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This thesis deals with the segmentation of repetitive sports exercises. The segmentation
of such time series data constitutes a scientifically interesting problem, as it enables anal-
ysis of individual repetitions using techniques such as machine learning. To determine
whether it is possible to implement a segmentation algorithm that can run on a micro-
processor unit, this thesis proposes a prototypical design. An experiment was conducted
in which test persons performed exercises while equipped with sensors. A segmentation
algorithm was devised and subsequently used to process the signal data collected. The
segmentation was evaluated by comparing the algorithmically determined segmentation
points with a ground truth based on video recordings. The algorithm exhibited linear
time complexity and a low failure rate. A window size of 501 data points resulted in
0.02% false negative segmentation points and 0.04% false positive segmentation points.
The study shows that a suitable algorithm can be implemented.
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1 Introduction

Starting in the 1990s, many designers began to experiment with wearable computers as
a result of the developments in small-scale computing [24]. Various devices had self-
tracking capabilities, allowing users to track their bodies [24]. These developments have
simplified self-tracking [38]. Probably the most well-known website of the self-tracking
community is the Quantified Self website [24].1 Many of the early adopters of self-tracking
technology are athletes [38]. Self-tracking smartphone applications for fitness tracking
are available, which can detect the gym exercise performed [20].

According to Guo et al. [14], an increasing number of people exercise at home without
an instructor. They explain that doing so increases the likelihood of injury caused by
incorrect execution of the exercises. Furthermore, they note that some of these people
wish to document their exercise for self-tracking purposes. Lupton [24] identifies the
Quantified-Selfers as one such group. To evaluate each repetition of an exercise, one
must first be able to detect these repetitions. The repetitions are distinguished in a
continuous stream of exercise data by a segmentation algorithm [2]. Lin et al. [23]
describe the segmentation of movement data as a process of determining segmentation
points within a data stream and dividing it into segments. They also state that, in
exercise and physical rehabilitation, the segments are used to assess the quality of the
repetitions that constitute the exercise.

Several studies have employed computerized systems using inertial measurement unit
(IMU) sensors to evaluate exercises, such as Baumbach et al. [1], Bevilacqua et al. [2],
and Huang et al. [16]. Huang et al. [16] identified several reasons why the classification
of human movements is difficult, including the synchronicity of movements, the degrees
of freedom for each movement, the variability of repetitions of the same exercise by the
same person, and the variability between different persons. This thesis deals with the
problem of segmenting the repetitive time series data gathered in an experiment for part

1https://quantifiedself.com (Accessed 2021-01-19)
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1 Introduction

of the MoGaSens project.2 The MoGaSens project aims to develop a kind of smart shirt
that measures several parameters that are relevant to medical or sports scientists using
sensors such as accelerometers and gyroscopes. Specifically, this thesis involves data
analysis of human exercise movement. Several authors including Ishii et al. [18] and
Kowsar et al. [21] use peak finding algorithms to segment accelerometer signals.

Similarly, in this work, IMU sensors were used and data were collected in an experimental
setup. The findings from this study may be used, for instance, to determine the quality
of exercise execution by using machine learning classification algorithms. Moreover, the
topic of this thesis is related to the field of metrology, specifically waveform analysis,
which includes smoothing of a waveform and subsequent segmentation. Prazdny [28], for
instance, contributed such an algorithm in 1983. The segmentation step of an existing
analysis pipeline for IMU sensors – called the activity recognition chain (ARC) [5] –
served as a methodological blueprint for the work carried out for this thesis.

Within the context of computer science, this thesis deals with part of the groundwork
to be completed before the application of artificial intelligence, such as machine learning
classification models, to real-world data. The topic of motion segmentation is relevant
because it is used in many applications, such as imitation learning, exercise, and physical
rehabilitation [23]. This thesis provides insight into the segmentation of repetitive time
series data by means of an experimental design. The purpose is to lay a theoretical
foundation for the smart shirt developed by Hamburg Applications MES UG3 as part of
the MoGaSens project.

1.1 Research Aim and Objectives

The aim of this thesis was to devise a segmentation algorithm for IMU data. The
algorithm must be able to segment an accelerometer signal accurately enough for the
use of the segments in feature extraction. Additionally, the algorithm must be efficient
enough in terms of space and time to be able to run on a microprocessor unit (MPU)
and allow for timely evaluation of each repetition’s quality.

This research aim was achieved using the following objectives:

1. Investigate motion segmentation approaches in the literature.

2https://csti.haw-hamburg.de/project/mogasens/ (Accessed 2021-01-19)
3https://hamburg-applications.com (Accessed 2021-01-19)
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1 Introduction

2. Propose an experimental setup to collect the required data.

3. Describe and implement an algorithm to segment the accelerometer signal from
sets of repetitions of push-ups and squats.

4. Evaluate the devised algorithm.

The research questions are as follows: Can such an algorithm be implemented? How
suitable is it for the task? What limitations exist?

1.2 Thesis Structure

This thesis is divided into five chapters. Following the introduction, Chapter 2 reviews
the literature and introduces the problem statement. Chapter 3 presents a solution to
the problem. Chapter 4 evaluates the solution and discusses its limitations. Finally,
Chapter 5 concludes the thesis and suggests directions for future research.

3



2 Analysis

This chapter reviews the literature on the Quantified Self movement, sets out the research
context of this thesis, and reviews related work on preprocessing and segmentation of
time series data.

2.1 Quantified Self

People have long engaged in self-tracking for self-improvement and self-reflection [24].
The Quantified Self movement and the innovations in computerized self-tracking tech-
nology, however, are a recent phenomenon [24]. Swan [34] describes the Quantified Self
movement as a trend of individuals or groups tracking biological, physical, behavioral, or
environmental information. “Quantified Self” refers to both the name of the Quantified
Self community and the process of self-tracking [6]. The digital devices used gather de-
tailed, continuous data on everyday practices, social interactions, and bodily functions
[24]. The data collected may be quantitative or qualitative (e.g., step counts or moods)
[22].

Wolf [38] describes in his article “Know Thyself: Tracking Every Facet of Life, from Sleep
to Mood to Pain, 24/7/365,” how he, along with his fellow Wired writer Kevin Kelly,
decided to create a website, called Quantified Self, to track the self-tracking systems avail-
able. He explains that methods of quantitative assessment used to be laborious, but now
much of the data-gathering can be automated and the record-keeping and analysis can
be delegated to web applications. Furthermore, he describes how open-source software
for random experience sampling avoids introducing biases that manual journal-keeping
would introduce.

The Quantified Self community describes itself as an international community of users
and makers of self-tracking tools who share an interest in self-knowledge through num-
bers [32]. The Quantified Self website provides discussion forums, supports regional

4



2 Analysis

meetings, hosts two annual international conferences, and publishes a blog [24]. Quan-
tified Self has become a community engaged in self-monitoring and the development
of self-monitoring technology [6]. Hanze University of Applied Sciences established an
academic research institute named the Quantified Self Institute [24].1 The Quantified
Self website details over 500 self-tracking tools, enabling tracking of geolocation, health,
fitness, weight, sleep, diet, mood, and emotion [24]. Quantified-Selfers use a variety
of tools for self-tracking, including data collection tools, such as commercial hardware,
spreadsheet software, productivity tracking software, and custom-built software [6]. Data
exploration tools include spreadsheet software for running simple statistics and creating
graphs, custom-built software, commercial websites, commercial software, and statistical
software such as R [6].

Lupton [24] describes the use of sensors as a pivotal feature in self-tracking. She also
states that biosensors include reactive agents that can respond to changes in bodily
functions and indicators (e.g., blood glucose, hormones, enzymes, or oxygen levels). Ad-
ditionally, she notes that sensors such as GPS, digital compasses, gyroscopes, and ac-
celerometers are typically included in smartphones and that they can be employed to
track users’ geolocation and movements.

Some commercial self-tracking products such as the Nike+ FuelBand or the family of
Fitbit products enable the average consumer to track their exercise [37]. The Fitbit
Sense [10] smartwatch includes a heart rate sensor, a gyroscope, an altimeter, a triaxial
accelerometer, and a skin temperature sensor. Fitbit developed an activity-recognition
solution called SmartTrack for their Fitbit Charge HR and Fitbit Surge products. Smart-
Track can automatically detect certain exercises, such as walking, running, outdoor cy-
cling, workouts on an elliptical trainer, and high-movement sports (tennis, basketball,
soccer, etc.) [9]. Fitbit states that activities that last at least 10 minutes can be cap-
tured using their technology. Additionally, self-tracking smartphone applications for
fitness tracking, such as Google Fit [13], also support automatic detection of activities
such as walking, running, and cycling.

2.2 Research Context

This section gives a short overview of the MoGaSens project, describes the IMU sensor
hardware used in this study, and introduces the problem statement.

1http://qsinstitute.com (Accessed 2021-01-19)
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2 Analysis

2.2.1 MoGaSens Project

This thesis builds on research conducted as part of the MoGaSens project,2 in which
a smart shirt is being developed that collects accelerometer and gyroscope data. The
research was carried out by a research team at the Creative Space for Technical Innova-
tions at the Hamburg University of Applied Sciences.3 Additional project partners are
the University of Hamburg,4 whose sports scientists labeled every push-up as correct or
incorrect, and Hamburg Applications MES UG,5 who are developing the smart shirt.

The project’s overall aim is to develop a sensor system (i.e., the smart shirt) that can
detect the kind of exercise performed and assess the quality of each repetition. To this
end, sensor data was processed and subsequently analyzed so that each exercise repetition
could be evaluated.

2.2.2 Hardware

This study used four Bosch BMI160 [3] sensors. These sensors contain both an accelerom-
eter and a gyroscope [3]. The accelerometer measures acceleration of gravitational force
(g-force), and the gyroscope measures rotation in degrees per second. Both the ac-
celerometer and the gyroscope are triaxial (x-axis, y-axis, and z-axis) [4]. Appendix A.1
includes a detailed description of the sensors’ characteristics.

For the task of segmenting push-up and squat exercises, a sensor measuring the height
of the test person would have been ideal, as a local maximum would indicate the start
of an exercise repetition and the end of the preceding repetition. Such a sensor was not
available for the project.

The four sensors were used to measure the acceleration (g-force) at different points on
the test person’s body as repetitions of an exercise (push-ups or squats) were performed.
The acceleration does not directly translate to the respective height, however, and re-
constructing the movement from the sensor data is challenging.

The sensors’ raw data channels contained a degree of white noise, which is typical for
IMUs such as the Bosch BMI160 [21]. The Bosch BMI160 supports three filtering modes

2https://csti.haw-hamburg.de/project/mogasens/ (Accessed 2021-01-19)
3https://csti.haw-hamburg.de (Accessed 2021-01-19)
4https://uni-hamburg.de (Accessed 2021-01-19)
5https://hamburg-applications.com (Accessed 2021-01-19)
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2 Analysis

[4], but the effect of the built-in filtering was inadequate for the task, and so additional
software-based filtering (a moving average filter or a Butterworth filter) was used.

Bosch BMI160 sensors were used, because the same sensors are used by Hamburg Ap-
plications MES UG for the smart shirt. Reasons for their use included their relatively
small size (2.50 x 3.00mm2 footprint and 0.83mm in height), low power consumption
(typically 925 µA), and low cost [4].

Several steps had to be taken before the sensors could be used. The hardware timestamps
of the Bosch BMI160 sensors overflow after a while, and the timestamp values must
be restored. Furthermore, the accelerometer and gyroscope readings are converted to
floating point values by dividing them by the appropriate divisors. Additionally, the
Euclidean norm is calculated for the three axes of the accelerometer and the gyroscope.
Subsequently, a low-pass filter is applied to the raw signal data to account for the high
degree of white noise. The preprocessing steps that the use of the sensors necessitates
are described in detail in section 3.3.2.

2.2.3 Problem Statement

This thesis proposes an algorithm to segment time series data.6 It is assumed that the
exercise to be performed is known in advance. Additionally, the start and end time points
of the set of exercise repetitions are also assumed to be known.

Segmentation of the preprocessed data is performed to determine in which segments of
the data streams the relevant information is most often to be found [5]. Segmenting a
stream of sensor data is challenging, however, as the fluid manner in which humans move
means that successive activities blur into one another [5]. All motion sensors exhibit
some degree of white noise, which must be removed before analysis [21]. This thesis
focuses on the problem of segmenting such sensor data.

A particular challenge was that the segmentation solution developed had to be executable
online (i.e., in near real-time) on a small, embedded device that is integrated into the
smart shirt. This requirement for the solution to be able to run in near real-time derived
from the MoGaSens project, as the smart shirt must allow for rapid feedback to the

6Another approach to activity recognition, in contrast to the algorithmic approach taken in this thesis,
would be to use neural networks to assess a stream of labeled raw data or to use neural networks for
segmentation [26]. This thesis favors the algorithmic approach, because the amount of data available
was limited to 18 labeled data sets of push-up exercises and 3 unlabeled data sets of squat exercises.

7



2 Analysis

wearer regarding the quality of each exercise repetition performed. Feedback for the
exercise repetition performed should be delivered quickly to the user, with a delay of
approximately one repetition. Such short feedback cycles should allow the wearer of
the smart shirt to quickly improve their performance (e.g., by adjusting their posture).
This requirement necessitates that the runtime complexity and the memory usage of the
algorithm are appropriately low. Another challenge is that data loss due to hardware
limitations necessitates interpolation of the missing data.

2.3 Related Work

Many techniques to recognize and classify exercises can be found in the literature. This
section reviews the literature and presents various preprocessing techniques to enable
segmentation. Additionally, it presents various techniques for segmenting the data so
that features can be extracted from the resulting segments.

The preprocessing and segmentation steps are derived from the ARC, which was in-
troduced by Bulling et al. [5] as a model for activity recognition. It is a sequence of
signal processing, pattern recognition, and machine learning. The ARC is similar to
the knowledge-discovery-in-databases process proposed by Fayyad et al. [8]. The ARC
is used as a model for a data analysis pipeline consisting of preprocessing, segmenta-
tion, feature extraction, and classification. This thesis focuses on the preprocessing and
segmentation steps.

2.3.1 Preprocessing

According to Kowsar et al. [21] raw signal data are filtered using a filter such as a low-
pass filter (e.g., a Butterworth filter [2]) before the signal is segmented and features are
subsequently extracted. Segmentation of unfiltered data is difficult, because IMU signals
typically contain white noise [21].

Related studies used filters in varying configurations. For example, Baumbach et al. [1]
used a 3rd order median filter to deal with noisy values in the accelerometer data resulting
from the sensors’ inaccuracy, noise in the sensors’ signals, and unexpected behavior of
the test person. Bevilacqua et al. [2] employed a 4th order Butterworth filter to remove
noise introduced by the elastic vibration of the strap securing the IMU device to the test

8



2 Analysis

person’s body. They subsequently applied a min-max normalization to all signals [2].
Similarly, Giggins et al. [12] used a 4th order Butterworth filter with a cutoff frequency
of 20Hz. Likewise, Huang et al. [16] used 5th order Butterworth filters with −1 dB ripple
for accelerometer signals and 4th order Butterworth filters for the gyroscope signals. They
used a cutoff frequency of 50Hz for the thigh and shin/foot mounted sensors and 25Hz

for the other sensors [16]. Seiffert et al. [31] and Zhang et al. [39] used 2nd order
Butterworth low-pass filters with a cutoff frequency of 3Hz.

2.3.2 Time Series Data Segmentation

Several methods for segmentation have been used in the literature. Both Lin et al.
[23] and Dreher et al. [7] have proposed frameworks to compare and evaluate movement-
segmentation algorithms. Lin et al. [23] give an overview of the segmentation approaches,
as shown in figure 2.1.

Figure 2.1: An overview of common segmentation approaches.

Source: Lin et al. [23, p. 329]

© 2016 IEEE
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2 Analysis

One approach is to segment the filtered input signal by local extrema [18, 14, 21] or by
zero crossings [2, 16]. Other segmentation approaches include the Viterbi algorithm, and
clustering approaches [23].

Ishii et al. [18] implemented a real-time segmentation solution consisting of a series of
steps. First, the norm of the sensor’s axes is calculated, which serves as a synthetic
acceleration signal. They state, however, that segmenting through this synthetic signal
has the disadvantage of reducing the differences between movements that are similar
but occur along a different axis. Second, unspecified smoothing is applied to the signal.
Third, segmentation is performed by local maxima, which they call “peaks.” They used
a segmentation algorithm with a sliding window of 0.25 s to find the local maxima.

Another approach was proposed by Guo et al. [14], who introduced the idea of the
magnitude of linear acceleration (MLA). First, the MLA, which is a combination of the
x-, y-, and z-axes, is calculated as follows:

MLA(i) =
√

(a(i)x)2 + (a(i)y)2 + (a(i)z)2 − g

where a represents the acceleration and g the acceleration of gravity. The short-time
energy of the MLA is used as the input signal of the segmentation algorithm. The
segmentation is performed by local minima using sliding windows of short lengths.

A different approach was presented by Kowsar et al. [21], who implemented real-time
segmentation for weight training exercises. In contrast to other studies, the segmentation
is performed through a single sensor axis, called the axis of effect. They explain how
segmenting through a single axis is suitable for weight training exercises. A Kalman filter
is applied to the input signal, and the segmentation is performed by local minima.

The approaches proposed by Bevilacqua et al. [2] and Huang et al. [16] involve segmen-
tation by zero crossings of filtered accelerometer data. Both approaches use Butterworth
filters to filter the raw accelerometer signal. Bevilacqua et al.’s approach uses thresholds
to discard some segmentation points and uses k-means clustering. The centroid of each
cluster is used as the representative point for a signal window. These serve as candidates
for segmentation points. Huang et al.’s approach employs a fast template matching
algorithm for segmentation after having reduced the signal noise using a Butterworth
filter.

Manual segmentation of accelerometer data was employed by Taylor et al. [35]. Baum-
bach et al. [1] segmented filtered data with a window size of 5 s. They used a 3rd order

10



2 Analysis

median filter to filter the data. Another approach, based on several features, including
zero-velocity crossings, was proposed by Sarsfield et al. [30].

Rodrigues et al. [29] developed a framework called Symbolic Search in Time Series, which
is a syntactic tool for pattern searching in time series data. The framework was used by
Pereira et al. [27], who filtered their data using a low-pass filter. The accelerometer and
gyroscope signals were fused together using a 2nd order complementary filter.

Gharghabi et al. [11] proposed an algorithmic approach, called the fast low-cost unipo-
tent semantic segmentation algorithm. Their algorithm was domain agnostic and they
developed a variant suitable for online segmentation.

In summary, segmentation based on accelerometer data seems to be the most common
approach. Huang et al. [16] concluded that acceleration data are more effective than
gyroscope data for most types of movement analysis.

2.4 Summary

The goal of the MoGaSens project is to develop a smart wearable (specifically, a smart
shirt) that can evaluate the quality of each repetition of an exercise the wearer performs.
To achieve this goal, Bosch BMI160 sensors are integrated into the smart shirt. A
machine learning model that is run on an MPU will classify each exercise repetition as
correct or incorrect. This thesis contributes to the project by devising an online (i.e.,
near real-time) segmentation algorithm that can segment a filtered accelerometer signal
so that features can be extracted from the segments.

The accelerometer data will be preprocessed before segmentation. The preprocessing will
primarily consist of applying a low-pass filter to the raw data signal. Then the data will
be segmented in a uniform manner so that features can be extracted from the segments
in a way that is suitable for use with a machine learning classifier. For this purpose,
a segmentation algorithm must be devised that has non-exponential time complexity
and non-exponential memory usage. Furthermore, the segmentation algorithm should,
in principle, be usable in a (near) real-time environment and be suitable for segmenting
push-ups and squats with high accuracy.

11



3 Design

First, this chapter describes the experimental setup that was used to gather the required
sensor data. Second, it describes the design of the software to analyze the quality of push-
ups and squats. Section 3.2 describes the visionary design (i.e., the system as envisioned),
and section 3.3 describes the prototypical design that algorithmically segments the time
series data by batch-mode processing.

3.1 Experimental Setup

To gather sensor data for analysis, an experiment was conducted in which test persons
performed sets of an exercise while equipped with IMUs. Four Bosch BMI160 sensors
were attached to the test person’s body while they performed push-ups or squats. Sensors
were attached to the side of each arm, to the abdomen, and to the chest. Each sensor
contained a triaxial accelerometer and a triaxial gyroscope. The abdomen and chest
sensors were oriented so that the positive z-axis was facing toward the ground. The
sensors attached to the sides of the arms had their positive x-axis facing toward the
ground when the test person was standing upright. Figure 3.1 gives a visualization of
the sensor orientation.

12
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Figure 3.1: A visualization of the orientation of the sensor axes.

The test persons were video recorded while they performed the exercises. The videos
served as ground truth data to evaluate the accuracy of the proposed segmentation
algorithm. The videos were recorded with a resolution of 1,280 × 720 pixels and 30

frames per second (fps). Two cameras were used to record the videos: one recorded the
test person performing the exercise from the front; the other recorded the test person
from the side. The two camera signals were merged into single MP4 [19] video files for
each recording.

Six test persons performed the exercises. Recordings were made of 18 sets of push-ups
(three per person) and two sets of squats. For the first nine sets of push-ups, a sampling
rate of 250Hz was used; for the squats and the other nine sets of push-ups, the sampling
rate was 200Hz. The data were collected so that each repetition could be classified into
one of two distinct categories: correct and incorrect. For both the accelerometer and the
gyroscope, the normal filter mode was configured in the Bosch BMI160 sensors. In the
repetitive time series data, activities were recognized by means of segmentation. It was
assumed that a push-up takes between 1.40 s and 2.50 s. These numbers are derived from

13
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Hsu et al. [15], who considered seven push-ups in 10 s to be fast, five push-ups in 10 s to
be regular, and four push-ups in 10 s to be slow.

3.2 Visionary Design

In the visionary design, the user wears a smart shirt that has IMUs and an MPU inte-
grated into its fabric. The user defines a workout plan using a smartphone application
and then performs the exercises as instructed.

The IMUs collect accelerometer and gyroscope data, which are transmitted to the MPU
via radio. A pre-trained machine learning model to classify a given segment runs on
the MPU. The MPU buffers the data until sufficient data are gathered according to
the window size of the segmentation algorithm. The gathered data are then repeatedly
processed as follows:

1. The Euclidean norm of the accelerometer axes and of the gyroscope axes is calcu-
lated.

2. The four sensors are normed together.

3. A 3rd order Butterworth filter is applied to the normed signal.

4. Local extrema are found in the buffered data.

5. For each segment (i.e., the data points between two local extrema) a feature vector
is calculated.

6. Each feature vector is fed into the pre-trained machine learning model.

7. The machine learning model classifies each exercise repetition as correct or incor-
rect.

8. The classification of the most recently detected repetition is sent to the smartphone
application using a network connection, and the application then communicates the
result to the user.

14
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3.3 Prototypical Design

As the smart shirt was not available when this study was conducted, a prototype was
developed to investigate the suitability of a segmentation algorithm that segments by
local extrema for solving the problem of segmenting sets of exercise repetitions. The
prototype employed batch-mode processing as opposed to live (i.e., online) segmentation.
As described in section 3.1, the test persons wore four IMUs. While the test person
performed push-ups or squats, the signals of the accelerometer and gyroscope sensors
were transmitted to another computer via radio, where they were recorded and saved as
comma-separated-values (CSV) [33] files.

The CSV files contain 11 columns. See figure 3.2 for details.

Figure 3.2: The columns of the CSV file.

The Time column contains the time of arrival of the sensor data in seconds. The HW-
Timestamp column contains the hardware timestamps in milliseconds as recorded by the
IMU. The ExtractID column lists unique identifiers: 769 represents the left arm sensor,
770 the abdomen sensor, 771 the right arm sensor, and 772 the chest sensor. (Other
ExtractID values, including one for the battery, are not relevant to this thesis.) The
Trigger column is currently unused and is always 0. The columns Channel 1 to Channel
6 contain the raw sensor readings. Channel 1 is the x-axis of the accelerometer, channel
2 the y-axis, and channel 3 the z-axis. Likewise, channel 4 is the x-axis of the gyroscope,
channel 5 the y-axis, and channel 6 the z-axis. The Sampling Rate column is currently
unused.
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3.3.1 Activity Recognition Chain

Figure 3.3 shows the ARC proposed by Bulling et al. [5], on which the proposed data
analysis pipeline is based. The implementation consists of the segmentation and the
required preprocessing.

Figure 3.3: Visualization of the activity recognition chain, illustrating the steps of the
analysis pipeline.

Source: Bulling et al. [5, p. 8]

Copyright 2014 ACM

In the first stage (referred to as the raw data stage), raw data are acquired using sensors
attached to the body. The sensors can use different sampling frequencies. The raw sensor
data may be corrupted by artifacts [5].

The purpose of the second stage (the preprocessing stage) is to remove such artifacts,
reduce noise, and prepare the signals for feature extraction. They describe how the
preprocessing of accelerometer and gyroscope signals may involve calibration, unit con-
version, normalization, resampling, synchronization, and signal-level fusion [5].

In the third stage (segmentation), the segments of preprocessed data that are likely to
contain information about activities are identified. Each data segment is defined by
its start and end times. Bulling et al. state that one approach for time series data
segmentation is the sliding window approach. In this approach, a window is moved over
the time series data to extract segments. The window size directly influences the delay
of the recognition system. The larger the window size, the longer the feature extraction
stage must wait for a new segment to become available [5].
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The fourth stage (feature extraction) reduces the signals into features that can be used
to discriminate between the activities [5].

What happens in the fifth stage (classification) depends on whether the training or
classification mode is used. In the training mode, the extracted features and the ground
truth labels are used as input to train the classifier model. In the classification mode,
the trained model and the extracted features are used to calculate a score for each class
[5].

3.3.2 Implementation

For this thesis, the first three steps of the ARC (raw data, preprocessing, and segmen-
tation) have been implemented.1 The implementation consists of the following compo-
nents:

• Sensor hardware consisting of four Bosch BMI160 sensors [3].

• Software to receive the sensor data.

• Preprocessing component written in MATLAB [25].

• Segmentation component written in Python [36].

Data Acquisition

Each test person performed a predefined exercise (push-ups or squats) until exhaustion
with sensors attached to their body. While the test person performed the exercise, a video
was recorded, which served as the ground truth. Additionally, the repetitions performed
were counted for each data set by manually inspecting the videos recorded. Four sensors
were used: one attached to the left arm, one to the right arm, one to the abdomen, and
one to the chest. Each sensor consisted of a triaxial accelerometer and gyroscope. The
sensor data were sent to a computer that aggregated the data into CSV files. Data sets
for both push-ups and squats were recorded as CSV files.

1For the source code developed for this thesis by the thesis author see https://github.com/
CppPhil/mogasens_csv (Accessed 2021-02-16).
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Preprocessing

The preprocessing stage was implemented by André Jeworutzki.2 The data sets were
preprocessed as follows:

1. The hardware timestamp values were restored from their overflowed values. The
timestamps were stored as 16-bit unsigned integers and overflowed given sufficient
time.3

2. Accelerometer readings greater than or equal to 1.99 g and less than or equal to
−1.99 g were deleted, because they are beyond the bounds of the possible sensor
values given the sensor sensitivity.

3. Gyroscope readings greater than or equal to 1,999.99 ◦/s and less than or equal
to −1,999.99 ◦/s were deleted, because they are beyond the bounds of the possible
sensor values given the sensor sensitivity.4

4. The missing data were interpolated.

5. The 16-bit signed integer accelerometer values were divided by 16,384 so that they
were within −1.99 to 1.99.

6. The 16-bit signed integer gyroscope values were divided by 16.40 so that they were
within −1,999.99 to 1,999.99.5

7. The Euclidean norm was calculated for the accelerometer signals and the gyro-
scope signals. Equation 3.1 defines the Euclidean norm, where I is the IMU (i.e.,
accelerometer or gyroscope); x, y, and z are the axes of the IMU; and t is the hard-
ware timestamp.6 The Euclidean norm was calculated for every hardware times-
tamp for which a data point existed, norming the entirety of each input channel

2https://csti.haw-hamburg.de/andre-jeworutzki (Accessed 2021-01-19)
3An implementation correcting the hardware timestamps is available at https://github.com/
CppPhil/mogasens_csv/blob/master/fix_csv/src/adjust_hardware_timestamp.cpp
(Accessed 2021-02-16).

4An implementation handling both the accelerometer and gyroscope readings is available at
https://github.com/CppPhil/mogasens_csv/blob/master/fix_csv/src/delete_
out_of_bounds_values.cpp (Accessed 2021-02-16).

5An implementation is available at https://github.com/CppPhil/mogasens_csv/blob/
master/fix_csv/src/main.cpp (Accessed 2021-02-16) with the accelerometer readings being
adjusted in lines 199 to 200 and the gyroscope readings being adjusted in lines 227 to 228.

6An implementation of the Euclidean norm is available at https://github.com/CppPhil/
mogasens_csv/blob/master/python/modules/euclidean_norm.py (Accessed 2021-02-16).
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into one normed, artificial channel.

Norm(t) = 2

√
Ix(t)2 + Iy(t)2 + Iz(t)2 (3.1)

8. A moving average filter with a window size of 125 values was used to filter the three
channels of the accelerometer, the gyroscope, and the normed signals for both.7

9. A 3rd order low-pass Butterworth filter with a cutoff frequency of 0.80Hz was used
to filter the three channels of the accelerometer, gyroscope, and the normed signals
for both.

Figure 3.4 shows raw accelerometer data, including all three axes and their Euclidean
norm. The x-axis shows the hardware timestamps in milliseconds, and the y-axis shows
the gravitational force. Motion sensors such as accelerometers exhibit some degree of
white noise [21], and filtering is often required to remove such sensor noise from the raw
data [23].

Figure 3.4: Test person 1, set 1 abdomen sensor unfiltered accelerometer signal.

7An implementation of the moving average filter is available at https://github.com/CppPhil/
mogasens_csv/blob/master/python/modules/moving_average_filter.py (Accessed
2021-02-16).
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Two filter approaches were chosen to smooth the incoming raw signal: a moving average
filter of 125 samples and a 3rd order Butterworth filter. A push-up was expected to
take between 1.40 s and 2.50 s [15] and should contain one local minimum and one local
maximum. If the sampling rate is 250Hz, 125 samples amount to 500ms; and if the
sampling rate is 200Hz, 125 samples amount to 625ms. In both cases, the time over
which the data points are averaged is below 1.40 s, which accounts for fast push-ups.

Figure 3.5 shows the Euclidean norm of an accelerometer signal of a test person perform-
ing push-ups filtered with the moving average filter and the Butterworth filter.

Figure 3.5: Test person 1, set 1 chest sensor filtered accelerometer signal.

After preprocessing, the data sets were exported as CSV files. These CSV files contain
raw data, the normed data, and their moving-average and Butterworth-filtered counter-
parts.

Segmentation

The preprocessed data sets are segmented using an offline (batch processing) fixed-size
sliding window algorithm that segments the data by local extrema (local minima, local
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maxima, or both). As the Euclidean norm is used, sliding windows must also be used,
according to Imani et al. [17].

The data to be segmented are read from the preprocessed CSV files.

The proposed algorithm has the following parameters:

1. skipWindow : If set, the algorithm will ignore the remaining data points in the
sliding window if the current data point has been determined to be a local extremum
rather than continuing with the following data point.

2. deleteTooClose: If set, any segmentation point x will be discarded if the distance
between x−1 and x is less than 250ms.8

3. deleteLowVariance: If set, any segmentation point x will be discarded if the variance
of the data points in the segment spanning from x−1 to x is less than 0.002.9

4. imu: Determines which IMU (accelerometer or gyroscope) the data sets are to be
segmented by.

5. segmentationKind : Determines whether to segment by local minima, local maxima,
or both.

6. windowSize: Determines the size of the fixed-size sliding window (in data points).

7. filter : Determines whether to segment based on the moving-average-filtered or
Butterworth-filtered Euclidean norm of the IMU.

Algorithm 3.1 shows a pseudo code representation of the segmentation algorithm de-
vised.10

The pseudo code algorithm has four parameters. The first parameter, data, is the normed
and filtered data in which local extrema serving as segmentation points are found (i.e.,
the filtered and normed accelerometer or gyroscope signal). data is assumed to be a
list with 0-based indexing. The second parameter, windowSize, is the size of the sliding

8An implementation deleting too close segmentation points is available at https://github.
com/CppPhil/mogasens_csv/blob/master/python/preprocessed_segment.py (Accessed
2021-02-16) in lines 73 to 86.

9An implementation deleting segments with too little variance is available at https://github.
com/CppPhil/mogasens_csv/blob/master/python/preprocessed_segment.py (Accessed
2021-02-16) in lines 89 to 98.

10An exemplary implementation written in Python [36] is available at https://github.com/
CppPhil/mogasens_csv/blob/master/python/modules/segmentation_points.py (Ac-
cessed 2021-01-25)
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window (in data points). The windowSize must always be an odd number greater than
or equal to 3. The third parameter, skipWindow, is a Boolean flag that is true if the
remainder of the current sliding window’s elements should not be examined given that
the current data point is a local extremum, and false if all data points should serve as
potential segmentation points, irrespective of their proximity to another segmentation
point. The fourth parameter, segmentationKind, indicates whether the algorithm should
detect local minima, local maxima, or both. It can be thought of as a bitflag type.
The deleteTooClose and deleteLowVariance Boolean parameters are not part of the core
algorithm and are applied as filters to the result of the pseudo code algorithm.

The output of the pseudo code algorithm is a list containing the indices into data where
the values signify local extrema.

In Line 1, the radius is calculated by subtracting 1 from the windowSize and then halving
the result. The radius is the number of neighboring data points to consider (in either
direction) when determining whether the current data point is a local extremum. If
the windowSize is 51, for example, the radius is 25. Hence, to be considered a local
maximum, x must be greater than all 25 data points preceding it and all 25 data points
following it.

In Line 2, extremumIndices is initialized with the empty list. The indices of the local
extrema are collected in this list.

In Line 3, currentIndex is initialized to 0. This variable is the index of the current data
point, that is classified as a local minimum, local maximum, or neither.

The main loop of the algorithm starts in Line 4 and ends in Line 42. dataPointCount is
the number of data points in data (i.e., the length of data in elements).

In Lines 5 and 6, windowBegin and windowEnd are set. windowBegin indicates the index
with which the current sliding window begins, and windowEnd indicates the index with
which it ends. These bounds are to be interpreted as a closed range (i.e., both the
elements at windowBegin and windowEnd are part of the window).

The Boolean variable wasAdded is defined as false in Line 7. This variable indicates
whether currentIndex was appended to extremumIndices.

In Lines 8 to 13, the windowBegin and windowEnd variables are clamped so that they
remain in bounds. This results in a smaller sliding window at the beginning and the end
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of the data, as there are insufficient data points preceding or following the current data
point to fill the window entirely.

If segmentationKind indicates that the algorithm should look for local minima, Lines 14
to 25 test whether the data point at currentIndex is a local minimum. By default, the
current data point is assumed to be a local minimum (Line 15). If any of the other
elements are smaller than the current data point (Lines 16 to 20), isLocalMinimum is set
to false (Line 18). Note that the loop can be broken out of when isLocalMinimum is set
to false. In Lines 21 to 25, currentIndex is appended to extremumIndices if it is a local
minimum. Note that wasAdded is set to true in Line 23 when currentIndex is appended
to extremumIndices.

If segmentationKind indicates that the algorithm should look for local maxima, Lines 26
to 36 check whether the current data point is a local maximum. Note that the algorithm
only tests whether the data point at currentIndex is a local maximum if wasAdded is
false (i.e., it was not already determined to be a local minimum). This avoids redundant
comparison of data points. The current data point is considered not to be a local maxi-
mum if any of the other data points in the sliding window are greater than the current
data point (Lines 28 to 32). Note that this loop can also be broken out of as soon as the
isLocalMaximum variable is set to false.

Lines 37 to 41 either increment currentIndex by one or, if skipWindow is true and the
currentIndex has been appended to extremumIndices, move currentIndex just beyond
the current sliding window.

The algorithm terminates after having iterated through all the elements in data, returning
the resulting list of indices of local extrema in Line 43.

Algorithm 3.1 The segmentation algorithm as pseudo code.
Input: data, windowSize, skipWindow, segmentationKind
Output: extremumIndices (list of indices into the input data that signify local ex-

trema)
1: radius← (windowSize− 1)/2

2: extremumIndices← emptyList

3: currentIndex← 0

4: while currentIndex < dataPointCount do
5: windowBegin← currentIndex− radius
6: windowEnd← currentIndex+ radius
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7: wasAdded← false

8: if windowBegin < 0 then
9: windowBegin← 0

10: end if
11: if windowEnd ≥ dataPointCount then
12: windowEnd← dataPointCount− 1

13: end if
14: if segmentationKind includes LOCAL_MINIMA then
15: isLocalMinimum← true

16: for i← windowBegin to windowEnd do
17: if i 6= currentIndex AND data[i] < data[currentIndex] then
18: isLocalMinimum← false

19: end if
20: end for
21: if isLocalMinimum then
22: append currentIndex to extremumIndices
23: wasAdded← true

24: end if
25: end if
26: if segmentationKind includes LOCAL_MAXIMA AND NOT wasAdded then
27: isLocalMaximum← true

28: for i← windowBegin to windowEnd do
29: if i 6= currentIndex AND data[i] > data[currentIndex] then
30: isLocalMaximum← false

31: end if
32: end for
33: if isLocalMaximum then
34: append currentIndex to extremumIndices
35: end if
36: end if
37: if skipWindow AND wasAdded then
38: currentIndex← windowEnd+ 1

39: else
40: currentIndex← currentIndex+ 1

41: end if
42: end while
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43: return extremumIndices

Before segmentation begins, the data points chronologically preceding and following the
exercise are discarded.11 The timestamps marking the start and the end of the exercise
timeframe were determined by manually inspecting the recorded video data.

Figure 3.6 shows part of a segmentation of a set of squat exercises. The magenta-colored
vertical lines indicate segmentation points. The moving-average-filtered Euclidean norm
of the accelerometer signals is plotted in red, and the Butterworth-filtered one is plotted
in blue.

Figure 3.6: Test person 5, squats set 2 abdomen sensor segmentation.

The parameters of the algorithm were set as follows:

• skipWindow : false

• deleteTooClose: false

• deleteLowVariance: true

11These crop points are available at https://github.com/CppPhil/mogasens_csv/blob/
master/python/preprocessed_segment.py (Accessed 2021-02-16) in lines 206 to 260.
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• segmentationKind : local minima

• windowSize: 401

• filter : moving average

Figure 3.7 shows part of a segmentation of a set of push-up exercises.

Figure 3.7: Test person 2, set 1 abdomen sensor push-ups segmentation.

The parameters of the algorithm were set as follows:

• skipWindow : false

• deleteTooClose: false

• deleteLowVariance: false

• segmentationKind : local minima

• windowSize: 451

• filter : moving average
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The proposed system provides the preprocessing required for subsequent segmentation
and implements a segmentation algorithm that has a time complexity of n ∗m where n
is the number of data points in which the algorithm should look for segmentation points
and m is the size of the sliding window in data points, which is a runtime constant.
Additionally, the memory usage grows linearly in n because an index is appended to the
resulting list whenever a local extremum is detected.
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This chapter evaluates the solution proposed in Chapter 3. First, it gives an overview
of the number of exercise repetitions counted in each data set. Second, it presents and
evaluates the results, focusing on the quality of segmentation, which is evaluated by
both the count of segmentation points and a confusion matrix. The chapter ends with a
discussion of the results.

The repetitions in each data set were counted using the video data (i.e., ground truth) to
evaluate whether the implementation can algorithmically determine the correct number
of segmentation points. Table 4.1 shows the number of repetitions of the push-up exercise
performed by each test person, as counted by several researchers by inspecting the video
recordings.

Data set Repetitions (author) Repetitions (University of Hamburg) Repetitions (Jan Schwarzer)
Test person 1, set 1 24 24 24
Test person 1, set 2 20 20 20
Test person 1, set 3 15 14 14
Test person 2, set 1 26 25 25
Test person 2, set 2 22 21 21
Test person 2, set 3 18 17 17
Test person 3, set 1 10 10 10
Test person 3, set 2 16 16 16
Test person 3, set 3 18 17 17
Test person 4, set 1 25 25 25
Test person 4, set 2 19 19 19
Test person 4, set 3 13 13 13
Test person 5, set 1 27 27 27
Test person 5, set 2 20 20 20
Test person 5, set 3 17 17 17
Test person 6, set 1 24 24 24
Test person 6, set 2 19 18 18
Test person 6, set 3 11 11 10

Table 4.1: An overview of the repetitions as counted by several researchers.
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The third column shows the repetitions counted by sports scientists from the University of
Hamburg.1 The fourth column shows the repetitions counted by Jan Schwarzer. There
are small discrepancies of one repetition between the counts, which can be explained
by the difficulty in determining whether the last repetition should be counted as such.
The test persons were instructed to perform push-ups until exhaustion, causing the final
repetition to be of questionable quality. The following evaluation was based on the
repetitions counted by the author.

The algorithm used for segmentation is described in section 3.3.2. A moving average
filter with a sample count of 125 or a 3rd order Butterworth filter was applied to the data
before they were segmented. To find a suitable configuration (a set of parameter values)
of the segmentation algorithm, all possible combinations of parameter values were tested
with the data sets using window sizes of 51, 101, 151, 201, 251, 301, 351, 401, 451, 501,
and 551. The counts of the algorithmically determined segmentation points in the data
sets were written to separate log files.2 These log files were subsequently analyzed to
find the configuration, that produced the closest number of segmentation points to the
expected number.3

4.1 Results

4.1.1 Euclidean Norm

Initially, only the z-axis was considered for the segmentation of the push-up exercise,
because the movement is primarily downward and upward; only small sideward or forward
and backward movements were expected. Use of the Euclidean norm was introduced to
base the segmentation on the axis of effect [21] without having to find that axis. Figure
4.1 shows an example in which the x-axis, not the z-axis, is the most relevant axis.

1https://uni-hamburg.de (Accessed 2021-01-19)
2The implementation creating these log files is available at https://github.com/CppPhil/
mogasens_csv/blob/master/ruby/segment_all.rb (Accessed 2021-02-16). The log files are
available at https://github.com/CppPhil/mogasens_csv/tree/master/segmentation_
comparison/logs (Accessed 2021-02-16).

3An implementation that analyzes these log files is available at https://github.com/CppPhil/
mogasens_csv/blob/master/compare_segmentation/src/main.cpp (Accessed 2021-02-
16).
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Figure 4.1: Test person 3, set 1 chest sensor filtered accelerometer signal: x-axis as the
axis of effect.

If the segmentation had been based on the z-axis (instead of the Euclidean norm of all
three axes), the performance of the segmentation would have been much poorer overall.

4.1.2 Sensor Fusion

The chest sensor and the abdomen sensor each proved sufficient for segmentation of
both push-ups and squats. In the Appendix, table A.2 shows how many segmentation
points were algorithmically determined using the algorithm configuration that yielded the
optimal results. One can observe that the chest sensor and the abdomen sensor yielded
the results closest to the expected number in general. To generalize to other forms of
exercise, one could fuse the four sensors into one artificial signal, as the three axes of an
IMU are normed together.

4.1.3 Segmentation

Table 4.2 shows the optimal configurations of the segmentation algorithm for the squats,
and the push-ups sampled at 250Hz and for all data sets combined.
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Parameter Squats (sampled with 200Hz) Push-ups (sampled at 250Hz) All data sets
skipWindow false false false

deleteTooClose false false false
deleteLowVariance true false false
segmentationKind local minima local minima local maxima

windowSize 401 451 451
filter moving average moving average moving average

Distance score 11 42 108

Table 4.2: Configurations yielding the lowest distance scores.

The distance score is the sum of the distances from the manually counted repetitions
to the algorithmically determined segmentation points in each data set. Lower distance
scores are preferable because they indicate less deviation from the ground truth. If the
segmentation quality remains the same over all the repetitions in all the data sets, then
one would expect the distance score to grow linearly with the count of repetitions, because
the likelihood of error remains constant with each repetition equally contributing to the
distance score.

Table 4.3 shows the optimal configurations using the Butterworth filter, which is the
second-most optimal filter setting for the data sets. By comparing the distance scores in
table 4.3 with the ones in table 4.2 one can observe to what degree the segmentation is
affected by the choice of filter.

Parameter Squats (sampled at 200Hz) Push-ups (sampled at 250Hz) All data sets
skipWindow false false false

deleteTooClose false false false
deleteLowVariance true false false
segmentationKind local minima local maxima local maxima

windowSize 551 401 501
filter Butterworth Butterworth Butterworth

Distance score 15 45 120

Table 4.3: Optimal configurations using the Butterworth filter.

Table 4.2 shows that the configurations using the Butterworth filter have slightly higher
(less optimal) distance scores. This indicates that the suitability of both filtering ap-
proaches for subsequent segmentation is similar because the distance scores are marginally
higher.
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Table 4.4 compares the optimal moving average filter configuration for the squats with
the optimal one using the Butterworth filter.

Data set Sensor Repetitions (ground truth) Moving average filter segmentation points Butterworth filter segmentation points
Squats 1 abdomen 30 29 32
Squats 1 chest 30 33 30
Squats 1 left arm 30 31 33
Squats 1 right arm 30 29 31
Squats 2 abdomen 49 49 48
Squats 2 chest 49 53 51
Squats 2 left arm 49 50 52
Squats 2 right arm 49 49 46

Table 4.4: A comparison of the optimal configurations for both filtering approaches for
the squats exercise.

The repetitions column shows the manually counted repetitions, which serve as the ex-
pected number of segmentation points (i.e., the ground truth). The moving average filter
segmentation points column shows the count of segmentation points that were algorith-
mically determined based on data filtered using a moving average filter. A filter sample
count of 125 was used for the moving average filter to match the expected duration of
an exercise (see section 3.3.2). The Butterworth filter segmentation points column shows
the count of segmentation points that were algorithmically determined based on data
filtered using a 3rd order Butterworth filter. The segmentation quality is quite similar.
This is also the case for the push-ups sampled at 250Hz (see table A.1) and for all data
sets (see table A.2).

To evaluate the segmentation algorithm, the data were manually segmented by inspecting
the video recordings (i.e., the ground truth). The manual segmentation points were
created by inspecting the video recordings frame by frame.4 A frame was deemed a
segmentation point if it was within the upward or the downward movement of a push-up
and the visual change observed since the previous frame was the greatest among the
frames the movement consists of. During manual segmentation, no attempt was made
to differentiate between local minima or local maxima. The videos had a frame rate of
30 fps.

Furthermore, the video recordings started earlier than the sensor recordings. This neces-
sitated synchronization of the video recordings with the sensor recordings. The manual
segmentation points derived from the video recordings were therefore first converted to

4See https://github.com/CppPhil/mogasens_csv/blob/master/confusion_matrix/
data/manual_segmentation.csv (Accessed 2021-02-16) for the manual segmentation points.
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hardware timestamps so that they could be compared to the segmentation points deter-
mined algorithmically. To convert the manual segmentation points to hardware times-
tamps, the first algorithmically determined segmentation point was assumed to be the
same as the first manual segmentation point. The hardware timestamps of the manual
segmentation points were calculated by adding the difference between a manual segmen-
tation point and the first manual segmentation point to the hardware timestamp of the
first algorithmically determined segmentation point.5

Confusion matrices for the configurations of the segmentation algorithm were created
using a delta of ±450ms over the four sensors in all the data sets. A delta (i.e., difference)
of ±450ms was used to account for the inaccuracy of the manual segmentation, because
determining which frames in a video constitute segmentation points is challenging. From
the video recordings, a push-up was estimated to take approximately 27 frames. As the
videos were recorded with 30 fps, the duration of each frame was approximately 33.33ms.
Therefore, the duration of 27 frames is 900ms. The 900ms were halved, as the delta of
450ms allows for deviation in either positive or negative directions.

Configurations with window sizes of 3, 51, 101, 151, 201, 251, 301, 351, 401, 451, 501,
551, 601, 651, 701, 751, 801, 851, 901 and 951 were compared with one another. All
configurations used were segmented by both local minima and local maxima, as the
ground truth includes both local minima and local maxima.6

For every hardware timestamp in each data set, the true positives, false positives, false
negatives, and true negatives were counted as follows:7

1. The number of true positives is incremented by 1 for each timestamp that the
algorithm considers to be a segmentation point and that exists within a delta of
±450ms in the ground truth.

5An implementation converting the manual segmentation points to hardware timestamps is avail-
able at https://github.com/CppPhil/mogasens_csv/blob/master/confusion_matrix/
src/manual_segmentation_point.cpp (Accessed 2021-02-16) in lines 360 to 414.

6See https://github.com/CppPhil/mogasens_csv/tree/master/confusion_matrix/
data/segmentation_points_imported_from_python (Accessed 2021-02-17) for text files
containing the segmentation points that were algorithmically determined. The text files are named
according to the configuration used.

7See https://github.com/CppPhil/mogasens_csv/blob/master/confusion_matrix/
src/confusion_matrix_best_configs.cpp (Accessed 2021-02-16) lines 101 to 193 for an
implementation creating the confusion matrices.
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2. The number of false positives is incremented by 1 for each timestamp that the
algorithm considers to be a segmentation point but that does not exist within a
delta of ±450ms in the ground truth.

3. The number of false negatives is incremented by 1 for each timestamp that is a
segmentation point according to the ground truth but does not exist within a delta
of ±450ms in the list of algorithmically determined segmentation points.

4. The number of true negatives is incremented by 1 for every other timestamp.

Table 4.5 shows the optimal configuration found by calculating the confusion matrices
for the configurations used.8

Parameter Setting
skipWindow false

deleteTooClose false
deleteLowVariance true
segmentationKind both

windowSize 501
filter Butterworth
imu accelerometer

Table 4.5: Configuration with the most true positives and true negatives and the fewest
false positives and false negatives.

Analogously, figure 4.2 shows the confusion matrix of the optimal configuration.

8The configurations are available at https://github.com/CppPhil/mogasens_csv/blob/
master/output.txt (Accessed 2021-02-16). The “addTrueSubtractFalse” comparison method was
used for this thesis, with the optimal configuration in line 12815.
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Figure 4.2: Confusion matrix for the optimal overall configuration.

The p column shows the percentages of timestamps that the algorithm considered to be
segmentation points, and the n column shows the percentages of timestamps that the
algorithm considered not to be segmentation points. The p’ row shows the percentages
of timestamps that are segmentation points according to the ground truth, and the n’
row shows the percentages of timestamps that are not segmentation points according to
the ground truth. The upper left quadrant shows the percentage of timestamps that are
true positives (0.18% i.e., they are segmentation points according to both the ground
truth and the algorithm). The upper right quadrant shows the percentage of timestamps
that are false negatives (0.02%; segmentation points according to the ground truth but
not the algorithm). The lower left quadrant shows the percentage of timestamps that
are false positives (0.04%; segmentation points according to the algorithm but not the
ground truth). Finally, the lower right quadrant shows the percentage of timestamps that
are true negatives (99.75%; not segmentation points according to both the ground truth
and the algorithm). There are 0.06% errors in total (the sum of the false negatives and
false positives) and 99.79% correctly classified timestamps (the sum of the true negatives
and true positives). Most timestamps (99.75%) were true negatives as they were not
segmentation points (i.e., local extrema).

The optimal configuration was determined by comparing the confusion matrices of the
configurations as follows:9

9An implementation of the comparator used is available at https://github.com/CppPhil/
mogasens_csv/blob/master/confusion_matrix/include/confusion_matrix_best_
configs.hpp (Accessed 2021-02-16) in lines 125 to 148.
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1. The number of positive points was calculated by adding the number of true positives
and true negatives.

2. The number of negative points was calculated by adding the number of false neg-
atives and false positives.

3. If the number of negative points was greater than the number of positive points
the configuration was awarded 0 points.

4. Otherwise, the configuration was awarded the number of positive points minus the
number of negative points.

5. The configuration awarded the most points was deemed optimal.

4.2 Discussion

This section begins by discussing the parameters of the configuration. The windowSize
parameter has the largest impact on the distance score. The skipWindow and delete-
TooClose parameters have no impact for larger window sizes; they only make a difference
for smaller window sizes such as 51.10 Notably, both the moving average filter and the
Butterworth filter allowed for satisfactory segmentation of the input signal, given a suit-
able window size for the segmentation algorithm. Initially, it was expected that the use
of the Butterworth filter would lead to significantly more accurate segmentation, because
the smoothing effect observed is more pronounced, but the moving average filter proved
to be similarly suitable for the task.

A larger sliding window results in less over-segmentation. However, the sliding window
should not be too large; otherwise, multiple repetitions would be considered part of the
same segment. Hsu et al. [15] considered seven push-ups in 10 s to be fast and four
push-ups in 10 s to be slow. Hence, a push-up should take about 1.40 s to 2.50 s.

If a sampling rate of 250Hz is used, a new data point for each sensor channel arrives
every 4ms. Using a sliding window size of 501 elements therefore means that the dis-
tance between two segmentation points is at least 1 s. If the sampling rate is 200Hz,

10See https://github.com/CppPhil/mogasens_csv/blob/master/segmentation_
comparison/out.txt (Accessed 2021-02-16) starting in line 534. One can observe that
most configurations yield the same distance score when only the skipWindow, or deleteTooClose
settings differ between them.
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the minimum distance between segmentation points will be 1.25 s for the same window
size. With a window size of 501, no other segmentation point may exist in the interval
[x− 250, x+ 250] for a given segmentation point x. The window size must be sufficiently
small to allow for accurate segmentation when the repetitions are fast.

A large window size increases the delay in online use, because more data must be buffered
before they can be segmented. The increased delay may be undesirable, and hence a
smaller window size should be used to minimize the delay at the expense of segmentation
accuracy. For real world use, the window size should be smaller than 501 data points so
that the delay is acceptably short.

The videos recorded to serve as the ground truth had frame rates of 30 fps. This resulted
in low accuracy of the manual segmentation points, because 30 fps (i.e., 30 images every
second) is significantly lower than the 250Hz or 200Hz (i.e., 250 or 200 data points per
second) that were used to sample the signals. Additionally, precisely determining the
point of maximum acceleration by visual inspection proved to be challenging.

Overall, the author expects that the solution presented here will be suitable for imple-
mentation in the smart shirt’s microprocessor due to its low runtime complexity and
memory consumption. The algorithm can be used for online segmentation purposes.
Other approaches such as the Viterbi algorithm were not considered because of the run-
time requirements [23]. Modified versions of the Viterbi algorithm suitable for online
use exist, but they require the model to be pre-trained [23]. Such an approach was not
implemented because writing a correct online Viterbi algorithm was more challenging
than implementing the proposed algorithm. A dynamic time warping algorithm, such as
the one used by Ishii et al. [18], is assumed to mitigate over-segmentation and under-
segmentation using a fixed-size window. Such an approach was not used due to the
runtime complexity.

The solution introduced here has been tested with the push-up and squat exercises.
Whether it can be generalized to other exercises remains to be seen. Due to the nature
of the algorithm (i.e., the detection of local extrema), the exercise must result in repeating
sensor patterns that consistently contain such extrema that can be used for segmentation.
Different exercises may require recalibration of the parameters for optimal segmentation
quality, especially if the time taken for a single repetition is much different from that of
other exercises, because the algorithm is highly sensitive to the windowSize parameter.
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Additionally, for some exercises, it may be beneficial to regard a time span of more than
the distance from one segmentation point to the next as a single segment. For instance,
in the case of sit-ups, Ishii et al. [18] detected three peaks for each motion. In such a
case, the sit-up exercise spans three peaks (i.e., segmentation points) rather than two.
Notably, the authors do not consider the entire timespan of all three peaks, but rather
take into account only the first segment of a sit-up motion.

Using the optimal configuration for a variety of exercises is assumed to yield less ac-
curate results than using different (optimal) configurations for each kind of exercise.
For instance, the optimal configuration for push-ups sampled at 200Hz achieves a lower
(more optimal) distance score for push-ups sampled at 200Hz than the optimal overall
(i.e., for all data sets) configuration does. Table 4.6 shows the optimal configuration for
push-ups sampled at 200Hz and the optimal overall configuration. Both configurations
were applied to push-ups sampled at 200Hz. The optimal overall configuration yields a
higher (i.e., less optimal) distance score.

Parameter Optimal configuration for push-ups sampled at 200Hz Optimal overall configuration
skipWindow false false

deleteTooClose false false
deleteLowVariance true false
segmentationKind local maxima local maxima

windowSize 451 451
filter Butterworth moving average

Distance score 19 23

Table 4.6: Comparison of the optimal configuration for the push-ups sampled at 200Hz
and the optimal overall configuration.

Likewise, table 4.7 shows that the optimal configuration for squats achieves a more
accurate segmentation for squats than the optimal overall configuration does.
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Parameter Optimal configuration for squats Optimal overall configuration
skipWindow false false

deleteTooClose false false
deleteLowVariance true false
segmentationKind local minima local maxima

windowSize 401 451
filter moving average moving average

Distance score 11 33

Table 4.7: Comparison of the optimal configuration for the squats and the optimal overall
configuration.

If the set of possible exercises is finite and known in advance, these optimal configura-
tions could, given enough data, be predetermined. Lastly, pre-processing the data with
different filters may affect the segmentation (e.g., lead to over-segmentation).
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This work proposed an implementation of a segmentation algorithm for accelerometer
signals and demonstrated its suitability through a series of tests. Most of the param-
eters of the algorithm have little impact on the segmentation quality. The quality is
primarily influenced by the windowSize parameter. Additionally, both the moving aver-
age and the Butterworth filters are capable of suitable signal-smoothing for subsequent
segmentation.

The algorithm has several limitations, however, including the issue of over-segmentation,
which is common in segmentation algorithms based on local extrema or zero-crossings.
A larger sliding window reduces the degree of over-segmentation but introduces longer
delays, as more data points must be buffered before a segment is passed to the feature
extraction step. This would cause the user to receive delayed feedback regarding their
exercise performance. Rapid feedback is important not only so that the user experience
is satisfactory, but also so that athletes can quickly correct their exercise form to achieve
more effective training results or abort the exercise to avoid injury, especially when
performing weight-training exercises.

Furthermore, it is unknown how well the algorithm can be generalized to other exercises
or to segmentation of entirely different signals. Resolving these issues will require further
research. The results may be useful to researchers facing similar problems with the
segmentation of repetitive time series data. To use the proposed algorithm to solve
another problem, that problem must exhibit some repetitive pattern (e.g., in sensor
data) that can be segmented into individual components (segments) by detection of local
extrema in the data. One such field for which the algorithm may be useful is anomaly
detection. The algorithm may be used to segment any signal data that can be segmented
by local extrema and for which the individual segments must match some pattern or
exhibit some measurable quality. These patterns or qualities may be extracted from the
segments determined by the algorithm.
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This thesis concerns the segmentation for accelerometer signals of sports exercises, but
the approach may be generalized to rehabilitation exercises or other medical uses, which
may lead to a possibility of devising a system to aid medical diagnoses. Such avenues of
research are left for future work.

This thesis has laid the foundation for a data analysis pipeline for push-up and squat
exercises based on accelerometer signals, leading to the subsequent stages of the ARC:
feature extraction and classification. These stages were prototypically implemented by a
team of researchers at the Creative Space for Technical Innovations. Their implementa-
tion enables segments of the push-up data sets to be determined as correct or incorrect
using a classifier that is trained using some of the data sets recorded and the labeling of
the repetitions as provided by the University of Hamburg.

This thesis only considers push-ups and squats. New exercises might require adjustments
to the segmentation and other parts of the pipeline. It is assumed that generalization to
other problems is possible, given that the data produced consist of individual components
(e.g., repetitions) and so segmentation by local extrema results in useful segments for
the subsequent steps in the analysis pipeline. This thesis has shown the feasibility of
segmentation of push-up exercises and squat exercises by detecting the local extrema in
the respective accelerometer signals. If the proposed algorithm can be used for other
problems, then it solves the problem of the segmentation of repetitive time series data
holistically, rather than only for the specific exercises examined here.

Merging the four sensors into one artificial sensor may be necessary to generalize the
algorithm to other exercises that require more than one sensor for subsequent analysis.

Determining the ground truth segmentation points from the video recordings and cor-
relating them with the algorithmically determined ones was challenging, because the
timestamps were not synchronized. Hence, improving the experimental setup may be a
worthwhile pursuit in future work. Specifically, one could ensure that the sensor record-
ing and video recording start at the same time (e.g., by sending a start signal to the
sensor hardware, which then responds with the hardware timestamp). This way, the
hardware timestamp that corresponds to the start of the video recording is the same as
the one that corresponds to start of the sensor recording. Additionally, providing a more
accurate (i.e., higher resolution) source for the ground truth may be considered.

The ability to easily switch between implementations of the steps of the ARC is desirable
for scientific experimentation. For instance, one could change the filter used on the data,
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the segmentation algorithm, and the machine learning classifier to find a suitable solution
to a given data science problem.
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A Appendix

A.1 Description of the Bosch BMI160 Sensor

Bosch BMI160 IMUs were used in the experiment. The Bosch BMI160 sensors contain an
accelerometer and a gyroscope [3]. The accelerometer data from the sensors are sampled
at a rate of 1,600Hz, and the gyroscope data are sampled at a data rate of 6,400Hz. The
data are then filtered with a low pass filter so that the output data rate corresponds to
the one configured.

The noise density is typically 180 µg/
√
Hz for the accelerometer (at most 300 µg/

√
Hz

[4]) and 0.007 ◦/s/
√
Hz for the gyroscope [3]. The hardware timestamps of the Bosch

BMI160 have a resolution of 39 µs [4]. Acceleration ranges of ±2 g, ±4 g, ±8 g, and ±16 g
are selectable via a serial digital interface. An acceleration range of ±2 g was used for
the MoGaSens project. The start-up time of the accelerometer is at most 3.80ms. The
resolution of the accelerometer signal is 16 bits. The sensitivity of the accelerometer
signal is 15,729LSB/g to 17,039LSB/g for an acceleration range of ±2 g, 7,864LSB/g
to 8,520LSB/g for an acceleration range of ±4 g, 3,932LSB/g to 4,260LSB/g for an
acceleration range of ±8 g, and 1,966LSB/g to 2,130LSB/g for an acceleration range of
±16 g. The minimum and maximum values are ±3σ. The accelerometer output data
rate is 12.5Hz to 1,600Hz and the output data rate accuracy is within ±1% [4].

Gyroscope ranges of 125 ◦ s−1, 250 ◦ s−1, 500 ◦ s−1, 1,000 ◦ s−1, and 2,000 ◦ s−1 are se-
lectable via a serial digital interface. A range of 2,000 ◦ s−1 was used for the MoGaSens
project. The start-up time of the gyroscope is typically 55ms. The sensitivity of the
gyroscope signal is 15.90LSB/◦/s to 16.90LSB/◦/s for a gyroscope range of 2,000 ◦ s−1,
31.80LSB/◦/s to 33.80LSB/◦/s for a gyroscope range of 1,000 ◦ s−1,
63.60LSB/◦/s to 67.60LSB/◦/s for a gyroscope range of 500 ◦ s−1,
127.20LSB/◦/s to 135.20LSB/◦/s for a gyroscope range of 250 ◦ s−1, and 254.50LSB/◦/s
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to 270.30LSB/◦/s for a gyroscope range of 125 ◦ s−1. The output data rate of the gy-
roscope is 25Hz to 3,200Hz and the output data rate accuracy is within ±2%. The
cross-axis sensitivity (sensitivity to stimuli in non-sense-direction) is 2% [4].

The accelerometer supports three filter modes: a normal filter mode, an oversampling
rate of 2, and an oversampling rate of 4 [4]. In normal mode the accelerometer data
are sampled at equidistant points in time, defined by the accelerometer output data
parameter. The filter bandwidth has a 3 dB cutoff frequency [4].

Likewise, the gyroscope digital filter also supports three modes: normal filter mode,
an oversampling rate of 2, and an oversampling rate of 4 [4]. In normal filter mode,
the gyroscope data are sampled at equidistant points in time, defined by the setting of
the gyroscope output data rate parameter. The filter bandwidth, as configured by the
gyroscope output data rate, has a 3 dB cutoff frequency [4].

An oversampling rate of 2 requires the output data rate to be twice that of the normal
filter mode [4]. Additionally, with a given filter setting, the filter bandwidth will be half
of the bandwidth in the normal filter mode (assuming the same output data rate) [4].
Likewise, an oversampling rate of 4 requires the output data rate to be four times as high
as in the normal filter mode. The filter bandwidth will be a quarter of the bandwidth in
the normal filter mode [4]. This holds true for both the accelerometer and the gyroscope
[4].

A.2 Overview of Detected Segmentation Points and
Repetition Counts for Push-up Data Sets with a
Sampling Rate of 250Hz

Data set Sensor Repetition
count

(ground
truth)

Segmentation
points
(moving
average
filter)

Segmentation
points (But-
terworth
filter)

Test person 1, set 1 abdomen 24 25 26
Test person 1, set 1 chest 24 26 26
Test person 1, set 1 left arm 24 25 26
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Test person 1, set 1 right arm 24 25 25
Test person 1, set 2 abdomen 20 21 21
Test person 1, set 2 chest 20 21 21
Test person 1, set 2 left arm 20 21 21
Test person 1, set 2 right arm 20 21 21
Test person 1, set 3 abdomen 15 16 16
Test person 1, set 3 chest 15 16 17
Test person 1, set 3 left arm 15 17 18
Test person 1, set 3 right arm 15 16 17
Test person 2, set 1 abdomen 26 26 26
Test person 2, set 1 chest 26 26 26
Test person 2, set 1 left arm 26 27 26
Test person 2, set 1 right arm 26 26 26
Test person 2, set 2 abdomen 22 22 22
Test person 2, set 2 chest 22 22 22
Test person 2, set 2 left arm 22 23 22
Test person 2, set 2 right arm 22 23 22
Test person 2, set 3 abdomen 18 17 17
Test person 2, set 3 chest 18 17 17
Test person 2, set 3 left arm 18 15 16
Test person 2, set 3 right arm 18 13 17
Test person 3, set 1 abdomen 10 11 12
Test person 3, set 1 chest 10 11 12
Test person 3, set 1 left arm 10 11 12
Test person 3, set 1 right arm 10 11 12
Test person 3, set 2 abdomen 16 17 17
Test person 3, set 2 chest 16 18 18
Test person 3, set 2 left arm 16 18 18
Test person 3, set 2 right arm 16 19 18
Test person 3, set 3 abdomen 18 18 19
Test person 3, set 3 chest 18 19 20
Test person 3, set 3 left arm 18 19 20
Test person 3, set 3 right arm 18 17 17

Table A.1: Filter comparison for push-ups (sampled at 250Hz).
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A.3 Overview of Detected Segmentation Points and
Repetition Counts for All Data Sets

Data set Sensor Repetition
count

(ground
truth)

Segmentation
points
(moving
average
filter)

Segmentation
points (But-
terworth
filter)

Test person 1, set 1 abdomen 24 26 26
Test person 1, set 1 chest 24 26 26
Test person 1, set 1 left arm 24 26 25
Test person 1, set 1 right arm 24 25 25
Test person 1, set 2 abdomen 20 21 21
Test person 1, set 2 chest 20 21 21
Test person 1, set 2 left arm 20 20 20
Test person 1, set 2 right arm 20 21 21
Test person 1, set 3 abdomen 15 17 16
Test person 1, set 3 chest 15 17 16
Test person 1, set 3 left arm 15 17 18
Test person 1, set 3 right arm 15 17 16
Test person 2, set 1 abdomen 26 26 26
Test person 2, set 1 chest 26 26 26
Test person 2, set 1 left arm 26 27 23
Test person 2, set 1 right arm 26 27 24
Test person 2, set 2 abdomen 22 23 22
Test person 2, set 2 chest 22 23 22
Test person 2, set 2 left arm 22 23 22
Test person 2, set 2 right arm 22 23 22
Test person 2, set 3 abdomen 18 16 16
Test person 2, set 3 chest 18 16 16
Test person 2, set 3 left arm 18 12 14
Test person 2, set 3 right arm 18 14 13
Test person 3, set 1 abdomen 10 11 12
Test person 3, set 1 chest 10 11 12
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Test person 3, set 1 left arm 10 11 12
Test person 3, set 1 right arm 10 11 12
Test person 3, set 2 abdomen 16 19 17
Test person 3, set 2 chest 16 18 17
Test person 3, set 2 left arm 16 17 16
Test person 3, set 2 right arm 16 17 17
Test person 3, set 3 abdomen 18 18 17
Test person 3, set 3 chest 18 17 18
Test person 3, set 3 left arm 18 19 19
Test person 3, set 3 right arm 18 17 17
Test person 4, set 1 abdomen 25 26 18
Test person 4, set 1 chest 25 27 20
Test person 4, set 1 left arm 25 28 17
Test person 4, set 1 right arm 25 26 18
Test person 4, set 2 abdomen 19 21 19
Test person 4, set 2 chest 19 20 20
Test person 4, set 2 left arm 19 20 18
Test person 4, set 2 right arm 19 20 19
Test person 4, set 3 abdomen 13 13 13
Test person 4, set 3 chest 13 13 14
Test person 4, set 3 left arm 13 14 13
Test person 4, set 3 right arm 13 14 13
Test person 5, set 1 abdomen 27 27 27
Test person 5, set 1 chest 27 27 27
Test person 5, set 1 left arm 27 27 27
Test person 5, set 1 right arm 27 27 27
Test person 5, set 2 abdomen 20 20 20
Test person 5, set 2 chest 20 20 20
Test person 5, set 2 left arm 20 20 20
Test person 5, set 2 right arm 20 20 20
Test person 5, set 3 abdomen 17 17 18
Test person 5, set 3 chest 17 17 17
Test person 5, set 3 left arm 17 18 17
Test person 5, set 3 right arm 17 17 18
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Test person 6, set 1 abdomen 24 26 25
Test person 6, set 1 chest 24 25 25
Test person 6, set 1 left arm 24 25 26
Test person 6, set 1 right arm 24 25 25
Test person 6, set 2 abdomen 19 19 19
Test person 6, set 2 chest 19 20 19
Test person 6, set 2 left arm 19 19 19
Test person 6, set 2 right arm 19 19 19
Test person 6, set 3 abdomen 11 10 8
Test person 6, set 3 chest 11 11 9
Test person 6, set 3 left arm 11 11 9
Test person 6, set 3 right arm 11 10 9

Squats 1 abdomen 30 33 33
Squats 1 chest 30 33 33
Squats 1 left arm 30 37 38
Squats 1 right arm 30 35 35
Squats 2 abdomen 49 52 52
Squats 2 chest 49 56 52
Squats 2 left arm 49 54 50
Squats 2 right arm 49 49 50

Table A.2: Filter comparison for all data sets.
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Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „— bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21

Abs. 1 APSO-INGI)] — ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“
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Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:
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