected by consulting the current SEC cut-off.

5. Rules can identify interesting data. Flagged data can be used for
personalization or cross-marketing.

Although transactional rules are not primarily used for personalization or data
mining, such rules do "watch" transactions as they flow through the J2EE
application server.
 Chapter 3. Business Logic Automation Using Rules 45

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
For example, with a rule on the Account entity, a sales representative can be
automatically notified when a new user, with an account balance greater than
$100K, is added to his territory. Or a user may set a flag on his holdings, to
notify him when a stock drops more than 25%

Since rules watch for changing data, any behavior initiated by a change in state
can be a candidate for a rule.

6. Rules can initiate asynchronous events. Events integrate the rule-based
system with external applications. Events initiate exception processing.

Although Trade is an entirely synchronous application (transactions are
committed or rolled back immediately), most enterprise systems have some
asynchronous operations.

For example, when a user updates his account information, a rule could create
an XML formated message and place it on a message queue to be picked up by
the corporate CRM system. Or the system could start a workflow process, and
advise an investment representative to contact this customer who had just
deposited $100K in his account.

Rules watch data changes and can initiate synchronous transactions or
asynchronous events based on those changes.

3.4 What the Versata Logic Suite Is Not
This chapter concludes with a discussion of what transactional rules are not. This
may help to clarify when and when not to use transactional rules for WebSphere
applications.

As we discussed, the Versata Logic Server is not an inference rules engine.
Typically inference (or decision support) engines sit outside of the transactional
system. They may be used to build expert systems or produce input to
transactional components, but they do not directly implement the transactions
contained in components such as EJBs.

The Versata Logic Studio is also not a Case tool. Case tools produce models
and code "stubs" which are them implemented and integrated. Versata rules are
executable and they need no further development (although they can be
customized, as we see in Chapter 9.)
46 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch03.fm
The Versata Logic Suite is not a "4GL". Fourth-generation languages shortcut
procedural programming but they are not declarative. A 4GL function will
generally map, one-to-one, to a coded procedure. They do not unravel
dependencies, sequence complex chains of operations and map to logic across
many entities.

Finally, although the Versata Logic Suite does construct Java components, it is
much more than a code generator. It uses high level specifications to create and
directly execute applications. In each case, a specification (the "what") is input to
the Versata Design Studio and is stored as exchangeable XML. From the
specification, the system automatically parses, analyzes and creates the desired
applications utilizing highly performing enterprise Java frameworks (the "how".)

As we see during the next chapters, which detail the rules-enhanced Trade
application, the Versata approach is particularly well-suited to WebSphere
applications with substantial business logic, where application requirements are
evolving or where project time, costs or EJB development skills may be an issue.
 Chapter 3. Business Logic Automation Using Rules 47

6510ch03.fm Draft Document for Review September 20, 2001 4:46 pm
48 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
Chapter 4. Architecture of the Versata
Logic Server within
WebSphere

In Chapters 2 and 3 we explained that the Versata Logic Server installs into the
WebSphere application server to provide runtime services for rule-enabled
business logic. This chapter answers common questions about the Logic Server
Architecture within WebSphere, its utilization of WebSphere services and the
exact nature of the business objects it creates and executes.

4

Note: At the time of this writing the Versata Logic Server was generally
available on WebSphere version 3.5. A port was underway to WebSphere
version 4.0. Terminology may differ slightly for WebSphere version 4.0
© Copyright IBM Corp. 2001 49

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
4.1 Most Frequent Question - What is it really?
The most frequently asked question about the Versata Logic Server is simply,
"what is it really? In terms of J2EE components, what is it comprised of and how
does it work?"

The Versata Logic Server is a loose term for a small set of sophisticated EJBs
that run inside of the WebSphere Applicaton Server. The EJBs provide libraries
of Java classes (services) used by the business objects and applications created
in the Versata Studio.

The two primary EJBs are the VLSContext, used by the Versata Transaction
Rules Engine, and the PLSContext, used by the Versata Presentation Engine.
When the Logic Server is installed, these stateful session EJBs are deployed
automatically into a WebSphere EJB container.

Figure 4-1 Versata Logic Server Components Created by Installation
50 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
To assist in managing the collection of Versata resources, an instance of the
WebSphere Application Server, called VERSATA, is created to house the EJB
container. A servlet engine is also configured to execute Versata application
servlets. When a user connects to the Logic Server, a VLSContext instance will
be created and will be available for the duration of the session. When a user
executes a Versata constructed application, a PLSContext instance will also be
created.

(WSConsole.gif goes here)

Figure 4-2 Versata Logic Server EJBs and Servlet Engine in WebSphere

4.2 Managing the Versata Logic Server in WebSphere
It is important to note that the Versata Logic Server has been designed to take
advantage of the management and scalability strengths of the WebSphere
Application Server. Here are some of the management characteristics of the
Logic Server running within WebSphere.

� It is implemented with workload managed session EJBs. This allows multiple
Versata Logic Servers to be replicated (cloned) and allows WebSphere to
transparently distribute user load between Logic Servers, increasing
throughput. Cloned copies of the Logic Server can be placed on the same
physical system (vertical scaling), or on multiple distributed systems
(horizontal scaling).

� It can use WebSphere security mechanisms. As we see in the next chapters,
the Versata Logic Server controls access to its business objects using
role-based authorization. Versata can use any WebSphere authentication
mechanism to obtain validated user and role information. In this way, an
organization can maintain a single directory of user data. Similarly, the
Versata Logic Server can use sign-on information, passed from other
applications, to grant access to business objects. This facilitates single user
sign-on.

� It can be configured to provide redundancy. When configured with workload
management software and WebSphere servlet redirection, service requests
to a failed system can be directed to a Logic Server clone on a backup
system. When the WebSphere administrative database and Versata role
information is also replicated, this configuration eliminates a single point of
failure.

� It can be configured to run behind a firewall. With WebSphere servlet
redirection, the Versata Logic Server can be placed behind a firewall, as
shown below.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 51

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
Figure 4-3 Firewall and Hot Backup Configuration

4.3 Versata Business Objects
Before beginning development, it is also useful to understand the construction of
the business objects managed by the Versata Logic Server. As we explained in
Chapter 3, rules attach to data. Specifically, rules attach to business objects and
their attributes.

Business objects in Versata are application-independent components that
represent data and encapsulate the logic, or rules, need to carry out business
processes. There are two types of business objects used in Versata:

� Data objects map to entities physically persisted to disk. A data object
contains the set of attributes (both persistent and derived virtual attributes) to
52 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
which rules are attached. Within WebSphere, data objects are deployed as
entity EJBs.

Figure 4-4 Data Objects (left) in the Versata Studio. Account Attributes and rules (right)

� Query objects represent "views" of joined or restricted data objects. A query
object provides an abstracted, reusable view of one or more data objects that
protect client components from changes to the underlying data objects. Query
objects can also have "virtual" attributes calculated at runtime. Within
WebSphere, query objects are deployed as session EJBs and implements the
J2EE pattern of aggregate or compound entities.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 53

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
Figure 4-5 Query Object in Trade shows a Profit_Loss attribute calculated at runtime

4.4 Versata Logic Server Classes
The Versata Logic Server class libraries provides both the construction
framework and the runtime environment for business objects. Each business
object will be created from a subclass of either a Versata DataObject or
QueryObject Java class. In addition to normal EJB methods --create(),
findByPrimaryKey() and so on --- these objects will inherit extensive methods to:

� Execute ad-hoc queries

� Communicate with related objects

� Listen for and process rule events

� Manage the transaction cache

� Form transactions

� Communicate with the Versata Logic Server persistence layer

The mechanism for business object transactions and persistence is particularly
interesting and is explained below.
54 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
4.4.1 Persistence as a Layer in the Server MVC
The Versata Logic Server has a layered architecture that can be thought of as its
own, server-side "Model-View-Controller". The purpose of the Logic Server's
MVC is to abstract business logic [the Controller] from the physical source of
data [the Model], and to produce optimized "packets" of serialized data for
display by the client-tier [View]. This combination provides performance,
extensibility and portability.

Figure 4-6 The MVC Architecture of the Versata Logic Server

The Logic Server's controller layer consists of the rule-enabled objects, the View
layer consists of the Versata Client API's, and the Model layer consists of Versata
Connectors. The capabilities of Versata's Client API's and Connectors are
explained later in this chapter. The capabilities of rule-enabled objects are
explained below.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 55

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
4.4.2 Rule-enabled Objects as WebSphere Components
Up to this point, you might have noticed that we use the terms "object", "entity",
and EJB almost inter-changeably when referring to business objects. Here is a
clarification on the types of WebSphere components used for rules-based
business objects.

As we mentioned, Versata business objects are sub-classed from Java classes.
One Java class will be created for each object and will contain its complete
rule-defined behavior. These objects are under the management of the
VLSContext EJB (the business logic service EJB in the Versata Logic Server.)

When the set of business objects is deployed from the Versata Studio, the entire
set of Java classes will be deployed (as a JAR) file, and will be added to the
CLASSPATH of the VLSContext bean. During rule-execution, the Versata Logic
Server uses fast, local calls to these class objects.

In addition to being implemented as Java classes, business objects can also be
deployed with EJB "faces". Like a common J2EE blueprint from JavaSoft,
Versata business object classes and their EJB faces implement an Entity Bean
--- Dependent Object pattern. Developers can automatically deploy these EJBs
for any object whose methods may need to be referenced from an external
component (such as non-Versata EJB.)

The choice to create an EJB for an object is made on an object "property sheet"
in the Versata Studio. For these objects, Versata constructs both the Home
methods to obtain the objects (read from disk, instantiate and return remote
handle) and update them.

It is interesting to note that there is no rule or persistence performance penalty
for simply deploying objects as EJB's, since the Logic Server will always execute
the local implementation of the method, regardless of how it is invoked. There is
however, they typical look-up and EJB-instantiation overhead if objects are
accessed by their remote interfaces. For this reason, many Versata developers
prefer to use the client libraries described below.

Note: Object data can be accessed by external components through the client
libraries, even if they are not deployed as EJBs.
56 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
Figure 4-7 Business Object Deployed as Local Classes with EJB faces

4.4.3 ResultSet access and Just-in-time Object instantiation
As we diagramed in the MVC discussion, Versata provides another method to
access the business objects under its control --- the Versata Client Libraries.

The Versata Client Libraries provide fast, ResultSet-based access to "rows" and
"sets" of data objects. As with local rules processing, this avoids the overhead of
remote object references. In addition, the Logic Server minimizes the use of
shared server resources (memory) providing for "Just-in-time" instantiation of the
objects.

ResultSets of objects
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 57

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
Versata client libraries access the Versata Logic Server much like JDBC libraries
access a database. A client establishes a "session" with the Logic Server,
"connects" to a collection of business objects and issues "query" commands on
either a Data Object or a Query Object. Commands can be used to retrieve,
update, insert and save object changes.

Unlike JBDC, however, the commands and queries supported by the Versata
libraries are independent of any database or physical storage. Instead, the
libraries communicate to the Logic Server, who manages details of database or
legacy data access through the "Connector tier" (explained below.)

There are several performance features built into Versata ResultSets. First,
serialized values, instead of objects or handles, are returned to the client. Like
the J2EE "ValueObject" pattern, this allows the client to access multiple attributes
with a single call, copy the attributes to a local object, and operate on it without
remote reference.

Unlike ValueObjects, however, ResultSets can return groups of serialized
objects, further reducing overhead. This is similar to the “ValueObjectList”
pattern, where the Logic Server acts as a general purpose
“ValueObjectAssembler” for all of the business objects in the system. In addition,
Versata ResultSets are updatable, extending the benefit of ValueObjects to all
data accessed by the client.

To support this functionality, the Versata client library provides an optimized
execution framework. The framework retrieves ResultSets into scrollable buffers.
The size of the buffer is tunable (10 rows or 50 row buffers, for instance.) Clients
can loop through ResultSets using first, last, next and previous methods. In
addition, clients can insert rows and modify values in the ResultSet. When
ResultSet modifications are complete, the set can be "saved" to send it to the
Logic Server for processing. (A tunable optimistic locking mechanism preserves
data source concurrency.)

ResultSet access to EJB-tier business objects is designed to provide the
efficiency of JDBC with the logic encapsulation and reuse of EJB's. An example
of ResultSet access to the Trade EJB's is shown in Chapter 10.
58 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
Figure 4-8 Value-based Access Through Versata Client Libraries

Just-in-time Objects

To conserve system resources, the Versata Logic Server does not create server
objects for ResultSets. Instead, ResultSets are retrieved as serialized arrays
directly through the Versata Connector.

Business objects in the Logic Server are instantiated at the just-in-time moment
that the client completes its changes and issues a "save" method. At that time
the Logic Server instantiates objects for all data that will be affected by the
change. This technique is similar to the Java Pattern for "lazy object
instantiation", although the Logic Server framework for execution is more
extensive.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 59

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
As explained in our discussion of rules, all of the objects changed by the client or
changed by a chain of rules triggered by the client operation are brought into a
transaction cache to reduce database i/o. Rules ripple through the cache,
evaluating and updating data as needed. A single object may be updated several
times in the cache. When all rule operations have completed, the objects are
written back through the Versata Connector to the data source.

Like sophisticated DBMS, the Logic Server supports implicit single-update
transactions or Begin/Commit verbs to bundle several changes into a larger
transaction. Even in the case of a single changed row there may be multiple
object updates initiated by rules. One of the most productive features of the
Logic Server is that such updates are automatically bound into the transaction,
thus eliminating transaction bugs.

The Connector Layer
As mentioned above, Client ResultSets are retrieved directly through the
Connector Layer and transactions were written through Connectors. Here is an
explanation of the Logic Server persistence mechanism that uses this layer.

One of the design goals of the Logic Server is to decouple rule-constructed
transactions from any concern for the data's physical persistence mechanism.
Since rules operate on data from relational databases (which may be supported
by EJB Container Managed Persistence) and non-relational data sources (which
are not currently supported by CMP), persistence must be managed directly by
the Logic Server.

Recall that the Logic Server framework is implemented as an EJB. Recall also
that business objects, as Java classes, are managed by this EJB. The Logic
Server manages the persistence of these Java classes through the VLSContext
bean. It does this by calling the Connector mapped to the business object in the
Versata Console. (The Console is an administration interface for a running Logic
Server.)

The connector implements object persistence for each class of objects, such as
objects persisted to DB2, or to Oracle, or through MQSeries. Where possible, the
connector uses the transaction and connection pooling services provided by the
EJB container (using the Java Transaction Services API, JTS, from WebSphere,
for instance). For data sources not supported by the EJB container, the
connector implements its own,similar functionality.

Similarly, where WebSphere supports two-phase-commit protocol (2PC), the
connector will also support 2PC. This is done using the JTA ability to assure that
a single call is made for starting transactions (rather than using a separate call for
each connection, which would introduce the opportunity for errors). This API
60 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
requires that the EJB code “register” each connection on behalf of the user
thread. This enables the BeginTrans call to communicate with each connection.
With the Versata Logic Server, this occurs as database connections from the
WebSphere pool are obtained for a specified thread.

As with transaction management, 2PC can occur automatically where the
WebSphere application server supports it.

The connector architecture of the Logic Server offers a high-degree of
convenience and flexibility. As with container managed persistence, developers
do not need to program transaction boundaries or database details. In addition,
developers do not need to specify transaction attributes or database details in
EJB deployment descriptors. The connector used by a data object can be
modified during runtime, without re-deploying the object.

The Versata Logic server is shipped with a number of out-of-the box Connectors,
including one for each of the major relational databases. In addition, Versata
provides a standard interface definition and a set of transactional API's for use in
developing customized Connectors.

4.5 Look to the Future - EJB 2.0 and JCA
We will conclude the discussion of persistence and connectors with a look at two
upcoming Java standards --- the EJB 2.0 specification and the Java Connection
Architecture (JCA). Both proposed standards overlap some of the functionality
now provided by the Versata Logic Server.

One of the first things we notice is that the Versata architecture has many things
in common with EJB 2.0 and JCA. This is probably not a coincidence, since both
Versata and the new J2EE specifications were designed to solve the same
problems surrounding distributed, heterogeneous applications. The similarities
should make it straightforward for Versata to adapt the Logic Server to use new
EJB and JCA functionality. In fact, Versata has announced support for both
standards as they become available for WebSphere.

It must be specially noted that when migrating between EJB 1.1 and EJB 2.0,
Versata customers may have a big advantage over most Java developers,
because rules-based automation abstracts away the implementation of EJB
relationships and persistence --- the two big areas addressed in the new
specification. This may turn out to be one of the most significant advantages of
developing with a high level framework such as Versata.

Note: For WebSphere 3.5 this includes DB2 and Oracle.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 61

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
To leverage new standards in hand coded components, development teams often
face fundamental re-writes of their applications. For instance, EJB 2.0 EJBs and
EJB 1.1 EJBs may not be mixed in the same container. When using a higher
level approach such as Versata's, however, an existing set of business rules can
be used to automatically produce a completely new set of integrated components
that comply with the changed specification. This transfers the migration burden
from the developer to the vendor. It also removes the possibility of introducing
new bugs into existing code.

Here we look at EJB 2.0 and JCA to understand their overlap and migration with
Versata.

4.5.1 EJB 2.0 --- Container Managed Relationships (CMR)
The biggest difference between the EJB 1.1 and 2.0 specification is the
significant change to Container Managed Persistence, especially support for
Container Managed Relationships (CMR) and faster EJB access (through local
interfaces).

Container Managed Relationships allow an EJB container to maintain
associations between container-managed entity beans. The relationships are
defined in the XML-descriptors of the EJBs and are implemented within the bean
with coordinating get and set methods for each logical field. The get method on
the "many" side of a one-to-many relationship is implemented with a Java
collection and iterated over when traversing the relationship.

The EJB container maintains basic referential integrity. For instance, in the case
of an Account with many Holdings, the container can automatically delete the
Holdings for a deleted account, and can ensure that a related Account exists
before inserting a Holding.

There are some differences between the new CMR and Versata's current
relationship rules. For instance, Versata relationships are automatically
bi-directional. In addition, there are several more enforcement options: child
objects can be automatically changed when parent objects change (their primary
and foreign keys will be automatically updated), parent deletions can be
prevented (rather than just cascaded), and so on.

The biggest value that Versata may offer when it migrates to the new CMR
scheme is in automatically coordinating the data model, the EJB implementation
and the deployment descriptors. CMR requires a high-degree of synchronization
between the logic implemented in an EJB (names and parameters of abstract
methods, for instance), and that placed in deployment descriptors (which must be
62 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
tied to EJB logical fields). These must be further coordinated with the exact
implementation of the get methods on each side of the relationship which differ
depending on whether a single object (one-to-one relationship) or a collection of
objects (one-to-many relationship) is being defined.

This degree of synchronization between data modeling, EJB development and
sophisticated deployment makes a strong case for automating the production of
these artifacts as a result of higher level rules --- the approach taken by Versata.

4.5.2 EJB 2.0 --- Local Interfaces
Another significant change in EJB 2.0 is the introduction of local interfaces.
Local interfaces allow EJBs within the same JVM to communicate with simple
Java calls and pass data by reference, rather than by value. This is designed to
address a major performance shortcoming in EJB 1.1 and is almost identical to
the approach now used by Versata (although the APIs differ and will be adjusted
by Versata).

In EJB 2.0, developers have the choice of either developing local EJB interfaces
(which inherit from a new EJBLocalHome) or providing remote interfaces (which
continue to inherit from EJBHome). A developer who wants to optimize local
access while also allowing for remote access, will need to create and coordinate
two sets of interfaces. Versata simplifies this process by creating local and
remote interfaces automatically. In addition, it automatically synchronizes
changes in an object's remote interface with changes to the local object.

4.5.3 Java Connector Architecture (JCA)
The other area of overlap between the current Versata Logic Server and the
up-coming Java specifications is the Java Connector Architecture (JCA). JCA
provides a Common Client Interface (CCI) that provides access from J2EE
clients, such as enterprise beans, JavaServer Pages, and servlets, to an
underlying enterprise information systems.

When implemented through application servers such as WebSphere, JCA will
take over part of the role now performed by the Versata Data Access layer.
Specifically, it will allow Versata applications to utilize adapters provided by 3rd
parties, instead of calling hand-coded Connectors written to Versata's Data
Connector API.

Versata is eager to expand connectivity using the JCA and says that future
versions of the Logic Server will fully exploit the standard. We do note, however,
that the current JCA specification (version 1.0) lacks support for metadata, XML,
and asynchronous communication. (The JCA 2.0 draft specification is working to
address these.) Until then, Versata support for these features will still be useful.
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 63

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
4.5.4 Other J2EE standards used by the Logic Server
Throughout this chapter we have alluded to a number of other places where
J2EE standards apply to the Versata Logic Server. For instance, the WebSphere
servlet redirector "finds" a Logic Server (Java Naming and Directory Service -
JNDI). Also, the remote servlet "communicates" with the Logic Server (RMI over
IIOP).

This is a complete picture of the interaction of the Logic Server with WebSphere
and other components.

Figure 4-9 Standards used for WebSphere version 3.5
64 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
4.5.5 Recap of the Versata Logic Services
This chapter concludes with a review of the services provided by the Versata
Logic Server, specifically those provided by the Transaction Rules Engine,
separate from any specific client tier. They are generally higher level services
than those provided by the J2EE application server and can be thought of in the
following way:

J2EE services free the developer from routine infrastructure programming to
concentrate on business logic, while Versata services free the developer from
routine business logic programming to concentrate on just those issues, like
connectivity to legacy systems, that are unique to his environment.

Most of these services have been mentioned in the last two chapters. Here we
will highlight them before moving on to develop the Trade application.

Four service objectives
Versata services can be grouped around four objectives:

1. Executing high-level, declarative assertions about a domain of business
entities, where those assertions (rules) were defined without regard to sequence
or dependencies

2. Providing a framework that allows the developer to customize and extend
constructed logic and preserves his extensions through repeated development
iterations

3. Enabling fast, convenient access by client applications for all business
functions (ad-hoc query as well as object update.)

4. Optimizing the performance and persistence of inter-object logic, regardless of
the data source

The Versata Libraries, used by the VLSContext EJB at runtime, provide most of
these services. Detailing the Versata Libraries is beyond the scope of this
Redbook, however, we can examine some of the classes for examples of their
capabilities.

For the Logic Server EJB itself:
� Establish and destroy sessions to the Logic Server, maintain session context
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 65

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
� Limit number of connections per logic server (before redirecting to another
server)

� Maintain and report statistics on connections

� Establish and maintain connection pools to data sources

� Trace and report rules execution

� Grant fine-grained authorization to business objects, including distinct
authorizations to update (vs insert), and to read specific attributes.

� Manage the transaction cache

For Data Objects
� Create, destroy data objects

� Process queries using a datasource-neutral syntax (i.e. masks whether the
source is SQL or not). Queries can use any attribute or combination of
attributes and may join objects

� Explicitly get and set any attribute of any object

� Find related objects

� Get and set attribute of any related object by relationship navigation (no find
method required)

� Listen to and respond to client or server "save" events

� Maintain before and after data values for use in rules

� Listen and respond to rule events

� Apply defaults, performs calculations, adjust values, check constraint and
guarantee referential integrity

� Listen and respond to user defined events

� Call external methods

� Formulate commit and rollback transactions

� Maintain object metadata (attribute data types, lengths, defaults, formatting,
captions, validations, etc.)

� Provide object metadata to any function that calls for it.

For Query Objects
� Map attributes to underlying data objects (may be from multiple sources)

� Derive virtual attributes

� Overload names, captions and other metadata
66 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch04.fm
� Coordinate save operations to multiple data objects (manage parent and child
data objects)

For Connectors
� Marshall data from data source to serialized arrays used by the client

� Translate datasource-neutral commands to the syntax required by the data
source

� Create the database or other connection needed to access the datasource

For Client Libraries
� Provide ResultSets as arrays to client applications

� Manage buffers, providing first, next, previous and last behavior

� Incrementally retrieve rows as buffers are emptied

� Maintain Old and New values of attributes

� Provide cached data validation lists to client applications

� Allow index array access to rows and attributes in the ResultSet

� Support insert, delete of rows in the ResultSet

� Access business object metadata (captions, update permissions, formatting,
etc.)

� Save changed ResultSets to the Logic Server
 Chapter 4. Architecture of the Versata Logic Server within WebSphere 67

6510ch04.fm Draft Document for Review September 20, 2001 4:46 pm
68 Application Development Using Business Logic Automation for WebSphere, Patterns for e-Business Series

Draft Document for Review September 20, 2001 4:46 pm 6510ch05.fm
Chapter 5. Beginning Rules-based
Development

5

© Copyright IBM Corp. 2001 69

6510ch05.fm Draft Document for Review September 20, 2001 4:46 pm
70 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch06.fm
Chapter 6. Rules to Implement Core
Trade Application
Transactions

6

© Copyright IBM Corp. 2001 71

6510ch06.fm Draft Document for Review September 20, 2001 4:46 pm
72 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch07.fm
Chapter 7. Automating the Presentation
Layer with Versata

7

© Copyright IBM Corp. 2001 73

6510ch07.fm Draft Document for Review September 20, 2001 4:46 pm
74 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch08.fm
Chapter 8. Deploying Business Objects
and Client Applications

8

© Copyright IBM Corp. 2001 75

6510ch08.fm Draft Document for Review September 20, 2001 4:46 pm
76 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch09.fm
Chapter 9. Enhancing Business Logic
with Rules

9

© Copyright IBM Corp. 2001 77

6510ch09.fm Draft Document for Review September 20, 2001 4:46 pm
78 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch10.fm
Chapter 10. Accessing the Logic Server
through non-Versata Clients

10
© Copyright IBM Corp. 2001 79

6510ch10.fm Draft Document for Review September 20, 2001 4:46 pm
80 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510ch11.fm
Chapter 11. Beyond Topology 1 and
Conclusions

11
© Copyright IBM Corp. 2001 81

6510ch11.fm Draft Document for Review September 20, 2001 4:46 pm
82 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510addm.fm
Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24????

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24????.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
????????.zip ????Zipped Code Samples????

A

© Copyright IBM Corp. 2001 83

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

6510addm.fm Draft Document for Review September 20, 2001 4:46 pm
????????.zip ????Zipped HTML Documents????
????????.zip ????Zipped Presentations????

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: ????MB minimum????
Operating System: ????Windows/UNIX????
Processor: ???? or higher????
Memory: ????MB????

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Using the CD-ROM or diskette
The CD-ROM or diskette that accompanies this redbook contains the following
files:

File name Description
????????.cpp ????Code Samples????
????????.html ????HTML Documents????
????????.prz ????Presentations????

System requirements for using the CD-ROM or diskette
The following system configuration is recommended for optimal use of the
CD-ROM or diskette.

Hard disk space: ????MB minimum????
Operating System: ????Windows/UNIX/S390????
Processor: ???? or higher????
Memory: ????MB????
Other: ????CD-ROM drive????
84 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510addm.fm
How to use the CD-ROM or diskette
You can access the contents of the CD-ROM or diskette by pointing your Web
browser at the file ????index.html???? in the CD-ROM or diskette root directory
and following the links found there.

Alternatively, you can create a subdirectory (folder) on your workstation and copy
the contents of the CD-ROM or diskette into this folder.
 Appendix A. Additional material 85

6510addm.fm Draft Document for Review September 20, 2001 4:46 pm
86 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 88.

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Other resources
These publications are also relevant as further information sources:

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Referenced Web sites
These Web sites are also relevant as further information sources:

� Description1

http://????????.???.???/

� Description2

http://????????.???.???/

� Description3

http://????????.???.???/
© Copyright IBM Corp. 2001 87

6510bibl.fm Draft Document for Review September 20, 2001 4:46 pm
How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
88 Application Development Using Versata Business Logic Automation for WebSphere88 Application Development Using Versata Business Logic Automation for WebSphere

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Draft Document for Review September 20, 2001 4:46 pm 6510spec.fm
Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 89

6510spec.fm Draft Document for Review September 20, 2001 4:46 pm
The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
90 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510abrv.fm

acronyms
abbreviation1 Description1 (sort names -
highlight rows>Table>Sort>
Column1)

abbreviation2 Description2

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

abbreviation3 Description3

abbreviation4 Description4

Abbreviations and
© Copyright IBM Corp. 2001
 91

6510abrv.fm Draft Document for Review September 20, 2001 4:46 pm
92 Application Development Using Versata Business Logic Automation for WebSphere

Draft Document for Review September 20, 2001 4:46 pm 6510IX.fm
Index

R
Redbooks Web site 88

Contact us xiv
© Copyright IBM Corp. 2001
 93

6510IX.fm Draft Document for Review September 20, 2001 4:46 pm
94 Application Development Using Versata Business Logic Automation for WebSphere

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using

P
lainfield opaque 50# sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the

.5” spine. N
ow

 select the S
pine w

idth for the book and hide the others: S
pecial>C

onditional Text>
S

how
/H

ide>
S

pineS
ize(-->

H
ide:)>S

et

D
raft D

ocum
ent for R

eview
 S

eptem
ber 20, 2001 4:46 pm

6510sp
in

e.fm
95

(0.1”spine)
0.1”<->

0.169”
53<

->89 pages

(0.2”spine)
0.17”<->0.473”

90<->249 pages

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

(1.5” spine)
1.5”<->

 1.998”
789 <

->1051 pages

Application Developm
ent Using Business Logic Autom

ation

Application Developm
ent Using

Business

Application Developm
ent

Using Business
Logic Autom

ation for

Application Developm
ent Using Business Logic Autom

ation for

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using

P
lainfield opaque 50# sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the

.5” spine. N
ow

 select the S
pine w

idth for the book and hide the others: S
pecial>C

onditional Text>
S

how
/H

ide>
S

pineS
ize(-->

H
ide:)>S

et

D
raft D

ocum
ent for R

eview
 S

eptem
ber 20, 2001 4:46 pm

6510sp
in

e.fm
96

(

(2.0” spine)
2.0” <->

 2.498”
1052 <

-> 1314 pages

(2.5” spine)
2.5”<->

nnn.n”
1315<->

 nnnn pages

Application
Developm

ent Using
Business

Application
Developm

ent Using
Business

®

SG24-6510-00 ISBN

Draft Document for Review September 20, 2001 4:46 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Application Development Using
Versata Business Logic
Automation for WebSphere

Learn options for
automating business
logic in the EJB-layer

Explore declarative
logic design using
rules

Understand Versata
Logic services in
WebSphere

Patterns for e-business are a group of proven, reusable assets
that can help speed the process of developing applications.
This redbook demonstrates a method of developing and
managing the business logic in the "self-service business
pattern" (formerly known as the user-to-business pattern).

The book describes the process of developing a stock trading
application, based on the IBM "Trade" benchmark, using
business logic rules to automate the construction and
interaction of the transactional (EJB) components. It
demonstrates substantially enhancing the business logic of
the application through rule changes.

Two methods of constructing the presentation layer of the
application are examined. The first uses Versata presentation
automation techniques. The second adopts the
Model-View-Controller (MVC) framework of the existing IBM
Trade application.

The redbook demonstrates how to use the JSP's, servlets and
Java beans of the existing Trade application to interface to the
EJB-based business logic and explains the role of the runtime
Versata logic services installed into the WebSphere
Application Server.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Summary of changes
	Edition, month year

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Chapter 1. Overview of the Self-Service Pattern - Topology 1
	Chapter 2. Trade Application Overview
	2.1 Trade Application Functionality
	2.1.1 The Trade Client Design Using MVC
	2.1.2 Multiple Runtime Modes

	2.2 Versata - A New Option
	2.3 Details of the Trade EJB Implementation
	2.3.1 Database Schema
	2.3.2 Container Managed EJBs
	2.3.3 Use of Copy Helper Access Beans
	2.3.4 The Basic Business Logic in Trade

	2.4 Potential Enhancements to Trade Business Logic

	Chapter 3. Business Logic Automation Using Rules
	3.1 Design and Runtime Environment
	3.2 Transaction Rules - the Basis for Automated Business Logic
	3.2.1 Example of a Rule
	3.2.2 Characteristics of Rules
	3.2.3 Rules and EJB Domains
	3.2.4 Classification of Declarative Logic (Rules)

	3.3 Business Uses of Rules
	3.4 What the Versata Logic Suite Is Not

	Chapter 4. Architecture of the Versata Logic Server within WebSphere
	4.1 Most Frequent Question - What is it really?
	4.2 Managing the Versata Logic Server in WebSphere
	4.3 Versata Business Objects
	4.4 Versata Logic Server Classes
	4.4.1 Persistence as a Layer in the Server MVC
	4.4.2 Rule-enabled Objects as WebSphere Components
	4.4.3 ResultSet access and Just-in-time Object instantiation

	4.5 Look to the Future - EJB 2.0 and JCA
	4.5.1 EJB 2.0 --- Container Managed Relationships (CMR)
	4.5.2 EJB 2.0 --- Local Interfaces
	4.5.3 Java Connector Architecture (JCA)
	4.5.4 Other J2EE standards used by the Logic Server
	4.5.5 Recap of the Versata Logic Services

	Chapter 5. Beginning Rules-based Development
	Chapter 6. Rules to Implement Core Trade Application Transactions
	Chapter 7. Automating the Presentation Layer with Versata
	Chapter 8. Deploying Business Objects and Client Applications
	Chapter 9. Enhancing Business Logic with Rules
	Chapter 10. Accessing the Logic Server through non-Versata Clients
	Chapter 11. Beyond Topology 1 and Conclusions
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Using the CD-ROM or diskette
	System requirements for using the CD-ROM or diskette
	How to use the CD-ROM or diskette

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

