
Modelling the Living Place Project using
Algebraic Higher Order Nets

Susann Gottmann

and

Nico Nachtigall

Diploma Thesis

Supervisor:
Prof. Dr. Hartmut Ehrig

Dr.-Ing. Kathrin Hoffmann

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

June 3, 2011

2

Eidesstattliche Versicherung

Die selbstständige und eigenhändige Anfertigung versichert an Eides statt:

Berlin, den 30. Mai 2011

Susann Gottmann Nico Nachtigall

3

Acknowledgements

We would like to thank all people helping and supporting us in this work: First of all we would like
to thank our supervisor Dr. Kathrin Hoffmann, for her patience and support. Also thanks to Karsten
Gabriel and Tony Modica for their support regarding the formal techniques and to Prof. Dr. Hartmut
Ehrig and the whole TFS team for their constructive criticism.
Furthermore we would like to thank the team of the Living Place Project on the HAW Hamburg, in
particular Jens Ellenberg and Sören Voskuhl for their support, patience and long descriptions of the
Living Place Project. Also thanks to Prof. Dr. Kai von Luck and Prof. Dr. Julia Padberg.
Last but not least, thanks to our families.

4

Zusammenfassung

Innerhalb dieser Arbeit wird das System des Living Place Hamburg als ein System betrachtet, dem die
Konzepte Ubiquitouts Computing sowie Ambient Intelligence zugrunde liegen, indem ein formales Modell
des Systemverhaltens erarbeitet wird, so dass dieses Modell uns helfen kann, unser Verständnis über
Ubiquitous Computing Systeme im Allgemeinen und unser Verständnis über das modellierte System im
Speziellen zu erweitern.

Die hierbei verwendeten formalen Modellierungstechniken umfassen ein neues Konzept markierter
Petri Netze, den sogenannten Algebraischen High-Level Netzen mit individuellen Token, kurz AHLI
Netze, sowie das Konzept der regelbasierten Transformation solcher Netze basierend auf dem Double-
Pushout Ansatz.

Dieser neue Ansatz von individuellen Token ermöglicht es, im Gegensatz zu den zuvor betrachteten
Ansatz von kollektiven Token, markierungsverändernde Regeln zu formulieren, wobei die Verwendung
derartiger Regeln innerhalb der Modellierung zu einem eleganten Modell des Living Place Systems, dem
Hauptergebnis dieser Arbeit, führt.

Anhand des vorgestellten Modells wird ein beispielhaftes Szenario, in einer Form wie es durch das
Living Place System verarbeitet werden kann, simuliert. Dabei werden die wesentlichen Bestandteile des
Modells berücksichtigt.

Außerdem werden mögliche formale Analysetechniken eingeführt, die auf dem Modell angewendet
werden können, um so bestimmte Eigenschaften des internen Systemverhaltens des Living Places Systems
zu erhalten bzw. nachzuweisen und es werden einige Ergebnisse betrachtet, die aus solch einer Anwendung
resultieren.

Abstract

Within this work the system of the Living Place Hamburg is considered as a system of ubiquitous com-
puting and ambient intelligence by providing a formal model of the internal system behaviour of this
system, so that this model helps us to improve our understanding of ubiquitous computing systems in
general and in particular helps us to improve our understanding of the modelled system itself.

The thereby used formal modelling techniques include a new variant of Petri nets with markings called
Algebraic High-Level Nets with Individual Tokens, short AHLI nets, as well as rule-based transformation
of such nets following the double pushout approach.

This new approach of individual tokens in contrast to the former approach of collective tokens enables
the formulation of marking-changing rules, where the usage of such rules within the modelling leads into
an elegant model of the Living Place system as the main result of this work.

On the basis of the presented model an examplary scenario, as it can be processed by the Living Place
system, will be simulated. Thereby, the essential components of the model will be taken into account.

Furthermore, possible formal analysis techniques are introduced that can be applied upon that model
to obtain resp. verify certain properties concerning the internal system behaviour of the Living Place
system as well as some results resulting from such an application are considered.

Contents

1 Introduction 8

1.1 Assignments of the Chapters . 10

2 Living Place Project, Living Place and the System of the Living Place 11

2.1 The System of the Living Place as a System of Ubiquitous Computing and Ambient Intel-
ligence . 12

2.1.1 Ubiquitous Computing . 13

2.1.2 Ambient Intelligence . 14

2.2 Architecture of the System of the Living Place . 14

2.2.1 Message Oriented Middleware . 19

2.2.2 Communicating Devices . 25

2.3 Summary . 38

3 Modelling the System of the Living Place: Levels of Modelling - Data Level, Object
Level, System Level, User Level 39

3.1 Data Level . 41

3.2 Object Level . 41

3.3 System Level . 41

3.4 User Level . 42

3.5 Summary . 42

4 Modelling the System of the Living Place: Requirements Towards the Model 44

4.1 Requirements Resulting From the Characteristics of Ubiquitous Computing resp. Ambient
Intelligence Systems . 44

4.1.1 Data Level . 44

4.1.2 Object Level . 45

4.1.3 System Level . 45

4.1.4 User Level . 45

4.2 Requirements Resulting From the Description of the System 45

4.2.1 Data Level . 46

4.2.2 Object Level . 46

4.2.3 System Level . 52

4.2.4 User Level . 55

4.3 Summary . 56

5 Modelling the System of the Living Place: Requirements Towards the Modelling
Techniques 57

5.1 Data Level . 57

5.2 Object Level . 57

5.3 System Level . 58

5.4 User Level . 58

5.5 Summary . 58

5

6 CONTENTS

6 Modelling the System of the Living Place: Modelling Techniques 59

6.1 Algebraic High-Level Nets with Individual Tokens (AHLI Nets) 59

6.1.1 Definition . 59

6.1.2 Firing Behaviour . 59

6.1.3 AHLI Net Morphisms . 60

6.1.4 Category AHLINets and AHLINets(Σ) . 61

6.2 Transformation of AHLI Nets . 61

6.2.1 Construction of Pushouts in AHLINets . 61

6.2.2 AHLI Transformation Rules . 62

6.2.3 AHLI Transformation . 62

6.2.4 Gluing Condition in AHLINets . 62

6.2.5 Applicability of AHLI Transformation Rules . 63

6.2.6 Applicability of AHLI Transformation Rules with Negative Application Conditions 63

6.3 Algebraic Higher-Order Nets with Individual Tokens (AHOI Nets) as a Special Type of
AHLI Nets . 64

6.4 Transformation of AHOI Nets . 64

6.5 Reconfigurable AHLI/AHOI Systems . 64

6.6 Amalgamated Rules, Transformations & Interaction Schemes 65

6.6.1 Kernel Morphism . 65

6.6.2 Amalgamated Rule . 65

6.6.3 Amalgamated Transformation . 65

6.6.4 Interaction Scheme . 65

6.6.5 Amalgamated Rules Over Maximal Weakly Disjoint Matchings 65

6.7 The Functor VPTNet : AHLINets→ PTNet . 66

6.7.1 Category PTNet . 66

6.7.2 VPTNet : AHLINets→ PTNet . 66

6.8 Revisiting the Requirements Towards the Modelling Techniques 67

6.8.1 Data Level . 67

6.8.2 Object Level . 67

6.8.3 System Level . 68

6.8.4 User Level . 68

6.9 Summary . 68

7 Modelling the System of the Living Place: Model of the System of the Living Place 69

7.1 Model in a Visual Description . 71

7.1.1 Data Level . 71

7.1.2 Object Level . 71

7.1.3 System Level . 106

7.1.4 User Level . 145

7.2 Model in a Formal Description . 164

7.2.1 Data Level . 164

7.2.2 Object Level . 164

7.2.3 System Level . 164

7.2.4 User Level . 165

7.3 Summary . 165

8 Simulation of a Test Scenario 166

8.1 Initial Mode of the Living Place System . 167

8.2 Attach Devices to the Message Oriented Middleware of the Living Place System 167

8.3 The User Enters a new Appointment to the Daily Planner 175

8.4 Attach Alarm Clock 2.0 and Display to the Message Oriented Middleware and Send Request182

8.5 Wake up the Inhabitant . 190

8.6 Preparation Phase For an Appointment: User is in Bathroom 209

8.7 Preparation Phase For an Appointment: User is Dressing in Sleeping Area 216

8.8 Switch off the whole Living Place system . 225

8.9 Summary . 228

CONTENTS 7

9 Analysis 229
9.1 Formal Analysis Techniques . 230

9.1.1 Parallel Independence of two Direct Transformations 230
9.1.2 AHLI Transition Rules & Canonical Transformations of AHLI Nets 231

9.2 Revisiting Some Requirements Towards the Model . 232
9.2.1 Parallel Independence of two Direct Transformations 232
9.2.2 Parallel Independence of a Firing Step and a Direct Transformation 232
9.2.3 Parallel Independence of two Firing Steps . 233

9.3 Summary . 235

10 Summary 237
10.1 Conclusion . 237
10.2 Future Work . 237

10.2.1 Tool Support . 237
10.2.2 E ′ −M′-Pair Factorization . 238
10.2.3 Negative Application Conditions . 238
10.2.4 Distribution of Algebras . 238
10.2.5 Modelling of Time . 238
10.2.6 On Restricting the Matches . 238
10.2.7 Instantiation of Transformation Rules . 239
10.2.8 Rule Amalgamation . 239

11 Appendix 240
11.1 Signature ΣOL . 240
11.2 ΣOL-Algebra AOL . 243
11.3 Signature ΣSL . 251
11.4 ΣSL-Algebra ASL . 252
11.5 Exemplary Formal Notation of an AHLI net . 254

Chapter 1

Introduction

As a result of the rapidly increasing development of technology a new vision pioneered by Mark Weiser
[Wei91] arose, called ubiquitous computing, which includes that systems of computing technology becomes
part of our environment participating in our everyday life, so that the presence of computation will
be ubiquitous whereas the used systems of computing technology should be invisible to humans not
interrupting but autonomously supporting our actions so that the presence of computational technology
seems to disappear.

Such ubiquitous computing, ambient intelligent systems are subject of current research and based
on [Wei91], [CK04], [HK04] and [INK06] such systems can be considered in the context of this work as
systems consisting out of multiple computing devices communicating with each other to operate in such
a manner, so that they as an amalgamation are able to intelligently support the users of such a system
in their everyday life by fulfilling certain everyday tasks, whereas the system itself mostly seems to be
invisible to common awareness, so that people simply use them unconsciously.

Robin Milner [Mil06] stated, that although it seems that

[...] no one can cope with the complexity of such distributed systems, neither mathematically
nor legally [...] [Hil05, p. 17]

there must exist an understanding of such ubiquitous computing systems

[...] not only for scientists, but also to a certain degree for the general public. It may be argued
that a user, being largely unaware of the performance of a ubiquitous computing system, has
no need to understand it [...] but [...] as we aim to create new systems that we do not yet fully
understand, we shall need to create models—and modelling tools—that help us to improve our
understanding, both as scientists and as users. [Mil06, p. 1]

Within this work the system of the Living Place Hamburg is considered as an example for such a
system of ubiquitous computing and ambient intelligence by providing a formal model of the internal
system behaviour of this system as the main result of this work.

So this work aims to provide a model of the internal system behaviour of a specific ubiquitous com-
puting system that helps to improve our understanding of ubiquitous computing systems in general and
that in particular helps to improve our understanding of this Living Place system itself.

Chapter 2 introduces the Living Place Hamburg as a smart home and show flat and as part of the
Living Place Project, a project that includes the construction of this flat as a completed home containing
different test set-ups, so that certain experimental usability studies in real-life situations of a single-
person household taking place there, can be performed within this project. Furthermore, the system
of this smart home, the so called system of the Living Place, is considered, whereas it is clarified, that
the system consists of several computing components that as an amalgamation are able to support the
residents of the Living Place in their everyday procedures taking place there by fulfiling certain tasks of
their everyday life like reminding them of certain appointments that must be met.

Section 2.1 introduces the terms ubiquitous computing as well as ambient intelligence and illustrates
that these two concepts are basic underlying concepts of the Living Place system, so that this system
can be considered as a system of ubiquitous computing and ambient intelligence.

Considering the modelling of the internal system behaviour of this system, the architecture of the
Living Place system is described within section 2.2, so that the so delivered detailed description of the
system can serve as a basis for all further considerations of the following chapters concerning the modelling
of that system.

8

9

Henceforth, the term model of the Living Place system or simply model, model of the system or overall
model of the system often is used as a shorthand notation for model of the internal system behaviour of
the system of the Living Place.

Chapter 3 is the first chapter that deals exclusively with the modelling of the Living Place system.
Therein an overview of those submodels is given, that need to be elaborated to obtain an overall model of
this system. Furthermore, this chapter presents a classification of these submodels into four levels. This
classification provides a well-ordered overall overview of the submodels and their important relationships
to each other. The presented classification will be maintained in all further considerations relating to the
modelling of the Living Place system of the following chapters.

In chaper 4 requirements are defined, that need to be met by the resulting model and therefore that
need to be met by the resulting submodels constituting this overall model of the system. Therefore, if
the resulting model fulfils the requirements defined in chapter 4, it can be regarded as an adequate model
of the Living Place system.

Chapter 5 is the first chapter of this work, that deals with the modelling techniques that are used
within the elaboration of an overall model of the Living Place system by defining requirements towards
these modelling techniques.

In chapter 6 these modelling techniques are finally introduced as formal constructs and it is checked
whether the so defined techniques meet the requirements of the previous chapter 5. Therefore, an answer
to the following question is given: “Are the used formal modelling techniques expressive enough and
therefore suitable for modelling the Living Place system?”. So, by using formal definitions as techniques
for modelling the system of the Living Place, the resulting model is a formal well-defined construct. This
is one of the main concerns of this work to obtain a formal model of the Living Place system compared to
the informal model that is given by the system descriptions of section 2.2. The defined formal modelling
techniques involve a new variant of Petri nets with markings called Algebraic High-Level Nets with
Individual Tokens, short AHLI nets, as presented in [MGE+10], Algebraic Higher-Order Nets with
Individual Tokens, short AHOI nets, as a special type of AHLI nets in comparison to [HM03] and
[HEM05], i.e. nets that features nets and rules as tokens. Furthermore, the formal modelling techniques
involve the transformation of such nets via transformation rules following the double pushout approach as
presented in [EEPT06] and [MGE+10] as well as amalgamated transformations as considered in [GBEE10]
and [Gol10] and the theory of reconfigurable AHLI systems as introduced in [EBE+09]. By using AHLI
net transformations as a modelling technique, i.e. transformations with “individual” tokens as markings,
instead of approaches with “collective” markings, the marking of a net with individual tokens can be
manipulated with rules, i.e. marking-changing rules can be formulated, which is not possible with the
collective token approach. This possibility to manipulate the marking of a net with rules is a feature of the
used formal modelling techniques that significantly contributes to the expressiveness of these techniques
and that is heavily used within the modelling of the Living Place system leading into an elegant model.

In chapter 7 the overall formal model of the Living Place system is elaborated by using the formal
modelling techniques of chapter 6 and it is checked whether the so defined model meet the requirements
of chapter 4.

In chapter 8 a possible scenario that can occur in the Living Place and therefore can be processed by
the Living Place system is considered and the model of chapter 7 is used by simulating the considered
scenario based on the model. Therefore, since the model is a model of the internal system behaviour
of the Living Place system, on the basis of this model it can be reconstructed, how the system behaves
within the presented scenario. So, this chapter shows up one possibility of how the obtained formal model
of the Living Place system can be used to help us to improve our understanding of this system.

Chapter 9 finally considers some formal analysis techniques that can be applied upon the formal
model of chapter 7. Therefor, these analysis techniques are described including the concept of parallel
independence as defined in [EEPT06]. This concept allows to analyse the model in a way, so that it is
clarified which parts of the modell and therefore which system behaviours of the Living Place system
can proceed in parallel. By formally analysing this model it is shown, that some requirement towards
the model of chapter 4 are fulfilled by the model. So, by analysing the formal model of the Living Place
system as it is elaborated in chapter 7 using formal analysis techniques, results can be obtained that
helps us to improve our understanding of this system.

So, the aim of this work is to elaborate a formal model of the Living Place system as a system of
ubiquitous computing and ambient intelligence to obtain a reflection of the internal system behaviour of
this system in this way, so that it is possible to simulate processes of the Living Place system by using
this formal model. Furthermore, it is desirable to be able to perform formal analysis upon that model to
analyse specific properties of the system behaviour of the Living Place system.

10 CHAPTER 1. INTRODUCTION

Additionally, it should be checked within this work, to what extent the used formal modelling tech-
niques are expressive enough and therefore to what extent they are suitable for modelling the Living
Place system as well as systems of such high complexity in an elegant manner.

The next chapter 2 starts with the introduction of the Living Place, the Living Place Project and the
system of the Living Place.

1.1 Assignments of the Chapters

Chapters elaborated by Susann Gottmann:

• Chapter 2,

• Chapter 3,

• Chapter 4,

• Chapter 5,

• Chapter 8 and

• Chapter 9.

Chapters elaborated by Nico Nachtigall:

• Chapter 6 and

• Chapter 7.

Chapter 2

Living Place Project, Living Place and
the System of the Living Place

As a result of the rapidly increasing development of technology, especially in the computer industry, a
new vision of Ubiquitous Computing arose in the early 1990’s. Mark Weiser as a pioneer of that vision
described Ubiquitous Computing as computing technology becoming part of our environment participating
in our everyday life (see [Wei91]). The consequence of that vision will be that the presence of computation
will be ubiquitous. But it should be invisible to humans not interrupting but autonomously supporting
the human actions so that the ubiquity of computational technology seems to disappear. In reality such
a system needs many components which need to communicate and coorperate with each other leading
to an ad-hoc network which alters permanently. Devices will connect or disconnect constantly and
unpredictably.
The concept of Ubiquitous Computing and as a consequence of Ambient Intelligence will be introduced
in more detail in section 2.1.

Rooms For Developers Smart Home

Controlling Room

Figure 2.1: Ground plan of the Living Place ([OV10,
p. 4])

Exhibition-/
Play Area

Kitchen-/
Dining Area

Lounge
Area

Sleeping Area
Bath-
room

Figure 2.2: Allocation of the Living Place ([RV09, p.
7])

Since January 2009 a “home for the fu-
ture” - a smart home - is developed at
the University of Applied Sciences Hamburg
(HAW): the Living Place Hamburg. It
is a show flat and a laboratory for ap-
plied science and is based on the vision
of Ubiquitous Computing investigating dif-
ferent areas of Ambient Intelligence. (See
[Liv10])
The Living Place will be build as a com-
pleted home containing different test set-
ups to perform experimental usability stud-
ies in real-life situations of a single-person
household taking place there. These sit-
uations are caused by acts of the resi-
dent of the Living Place, that he performs
there in the form of actions. The smart
home should adapt dynamically and appro-
priate to different such situations, i.e. the
smart home should immediately react to the
residents actions, which caused these situa-
tions. It should enable the constantly al-
tering and replacement of different compo-
nents.

The rooms for the Living Place Project are
separated in three parts as shown in the ground
plan in figure 2.1: the smart home (blue) which
contains a studio apartment for real-live experi-
ments. Furthermore the Living Place consists of

rooms for developers (green) and the controlling room (red) containing the system for usability studies,

11

12 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

servers etc.. The smart home and the other parts are strictly separated so that the person testing the
ambient intelligent home will be relocated into real-life situations.
The Living Place Project, which includes the construction of the Living Place as well as the performance
of the mentioned experimental usibility studies, will be realised by different areas of applied science, like
architecture, light design, interactive design or computer science.

Figure 2.2 shows the allocation of the different areas within the smart home. The apartment contains
a fully functional bathroom (violet area). The second room of the Living Place, the studio apartment
contains a sleeping area (blue), a lounge area (red), a kitchen with a dining area (yellow) and an ex-
hibition/play area (green). Each area is equipped with specific components like an Intelligent Bed in
the sleeping area which is able to recognize the sleep phase of the person lying in bed. In the kitchen
area will be a kitchen counter which is capable of multitouch events and will provide a daily planner
which possesses all relevant dates and appointments of the inhabitant. In coorperation with the kitchen
counter and the Intelligent Bed and other devices the whole flat will provide a new Alarm Clock 2.0
which automatically adjusts itself and will be able to alert the inhabitant properly (e.g. in turning on
the radio or light, etc.). The whole studio apartment will contain an ambient light installation which
automatically switchs on in order to alert the inhabitant. These computing components form the Living
Place system as a system of Ubiquitous Computing and Ambient Intelligence.

In the following sections an introduction in the concepts of Ambient Intelligence and Ubiquitous
Computing will be given. Afterwards the architecture of the Living Place system will be presented by
characterizing the components and their correlation to each other.

2.1 The System of the Living Place as a System of Ubiquitous
Computing and Ambient Intelligence

The system of the Living Place is a set of computing components, that are located in the Living Place
and that are related to each other by communicating to each other in such a way so that they as an
amalgamation are able to operate in order to pursue their common aim to support the resident of the
Living Place in his everyday procedures taking place there by fulfilling certain tasks of his everyday life.

In order that these tasks can be fulfilled adequately by the system of the Living Place, this system
must often include context information in its operations and decisions and the resident of the Living
Place must interact with this system, i.e. interactions between the resident of the Living Place and the
system of the Living Place must take place.

The system of the Living Place and therefore its computing components and its operations are almost
completely invisible to common awareness. There are just some parts of this system, that enable the
conscious interaction between a resident of the Living Place and the system, that are visible to common
awareness.

Furthermore, each computing component of the system is exchangeable, therefore computing compo-
nents might come and go, i.e. might turn on resp. go online or might turn off resp. go offline, leading to
a highly dynamic system.

As an example, a cutout of the system is considered in the following: The system calculates when the
resident of the Living Place got to go to get to work on time including traffic and weather information
into this calculation. In order that the system can perform this calculation, the resident must enter his
working hours as an appointment into the system, i.e. he must interact with the system. If the calculated
timepoint is reached, the system reminds the resident of his appointment by giving a signal. This signal
should start some time before he should leave the apartment in order to include some preparation time
and the signal is not given, if the resident is in deep sleep. Therefore, the system must include context
information in its decision to give a signal. By giving the signal, the system decides that the resident has to
get up to get to work on time. Thus, the system fulfils the everyday task of having to check and having to
decide when the resident needs to get up to get to work on time. This example illustrates, that the system
consists of several computing components that communicate to each other to accomplish this task. There
is a computing component that receives weather and traffic information. Another component calculates
the timepoint on which the system gives the signal. There exists a component that allows the resident
to enter the start of his working hours. Then there is a component that gives the signal. Additionally,
there is a component that collects context information, i.e. details about the current phase of sleep of
the resident. Furthermore, each computing component of the system that is included in this example is
exchangeable. The most computing components of the system and its operations that are included in
this example, are completely invisible to common awareness. Just those computing components of this

2.1. THE SYSTEM OF THE LIVING PLACE AS A SYSTEM OF UBICOMP AND AMI 13

example, that enable the conscious interaction between the resident of the Living Place and the system,
are visible to common awareness, that includes the component that allows the resident to enter the start
of his working hours and the component that gives the signal.

In subsection 2.1.1 the terms Ubiquitous Computing and Ubiquitous Computing system are intro-
duced. The system of the Living Place, as it is described briefly in this section, includes the character-
istics of such a Ubiquitous Computing System. Therefore, this system can be considered as a system of
Ubiquitous Computing.

So, Ubiquitous Computing is an underlying concept of the Living Place system. Subsection 2.1.2
introduces the term Ambient Intelligence, short AmI, and shows, that as a consequence Ambient Intel-
ligence is also such an underlying concept of the Living Place system. Thus, this system also can be
considered as a system of Ambient Intelligence.

2.1.1 Ubiquitous Computing

In 1988 Mark Weiser introduced the term Ubiquitous Computing. His vision was about technology resp.
computers residing in the human world and participating into everyday life, in order to enhance this
world and support persons in their everyday life without being noticed to the human being. The user
will be habituated to the omnipresence of technology so that it seems to disappear and getting practical
invisble.
Weiser compares the Ubiquitous Computing with the electricity people are used to:

“Hundreds of computers in a room could seem intimidationg at first, just as hundereds of
volts coursing through wires in the wall did at one time. But like the wires in the walls, these
hundreds of computers will come to be invisible to common awareness. People will simply use
them unconsciously to accomplish everyday tasks.” [Wei91]

This vision leads to a usage of systems consisting out of multiple computing devices communicating
with each other to fulfil a certain task or multiple tasks of the everyday life. In order that these tasks can
be fulfilled, this usage usually involves human-system interactions. Each component of such a Ubiquitous
Computing system is exchangeable, therefore devices might come and go leading to a highly dynamic
system. Due to the fact that the smart home should support the resident’s actions hiddenly, data about
the resident and his environment will be collected hiddenly in order to create an accurate context in-
fluencing the behaviour of the whole Living Place system. The pieces of information used to create a
overall context will be collected from (a large amount) of different sensor devices which will be fused by
different processes (see [Vos10]). Then, the most suitable actions will be infered without expecting an
explicit input by the resident.
The usage of the prevailing context to compute an appropriate behaviour of the system is called Context
Aware Computing. Thus the usability and efficiency will increase and the resident will not be interrupted
by the smart home in his everyday life. The whole Ubiquitous Computing environment resp. system is in
its functioning dependent on the location where it is situated and the person who is in reach of the system.

Ubiquitous Computing applications, short UbiComp applications, resp. systems are described as
follows in [CK04]:

“UbiComp applications are dynamic, distinguishable, functional configurations of associated
artifacts, which communicate and/or collaborate in order to realize a collective behavior.”

2.1.1.1 Artifact

The term Artifact is a common term in the field of Ubiquitous Computing. The term Artifact is equivalent
to each of the aforementioned terms Computing Component and Computing Device as they are used in
this work. In the following considerations of this work, the term Computing Component or Computing
Device is used instead of the term Artifact.

Artifacts are everyday objects which are extended by new functions as described in the following
quote:

“One proposed way to realize the AmI vision is to turn everyday objects into artifacts (by
adding sensing, computation and communication abilities) and then use them as components
of UbiComp applications within AmI environments.” [CK04, p. 13]

14 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

Artifacts are associated with each other forming a collaborate environment with collective behaviour
as result. But they are working independently, because each artifact forms an organizational unit, which
will be used by multiple participants. A reconfiguration of the connections between different artifacts is
possible. Consider, that each computing component of the Living Place system as a system of Ubiquitous
Computing is exchangable, therefore computing components might come and go leading to a reconfigu-
ration of the connections between computing components. To realize communication between different
artifacts, “[e]ach artifact makes visible its properties, capabilities and services through specific interfaces
[...]” [CK04, p. 14].

2.1.2 Ambient Intelligence

The term Ambient Intelligence is based on the concept of Ubiquitous Computing. Both terms are directly
connected with each other, because Ambient Intelligence can not be fully described without using the
substance Ubiquitous Computing.

A description of Ambient Intelligence is given by Hellenschmidt and Kirste in [HK04]:

“The vision of Ambient Intelligence [...] is based on the ubiquity of information technology, the
presence of computation, communication, and sensorial capabilities in an unlimited abundance
of everyday appliances and environments.”

The origin of the Ambient Intelligence lies in the artifacts, the connection between them and their
resulting interaction. For a further description of the term artifact, see 2.1.1.1. In forming relations
between several artifacts to a network makes it possible to create an intelligent-looking environment,
which enhances our world. For an example, an alarm clock alone adds nothing to an intelligent acting
environment, but in creating an artifact out of the alarm clock and combine it with an extended bed,
which then is also an artifact, intelligent-looking conclusions can be drawn out of these components, e.g.
depending on the phase of sleep an intelligent alarm can be generated by the Alarm Clock, since the
rising of an alarm during a light sleep phase instead of a deep sleep phase might be more pleasant to the
user.

Hence, the communication between multiple artifacts is a basis for the environment appearing intel-
ligent. The combination of artifacts and, consequently, their ability to compositionality is an essential
prerequisite to form smart environments resp. to put the vision of Ambient Intelligence into reality.

Even if the ambient intelligent environment seem to act autonomically, the user will always have the
control over the whole system as it is stated in [INK06]:

“The scenarios still emphasize the user control and the user’s feeling of being in control of
Ambient Intelligence. In most cases the user actuates the interaction with the Ambient In-
telligence. If the environment is the actuator, rather than acting automatically, the Ambient
Intelligence applications provide the user with justified suggestions than the user can approve
or refuse. Automatic actions are based on profiles and personalisation and the user has the
control to easily activate and deactivate them.”

2.2 Architecture of the System of the Living Place

As mentioned in section 2.1, the system of the Living Place is a set of computing components, that are
located in the Living Place and that are related to each other by communicating to each other in such a
way so that they as an amalgamation are able to operate in order to pursue their common aim to support
the resident of the Living Place in his everyday procedures taking place there by fulfilling certain tasks
of his everyday life. Therefore, these computing components are considered as computing subsystems of
the Living Place system.

As mentioned in the introduction of chapter 1, this work aims to provide a model of the internal
system behaviour of the Living Place system. Therefore, in the following, in this chapter the architecture
of the system of the Living Place in terms of the system behaviour is described as it is partly presented
in [OV11b], i.e. the computing (I.) components of the system, their system-related (II.) possible
relationships to each other as well as their system-related (III.) most important possible direct
relationships to entities outside of the system are described.

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 15

The system-related relationships of the computing system components are relationships, that are
purely based on interactions between these computing components resp. that are purely based on user
operations upon these computing components whereupon the system behaves in an appropriate manner,
so that the computing system components as an amalgamation are able to persue their common aim to
support the resident of the Living Place.

System of the Living Place

Message Oriented
Middleware

possible interactions between the communicating devices and the Message Oriented Middleware

communicating devices

Daily
Planner

Alarm
Clock 2.0

Ambient
Light

possible user operations upon the communicating devices

possible user operations upon the Message Oriented Middleware

2. enter appointment
for 01/04/2011 10:00

7. turn
off

3. exchange
(01/04/2011 10 : 00,

appointment)

4. request
and exchange
appointment

5. exchange
(on,Alarm)

1. subscribe
to topic

Alarm

6. exchange
(on,Alarm)

8. stop

possible interactions between the communicating devices and the Message Oriented Middleware

possible user operations upon the Message Oriented Middleware

...

...

...

...

Figure 2.3: Architecture of the Living Place system - a First Overview

The user operations upon the computing system components represent the in section 2.1 mentioned
interactions between the resident of the Living Place and the system of the Living Place, that must take
place, in order that the system can fulfil adequately certain tasks of his everyday life.

In all of the following considerations within this work, the words “computing” and “system-related”
are omitted when mentioning the computing components of the system resp. their system-related rela-
tionships.

By describing the architecture of the system of the Living Place, the components of the system, their

16 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

possible relationships to each other as well as their most important possible direct relationships to entities
outside of the system are described. Therefore, the description of the architecture of the system in this
chapter provides a detailed description of the system.

Apart from [OV11b], this chapter tries to provide a more fundamental overview of the architecture of
the Living Place system, so that this overview can provide a basis for a basic approach to an understanding
of the model of this system, as it is presented in chapter 7, and also can serve as a basis for the modelling
of this system. So this chapter is intended to give an introduction to the modelling of the Living Place
system by providing a detailed description of this system and therefore by describing all parts of the
system that must be considered while modelling.

Since the system of the Living Place is intended to help people by supporting the resident of the
Living Place in his everyday procedures taking place there, a natural acting, intuitive human-system
interaction is necessary, where in particular the system of the Living Place must interact in a manner
which is expected by the resident.1

To attain these aims, the system contains a composite of a variety of communicating devices,
that are able to interact with the resident and that are able to perform certain the resident supporting
tasks. By directly relating the term communicating to these devices it should be emphasized, that it is
essential for the operation of the devices that the devices communicate with each other. To what extent
communication is important for the operation of the devices, is explained in sections 2.2.2.1 to 2.2.2.8,
where the devices and their respective operations are discussed in detail. Figure 2.3 gives three examples
of such communicating devices - the Daily Planner, the Alarm Clock 2.0 and the Ambient Light. As
an example for the possibility of the devices to interact with the resident resp. the possibility of the
devices to perform certain the resident supporting tasks, action 2. in figure 2.3 illustrates, that the user
/ resident is able to interact with the Daily Planner by entering an appointment resp. action 5. in figure
2.3 shows, that the Alarm Clock 2.0 is able to trigger an alarm as soon as the alarm time towards the
entered date is reached.

Furthermore figure 2.3 illustrates an additional component of the system, that is called Message
Oriented Middleware, which among other things enables the communication between the communi-
cating devices. Note that although it is essential for the devices to communicate with each other, the
devices of the system are only able to indirectly communicate to each other by interacting with the
Message Oriented Middleware. In figure 2.3 an example for this kind of indirect communication is given,
where the Alarm Clock 2.0 indirectly communicates with the Ambient Light by exchanging the infor-
mation (on, Alarm) via interactions with the Message Oriented Middleware - i.e. the Alarm Clock 2.0
exchanges the information (on, Alarm) with the Message Oriented Middleware in action 5. by sending
this information to the Middleware whereupon the Middleware receives that information and thereupon
directly exchanges this information with the Ambient Light analogously in the reverse manner in action
6., i.e. the Middleware directly forwards resp. sends the information to the Ambient Light whereupon
the Ambient Light finally receives the information.

The Message Oriented Middleware together with the set of communicating devices form the (I.)
components of the system.

The set of (II.) possible relationships between these components is given by the different possible
interactions between the communicating devices and the Message Oriented Middleware,
since all possible relationships between components of the system are purely based upon interactions
between these components, i.e. interactions between one or several communicating devices and the
Message Oriented Middleware, since these are the only possible interactions between components of the
system. This also illustrates the fact, that in the whole system, no direct interactions between different
communicating devices exist. Therefore it is sufficient to describe the possible interactions between
the devices and the Message Oriented Middleware when trying to grasp the set of possible relationships
between the components of the system. Figure 2.3 illustrates some examples of such possible interactions,
such as the topic-based exchange of information as it is exemplified by the exchange of (on,Alarm) from
the Alarm Clock 2.0 to the Message Oriented Middleware in action 5.. The topic-based exchange of
information means, that the so sent resp. received information are typed over a topic, i.e. for example
in (on, Alarm) the information on is typed over the topic Alarm. Thus, on in conjunction with Alarm
can be interpreted as a call to raise the alarm in an appropriate way.

The set of the (III.) most important possible direct relationships from components of the
system to entitites outside of the system contains the relationships, which trigger a change of one
or more internal states of the components as a result. Therefore this set of relationships is purely based

1Compare to [OV11b].

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 17

on and thus is given by the set of possible user operations upon the communicating devices
together with the set of possible user operations upon the Message Oriented Middleware, since
within the system, as it is presented in this work, these operations are the only possibilities to enter into
direct relationship with the components of the system from the outside of the system, so that a change of
one or more internal states of the system is initiated. So a user resp. a resident of the Living Place is the
only entity from the outside of the system, which can enter into direct relationship with the components
of the system, so that a change of internal states of these components is triggered from the outside as
a result. Figure 2.3 gives some examples of such operations, such as entering an appointment into the
daily planner in action 2. or stopping the Message Oriented Middleware in action 8.. 2

The (I.) communicating devices together with the (I.) Message Oriented Middleware, the
(II.) possible interactions between the communicating devices and the Message Oriented
Middleware and the set of (III.) possible user operations upon the communicating devices resp.
(III.) upon the Message Oriented Middleware are the five elements that constitute the architecture
of the system of the Living Place. By describing these five elements, we describe the architecture of the
system of the Living Place.

Figure 2.3 represents a scenario, that can be processed by the system of the Living Place and which
combines these five the architecture-forming elements, that must be described. Therefore, this scenario
contributes to a better understanding of the architecture of the system. Also the scenario illustrates
an everyday procedure of the residents at the Living Place and how the system can achieve his aim to
support the residents of the Living Place in this everyday procedure. In this first simple scenario a user
resp. a resident of the Living Place is able to enter an everyday appointment into the system of the Living
Place, that he must keep, e.g. the beginning of his working hours. Thereupon the system dynamically
generates an alarm as soon as the time is reached where the resident must be reminded of his everyday
appointment, so he is able to keep this appointment. Afterwards the resident has the ability to turn
off the alarm as well as any other device in the Living Place before leaving the Living Place. So the
system of the Living Place supports the resident in his everyday procedure of having to decide when he
got to go so he is able to keep his everyday appointment by punctual reminding the resident of one of
his everyday appointments, so that he no longer must make this everyday decision. The system seems
to act like a regular alarm clock, however, this scenario is intended to be as simple as possible. The
detailed descriptions of the components of the system and their functionalities in sections 2.2.1 to 2.2.2.8
reveals a much more complex behaviour of the system of the Living Place, which allows the system to
support the resident in even complex everyday procedures at the Living Place. In particular a much more
complex scenario, that is given in chapter 8, deals with a much more complex behaviour of the system
and illustrates a complex everyday procedure at the Living Place and how the system can achieve its aim
to support the resident in this complex everyday procedure.

As shown in figure 2.3, the scenario is separated into eight different actions, that are numbered from 1
to 8. In action 1 the Ambient Light subscribes to the topic Alarm at the Message Oriented Middleware,
so every time when the Message Oriented Middleware receives information from a device, that are typed
over the topic Alarm, the Message Oriented Middleware forwards this information to the Ambient Light.
In action 2 the user of the system resp. the resident of the Living Place enters an appointment for
the first of April 2011 10 o’clock into the Daily Planner. Afterwards in action 3 the Daily Planner
exchanges this information with the Message Oriented Middleware by forwarding this appointment to
the Middleware. action 4 is represented by a request by the Alarm Clock 2.0 device to the Message
Oriented Middleware, to obtain all appointments, that were sent to the Message Oriented Middleware in
the past. As a response to that request the Message Oriented Middleware exhanges that information with
the Alarm Clock 2.0 and so the Alarm Clock 2.0 finally receives the appointment, that was previously
sent by the Daily Planner in action 3. In action 5 the Alarm Clock 2.0 exchanges and therefore sends
punctual a message (on,Alarm), i.e. an information on which is typed over the topic Alarm, with resp.
to the middleware to indicate, that now an alarm should be triggered in an appropriate way, so that the
resident of the Living Place is able to keep his appointment. Since in action 1 the Ambient Light has
expressed its interest in receiving such information of topic Alarm, the Message Oriented Middleware
exchanges resp. sends the message (on,Alarm) with resp. to the Ambient Light in action 6, whereupon
the Ambient Light consequently receives this message. As a result the Ambient Light turns on and thus
triggers the alarm. In a next step in action 7 the user resp. resident of the Living Place turns off the

2In section 2.2.2.6 the Weather- and Traffic Information Service device is introduced, which retrieves its information
from an entity outside of the system. This additional direct relationship between a component of the system and an entity
outside of the system, which leads into a change of the internal state of the component, is described in section 2.2.2.6,
however is omitted in this section to allow a better understanding of the architecture of the overall system.

18 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

alarm by turning off the Ambient Light. Finally in action 8 he stops the Message Oriented Middleware
and perhaps also some other components of the system and leaves the Living Place so he is able to appear
for his appointment in time.

Consider, that the communicating devices, the possible interactions between these devices and the
Message Oriented Middleware as well as the possible user operations upon these devices resp. upon
the Message Oriented Middleware, that were used in the previous scenario, are just some examples of
their respective categories. This first scenario is just an introduction to a better understanding of the
architecture of the system. In considering the architecture of the Living Place system within this work
and in particalur within this chapter, several more communicating devices, possible interactions as well
as possible user operations are considered. In the following sections of this chapter 2 all five architecture-
forming elements of the system of the Living Place are described in detail.

Section 2.2.1 deals with the (I.) Message Oriented Middleware as the central component of the
overall system as well as with the (III.) possible user operations upon this component. Additionally
an overview of the (II.) possible interactions between the communicating devices and the Mes-
sage Oriented Middleware is given. The (I.) communicating devices are introduced in sections
2.2.2.1 to 2.2.2.8, where each device together with the (III.) possible user operations upon this device
and the (II.) possible interactions between this device and the Message Oriented Middleware
is treated within a separate section. Section 2.2.2.1 deals with the Alarm Clock 2.0 as a communicating
device, section 2.2.2.2 introduces the Display and 2.2.2.3 the Daily Planner, in section 2.2.2.4 the Intel-
ligent Bed is described, section 2.2.2.5 treats the Indoor-Positioning-System, section 2.2.2.6 deals with
the Weather- and Traffic Information Service, in section 2.2.2.7 the Location-Based Screen is shown and
finally in section 2.2.2.8, the last considered device, the Ambient Light is described.

In comparison to figure 2.3 figure 2.4 of the next section 2.2.1 illustrates a detailed overview of the
architecture of the Living Place system containing all communicating devices as well as all possible
interactions between the communicating devices and the Message Oriented Middleware.

Consider, that within this chapter the architecture of the Living Place system in terms of the system
behaviour is considered. System behaviour in general involves all possible state changes of the system
and therefore all possible states of the system as well as all the actions that causes these state changes
as soon as they are applied. Therefore, in the following each section that deals with a component of
the system contains a subsection that describes the internal system behaviour of that component, a
subsection that describes the possible user operations upon that component, since every user operation
causes a corresponding behaviour of the system component by causing a change of the internal state of
that component, as well as a subsection that describes the possible interactions between the corresponding
communicating device and the Message Oriented Middleware, since such an interaction is considered as
system behaviour. System behaviour that is caused by a user operation is so called extrinsic behaviour,
since it occurs only by direct influence from the outside of the system - all other system behaviours
that are considered within this work, like the internal system behaviour of the components as well as
the considered interactions between these components, are so called intrinsic behaviours, since this
behaviour is performed by the system itself without direct influence from the outside of the system.

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 19

2.2.1 Message Oriented Middleware

System of the Living Place

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating devices and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating devices

possible user operations upon the Message Oriented Middleware

stop
restart/
initialise

plugin unplugset
offline

subscribe
to topic

exchange of
topic-based
information

unsubscribe
from topic

set
online

set
offline

store
data

remove
data

request
data

possible interactions between the communicating devices and the Message Oriented Middleware

possible user operations upon the Message Oriented Middleware

...

Figure 2.4: Architecture of the Living Place system - a Detailed Overview

The whole communication within the Living Place system will be managed by the Message Oriented
Middleware which takes over the pivotal role. It is determined as a management system for physical
devices organizing and distributing huge amount of data between large amounts of devices.3 As pictured
in figure 2.4, the Message Oriented Middleware is the central component of the whole Living Place sys-
tem, where eight different communicating devices can interact with the Middleware in different ways.
The Message Oriented Middleware consists of the parts: Message Broker, Context Interpreter and the
Persistence Layer.

All available devices within the Living Place system are connected indirectly with each other over the
Message Oriented Middleware. Incoming messages will be obtained by the Message Oriented Middleware
and will be stored internally and passed to all devices which are interested in this kind of message. Devices
express their interest in different kind of messages in subscribing to a specific topic. Therefore, each

3An introduction to the Message Oriented Middleware infrastructure is given in [YK10]. Within the Living Place Project
group, the term “sensor cloud” is also used which encompasses the Message Oriented Middleware and the devices connected
to it.

20 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

message can be passed to none, one or more receiving devices, depending on the available subscriptions
to the specific topic of a message. Within the Living Place system, each device only knows itself but
no other component. As a consequence, the communication between devices will be managed by the
Message Oriented Middleware, so no messages will be sent directly from one device to another.

Each device is loosely linked to the whole system hence it can be removed from or connected to the
system at any time without influencing any other device. Furthermore, it is possible to connect and
disconnect devices dynamically to the whole system, without any special adaption, since the Message
Oriented Middleware has the ability to abstract from the implementation details and technical data of
each device. Constant system changes will be flexibly handled by the Message Oriented Middleware,
therefore each device needs to register to the Middleware in order to connect to the whole system. A
logout of devices or a missing accessibility of devices has to be processed by the Middleware.

The Message Broker as part of the Message Oriented Middleware, serves as a mediator of the commu-
nication and the mutual pooling of information between different devices of a system. In particular the
devices are indirectly related to each other concerning their mutual exchange of information and hence
are loosely coupled with each other regarding their communication.

As illustrated in figure 2.4 the Message Oriented Middleware establishes an indirect connection be-
tween devices and therefore contributes to each device communicative abilities. In such a messaging
system, which mainly consists of a Message Oriented Middleware and communicating devices connected
to it, the devices communicate over the Message Oriented Middleware so that it is able to fulfil the re-
quired assumption, which is the enabling of communication skills for each device.4 But it is not possible
to map a direct communication between different communicating devices, they always have to exchange
information over the Message Oriented Middleware. The message broker will be introduced in sction
2.2.1.3.

Furthermode, a part of the Message Oriented Middleware is the Context Interpreter, as introduced
in section 2.2.1.5, which contains inference rules for generating new context information out of single
data or a combination of data in order to create a more precise context for generating correct or at least
more accurate decisions within the Living Place system. Furthermore, the Message Oriented Middleware
includes a persistence layer for storing all messages. The persistence layer will be presented in detail in
section 2.2.1.4.

As indicated in figure 2.4, the user is able to apply user operations to the Message Oriented Middleware
causing a change of its behaviour, e.g. stopping the Middleware. These user operations are described in
next section 2.2.1.1. Furthermore, possible interactions between the Message Oriented Middleware and
the communicating devices will be presented in section 2.2.1.2.

2.2.1.1 Possible User Operations

In section 2.2, a short overview of the architecture of the Living Place system is given. It is stated,
that the inhabitant of the Living Place apartment is able to interact directly with the Message Oriented
Middleware. In the following, the possible user operations with the Message Oriented Middleware will
be presented.

As illustrated in figure 2.4, the user is able to stop and restart resp. initialise the whole Message
Oriented Middleware, which consists of the meassage broker, the persistence layer and the Context
Interpreter and to which devices can be connected.

For stopping the Message Oriented Middleware, all devices need to be removed from the system. Then
no communication is able to take place, therefore the system is stopped.

When the user restarts resp. initialises the Message Oriented Middleware, all currently processed
messages within the message broker and all data within the persistence layer will be deleted. Because of
the deletion of all data, an initialisation of the Message Oriented Middleware should be done as seldom
as possible.

2.2.1.2 Possible Interactions between the Communicating Devices and the Message Ori-
ented Middleware

Interactions are mutual operations between two components. The interactions considered within the
modelling of the Living Place system contain the following aspects:

4See [Mah04, p. 5]

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 21

1. A communicating device sends information to the Message Oriented Middleware and therefore
operates upon this Middleware by writing that information into a buffer which can be recognized
by the Middleware.

2. Thereupon, the Middleware receives that information and therefore operates upon the communi-
cating device in an analogous manner by taking out that information from the buffer. Thereby, the
Middleware changes the internal state of the communicating device, since the buffer and its content
are parts of that device.

All interactions between communicating devices and the Message Oriented Middleware are based on
these aspects. The possible interactions illustrated in figure 2.4 are presented in the following.

The Message Oriented Middelware manages the connections of the devices, therefore, a device, which
is added to the system, is able to send a request to the Middelware, asking to get switched into online
mode by the Middleware. The Middleware collects this message and reacts in an appropriate manner in
setting the device into online mode, i.e. the internal state of the device will be changed by the Middleware.
The reverse, the disconnecting of a device is processed in a similar manner: the device announces, that
it wants to get disconnected resp. go offline in sending this request to the Middleware. The Middleware
collects the request and processes it in changing the state of the device into offline mode.

The exchange of information between communicating devices and the Message Oriented Middleware
is topic-based. In order to receive topic-based information, which will be distributed by the Middleware,
a device gets the possibilty to subscribe to one or more specific topics. In this process, the devices sends
an announcement to the Middleware, which receives and processes this announcement in subscribing the
device to this topic.
The opposite interaction is also possible: the device gets the opportunity to unsubscribe from topics in
order to stop the receipt of information regarding this topic. The process for unsubscribing is analogous
to the process of subscribing topics.

Each communicating device which is able to send messages to the Middleware5 needs to equip each
message with a topic. After receiving the topic-based message, the Middleware distributes this informa-
tion only to connected devices which are interested to the corresponding topic.

These steps are provided by the message broker which is part of the Message Oriented Middleware.
The following interactions are provided between communicating devices and the persistence layer of the
Message Oriented Middleware.

As soon as a device sends a topic-based information to the Middleware, this device asks the persistence
layer of the Middleware to store this data in parallel. In some cases, the opposite is also possible, that
data that are already stored within the persistence layer should be removed. For that the corresponding
device sends a request to the persistence layer for removing information of a certain topic.

Furthermore, each device has the possibility to send a topic-based request to the persistence layer of
the Middleware in order to receive all stored data according to this topic. For that, the device creates
a request, which includes the relevant topic. Thereupon, the persistence layer collects this request and
processes it in collecting all data that are stored within the persistence layer and which contain the topic
of the request. Then the collected data records will be sent back to the requesting device.

Asynchronous Communication

All these mentioned possible interactions between the communicating devices and the Message Ori-
ented Middleware are based on asynchronous communication as described in the following.

The communicating devices send resp. receive information from the Message Oriented Middleware
without blocking. In an analogous manner, the Message Oriented Middleware sends resp. receives
information from the communicating devices without blocking, i.e. the devices and the Middleware
can interact with each other, so that other operations within these devices resp. the Message Oriented
Middleware can proceed in parallel.

5Compare with 2.2.2.

22 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

2.2.1.3 Message Broker - Internal System Behaviour

The Message Broker as part of the Message Oriented Middleware is used as a link in communication
between different components of the Living Place system. The message broker manages the distribu-
tion of messages between communication partners like connected devices or the Context Interpreter (see
2.2.1.5), as a consequence no such component is directly linked with an other component, i.e. they are
completely decoupled from each other. The message broker serves, organises and establishes an indirect
connection between different devices. Each component has exactly one connection to the message broker,
which manages the connection resp. the identification of each device with the help of connection IDs,
and therefore the message broker is the only component of the system which is able to distinguish each
device regarding its designation. As a result, only the message broker is able to assign data from and to
specific components.
Because no direct connection between devices can be established, the message broker needs to mediate
information between devices. Therefore, the message broker is completly neutral to each component,
because it abstracts from the characteristics and complexity of each component. The indirect connection
serves for data exchange between devices, so only the message broker knows the interfaces to each device,
which should be standardized for each such device to prevent incorrect interpretation of data.

The basis of each communicating device is a topic-based interface over which each device is connected
with the message broker and over which the communication takes place and is regulated. A topic desig-
nates a category of information, e.g. “Weather” or “Alarm”, etc.
Consider, that as already mentioned the whole communication within the Living Place system is asyn-
chronous.

The communication between the devices via the message broker as the central mediator follow the
Publish/Subscribe model which will be introduced in the following.

Publish/Subscribe Model - The Suitable Messaging Model of the Living Place system

Client 1

Client 2

Client 3

Msg

Msg

Msg

Topicpublishes

subscribes

subscribes

delivers

delivers

Figure 2.5: Communication in publish/subscribe model (acc.
to [Haa02])

A communicating device that exlu-
sively sends information to the message
broker is a so called Sender, a communi-
cating device that exclusively receives in-
formation from the message broker is a so
called receiver and a communicating de-
vice that sends and receives information
to resp. from the message broker is a so
called transceiver.

Since multiple communicating devices,
which are connected to the message bro-
ker, depend on receiving and processing
the same message that was sent by an-
other device, the publish/subscribe model
is used within the Living Place system.
Figure 2.5 illustrates the structure of the publish/subscribe model. Each device which is interested to a
certain type of message subscribes to its specified topic. A topic can be described as a “mini message
broker that gathers and distributes messages addressed to it.” [HBS+02, p. 79]. It consists of an identity
which encapsulates the specific name of the topic. In this model each receiver actively subscribes to one or
more specific topics in order to receive all incoming messages belonging to these specified topics without
the need to request for them, whereas each sender sends information of specific topics. The message
broker (see 2.2.1.3) organises the distribution of all incoming topic-based information according to all
available devices that are subscribed to the corresponding topic. Each device is able to register with as
many topics as needed, i.e. an exclusive sender has no need to subscribe to a specific topic, whereas a
receiver resp. transceiver is able to subscribe to as many topics of information as it is interested in.

Communicating devices that send messages of a certain topic are called “Topic Publisher”. If such
a device decides to send messages of a specified topic it sends this message without consideration if an
according subscriber exists. Communicating devices that are subscribed to specific topics to receive mes-
sages of these topics are called “Topic Subscriber“. As can be seen in figure 2.5, for each topic several
publishers and subscribers may exist, so each message can be assigned to several receivers.

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 23

Publishers and subscribers are loosely connected and therefore are anonymous with each other, because
only the message broker is able to identify each device concerning their own identifier as described in
section 2.2.1.3. Consequently the message broker provides the distribution of messages from the various
publishers of a topic to all subscribers. Each incoming message will be copied by the message broker
regarding the number of subscribers and sends each copy to one subscriber. Thereby each topic only
contains the message as long as it takes to deliver all messages to the current subscribers. No message
will be delivered twice and additionally each message will only be sent once. If a new device subscribes to
a certain topic it will only receive all messages which arrive from the moment of the subscription on. The
receiver should be active to receive the messages properly. Hence a timing dependency between sender
and receiver exist.

In the publish/subscribe model the default subscription of each receiver to a topic lasts from the time
of subscription to the time of cancellation of the device.

2.2.1.4 Persistence Layer - Internal System Behaviour

Apart from the Message Broker, the Persistence Layer is another part of the Message Oriented Middle-
ware, which stores messages sent by communicating devices into a database as an external data storage.
Therefore, old messages can be requested by the communicating devices.6

To request past information from the persistence layer, the interested device requests data belonging
to a specific topic in sending an inquiry containing the specified topic and the identification of the
requesting device to the persistence layer of the Message Oriented Middleware. The answer is generated
by the server in collecting all past informations belonging to the given topic. The requesting device has
to be subscribed to the respective topic in order to fetch the answer generated within the persistence
layer. The communication regarding making a request is bidirectional, i.e. it takes place between the
device posing the request, and the persistence layer.

2.2.1.5 Context Interpreter - Internal System Behaviour

The Context Interpreter is the third main part of the Message Oriented Middleware and is described in
the following.

Context in the Living Place

This section deals with the term “context” regarding the articles [DAS01], [Gre01]. For the usage of
context within smart environment Jang and Woo introduced 5W1H, a context representation which is
used within the Living Place system ([JW05]).

Within the Message Oriented Middleware in the Living Place all incoming messages will be collected
by the Context Interpreter and put into a general context which can be distributed to interested receivers
to conclude new correct actions resp. data.

In [DAS01, p. 11] Day, Abword and Sabler define the term “context” as follows:

“Context: any information that can be used to characterize the situation of entities (i.e.
whether a person, place or object) that are considered relevant to the interaction between a
user and an application, including the user and the application themselves. Context is typically
the location, identity and state of people, groups and computational and physical objects.”

Additionally in their previous work [SDA99, p.1] they state:

“Of major interest are context-aware applications, which sense context information and modify
their behavior accordingly without explicit user intervention.”

In [DAS01, p. 11] they support the opinion that context is the “constantly changing execution en-
vironment”. They separate the environment in three parts: the computing environment (components
of the smart home, connections, network, etc.), the user environment (location, people, social situation)
and physical environment (lighting and noise level). All three parts of the environments are represented

6Further details are described in [OV11a] and [OV10].

24 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

within the Living Place and all are exposed to permanent changes. Hence the current context needs to be
adapted dynamically regarding new information which will be measured through sensor devices or other
new input data like information from internet services (weather forecast, or traffic information) or direct
user input (e.g. new dates entered in daily planner).

Furthermore, Day, Abword and Sabler distinguish between explicit input, like direct input by the
user, and implicit input meaning information aquired by input devices, like sensors. However, they prefer
a generalized model for context-aware applications, which will be applied to the Living Place. There, the
context will be infered from all kinds of information, regardless if they are implicit or explicit.

In [Gre01, p. 259] Greenberg refers to three different theories of context, whereas the “Activity
Theory” will be taken as basis in the Living Place (see [Ell10b, p. 3]). This theory sets activities of the
user into the center for defining a context. It is defined as:

“Activity theory (Nardi, 1997a) claims that activity defines context, where an activity com-
prises a subject (the person or group doing the activity), an object (the need or desire that
motivates the activity), and operations (the way an activity is carried out). Artifacts and envi-
ronment are seen as entities that mediate activity. Nardi (1997b) then argued that activity-as-
context includes not only external resources (people, artifacts, settings) but internal processes
(objects and goals) as well.” [Gre01, p. 260]

The activity theory considers the dynamic changes of the environment and as a consequence the con-
stant adaption of the context. The course of the activity might change in the process of customizing the
context. For detecting a suitable context, the internal state of the user should be taken into considera-
tion, which can only be estimated. As described in [Ell10b, p. 3], this factor will be optional in the first
steps. The combination of all extern collected information, and even a hint to the internal state of the
user which will be get by questioning as an example, will never form a perfectly suitable context, there-
fore the infered context will always be an approximation resp. a guess of the real context at this moment.7

Another question deals with the representation of context. In [JW05] the 5W1H model is introduced
which is used in the Living Place Project (see [Ell10b, p. 3] and [Ell11b]).

Who A specified user, which will be described through a name, ID and a profile.

Where The certain location of the user, which will be done with x- and y-coordinates or through the
abstract description of the place, like “kitchen” or “at the multitouch kitchen counter”.

When This attribute describes the moment or the time interval of the validity of the context.

What The object the user is paying attention to or the object the user needs for his action.

How Characterizes the action the user is performing or how the person uses an object.

Why The intention or emotion which is the reason for performing a certain action. This attribute
describes the internal state of the resident, which will will not be regarded as explained before.

The 5W1H model puts the user into its center, so that the infered context will be user-centric but
general enough to be independent from other devices or applications. Each receiving component of this
certain context needs to interpret it to its own necessity. The model provides enough information for
each component to initiate appropriate actions.

Context Interpreter

As mentioned, the system of the Living Place often include context information of the Living Place in
its operations. Therefore, an important task within a smart environment is to infer the right context. The
Context Interpreter as part of the Message Oriented Middleware, fulfiling this task, is based on the ideas
presented in [DAS99] and [SDA99]. Dey, Abword and Sabler describe a system where different compo-
nents are indirectly connected with each other over one or more servers. To guarantee an unproblematic
communication betweeen all components the server needs to receive raw data from sending devices which
will be decoded in device-specific format. Therefore the server needs to convert the data to a general

7Cp. [Gre01, p. 262]

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 25

format and aggregate different data to a more abstract information. So, to obtain the prevailing context,
the aggregation and interpretation of low-level data is necessary because the whole system within a smart
home is highly variable, e.g. different sensors can measure the same matter but express this matter by
different values depending on their implementation or the aggregation of low-level data of several sensors
is required to obtain the prevailing context - e.g. to discover whether the resident of the Living Place
dresses himself at the moment as the prevailing context the aggregation of low-level data of two different
sensors is required, on the one hand the data of the sensor that detects the location of the resident are
required and on the other hand the data of the sensor that detects whether the resident is in bed are
required, since based on the assumption that the resident is in the beedroom but actually is not in the
bed it can be inferred that the resident dresses himself at the moment.

In the previous section 2.2.1.5 the term “context” is defined and the use of this term will be explained
in relation to the Living Place Project.

In the smart environment a context describes an aggregated or non-aggregated information about the
environment, which will mainly be collected by sensor devices. From different contexts new information
can be aggregated, where the component that performs this aggregation and that provides access to
context information is called “context widget” by Dey, Abword and Sabler. Within this work a ”Context
widget“ is the equivalent to the context interpreter as part of the Message Oriented Middleware. They
define the context widget as follows:

“A context widget is a software component that provides applications with access to context
information from their operating environment.” [SDA99, p.2]

The Context Interpreter presented in [DAS99] helps in interpreting the context.
In the Living Place Project the context interperer is based on the work by Dey, Abword and Sabler

however, with slight differences.8 First, each device will convert its device specific information into a
global data format, therefore the converting of data is shifted into the devices.
Each incoming message will be evaluated regarding its topic, interpreted and distributed by the message
broker. The message will be passed to the Context Interpreter which analyzes the information and tries
to aggregate new information out of the information or tries to combine the information with an other
information. A new context is able to be inferred within the Context Interpreter according to certain
inference rules. The Context Interpreter gets all incoming data and infers a new 5W1H context ot of
them as this form of context is described in the section above. The information will be sent back to
the message broker, which distributes it to the devices. The resulting information depends on the rules
available within the Context Interpreter .

The Context Interpreter is a special part of the Message Oriented Middleware which receives all
incoming messages in order to derive new 5W1H contexts regarding a given set of inference rules.

2.2.2 Communicating Devices

In smart environments, like the Living Place system, a lot of different devices need to collaborate, interact
and communicate with each other. In figure 2.6 a possible configuration of a Message Oriented Middleware
is shown, where a device communicating over a Middleware can be a sender, receiver or transceiver. In
figure 2.6, device A and D are transceivers, B is a receiver and C a sender.

As pictured in 2.6 the Living Place system contains the following different kinds of devices:

• Sender (Producer): Devices that send data to the Message Oriented Middleware. Consider, that
all sensor devices within the Living Place are devices of the kind sender, e.g. pressure sensors in
the Intelligent Bed, etc.

• Receiver (Consumer): Devices which receive data from the Message Oriented Middleware where-
upon they perform specific actions, e.g. Ambient Light, etc.

• Transceiver (Producer+Consumer): Devices which send and receive data to resp. from the Message
Oriented Middleware. This kind of device is a combination of sender and receiver. It waits for
information and provides data for other devices, e.g. Alarm Clock 2.0.

8For a description of the approach in the Living Place Project see [Vos09] and [OV10, p. 18].

26 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

Message-Oriented
Middleware (MOM)

Device A
(Transceiver)

Device B
(Receiver)

Device C
(Sender)

Device D
(Transceiver)

receive

send

receive

send

receive

send

Figure 2.6: Possible configuration of a system based on Message Oriented Middlware - components and
their connections

The devices presented in the next sections can be categorized to the different device types, as follows:

• Alarm Clock 2.0 → Transceiver

• Display → Receiver

• Daily Planner → Sender

• Intelligent Bed → Sender

• Indoor-Positioning-System → Sender

• Weather Information System → Sender

• Traffic Information System → Sender

• Location-Based Screen → Receiver

• Ambient Light → Receiver

2.2.2.1 Alarm Clock 2.0

This section deals with the description of the Alarm Clock 2.0 device. It is divided into the parts: internal
system behaviour of the device and the provided possible user operations on the Alarm Clock 2.0. The
following figure 2.7 gives an overview of the Alarm Clock 2.0.

The possible interactions between the Alarm Clock 2.0 and the Message Oriented Middleware are
presented in figure 2.7, where the detailed descriptions of these possible interactions are given in section
2.2.1.2.

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 27

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Alarm Clock 2.0 and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Alarm Clock 2.0

plugin unplugset
offline

stop

subscribe
to topic

send / receive
topic-based
information

unsubscribe
from topic

set
online

set
offline

store
data

request
data

possible interactions between the communicating device Alarm Clock 2.0 and the Message Oriented Middleware

Figure 2.7: Alarm Clock 2.0 - an Overview

2.2.2.1.1 Internal System Behaviour

The Alarm Clock 2.0 9 denotes a new concept for an alarm clock, which shares the task of alarming the
resident with the original form. Apart from that it differs completely from the common idea. The Alarm
Clock 2.0 reminds the person of forthcomming events and additionally calculating an appropriate time
for reminding taking a preparation time and the overall situation outside of the Living Place apartment
into account.

The Alarm Clock 2.0 will be invisible for the user, still it will collect context data, i.e. general data di-
rectly provided by other components or all 5W1H contexts infered by the Context Interpreter (see 2.2.1.5),
about the inhabitant and the overall situation of the inside and outside of the Living Place apartment
from other devices connected to the Living Place system, thus it is able to adapt itself flexibly to its
environment. Informations regarding the outside of the apartment will be collected over the internet, i.e.
data concerning weather forcasts or traffic condions, both components will be presented in section 2.2.2.6.

The Alarm Clock 2.0 is subscribed to specific topics in order to receive information from other com-
ponents connected to the Message Oriented Middleware of the Living Place system. The Alarm Clock
2.0 dynamically calculates an optimal moment to initiate an alarm in order to remind the person about
an occuring event out of all available data regarding appointments, supplied by the Daily Planner, which
is introduced in section 2.2.2.3. For infering an appropriate point of time for waking-up resp. reminding
the user, all available informations will be taken into account, e.g. if a traffic jam was announced on
the way to work, which entails additional time, an earlier timepoint for reminding will be generated.
If bad weather or traffic conditions occur and are sent to the Alarm Clock 2.0, additionally time will
be calculated which will be regarded for an approptiate wake up time resp. moment for reminding the user.

The alarm should occur at the right location, which means at the place where the person sojourns.

9See [Ell09], [Ell10a], [Ell10b] and [Ell11a].

28 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

For that location information will be required. The Alarm Clock 2.0 only creates an information, that an
alarm should be provoked and sends it to the Message Oriented Middleware. There, one or more proper
devices will react on this message and execute the alarm (e.g. light will be switched on and the TV set
in the field of view of the user switches on).

The Alarm Clock 2.0 alerts the user of a begin of a period of time, e.g. beginning of work, taking
a make-ready time into account. This preparation time includes the time for getting-up, the morning
toilet, eating, dressing and to meet an appointment, as described in [Ell11a]. The Alarm Clock 2.0 needs
to flexibly remind the inhabitant of fulfiling all these steps in the progress of make-ready. The internal
states of the inhabitant and its tasks, which will be administered by the Alarm Clock 2.0, are presented
in the following table 2.1: In order to get ready for an appointment, the user should fulfil these tasks,

State What to do?

asleep The person is still asleep and needs to get woken up by the Living Place system.
hungry The person is hungry and needs to go into the kitchen area in order to eat something.
unwashed The person needs to wash himself in the bathroom.
undressed The person is undressed or wrongly dressed and needs to find a dress in the wardrobe

which will be situated in the sleeping area and put it on.

Table 2.1: Tasks to Fulfil by the User During the Preparation Time in the Alarm Clock 2.0

whose progress will be controlled by the Alarm Clock 2.0. The device regularily reminds the user of tasks,
as long as at least one of them is still open. The fulfilment of these tasks is not dependent on a given
order.
Additional to an appropriate start time, the Alarm Clock 2.0 also infers an appropriate moment to stop
the alarm. If either all of these tasks are fulfilled, or the moment for stopping the alarm is reached, the
Alarm Clock 2.0 automatically resets itself in order to get ready for the next forthcoming appointment.

In [Ell11a] the following components of the Alarm Clock 2.0 are introduced:

• TimeModule : The TimeModule is responsible for supervising the time and send every minute the
current time to the Alarm Clock 2.0.

• ContextFassade : The ContextFassade is one part of the communication unit with the Message
Oriented Middleware. It gets the global context and converts it into specific information for the
Alarm Clock 2.0.

• AlarmMessageAdapter : It is a part for providing the communication with the Message Oriented
Middleware. It gets the internal alarm message of the Alarm Clock 2.0 and transforms it into the
global format of the whole system.

• ConfigFassade : With the help of the ContextFassade, configurations of the Alarm Clock 2.0 can
be done by the user, i.e. switching the Alarm Clock 2.0 off.

2.2.2.1.2 Possible User Operations

Like all other devices, the Alarm Clock 2.0 is connected to the Message Oriented Middleware of the
Living Place system. It is able to be set into offline mode, get connected resp. disconnected dynamically
without interrupting the Message Oriented Middleware or other devices in their operations, i.e. all oper-
ations of the Message Oriented Middleware resp. of the devices not referring to the Alarm Clock 2.0 will
be executed unmodified. The operations plugin, unplug and set offline are provided as user operations
and can be executed by the resident in order to add, remove or set the Alarm Clock 2.0 into offline mode.

The Alarm Clock 2.0 reminds the inhabitant regularily of the fulfilment of the tasks mentioned in
table 2.1. The user is able to stop the Alarm Clock 2.0 from constantly sending an alarm according to
the current appointment and consequently is able to initiate a reset of the device.

2.2.2.2 Display in the Multitouch Kitchen Counter

This section gives an introduction to the Display being part of the Multitouch Kitchen Counter. The
following figure 2.8 shows an overview of the Display device, illustrating the individual provided user

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 29

operations and the possible interactions between the Display connected to the Living Place system and
the Message Oriented Middleware.

The possible interactions between the Display and the Message Oriented Middleware are presented
in figure 2.8, where the detailed descriptions of these possible interactions are given in section 2.2.1.2.

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Display and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Display

plugin unplugset
offline

clear

subscribe
to topic

receive
topic-based
information

unsubscribe
from topic

set
online

set
offline

request
data

possible interactions between the communicating device Display and the Message Oriented Middleware

Figure 2.8: Display - an Overview

2.2.2.2.1 Internal System Behaviour

The Multitouch Kitchen Counter will be realized as solid multitouch tabletop. It contains a Display,
which is able to show different kinds of information, i.e. information regarding appointments previously
entered into the Daily Planner, and data sent by the Weather and Traffic Information System presented
in section 2.2.2.6. It is a receiver device, which is subscribed to the topics representing calendar, weather
and traffic data.

2.2.2.2.2 Possible User Operations

The user is able to perform the default operations, like plug in, unplug the Display device or set the
Display device into offline mode. Additionally the user is able to remove selected data records from the
screen of the Display device by performing the user operation clear.

2.2.2.3 Daily Planner

The Daily Planner and its operation which are shown in the following figure 2.9 are presented in this
section.

The possible interactions between the Daily Planner and the Message Oriented Middleware are pre-
sented in figure 2.9, where the detailed descriptions of these possible interactions are given in section
2.2.1.2.

30 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Daily Planner and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Daily Planner

plugin unplugset
offline

enter
appointment

remove
appointment

send
topic-based
information

set
online

set
offline

store
data

remove
data

possible interactions between the communicating device Daily Planner and the Message Oriented Middleware

Figure 2.9: Daily Planner - an Overview

2.2.2.3.1 Internal System Behaviour

The Multitouch Kitchen Counter also provides an interface for the resident to enter data for the
Living Place system. It contains a Daily Planner10 to which the resident can enter his appointments in
providing the timestamp and the description of the corresponding appointment. E.g. the resident enters
the start of his working hours into the Daily Planner. The Daily Planner forwards the entered data to
the Message Oriented Middleware.

In addition, the user is able to remove existing calendar data.

2.2.2.3.2 Possible User Operations

The device of the Daily Planner can be plugged in, set into offline mode and plugged out by the user.
Additionally the user is able to enter new calendar data into the Daily Planner (enter appointment) or
delete calendar data from the Living Place system, which were previously entered into the Daily Planner
(remove appointment).

2.2.2.4 Intelligent Bed

This section deals with the Intelligent Bed : It presents the Intelligent Bed itself, which is able to recognize
different sleep stages and provides its result to the Message Oriented Middleware. For that, a short
introduction to the human sleep stages is given in addition.
The following illustration 2.10 gives an overview of the Intelligent Bed and its interactions with the
Message Oriented Middleware as well as the possible user operations upon that device.

The possible interactions between the Intelligent Bed and the Message Oriented Middleware are pre-
sented in figure 2.10, where the detailed descriptions of these possible interactions are given in section
2.2.1.2.

10See [Bar09] and [Bar10].

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 31

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Intelligent Bed and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Intelligent Bed

plugin unplugset
offline

enter
pressure values

send
topic-based
information

set
online

set
offline

store
data

possible interactions between the communicating device Intelligent Bed and the Message Oriented Middleware

Figure 2.10: Intelligent Bed - an Overview

2.2.2.4.1 Internal System Behaviour

The main aim of the Living Place system is to make the resident’s daily routines easier. The process
of getting up in the morning will be enhanced by the Intelligent Bed. The Intelligent Bed gets information
about the inhabitant’s sleep stages, interpretes them and sends the resulting information to the Message
Oriented Middleware. Retrieving the data will be hidden from the residents sight and without any body
contact to the person. Therefore collecting the data will be done with the help of pressure sensors, where
each sensor collects bodymonitoring data, i.e. pressure as result from the movement of the user in bed.
The Intelligent Bed itself should not alter or intervene into the persons daily routines regarding bedtime.11

Human sleep stages

While sleeping each human runs through the following sleep stages. The first stage is the phase of
falling asleep whereas the muscle tone is middle to high. The muscle tone is defined as the unconsciously
constant contraction of the muscles helping the body to keep the posture. In the phase of falling asleep
the the person gets hypnic jerks and the awake consciousness fades. Afterwards the sleeping person runs
through the second stage, the phase of light sleep, where the muscle tone is middle to high but no awake
consciousness is available anymore. The next stage ist the middle sleep phase. The muscle tone gets low
and the ability of being woken up by something or someone is significantly reduced. The fourth stage is
the deep sleep which is only a very small part of the whole night sleep. During this phase the muscle tone
reduces and the ability of getting woken up is minimal. The fifth stage is called REM sleep the phase
where the person dreams. During this phase the muscle tone is nearly suspended to prevent the person
from injurys.
All sleeping phases form a cycle of 80-110 minutes. While sleeping each human runs through four to five
complete cycles, where the depth of the sleep reduces from cycle to cycle and the duration of the fourth

11For further details about the Intelligent Bed, especially the technical implementation, see [Har09].

32 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

stage decreases while the duration of the fifth stage increases. In stage two and nearly awake phases the
muscle tone is increased and hypnic jerks can occur.

Implementation details of the Intelligent Bed

Figure 2.11: Implementation of sensors in bed, from
[Har10a, p. 1]

The main functionality of the Intelligent Bed
is the recognition of the light and deep sleep
stages. Additionally, it recognizes, whether a per-
son is sitting in the bed or no one is in the bed by
evaluating the sensor values, so that no pressure
exerted to any of the sensors means that no one is
in the bed whereas the exertion of pressure to the
sensors means that someone is in the bed. For the
detection of the sleeping stages, six sensors will be
used whereas the sensors will be situated as illus-
trated in figure 2.11: Two sensors will be situated
at the head of the bed to identify a person sitting
and leaning on the bed (e.g. while reading), the
other four sensors will be mounted below of the
matress to recognize the residents sleep stages.12

The data will be collected as raw data and filtered to prevent inaccurate data because of measurment
errors or strong deviations. Afterwards they will be classified and a semantical interpretation will be
generated, e.g. “The user in a light sleep.”. As a result the Intelligent Bed sends an information to the
Message Oriented Middelware about the sleep stage the person is in.

2.2.2.4.2 Possible User Operations

Like all other devices, the Intelligent Bed is able to be plugged in, unplugged and set into offline mode
by the user. Furthermore, the inhabitant is able to indirectly enter the pressure values by sitting on,
lying or moving in the Intelligent Bed. To supply pressure values for all six sensors, the user operation
“enter pressure values” is provided.

2.2.2.5 Indoor-Positioning-System

In the present section, the Indoor-Positioning-System is presented according to figure 2.12 as shown in
the following. First, the internal system behaviour is described, whereas the second part enumerates the
possible user operations upon the Indoor-Positioning-System.

The possible interactions between the Indoor-Positioning-System and the Message Oriented Middle-
ware are presented in figure 2.12, where the detailed descriptions of these possible interactions is given
in section 2.2.1.2.

12See [Har10b], [Har10a] and [Har11].

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 33

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Positioning System and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Positioning System

plugin unplugset
offline

enter
position values

send
topic-based
information

set
online

set
offline

store
data

possible interactions between the communicating device Positioning System and the Message Oriented Middleware

Figure 2.12: Indoor-Positioning-System - an Overview

2.2.2.5.1 Internal System Behaviour

The Living Place will be equipped with an Indoor-Positioning-System which will be used by the
Location-Based Screen. The Indoor-Positioning-System will be presented in the following and the
Location-Based Screen in section 2.2.2.7.

Figure 2.13: Position of indoor positioning system sensors in the Living Place flat, from [OV11a, p. 16]

The Indoor-Positioning-System consists of six electromagnetic sensors arranged as illustrated in fig-
ure 2.13. They will measure the current position of the inhabitant. Each sensor covers a specific range
in the Living Place apartment, so that the combination off all sensors encirle the whole apartment. A
sensor knows its own position and angle in the apartment (x,y,z-position, yaw, pitch and roll). After
measuring a position of the user, provided as 3D-coordinate, each sensor sends a message containing its
own identification and the measurement data (see [OV11a, p. 17]) to an application which interpretes

34 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

that data and sends its conclusion to the message broker.
Consequently, the Indoor-Positioning-System consists of six sensors and an application collecting and
interpreting the data.

The apartment is splitted in four parts as described in table 2.2 and 2.3.

Range y-coordinate

North 10.0 ≤ y ≤ 15.8
Middle 5.5 ≤ y < 10.0
South 0.0 ≤ y < 5.5

Table 2.2: Partition of the Living Place flat ac-
cording to the y-coordinate of a location-based
sensor

Range x-coordinate

Middle 0.0 ≤ x ≤ 8.0
Bathroom 8.0 < x

Table 2.3: Partition of the Living Place flat ac-
cording to the x-coordinate of a location-based
sensor

The application interpretes the y-position of the inhabitant and compares the value of the y-position
with 2.2. In the south, the sleeping area is situated, whereas in the lounge area lies in the north of
the Living Place apartment (compare figure 2.13). Regarding the y-coordinate, the middle contains the
kitchen area and the bathroom. To distinguish both areas, the x-coordinate will be interpreted according
to the table 2.3. According to the results measured with the Indoor-Positioning-System, the application
sends the information in which area the person stays to the message broker in using the topic “UbiTV”.

2.2.2.5.2 Possible User Operations

The Indoor-Positioning-System provides the user operations, plug in, unplug and set offline the device.
Additionally it provides a user operation for entering the position values of the user. The sensors recognize
the current position of the user and measure his position data. Therefore, the input of position data is
indirect.

2.2.2.6 Weather- and Traffic Information Service

The Weather and Traffic Information Service are two different devices, but they operate in the same
manner, so that they are presented together in this section. The following figure 2.14 illustrates the
possible user operations provided for the user and the possible interactions between the communicating
device and the Message Oriented Middleware. Each of both devices provide the same operations.

The possible interactions between the Weather- and Traffic Information Service and the Message
Oriented Middleware are presented in figure 2.14, where the detailed descriptions of these possible inter-
actions is given in section 2.2.1.2.

2.2.2.6.1 Internal System Behaviour

The Living Place has an internet connection from which it requests information from the outside
of the Living Place apartment, in particular regarding weather reports or traffic news. The weather
information system will provide information regarding the weather conditions in the direct surroundings
of the apartment which might be received by other devices connected to the Message Oriented Middleware,
so that their inference process can be influenced, e.g. the Alarm Clock 2.0 (see section 2.2.2.1): If the
weather information system sends that currently there are bad weather conditions, like rain, storm or
snow, and the inhabitant should be at work on time, the way to work might take longer because of the
bad weather conditions, so the user should be waken-up some time earlier than normal.
Analog, the traffic service will influence the Alarm Clock 2.0, too, so that the user might be remembered
to a certain appointment earlier than normally. E.g. bad weather and traffic conditions, like snow and
traffic jams, might influence the Alarm Clock 2.0 in inferring that the alarm time will be modified, so
that it lies a long time before the normal time.

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 35

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Weather- and Traffic Information Service and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Weather- and Traffic Information Service

plugin unplugset
offline

send
topic-based
information

set
online

set
offline

store
data

possible interactions between the communicating device Weather- and Traffic Information Service and the Message Oriented Middleware

Figure 2.14: Weather- and Traffic Information Service - an Overview

2.2.2.6.2 Possible User Operations

The Weather Information Service resp. the Traffic Information Service only provide the standard user
operations, plug in, plug off and set the device offline, which are available for each device.

2.2.2.7 Location-Based Screen

The Location-Based Screen will be presented in the following. The figure 2.15 gives a short overview of
the possible user operations resp. possible user interactions between the Location-Based Screen connected
to the Living Place system and the Message Oriented Middelware.

The possible interactions between the Location-Based Screen and the Message Oriented Middleware
are presented in figure 2.15, where the detailed descriptions of these possible interactions is given in
section 2.2.1.2.

2.2.2.7.1 Internal System Behaviour

The Living Place apartment is equipped with two television sets, one in the lounge area (north),
the other one in the sleeping area (south). They are connected to an application which receives data
belonging to the topic “UbiTV”, to which the device is subscribed, and evaluates it. The combination of
all those parts mentioned, form the Location-Based Screen.
The device receives all messages sent by the Indoor-Positioning-System which is described in section
2.2.2.5. The message broker distributes all messages, so the application controlling the television set
is able to fetch all data belonging to the topic “UbiTV”. It will interprete this data according to the
following rules and activates or deactivates the television sets:

36 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Location-Based Screen and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Location-Based Screen

plugin unplugset
offline

turn
on

turn
off

subscribe
to topic

receive
topic-based
information

unsubscribe
from topic

set
online

set
offline

possible interactions between the communicating device Location-Based Screen and the Message Oriented Middleware

Figure 2.15: Location-Based Screen - an Overview

• If the resident is in the north, the TV set in the lounge area is activated, the other TV set will be
deactivated.

• If the user resides in the south, the TV set in the sleeping area is activated, the other TV set is
inactive.

• If neither the resident is in the north nor in the south, both TV sets should be switched off.

Both TV sets are only able to show the program alternatively. If one TV set is active, the other is
inactive. But both TV sets have the same on/off state in order to switch the program from the screen of
one TV to the screen of the other TV immediately if the user moves from one area containing a TV to
the other one. The TV set needs position data of the inhabitant in order to work correctly. Currently,
the position data of the user are measured by the Indoor-Positioning-System. The relationship between
the Indoor-Positioning-System and the Location-Based Screen is shown in the following figure 2.16.

sensor1

...

sensor6

Indoor-Positioning-
System

Sending Device
Message Broker

Location-Based
Screen

Receiving Device

TV1

TV2

Figure 2.16: Relationship Between Indoor-Positioning-System and Location-Based Screen

2.2.2.7.2 Possible User Operations

2.2. ARCHITECTURE OF THE SYSTEM OF THE LIVING PLACE 37

The Location-Based Screen provides the user operations, which are available for all devices, i.e. plugin,
set offline and unplug. Besides, it provides user operations for changing the on/off state of both TV
sets simultaneously. One operation initiates the switching on of both TV sets (turn on), the other is the
inverse and initiates the switching off of both TV sets (turn off).

2.2.2.8 Ambient Light

The Ambient Light will be presented in the following. The figure 2.17 gives a short overview of the
possible user operations resp. possible user interactions between the Ambient Light connected to the
Living Place system and the Message Oriented Middelware.

The possible interactions between the Ambient Light and the Message Oriented Middleware are pre-
sented in figure 2.17, where the detailed descriptions of these possible interactions is given in section
2.2.1.2.

Message Oriented
Middleware

Message
Broker

Persistence
Layer

Context
Interpreter

possible interactions between the communicating device Ambient Light and the Message Oriented Middleware

communicating devices

Alarm
Clock 2.0

Daily
Planner

Display Intelligent
Bed

Positioning
System

Weather- and Traffic
Information Service

Location-Based
Screen

Ambient
Light

possible user operations upon the communicating device Ambient Light

plugin unplugset
offline

turn
on

turn
off

subscribe
to topic

receive
topic-based
information

unsubscribe
from topic

set
online

set
offline

possible interactions between the communicating device Ambient Light and the Message Oriented Middleware

Figure 2.17: Ambient Light - an Overview

2.2.2.8.1 Internal System Behaviour

The Living Place will be equipped with an Ambient Light installation. According to the ubiquitousness
of the Living Place the light in the apartment automatically switches on when an appropriate signal was
sent over the Message Oriented Middleware. Currently the Ambient Light reacts on the alarm signals of
the Alarm Clock 2.0 device (see 2.2.2.1) in switching the light on into dimmed mode.

2.2.2.8.2 Possible User Operations

Additionally to the automatic powering on of the Ambient Light in dimmed mode, the user is able to
apply user operations for switching the light on (turn on) resp. off (turn off) in the whole Living Place
apartment. Furthermore the user operations plugin, unplug and setdeviceoffline are provided.

38 CHAPTER 2. LIVING PLACE AND THE SYSTEM OF THE LIVING PLACE

2.3 Summary

This chapter introduces the Living Place Project, the Living Place and the System of the Living Place
as a system of Ubiquitous Computing and Ambient Intelligence. For that, the basic characteristics of this
system as well as the terms Ubiquitous Computing and Ambient Intelligence are described in section 2.1.

Furthermore, it is clarified that this work deals with the modelling of the internal system behaviour
of the Living Place system.

In section 2.2 of this chapter the architecture of the system of the Living Place in terms of the system
behaviour is described in detail, i.e. the components of the system, their possible relationships to each
other as well as their most important possible direct relationships to entitites outside of the system are
described.

Therefore, this description of the architecture of the system provides a detailed description of the
system. So, the descriptions of sections 2.1 and 2.2 can serve as a basis for the modelling of the Living
Place system.

The next chapter 3 is the first chapter that deals exclusively with the modelling of the Living Place
system.

Chapter 3

Modelling the System of the Living Place:
Levels of Modelling - Data Level, Object
Level, System Level, User Level

Overall Model of the Living Place System

User Level

System Level

Object Level

〈〈Model〉〉
Message Oriented

Middleware
(i.S.B.)1

〈〈Model〉〉
Message
Broker

(i.S.B.)1

〈〈Model〉〉
Persistence

Layer
(i.S.B.)1

〈〈Model〉〉
Context

Interpreter
(i.S.B.)1

possible interactions between the communicating devices and the Message Oriented Middleware

communicating devices

〈〈Model〉〉
Alarm

Clock 2.0
(i.S.B.)1

〈〈Model〉〉
Daily

Planner
(i.S.B.)1

〈〈Model〉〉
Display
(i.S.B.)1

〈〈Model〉〉
Intelligent

Bed
(i.S.B.)1

〈〈Model〉〉
Positioning

System
(i.S.B.)1

〈〈Model〉〉
Weather- and Traffic
Information Service

(i.S.B.)1

〈〈Model〉〉
Location-Based

Screen
(i.S.B.)1

〈〈Model〉〉
Ambient

Light
(i.S.B.)1

possible user operations upon the communicating devices

possible user operations upon the Message Oriented Middleware

〈〈Model〉〉
stop

〈〈Model〉〉
restart/initialize

〈〈Model〉〉
plugin

〈〈Model〉〉
unplug

〈〈Model〉〉
set offline

〈〈Model〉〉
subscribe
to topic

〈〈Model〉〉
send / receive

topic-based
information

〈〈Model〉〉
unsubscribe
from topic

〈〈Model〉〉
set

online

〈〈Model〉〉
set

offline

〈〈Model〉〉
store
data

〈〈Model〉〉
remove

data

〈〈Model〉〉
request

data

possible user operations upon the Message Oriented Middleware

...

Data Level abstract data types

〈〈Model〉〉
abstract topic

data type

〈〈Model〉〉
abstract topic based

data data type

〈〈Model〉〉
abstract data request

data type

〈〈Model〉〉
abstract device status

data type

uses

uses uses

uses

uses

possible interactions between the communicating devices and the Message Oriented Middleware

Figure 3.1: Levels of Modelling - an Overview

1i.S.B. = internal System Behaviour

39

40 CHAPTER 3. LEVELS OF MODELLING

The description of the architecture of the Living Place system, given in chapter 2.2, provides a
detailed description of the Living Place system by describing the components of this system, their possible
relationships to each other as well as their most important possible direct relationships to entities outside
of the system.

Therefore, this description of the system architecture serves as a basis for the modelling of the Living
Place system, i.e. to obtain an overall model of the system, the elements of the system architecture resp.
the system components, the possible relationships between them as well as their most important possible
direct relationships to entities outside of the system have to be modelled, where the quantitative union of
these so obtained models forms the overall model of the system. For that a description of these elements
is required, which is given by the description of the system architecture in section 2.2. To illustrate the
relationship between the description of the system architecture of section 2.2 and the modelling of the
system, according to figure 2.4 of section 2.2, in figure 3.1 an overview of those system components and
those relationships is given, that need to be modelled to obtain an overall model of the Living Place
system.

Therefore, based on the statements of section 2.2, this chapter is intended to give an extended in-
troduction to the modelling of the system of the Living Place by providing a cohesive overview of those
system parts, that need to be modelled to obtain an overall model of the Living Place system as the main
result of the modelling and therefore as a main result of this work.

First of all, the system components need to be modelled, i.e. since these components are considered
as computing components, by modelling the system components the modelling of the internal system
behaviours of these components is meant. Since, as shown in section 2.2, the system components are
given by the Message Oriented Middleware together with the set of communicating devices, a model
of the internal system behaviour of the Message Oriented Middleware together with models
of the internal system behaviours of the communicating devices need to be elaborated, i.e. a model
of the internal system behaviour of the Alarm Clock 2.0, a model of the internal system
behaviour of the Daily Planner, a model of the internal system behaviour of the Display,
a model of the internal system behaviour of the Intelligent Bed, a model of the internal
system behaviour of the Positioning System, a model of the internal system behaviour of
the Weather- and Traffic Information Service, a model of the internal system behaviour of
the Location-Based Screen and a model of the internal system behaviour of the Ambient
Light need to be elaborated. As the Message Oriented Middleware consists of the following three parts:
Message Broker, Persistence Layer and Context Interpreter, a model of the internal system
behaviour of each of these three parts need to be elaborated to obtain a model of the internal system
behaviour of the Message Oriented Middleware.

Furthermore, the mentioned relationhips have to be modelled. It is stated in section 2.2 that the pos-
sible relationships between the system components resp. the most important possible direct relationships
from the system components to entities outside of the system are given by the different possible interac-
tions between the communicating devices and the Message Oriented Middleware resp. the possible user
operations upon the communicating devices together with the possible user operations upon the Message
Oriented Middleware. Therefore, a model of each possible interaction as well as a model of each possible
user operation upon the communicating devices resp. upon the Message Oriented Middleware need to be
elaborated, that includes a model of send/receive topic-based information, a model of subscribe
to topic, a model of unsubscribe from topic, a model of set online, a model of set offline,
a model of store data, a model of remove data and a model of request data in terms of the
possible interactions and a model of stop, a model of restart/initialize resp. a model of plugin,
a model of set offline and a model of unplug in terms of the possible user operations. Consider,
that several more possible user operations upon the communicating devices are defined in sections 2.2.2.1
to 2.2.2.8, which however are omitted in this section, to be able to give a clearer overview. Therefore,
additionally for every such possible user operation a model need to be elaborated. Also consider, that
the models of the possible user operations upon the system of the Living Place only consider those parts
of these user operations, that proceed inside of the system of the Living Place, since this work deals with
the modelling of the internal system behaviour of this system, i.e. since every such user operation causes
immediately a certain change of the internal state of this system, these models depict these changes of
the internal state of this system which are caused by these user operations.

Finally, since all the mentioned models involve data and operations that are defined on these data,
the abstract data types, that includes these data and operations also need to be modelled so that the
mentioned models can use these so obtained models of the abstract data types, i.e. in particular a model
of the abstract topic data type, a model of the abstract topic based data data type, a model

3.1. DATA LEVEL 41

of the abstract data request data type and a model of the abstract device status data type
need to be elaborated. Which model involves which data and operations and therefore uses which models
of the abstract data types is clarified in chapter 7 by defining these models in detail therein. However,
an example is given here in advance: Every model of the internal system behaviour of a communicating
device uses the model of the abstract device status data type and especially the therin defined device
status data, which indicate whether the respective device is in state online, offline or any other state.

As illustrated in figure 3.1, the quantitative union of all the so far mentioned models forms the overall
model of the Living Place system. Thus, they can be considered as submodels of the overall system
model. So the elaboration of these submodels, as it is especially carried out in chapter 7 by specifically
defining these submodels, delivers the overall model of the system as a main result of this work.

Figure 3.1 shows a classification of the submodels into the following four levels: Data Level, Object
Level, System Level and User Level, where these levels are organized hierarchically to each other by
the following hierarchical relation: the Data Level, as the lowest level, is contained in the Object Level,
the Object Level is contained in the System Level and the System Level is contained in the highest level
resp. the User Level, so that the models classified in lower levels are used by models classified in the
corresponding directly higher level in a manner as it is described in sections 3.1, 3.2, 3.3 and 3.4.

So, this classification of the models provides an organization of the models into appropriate categories,
where these categories are organized hierarchically to each other, so that the models of lower categories
are used by models of the corresponding directly higher category.

Thus, this classification of the models provides the answer of the question “Which model is used by
which model?” and therefore also provides a well-ordered overall overview of these models and their
important relationships to each other.

The classification is described in detail in the following sections 3.1 to 3.4.

3.1 Data Level

The lowest level - the Data Level - contains the models of the abstract data types, which define the data
and functions on these data, that are used by all the models of higher levels such as the models of the
internal system behaviours of the communicating devices of the Object Level, the models of the possible
interactions and the internal system behaviour of the Message Oriented Middleware of the System Level
as well as the models of the possible user operations of the User Level.

Since the models of the abstract data types are used by all the models of higher level, the Data Level
is contained in the Object Level, since the Object Level is contained in the System Level, the Data Level
is contained in the System Level and analogously the Data Level is also contained in the User Level.

3.2 Object Level

The Object Level includes the models of the internal system behaviours of the communicating devices,
which are considered as the objects of the Living Place system, and as mentioned before the Object Level
also includes the Data Level and therefore the models of the abstract data types contained in the Data
Level, since the models of the internal system behaviours of the communicating devices uses these models
of the abstract data types by operating on the data and functions that are defined by these models.

Since the models of the internal system behaviours of the communicating devices are considered, in this
work the communicating devices are considered as computing systems. The internal system behaviour of
such a device includes all possible transformations of the possible internal states of that device into new
possible internal states by applying actions. Therefore, a model of the internal system behaviour of such
a device must describe all possible internal states of that device as well as the possible transformations
of these states by describing all possible actions that can be applied as well as which internal states must
prevail, so that such an action can be applied and which internal state results from the application of
such an action.

3.3 System Level

The System Level includes the model of the internal system behaviour of the Message Oriented Mid-
dleware and therefore includes also the following models, that constitute this model: the model of the

42 CHAPTER 3. LEVELS OF MODELLING

internal system behaviour of the Message Broker, the model of the internal system behaviour of the
Context Interpreter as well as the model of the internal system behaviour of the Persistence Layer.

Since the model of the internal system behaviour of the Message Oriented Middleware is considered, in
this work the Message Oriented Middleware is considered as a computing system in a manner analogous
to the communicating devices that are depicted by the models of the Object Level in section 3.2,

What such an internal system behaviour and therefore its model must include, is described in the
previous section 3.2.

Furthermore this level contains the models of the possible interactions between the communicating
devices and the Message Oriented Middleware as well as the Object Level and therefore the models of
these levels, since the models of the possible interactions relate the model of the internal system behaviour
of the Middleware to the models of the internal system behaviours of the communicating devices that are
defined in the Object Level because these models of the internal system behaviours include descriptions
of those actions that are involved in the possible interactions. So, the one part of the model of such a
possible interaction is included in the model of the internal system behaviour of the Middleware and the
other part is included in the model of the internal system behaviour of the corresponding communicating
device. However, the models of the possible interactions are contained in this level, because these models
use the models of the internal system behaviours of the communicating devices by using the therein
described possible internal states of these devices to indicate the result of the corresponding interaction.

Moreover, since the System Level contains the Object Level, the System Level also contains the Data
Level and its models, since the models of the System Level use the models of the abstract data types
contained in the Data Level by operating on the data and functions that are defined by these models.

Consider, that the model of the internal system behaviour of the Message Oriented Middleware and
the models of the possible interactions, that are contained in this level, are considered as the central parts
of the Living Place system.

3.4 User Level

The highest level - the User Level - includes the models, that represent the considered possible operations
a human user can perform on the system, i.e. the models of the possible user operations upon the
communicating devices resp. upon the Message Oriented Middleware.

Since, as depicted in section 2.2, these user operations initiate a change of one or more internal states
of the system and therefore the models of these user operations operate on the models of the internal
system behaviours of the communicating devices resp. the Message Oriented Middleware. The User Level
contains the System Level as well as the Object Level and therefore also the therein contained models of
the internal system behaviours.

Since, the User Level contains the System- and Object Level, the User Level also contains the Data
Level and its models, since the models of the possible user operations of the User Level use the models
of the abstract data types contained in the Data Level by operating on the data and functions that are
defined by these models.

3.5 Summary

This chapter presents an overview of those models, that need to be elaborated to obtain an overall model
of the Living Place system as a main result of this work. Since every model has a reference to that part
of the system which is considered by the model, this overview is also an overview of those system parts,
that need to be modelled to obtain an overall model of the Living Place system.

Furthermore, in this chapter, a classification of these models into the following four levels is given: Data
Level, Object Level, System Level and User Level. Therefore, these levels are considered as the levels of
modelling. This classification provides a well-ordered overall overview of the models and their important
relationships to each other by organizing these models into appropriate categories and illustrating which
model is used by which model.

Figure 3.1 illustrates this classification and therefore gives a pictorial overview of those models, that
constitute the overall model of the Living Place system and thus can be considered as submodels of the
overall model.

The classification of these models into the considered four levels, will be maintained in all further
considerations relating to the modelling of the Living Place system.

3.5. SUMMARY 43

The models of the Data Level are formulated in sections 7.1.1 and 7.2.1. In sections 7.1.2 and 7.2.2
the models of the Object Level are elaborated. In sections 7.1.3 and 7.2.3 the models of the System Level
are defined and in sections 7.1.4 and 7.2.4 the models of the User Level are given.

Chapter 4

Modelling the System of the Living Place:
Requirements Towards the Model

As illustrated in section 3, the overall model of the Living Place system is constituted of several submodels
which represent different parts of the system, where the elaboration of these submodels delivers the overall
model of the system as a main result of this work.

With regard to the elaboration of these submodels in chapter 7, this chapter describes requirements,
that must be fulfilled by the submodels of the overall system model. Thus, the descriptions in this chapter
relate directly to the definitions of these submodels, as they are given in chapter 7.

Since the quantitative union of the submodels forms the overall modell of the system, the set of the
requirements towards these submodels represents the set of requirements towards the overall model of the
Living Place system - therefore, requirements towards these submodels are considered as requirements
towards the overall model of the system.

The requirements towards the submodels and therefore towards the overall model of the Living Place
system result on the one hand from the description of the Living Place system resp. from the descriptions
of those parts of the system from section 2.2, that are represented by these submodels and on the other
hand, since the system of the Living Place is a system of ubiquitous computing and ambient intelligence,
from the characteristics of such ubiquitous computing resp. ambient intelligence systems, that are given
in section 2.1.

Therefore, in section 4.2 the requirements that result from the description of the Living Place system
are formulated and section 4.1 describes the requirements that result from the characteristics of ubiquitous
computing resp. ambient intelligence systems.

In sections 4.2 and 4.1, the requirements towards the submodels are described in seperated subsections
by maintaining the classification of the submodels into the four levels Data Level, Object Level, System
Level and User Level, as presented in chapter 3. The requirements towards the models of the Data Level,
Object Level, System Level resp. User Level that result from the description of the Living Place system
are described in sections 4.2.1, 4.2.2, 4.2.3 resp. 4.2.4. The requirements towards the models of the Data
Level, Object Level, System Level resp. User Level that result from the characteristics of ubiquitous
computing resp. ambient intelligence systems are described in sections 4.1.1, 4.1.2, 4.1.3 resp. 4.1.4.

4.1 Requirements Resulting From the Characteristics of Ubiq-
uitous Computing resp. Ambient Intelligence Systems

As described in section 2.1, the system of the Living Place includes the characteristics of a ubiquitous
computing and ambient intelligence system. Therefore, this system can be considered as a system of
Ubiquitous Computing and Ambient Intelligence. Thus, a model of the system of the Living Place
must reflect these characteristics. For that, such a model must represent these characteristics, i.e. the
representations of these characteristics can be considered as requirements towards the model of the Living
Place system.

4.1.1 Data Level

rubid1 : Since the communicating devices are able to communicate and each communication process
involves data, the data of these communication processes must be represented individually for each

44

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 45

communicating device.

4.1.2 Object Level

rubio1 : All devices connected to the system are exchangeable without interrupting or influencing the
processing of any other devices.

rubio2 : All devices are able to communicate with each other.

rubio3 : The prevailing context of the Living Place will be taken into account by the communicating
devices within their processing steps.

4.1.3 System Level

rubis1 : All devices connected to the system are exchangeable without interrupting the data processing
within the Message Oriented Middleware.

rubis2 : The communication of all devices will be guaranteed by the Message Oriented Middleware.

rubis3 : In general, the Message Oriented Middleware has to react in an appropriate manner to user
operations.

4.1.4 User Level

rubiu1 : The user is able to exchange devices and therefore the Message Oriented Middleware has to
react in an appropriate manner.

rubiu2 : In general, users of the system have the possibility to provoke a reaction of the system in
applying user operations.

rubiu3 : The user can always take control over the system by shutting it down or restarting the whole
system.

4.2 Requirements Resulting From the Description of the System

A model of the internal system behaviour of the Living Place system must reflect all important aspects
of that behaviour. Therefore, the descriptions of the system architecture in terms of the internal system
behaviour of section 2.2 serves as a basis to formulate requirements towards such a model.

In the following discussion of this chapter, such requirements towards the model resulting from the
description of the system of section 2.2 are given.

As the model consists of several sub-models, for each sub-model the requirements are seperately
presented. An overview of all sub-models is given in figure 3.1 of the previous section 3.

The sum of requirements of these sub-models form the set of requirements for the overall model of
the Living Place project.

The following chapter is organized as follows: Section 4.2.2 describes the requirements towards the
models of the Object Level, i.e. the general requirements regarding the device types: receiver, sender and
transceiver. Afterwards the requirements regarding each concrete model will be worked out, i.e. of the
Alarm Clock 2.0 in section 4.2.2.4, the Display in 4.2.2.5, the Daily Planner in 4.2.2.6, the Intelligent Bed
in 4.2.2.7, the Indoor-Positioning-System in section 4.2.2.8, the Weather Information System in 4.2.2.9,
the Traffic Information System in 4.2.2.10, the Location-Based Screen in 4.2.2.11 and the Ambient Light
in 4.2.2.12.

Section 4.2.3 describes the requirements towards the models of the System Level, i.e. the requirements
regarding to the model of the message broker in section 4.2.3.1, the requirements regarding to the model of
the persistence layer in section 4.2.3.2 and the requirements towards the model of the context interpreter
in section 4.2.3.3.

46 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

rgen : First of all, independently of all other requirements, it would be preferable, that the levels of
modelling, as presented in section 3, are reflected by the overall model of the Living Place system itself
in an intuitive way.

4.2.1 Data Level

rdata1 : The communication in the Living Place system between all connected devices takes place with
the help of topics (see 2.2.1.3), hence, the model on the data level has to provide a data type for topic
with a corresponding carrier set enabling identifiers for all relevant topics.

4.2.2 Object Level

In chapter 2, the Living Place system and its components are introduced, whereas the following three
device types are introduced:

• Transceiver,

• Receiver,

• Sender.

Each device belongs to one of the specific types. Therefore, general requirements regarding these three
device types, i.e. transceiver, receiver and sender, will be worked out in this section. The reqirements
regarding the corresponding type have to be fulfilled by the concrete device, which is either a transceiver,
a receiver or a sender.
Additionally, each device has to fulfil specific requirements, which will be presented afterwards for each
device depending on the description of the specific device presented in chapter 2. The devices which will
be analysed are:

• the Alarm Clock 2.0, which is introduced in 2.2.2.1,

• the Display in the Multitouch Kitchen Counter, which is presented in 2.2.2.2,

• the Daily Planner, which is illustrated in 2.2.2.3,

• the Intelligent Bed, see section 2.2.2.4,

• the Indoor-Positioning-System, whose description is in 2.2.2.5,

• the Weather- and the Traffic Information Service, which are presented in section 2.2.2.6,

• the Location-Based Screen, introduced in section 2.2.2.7 and

• the Ambient Light, presented in section 2.2.2.8.

E.g. the Alarm Clock 2.0 is a transceiver, therefore it should fulfil the general requirements of a transceiver
presented in section 4.2.2.3, furthermore is should fulfil its specific requirements established for the Alarm
Clock 2.0, which are presented in section 4.2.2.4.

4.2.2.1 Receiver

rreceiver1 : Each device should be able to initiate a change from offline into online mode and reverse.
The online resp. offline mode should be stored internally by the device.

rreceiver2 : Each device contains a specific connection identification which will be set by the Message
Oriented Middleware when the device is connected to the Living Place system and switches into online
mode.

rreceiver3 : In online mode, the receiver should be able to subscribe itself to a specific topic. Additionally,
the reverse, i.e. the device should be able to unsubscribe from already subscribed topics, should be
possible.

rreceiver4 : The device should be able to receive topic-based data distributed by the Message Oriented
Middleware.

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 47

rreceiver5 : Each device, which is able to receive data, should be able to request data regarding one or
more topics, to which the device is subscribed, from the persistence layer. Therefore, a receiver should
get the possibility to request stored data from the persistence layer of the Message Oriented Middleware.

rreceiver6 : Receiving data, requesting data and subscribing topics resp. announcing a switch into
offline mode can proceed in parallel. As long as the device is not switched into offline mode, because
the Message Oriented Middleware did not process this announcement yet, the device is able to process
messages, requests to the persistence layer resp. subscribe topics.

4.2.2.2 Sender

rsender1 : Each device should be able to initiate a change from offline into online mode and reverse.
The online resp. offline mode should be stored internally by the device.

rsender2 : Each device contains a specific connection identification which will be set by the Message
Oriented Middleware when the device is connected to the Living Place system and switches into online
mode.

rsender3 : A sender is able to send data to the Message Oriented Middleware for processing.

rsender4 : Additionally, the data which will be sent to the Message Oriented Middleware should be
stored to the persistence layer.

4.2.2.3 Transceiver

A transceiver is a combination of a receiver and a sender. Consequently, the requirements posed for all
receivers and for all senders should be fulfilled by all transceivers, but because of the transceiver device
type being a combination of both device types, i.e. receiver and sender, the requirements fulfilled by the
receiver device type resp. sender device type, will be automatically met by all transceiving devices.
In addition, the transceiver should fulfil the following requirement resulting out of the combination of the
other two device types:

rtransceiver1 : The transceiver is able to send, receive and request data, subscribe to topics, and an-
nouncing that the device wants to go into offline mode in parallel. Similar to the receiver, it is possible
for a transceiver to process data, i.e. sending, receiving and requesting information, and to subscribe
topics, even if a switch into offline mode is announced, as long as the Message Oriented Middleware has
not processed this announcement.

4.2.2.4 Alarm Clock 2.0

rAlarmClock2.01 : Since the Alarm Clock 2.0 is able to receive topic-based information, it is able to
subscribe to and unsubscribe from the following topics: “Weather”, “Traffic”, “Calendar”, “Bed” and
“Context”.

rAlarmClock2.02 : The Alarm Clock 2.0 device does not alert by itself, instead it sends a signal, that
an alarm (on,Alarm) should be provoked, to the Message Oriented Middleware, belonging to the topic
“Alarm”. Before sending, it converts the signal into a global format.

rAlarmClock2.03 : It is able to request past data regarding the topic “Calendar” in order to get all
appointments entered to the Living Place system. This kind of data forms the basis for inferring an
appropriate moment for alarming.

rAlarmClock2.04 : The Alarm Clock 2.0 starts to check for the next appointment 240 minutes before the
appointment starts. If the timestamp given in the calendar data is less or equal than 240 minutes, take
this data.

48 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

rAlarmClock2.05 : The Alarm Clock 2.0 automatically infers a wake up time resp. a moment for re-
minding the user initially according to calendar data belonging to the topic “Calendar” and regarding
traffic resp. weather conditions occuring during the time of getting to the appointment. According to the
defined additional time for the weather resp. the traffic conditions, mentioned in the following tables 4.1
resp. 4.2, which occurs during the time of getting to the appointment, additional time will be taken into
account. For example, if the weather conditions are bad because it is snowing and besides a traffic jam
occurs, an extra preparation time of 60 minutes must be taken into account. In contrast, good weather
and traffic conditions do not need any further time for preparation.

Weather Condition Additional Time
(in Minutes)

sun 0
wind 0
rain 10
storm 15
hail 15
snow 30

Table 4.1: Additional Times for Different
Weather Conditions

Traffic News Additional Time
(in Minutes)

free 0
roadwork 15
jam 30
accident 30

Table 4.2: Additional Times for Different Traf-
fic Conditions

rAlarmClock2.06 : In addition, the Alarm Clock 2.0 should evaluate data according the current sleeping
phase the user is in, in order to generate an appropriate wake up time. If the inhabitant is in depth sleep
phase, the Alarm Clock 2.0 should wait and check regularily until this sleeping phase is finished. If the
user is in any other sleeping phase, the Alarm Clock 2.0 does not need to wait and is able send an alarm
signal immediately.

rAlarmClock2.07 : Because of the possible case, that the person is currently in the depth sleep phase and
the Alarm Clock 2.0 needs to wait until this phase is finished, an additionaly time buffer of 30 minutes
is assumed for infering a wake up time.

rAlarmClock2.08 : The device contains an internal storage for administering the four tasks the user
should fulfil during the preparation time: getting up, washing, dressing and eating. A further description
of all states will be given in table 2.1. An average duration of 15 minutes is assumed for each task, so,
every 15 minutes, the Alarm Clock 2.0 reminds the user of fulfiling the actions, as long as there are still
any open.
Because of the device managing four tasks with a duration of 15 minutes for each, a overall duration of
the preparation time of 60 minutes is assumed.

rAlarmClock2.09 : The Alarm Clock 2.0 constantly checks for 5W1H context data. If a wake up time
is inferred, the Alarm Clock 2.0 evaluates all incoming context data. If a context data describes a task,
which is currently performed by the person, this task will be removed from the internal storage of tasks.

rAlarmClock2.010 : The Alarm Clock 2.0 constantly checks for 5W1H context data. If the Alarm Clock
2.0 is in idle mode, that means, no valid appointment is selected, all incoming context data need to be
removed.

rAlarmClock2.011 : It is assumed, that the way to get to the appointment takes 30 minutes. Data
according to weather and traffic conditions only need to be checked for the period of time between 30
minutes before the appointment plus the already inferred additional time and the appointment.

rAlarmClock2.012 : The Alarm Clock 2.0 contains an internal timer, representing the TimeModule, which
provides an actual timestamp. This timestamp can be compared to timestamps within the information
the Alarm Clock 2.0 receives from the Message Oriented Middleware, like information regarding the topics
“Weather”, “Traffic” and “Calendar”.

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 49

rAlarmClock2.013 : The device is able to end the constant reminding, if no open tasks are available,
which need to be fulfilled. The reminding takes place in generating a new (on,Alarm) signal and sending
it to the Message Oriented Middleware.

rAlarmClock2.014 : The device is able to end the constant reminding, if the time for leaving the Living
Place apartment is reached. This moment is calculated out of: start of the appointment - (additional
time because of weather and traffic conditions + 30 minutes for getting to the appointment).

rAlarmClock2.015 : If the time of leaving the apartment is reached, the Alarm Clock 2.0 resets itself
automatically. A reset of the Alarm Clock 2.0 contains:

• Deleting the currently processed appointment.

• Removing the current timestamp for reminding.

• Resetting the internally stored tasks.

• Switching into idle mode in order to delete all incoming 5W1H context data.

• Reset waiting time because of bad weather or bad traffic conditions.

rAlarmClock2.016 : Additionally, the user is able to stop and therefore reset the Alarm Clock 2.0. For
further details see 4.2.4.2.1.

rAlarmClock2.017 : The Alarm Clock 2.0 is a transceiver.

4.2.2.5 Display

rdisplay1 : Since the Display device is able to receive topic-based information and should visualize
calendar, weather and traffic data, it is able to subscribe to and unsubscribe from the following topics:
“Weather”, “Traffic” and “Calendar”.

rdisplay2 : It needs to convert received data, belonging to the subscribed topics, into a specific format
for visualizing them.

rdisplay3 : The user is able to remove single data records from the display of the device. Also see
4.2.4.2.2.

rdisplay4 : The Display is a receiver.

4.2.2.6 Daily Planner

rplanner1 : The user is able to enter new appointments to the Daily Planner. Each information contains
a timestamp quoting the begin of the event and a description of the event. The user enters the data by
an user operation, see 4.2.4.2.3.

rplanner2 : The user is able to delete single data which was previously entered into the Daily Planner.
For furthre details see 4.2.4.2.3.

rplanner3 : The Daily Planner converts the specific data into a global format.

rplanner4 : The Daily Planner is a sender.

4.2.2.7 Intelligent Bed

50 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

5
3

6
4

1 2

Figure 4.1: Numbering of the sensors in the Intelli-
gent Bed (original image from [Har10a, p. 1])

rbed1 : The Intelligent Bed receives pressure
data, which were enterd by a user operation into
the device, representing the measurement of pres-
sure data. For further details see 4.2.4.2.4.

rbed2 : The Intelligent Bed processes six differ-
ent values, each representing one of the six pres-
sure sensors.

rbed3 : To detect a movement, the Intelligent
Bed always needs to store the last measurement
data, made of a set of six values for each sensor,
in order to compare the new data with the old
one.

rbed4 : The pressure of each sensor is measured in a range of [0, ..., 10].

rbed5 : To detect human pressure, a threshold of 6 is set which needs to be exceeded by each sensor
value in order to be a valid pressure data. If the value is below of this threshold, it will be treated as
zero. E.g. slight pressure might be supplied by the pillow or bedcover, etc.

rbed6 : The pressure data will be interpreted if one of the following rules is fulfilled:

• Sensor 1 exceeds the threshold ⇒ The person is awake.

• Sensor 2 exceeds the threshold ⇒ The person is awake.

• Sensor 3 and Sensor 5 both exceed the threshold and in comparison with the last values, both sensor
values did not change ⇒ The person is in depth sleep phase.

• Sensor 4 and Sensor 6 both exceed the threshold and in comparison with the last values, both sensor
values did not change ⇒ The person is in depth sleep phase.

• Sensor 3 and Sensor 5 both exceed the threshold and in comparison with the last values, both sensor
values changed ⇒ The person is in light sleep phase.

• Sensor 4 and Sensor 6 both exceed the threshold and in comparison with the last values, both sensor
values changed ⇒ The person is in light sleep phase.

• If none of all sensors exceeded the threshold ⇒ The person is not in bed.

For the location of the pressure sensors, see image 4.2.2.7.

rbed7 : The resulting interpretation will be transformed from the device specific data into a global
format.

rbed8 : The Intelligent Bed is a sender.

4.2.2.8 Indoor-Positioning-System

rindoor1 : The Indoor-Positioning-System receives its measurement data by applying a user operation,
see 4.2.4.2.5.

rindoor2 : The data will be sent as 3D-position data for each sensor.

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 51

rindoor3 : It analyses the data according to the following rules:

• If the y-value of sensor 1 y1 is in 0.0 ≤ y1 < 5.5 ⇒ The user is in the south of the apartment.

• If the y-value of sensor 2 y2 is in 0.0 ≤ y2 < 5.5 ⇒ The user is in the south of the apartment.

• If the y-value of sensor 5 y5 is in 10.0 ≤ y5 ≤ 15.8 ⇒ The user is in the north of the apartment.

• If the y-value of sensor 6 y6 is in 10.0 ≤ y6 ≤ 15.8 ⇒ The user is in the north of the apartment.

• If the y-value of sensor 3 y3 is in 5.5 ≤ y3 < 10.0 and the x-value of this triple x3 ≤ 8.0 ⇒ The user
is in the middle of the apartment.

• If the y-value of sensor 4 y3 is in 5.5 ≤ y4 < 10.0 and the x-value of this triple x4 ≤ 8.0 ⇒ The user
is in the middle of the apartment.

• If the y-value of sensor 3 y3 is in 5.5 ≤ y3 < 10.0 and the x-value of this triple x3 > 8.0 ⇒ The user
is in the bathroom.

• If the y-value of sensor 4 y4 is in 5.5 ≤ y4 < 10.0 and the x-value of this triple x4 > 8.0 ⇒ The user
is in the bathroom.

• If none of the previous conditions hold ⇒ No information.

south represents the sleeping area, north denotes the lounge area, middle stands for the kitchen area and
bathroom for the bathroom. If no information could be collected, the information nothing is inferred.

rindoor4 : The resulting information will be converted from the device specific format into the global
format.

rindoor5 : The Indoor-Positioning-System is a sender.

4.2.2.9 Weather Information System

rweather1 : The device creates weather data internally in order to emulate the receiving of data from
the outside - by the internet.

rweather2 : The Weather Information System generates a tuple containing a timestamp mentioning the
start time of this weather forecast and one of the following information: sun, rain, storm, snow, wind or
hail.

rweather3 : The component converts the internal data into a global format.

rweather4 : The device is a sender.

4.2.2.10 Traffic Information System

rtraffic1 : The device creates traffic data internally in order to emulate the receiving of data from the
outside - by the internet.

rtraffic2 : The Traffic Information System generates a tuple containing one of the following data and a
timestamp describing the start time of this traffic condition: jam, accident, free or roadwork.

rtraffic3 : The component converts the internal data into a global format.

rtraffic4 : The device is a sender.

4.2.2.11 Location-Based Screen

rscreen1 : The model of the Location-Based Screen should represent each of the two TV sets which are
located in the sleeping area resp. the lounge area of the Living Place apartment.

52 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

rscreen2 : The Location-Based Screen is able to receive topic-based information, so it is able to subscribe
resp. unsubscribe to the topics “UbiTV” and “Alarm”.

rscreen3 : It receives both kinds of data, i.e. the device receives data regarding both topics, and splits
them according to the specified type. Both types of data are processed differently.

rscreen4 : Data belonging to the topic “Alarm” will be evaluated in order to switch both TV sets on at
the same time.

rscreen5 : Data belonging to the topic “UbiTV” will be evaluated regarding its specified position:

• If the message contains south, the TV set in the sleeping area should be activated, whereas the
other one should be set to inactive.

• If the message contains north, the TV set in the lounge area should be activated, whereas the
second one should be set to inactive.

• In all other cases, both TV set should be deactivated.

rscreen6 : Each TV set has two states: One describing the global on/off state of both TV sets. They
are always identical for both TV sets. The other state stands for the activation state of both TV sets,
which is either opposite within both TV sets, i.e. if the TV set in the sleeping area is activated, then the
TV set in the lounge area is inactive, and the other way round. An other possibility is, that both TV
sets are inactive at the same time.

rscreen7 : The Location-Based Screen is a receiver.

rscreen8 : The user is able to switch both TV sets of the Location-Based Screen on resp. off. For further
details see 4.2.4.2.6.

4.2.2.12 Ambient Light

rlight1 : The model of the Ambient Light contains a representation of the light status within the Living
Place apartment.

rlight2 : It is able to receive data belonging to a certain topic, so the device is able to subscribe resp.
unsubscribe to the topics “Light” and “Alarm”.

rlight3 : The device processes the received data according to one of the following rules:

• If topic is “Alarm” then switch the light on in dimmed mode.

• If the topic is “Light”, then change the state of the light, as given in the message. These available
states for the light are: bright, dimmed, off .

rlight4 : The Ambient Light is a receiver.

rlight5 : The user is able to switch the light on resp. off. For further details, see 4.2.4.2.7.

4.2.3 System Level

The sending of information to the Message Oriented Middleware consists of the asynchronous dispatch of
that information to the message broker and the reservation of that information for a future storage in the
persistent layer of the Message Oriented Middleware. Therefore, for every artifact there exists a place,
where the asynchronously dispatched information are cached and additionally a place in every artifact,
where reservations of information are stored. Furthermore, every artifact has exactly one connection to
the message broker and additionally exactly one connection to the persistence layer. Once an artifact
has sent information to the Message Oriented Middleware, this information are stored in the persistence
layer of the Message Oriented Middleware and the message broker processes the information for further

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 53

distribution in parallel.1 Neither the order, in which the information are stored in the persistence layer,
is deterministic, nor the order in which the message broker processes the information.

4.2.3.1 Message Broker

The message broker, as presented in section 2.2.1.3, constitutes the central element of the Living Place
system. It controls the whole communication between all components. Each device is connected to the
message broker for sending its information to the message broker. In addition, the persistence layer and
the Context Interpreter are directly connected to the message broker, which processes each message and
distributes it to the specific components, i.e. the devices or to the Context Interpreter. Information
collected by the persistence layer or by the Context Interpreter will be forwarded to the message broker
for an appropriate distribution.

rmombroker1
: In order to get connected to the Living Place system, each device announces this request.

The message broker checks for this request and sets the device into online mode. In this process, it assigns
an idividual connection id to the device.

rmombroker2
: If a device requests to get disconnected, the message broker clears the input data buffer

of the device.

rmombroker3
: If a device requests to get disconnected, the message broker detects that request and

sets the device into offline mode. In doing so, it removes the connection id from the device and from
its internal storage. But, a device is able to be set into offline mode, if no topics are subscribed to the
message broker resp. no topic is announced to get subscribed. Furthermore, no messages should be
within the data input buffer of the device, nor within the output buffer for the message broker or within
the output buffer for the persistence layer. Additionally, no request to the persistence layer should be
announced within the device.

rmombroker4
: The device announces, that a topic should be subscribed, which will be checked by the

message broker. The message broker subscribes the topic in creating an association between the specific
connection identification of the device and the given topic. The message broker notfies the device of the
successful subscription.

rmombroker5
: The device announces, that a topic should get unsubscribed. This will be checked by the

message broker, which removes the subscription in deleting the association between the specific connection
identification of the device and the given topic. The message broker notfies the device of the successful
unsubscription.

rmombroker5
: If a device crashs, the message broker handles it in removing the device from the Living

Place system and the internally stored associations between the specific connection identification with
all topics to which the device was subscribed. As a result, no messages will be distributed to this device
anymore.

rmombroker7
: The whole communication within the Living Place system takes place over the message

broker. As a result, each message produced by a device should be received by the message broker.

rmombroker8(a)
: The message broker can receive information from different devices in parallel.

rmombroker8(b)
: The message broker can not receive information from the same device in parallel.

rmombroker9
: The message broker receives finished data from the persistence layer and from the Context

Interpreter in order to distribute them to the devices.

1compare section 2.2 in [OV11b]

54 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

rmombroker10
: The distribution of messages is based on the topic interface. Therefore, the meassage

broker needs to store all connected device identifications internally in order to assign messages to devices
correctly. Furthermode, the association between each connection identfication and between each topic,
to which the specific device is subscribed needs to be memorised by the message broker. If a device is
subscribed to more than one topic, then, more than one association have to be stored for this connection
identification.

rmombroker11
: Messages according to a specific topic will be distributed by the message broker to all

devices which are subscribed to this topic. All other devices should not get this message.

rmombroker12
: All messages received by the message broker should be forwared to the Context Inter-

preter.

rmombroker13
: Only the Message Oriented Middleware knows the interface of each device. It abstracts

from the implementation details of each communicating device.

4.2.3.2 Persistence Layer

The Persistence Layer was introduced in section 2.2.1.4. Its model should fulfil the requirements presented
in the following:

rmompersistence1
: The persistence layer receives all data sent by the devices.

rmompersistence2
: The persistence layer contains an internal data storage where data can be stored.

rmompersistence3
: Single data records can be deleted.

rmompersistence4
: Devices are able to send requests for past data to the persistence layer. It receives

these requests from the devices.

rmompersistence5
: A request will be processed in collecting all data records regarding the provided topic.

rmompersistence6
: The resulting information containing all past data belonging to the given topic should

be distributed to the requesting device with the help of the message broker.

4.2.3.3 Context Interpreter

The Context Interpreter is an additional part of the Message Oriented Middleware which infers new
context information out of data sent by the devices. This section enumerates the requirements, which
follow out of the description of the Context Interpreter in section 2.2.1.5.

rmomci1
: The Context Interpreter gets all data received and processed by the message broker. There-

fore, all data should be given to the component of the Context Interpreter.

rmomci2
: Only actual data should be processed by the Context Interpreter.

rmomci3
: The Context Interpreter contains different rules for inferring new data. The resulting infor-

mation should describe a 5W1H context, as described in section 2.2.1.5.

rmomci4
: The Context Interpreter infers new information out of single data records, but also out of a

combination of different data records.

rmomci5
: The resulting information, describing a new 5W1H context should be sent to the Message

Oriented Middleware in order to be provided for all devices subscribed to the corresponding topic “Con-
text’.

4.2. REQUIREMENTS RESULTING FROM THE DESCRIPTION OF THE SYSTEM 55

4.2.4 User Level

For every possible user operation upon the system of the Living Place there is a model defined in chapter
7. Consider, that these models of the possible user operations upon the system of the Living Place only
consider those parts of these user operations, that proceed inside of the system of the Living Place, since
this work deals with the modelling of this system, i.e. since every such user operation causes immediately
a certain change of the internal state of this system, these models depict these changes of the internal
state of this system which are caused by these user operations.

4.2.4.1 User Operations Causing a Change of the Internal State of the Message Oriented
Middleware

rmomuser1
: The user is able to set a device into offline mode.

rmomuser2
: The user is able to add a device which is in offline mode to the Living Place system.

rmomuser3
: A device in offline mode can be removed from the Living Place system by the user.

rmomuser4
: The user is able to switch the whole Living Place system off, e.g. in case of an emergency.

rmomuser5
: The user is able to initialise the whole Living Place system. For that, the following steps

need to be executed:

• Delete all queues.

• Delete all currently available requests.

• Remove stored persistent data.

rmomuser6
: Those changes of the internal state of the system of the Living Place, which are caused by

the execution of the user operations plugin device and unplug device regarding two different devices, can
proceed in parallel.

4.2.4.2 User Operations Causing a Change of the Internal State of a Device

ruser : Those changes of internal states of the Living Place System which are caused by the execution
of different user operations upon communicating devices should generally proceed in parallel.

4.2.4.2.1 Alarm Clock 2.0

ralarmuser1
: The user is able to switch off the Alarm Clock 2.0. The following steps need to be executed

when stopping the Alarm Clock 2.0:

• Remove the currently selected appointments within the Alarm Clock 2.0.

• Reset the sleeping phase of the user.

• Reset the current context.

• Delete the current wake up time.

• Reset the internal tasks list.

• Reset the additional waiting time to 0 minutes, which was calculated because of bad weather resp.
traffic conditions.

• Reset the internal mode to idle mode.

4.2.4.2.2 Display

rdisplayuser1
: The user is able to remove single data from the screen of the Display device.

56 CHAPTER 4. REQUIREMENTS TOWARDS THE MODEL

4.2.4.2.3 Daily Planner

rplanneruser1
: The user is able to enter new appointments to the Daily Planner.

rplanneruser2
: The user is able to remove previously entered appointments from the Living Place system.

4.2.4.2.4 Intelligent Bed

rbeduser1
: A user operation is provided for entering pressure measurement data.

4.2.4.2.5 Indoor-Positioning-System

rindooruser1
: A user operation is provided for entering position measurement data.

4.2.4.2.6 Location-Based Screen

rscreenuser1
: The user is able to switch on both TV sets of the Location-Based Screen simultaneously.

rscreenuser2
: The user is able to switch off both TV sets of the Location-Based Screen simultaneously.

4.2.4.2.7 Ambient Light

rlightuser1
: The user is able to switch on the light.

rlightuser2
: The user is able to switch off the light.

4.3 Summary

This chapter presents the requirements towards the model of the Living Place system which therefore are
requirements towards the submodels constituting this overall model of the system. So, if such a model
fulfils these requirements, it can be regarded as an adequate model of the Living Place system.

The next chapter 5 deals with the requirements towards the used modelling techniques.

Chapter 5

Modelling the System of the Living Place:
Requirements Towards the Modelling Tech-
niques

This chapter describes requirements that need to be met by the modelling techniques that are used
within the modelling of the Living Place system, so that these techniques are suitable for the modelling
of this system. These requirements follow directly from the requirements towards the model of the
previous chapter 4, since an adequate model of the Living Place system must meet the therein defined
requirements and therefore the used modelling techniques need to be expressive enough to be able to
express the therein defined demanded things.

Therefore, the considerations within this chapter give primarily checkpoints concerning to the used
modelling techniques that need to be validated, so that an answer to the following question can be given:
“Are the used formal modelling techniques expressive enough and therefore suitable for modelling the
Living Place system?”

At first three general requirements are defined.

rtechgen1 : Since this works aims to provide a model concerning the internal system behaviour of the
Living Place system, the possible internal system states need to be represented.

rtechgen2 : Since this works aims to provide a model concerning the internal system behaviour of the
Living Place system, the actions that cause a change of the internal system states need to be represented.

rtechgen3 : According to requirement rgen of chapter 3, the modelling technique should provide a possi-
bility, to model the whole system on distinguishable levels. The levels presented in this chapter are: data
level, object level, system level and user level.

5.1 Data Level

rtech1 : The data and operations that are involved in the processing of the system, especially concerning
the communicating processes within the system, need to be represented.

5.2 Object Level

rtech2 : Each device is an own distinguishable component, seperated from all other components, which
should be supported by the modelling technique.

rtech3 : The communication within the Living Place system is asynchronous, which will be portrayed
by the modelling technique.

57

58 CHAPTER 5. REQUIREMENTS TOWARDS THE MODELLING TECHNIQUES

5.3 System Level

rtech4 : According to the concept of a Message Oriented Middleware (compare section 2.2.1), the
communication between the models of all devices situated on object level should be guaranteed by the
Message Oriented Middleware on system level. Following, messages assigned within the models on object
level should be passed by the model of the Message Oriented Middleware which is on the next higher
level.

rtech5 : The Message Broker should be able to distribute information that it receives from one device
to several other devices.

5.4 User Level

rtech6 : The user is able to apply user operations to the Message Oriented Middleware, therefore, the
modelling technique should enable to express the change of the model on system level after an instigation
on the user level.

rtech7 : The user is able to apply user operations to the models of the devices on object level. Conse-
quently, the modelling technique should provide the possibility to change the behaviour of a model on
object level after an initiation on user level.

5.5 Summary

This chapter describes requirements towards the modelling techniques that are used within the modelling
of the Living Place system.

In the next chapter 6 these modelling techniques are defined and it is clarified, whether the techniques
fulfil the herein defined requirements leading to an answer to the question: “Are the used formal modelling
techniques expressive enough and therefore suitable for modelling the Living Place system?”.

Chapter 6

Modelling the System of the Living Place:
Modelling Techniques

This chapter presents the formal modelling techniques that are used when modelling the system of
the Living Place in chapter 7. Furthermore, it is checked whether the so defined techniques meet the
requirements of chapter 5. For a detailed overview of the here presented formalisms see [MGE+10] and
[EEPT06].

6.1 Algebraic High-Level Nets with Individual Tokens (AHLI
Nets)

6.1.1 Definition

A marked algebraic high-level net with individual tokens, short AHLI net, is defined as

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

, where

• AN = (Σ, P, T, pre, post, cond, type,A) is a classical AHL net with

– signature Σ = (S,OP,X) of sorts S, operation symbols OP and variables X = (Xs)s∈S ,

– sets of places P and transitions T ,

– pre, post : T → (TOP (X)⊗ P)⊕1, defining the transitions’ pre- and postdomains,

– cond : T → Pfin(Eqns(S,OP,X)), assigning a finite set of Σ-equations (L,R,X) as firing
conditions to each transition,

– type : P → S typing the places of the signature’s sorts,

– a Σ-Algebra A2,

• I is the (possibly infinite) set of individual tokens of ANI, and

• m : I → A⊗P is the marking function, assigning the individual tokens to the data elements on the
places. m(I) defines the actual set of data elements on the places of ANI. m does not have to be
injective.

[MGE+10, Definition 3.1]

6.1.2 Firing Behaviour

6.1.2.1 Consistent Transition Assignments

1TOP (X)⊗ P = {(t, p) ∈ TOP (X)× P |t ∈ TOP,type(p)(X)}
2For an introduction to signatures & algebras see [EEPT06] or [EMC+01].
3asg : TOP (X)→ A is the evaluation of Σ-terms over variables in X to values in A

59

60 CHAPTER 6. MODELLING TECHNIQUES

The set of consistent transition assignments is defined as

CT = {(t, asg) ∈ T × (V ar(t)→ A)|∀(L,R,X) ∈ cond(t) : asg3(L) = asg3(R)}

, where V ar(t) ⊆ X is the set of variables occuring in equations and on the environment arcs of t, i.e. all
firing conditions of t are valid when evaluated with the variable assignment asg. [MGE+10, Definition
3.1]

6.1.2.2 Token Selection

A token selection regarding to an AHLI net

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

is defined as (M,m,N, n), where

• M ⊆ I,

• m is the token mapping of ANI,

• N is a set with (I \M) ∩N = ∅,

• n : N → A⊗ P

M selects the individual tokens to be consumed and N contains the set of individual tokens to be
produced in a firing step as it is described in section 6.1.2.3. [MGE+10, Definition 3.2]

6.1.2.3 Firing of AHLI Nets

A consistent transition asssignment (t, asg) ∈ CT for an AHLI net

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

is enabled under a token selection (M,m,N, n), if it meets the following token selection condition:∑
i∈M

m(i) = preA(t, asg) ∧
∑
i∈N

n(i) = postA(t, asg)

, where preA, postA : CT → CP⊕ with CP = (A⊗ P) = {(a, p) ∈ A× P |a ∈ Atype(p)} is defined as

preA(t, asg) = (asg3 ⊗ idP)⊕(pre(t))

postA(t, asg) = (asg3 ⊗ idP)⊕(post(t))

.
If such an asg-enabled t fires, the follower marking (I ′,m′) is given by

I ′ = (I \M) ∪N,m′ : I ′ → A⊗ P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

,

leading to ANI ′ = (AN, I ′,m′) as the new AHLI net in the firing step ANI
t,asg
� ANI ′ via token

selection (M,m,N, n).[MGE+10, Definition 3.2]

6.1.3 AHLI Net Morphisms

Given two AHLI nets ANIi = (Σi, Pi, Ti, prei, posti, condi, typei, Ai, Ii,mi), i ∈ {1, 2}, an AHLI net
morphism f : ANI1 → ANI2 is a pentuple

f = (fΣ : Σ1 → Σ2, fP : P1 → P2, fT : T1 → T2, fA : A1 → VfΣ
(A2), fI : I1 → I2)

such that the following diagrams commute (componentwise for prei and posti)
4:

4VfΣ
is the forgetful functor induced by signature homomorphism fΣ, such that fA : A1 → VfΣ

(A2) is a generalized

Σ1-homomorphism. f#
Σ is the extension of fΣ to terms and equations.

6.2. TRANSFORMATION OF AHLI NETS 61

Pfin(Eqns(Σ1)) T1

Pfin(Eqns(Σ2)) T2

(TOP1
(X1)⊗ P1)⊕

(TOP2
(X2)⊗ P2)⊕

cond1

Pfin(f#
Σ)

cond2

fT

pre1

post1

pre2

post2

(f#
Σ ⊗ fP)⊕

P1

P2

S1

S2

type1

fP fΣ

type2

I1

I2

A1 ⊗ P1

A2 ⊗ P2

m1

fI fA ⊗ fP

m2

=

= =

=

Figure 6.1: AHLI Net Morphism

[MGE+10, Definition 3.3]
Consider that all AHLI net morphisms considered within the modelling of this work are morphisms

between AHLI nets that share the same signature Σ. Therefore, for each of these morphisms it is defined,
that fΣ = idΣ.

6.1.4 Category AHLINets and AHLINets(Σ)

The category AHLINets consists of all AHLI nets as objects and all AHLI net morphisms.5 [MGE+10,
Definition 3.3]

AHLINets(Σ) is the full subcategory of AHLINets containing all AHLI nets with signature Σ.
[MGE+10, Compare to Theorem 5.3]

6.2 Transformation of AHLI Nets

6.2.1 Construction of Pushouts in AHLINets

For an introduction to pushouts refer to [EEPT06, Definition 2.16].
Pushouts in AHLINets are constructed componentwise in AHLNets and Sets. So, (1) is a PO in

AHLINets iff (2) is a PO in AHLNets and (3) is a PO in Sets with the components of the AHLINets
morphisms, where m3 : I3 → A3⊗P3 is induced by PO object I3 in the commutating cube below (whose
front’s place components let the front commutate because of the PO in the net structure).

ANI0 ANI1

ANI2 ANI3

(1)

f1

f2

g2

g1

AN0 AN1

AN2 AN3

(2)

f ′1

f ′2

g′2

g′1

I0 I1

I2 I3

(3)

f1I

f2I

g2I

g1I

I0 I1

I2 I3

A0 ⊗ P0 A1 ⊗ P1

A2 ⊗ P2 A3 ⊗ P3

f1I

f2I

g2I

g1I

f1A ⊗ f1P

f2A ⊗ f2P

g2A ⊗ g2P

g1A ⊗ g1P

m0 m1

m2 m3

Figure 6.2: Construction of Pushouts in AHLINets

5For an introduction to category theory see [EEPT06] or [EMC+01]

62 CHAPTER 6. MODELLING TECHNIQUES

If f1X , for X ∈ {P, T, I}, is injective then g2X is as well and similar for components of f2 and g1 and
the other diagrams. [MGE+10, Fact 3.4]

6.2.2 AHLI Transformation Rules

An AHLI transformation rule is a span of injective AHLINets morphisms

% = (L
l←− K r−→ R)

. [MGE+10, Definition 3.6]
Consider, that the morphsisms l, r of the AHLI transformation rules used within this work are mor-

phisms of the classMI withMI = {f ∈MorAHLINets(Σ)|fΣ = idΣ, fA isomorphic, and fP , fT , fI injective},
so that the nets L,K,R share the same signature Σ and also the same Σ-Algebra A as well as lΣ = rΣ =
idΣ and lA = rA = idA.

Also consider, that because of the individual token approach of AHLINets, the morphisms l, r not
need to be strict on the tokens. Taking into account the applicability of such an AHLI transformation
rule it is clarified, that the definition enables the formulation of marking-changing rules, so that the
application of such an AHLI transformation rule can change the marking of an AHLI net. This features
is used heavily within the modelling of chapter 7 leading into an elegant model, whereas this feature is
not possible within the former “collective” token approach.

6.2.2.1 Negative Application Conditions

A simple negative application condition is of the form NAC(x), where x : L → X is a morphism.
[EEPT06, Definition 7.8]

So, an AHLI transformation rule % = (L
l←− K

r−→ R) with a negative application condition NAC(x)

is of the form X
x←− L l←− K r−→ R, where x is an AHLINets morphism into AHLI net X.

6.2.3 AHLI Transformation

Given an AHLI transformation rule % = (L
l←− K

r−→ R) and an AHLI net ANI1 with an AHLI net

morphism m : L → ANI1, called the match, a direct AHLI net transformation ANI1
%,m
=⇒ ANI2 from

ANI1 to the AHLI net ANI2 is given by the following double-pushout diagram (DPO diagram) in the
category AHLINets:

L K R

ANI1 ANI0 ANI2

l

m

r

m∗(PO1) (PO2)

Figure 6.3: Direct AHLI Net Transformation

[MGE+10, Definition 3.7]

6.2.4 Gluing Condition in AHLINets

To be able to decide whether an AHLI transformation rule is applicable at a certain match, a gluing
condition for AHLI nets is formulated in the following.

Given AHLI nets K,L, and ANI and AHLI morphisms l : K → L und f : L→ ANI.

• The set of identification points is defined as IP = IPP ∪ IPT ∪ IPI with

– IPP = {x ∈ PL|∃x′ 6= x : fP (x) = fP (x′)}
– IPT = {x ∈ TL|∃x′ 6= x : fT (x) = fT (x′)}
– IPI = {x ∈ IL|∃x′ 6= x : fI(x) = fI(x

′)}

• The set of dangling points is defined as DP = DPT ∪DPI with

– DPT = {p ∈ PL|∃t 6= TANI \ fT (TL) : fP (p) ∈ ENVP (t)}
– DPI = {p ∈ PL|∃i ∈ IANI \ fI(IL) : fP (p) = πP (mANI(i))}

6.2. TRANSFORMATION OF AHLI NETS 63

• The set if gluing points is defined as GP = lP (PK) ∪ lT (TK) ∪ lI(IK)

l and f satisfy the gluing condition if IP ∪ DP ⊆ GP . Given an AHLI rule % = (L
l←− K

r−→ R), %
and f satisfy the gluing condition iff l and f satisfy the gluing condition.

L K R

ANI

l r

f

Figure 6.4: Gluing Condition in AHLINets

[MGE+10, Definition 3.8]

6.2.5 Applicability of AHLI Transformation Rules

Given an AHLI rule % = (L
l←− K r−→ R) and a matchm : L→ ANI1 into an AHLI net ANI1 = (AN, I,m :

I → PAN). The rule % is applicable on match m, i.e. there exists a (unique) pushout complement ANI0
in the diagram below, iff % and m satisfy the gluing condition in AHLINets. [MGE+10, Fact 3.12]

L K R

ANI1 ANI0

(PO)

l r

m m′

Figure 6.5: Gluing Condition for AHLI transformation

The application of such an applicable AHLI transformation rule % = (L
l←− K

r−→ R) to an AHLI net
ANI1 via a match m : L → ANI1 is constructed as two pushouts (PO1) and (PO2) leading to a direct

AHLI net transformation ANI1
%,m
=⇒ ANI2 as shown in 6.2.3.

Note that the injective AHLINets morphisms l, r not have to be strict on the tokens. Therefore,
by using the herein defined “individual” token approach of AHLINets nets instead of the “collective”
token approach, transformation rules can be defined, which manipulate the marking of nets as soon as
they are applied.

6.2.6 Applicability of AHLI Transformation Rules with Negative Application
Conditions

Given an AHLI rule % = (L
l←− K

r−→ R), a match f : L → ANI into an AHLI net ANI = (AN, I,m :
I → PAN) and a negative application condition NAC(x) with morphism x : L → X into AHLI net X.
The rule % with negative application condition NAC(x) is applicable on match f , if % and f satisfy the
gluing condition in AHLINets and f : L→ ANI satisfies NAC(x).

A morphism f : L → ANI satisfies NAC(x) with x : L → X if there does not exist a morphism
p : X → ANI in M′ with p ◦ x = f :

LX

ANI

=

x

p

|
f

Figure 6.6: Negative Application Condition

[MGE+10, Fact 3.12] and [EEPT06, Definition 7.8]

The application of such an applicable AHLI transformation rule % = (L
l←− K

r−→ R) with negative
application condition NAC(x) to an AHLI net ANI via a match f : L → ANI is constructed as two

64 CHAPTER 6. MODELLING TECHNIQUES

pushouts (1) and (2) leading to a direct AHLI net transformation ANI
%,f
=⇒ ANI ′ as shown in 6.2.3.

6.2.6.1 Problem Concerning the Modelling Within this Work

The model of the Living Place system as presented in chapter 7 contains some AHLI transformation

rules % = (L
l←− K

r−→ R) with negative application conditions of the form NAC(x), where x : L → X
is an AHLINets morphism into AHLI net X and AHLI nets L,K,R and X share the same signature
Σ = (S,OP,X) as well as the same Σ-Algebra TΣ(X)6, i.e. the term algebra with variables X of signature
Σ.

These rules are applied to AHLI nets ANI that also include signature Σ however a concrete Σ-Algebra
A instead of the term algebra TΣ(X) of AHLI nets L,K,R and X.

Concerning the applicability of such an AHLI transformation rule with a negative application condition
on a match f : L → ANI, it must be checked whether an AHLINets(Σ) morphism p : X → ANI in
M′ with p ◦ x = f exists.

In [MGE+10, Theorem 5.3] AHLINets(Σ)M′ morphisms are defined as AHLINets(Σ) morphisms
where inter alia fA is isomorphic. There does not exist any isomorphism between the used Σ-Algebras
TΣ(X) of net X and A of net ANI, since not every element of the carrier sets of algebra A has an
associated term as an element of the carrier sets of algebra TΣ(X). Therefore, there never exists such
an AHLINets(Σ) M′ morphism p : X → ANI, so that the match morphism f : L → ANI always
satisfies NAC(x) with x : L → X. Thus, the definition of the negative application condition seems
useless without any effect to the applicability of the rule.

Therefor, a new concept of satisfiability regarding to a negative application condition need to be
developed. However, in the following considerations within this work negative application conditions are
used unchanged in combination with AHLI transformation rules in a manner as it is defined within this
chapter.

6.3 Algebraic Higher-Order Nets with Individual Tokens (AHOI
Nets) as a Special Type of AHLI Nets

An algebraic higher-order net with individual tokens, short AHOI net, is an AHLI net that features nets
and transformation rules as tokens.7 Within this work the term AHOIAHLI net is used for an AHLI net
that features AHLI nets, AHLI transformation rules and AHLI interaction schemata as tokens.

6.4 Transformation of AHOI Nets

The transformation of AHOI nets is analogously defined to the transformation of AHLI nets presented
in section 6.2 where AHOI nets are used instead of AHLI nets, since an AHOI net is a special type of an
AHLI net as definied in the previous section 6.3.

6.5 Reconfigurable AHLI/AHOI Systems

A reconfigurable AHLI system is a tuple (N ,R), where an AHLI net N is the start configuration of the
system and R is the set of AHLI transformation rules.

Since an AHOI net is a special type of an AHLI net, a reconfigurable AHOI system is defined anal-
ogously as a tuple (N ,R), where an AHOI net N is the start configuration of the system and R is the
set of AHOI transformation rules. Also see [EBE+09] for more details on the definition of reconfigurable
AHLI systems.

Additionally, (N ,R,M) defines a reconfigurable AHLI resp. AHOI system with a set of AHLI net
morphisms M, so that the transformation rules of R can only be applied by using match morphisms
containd in M.

6For the definition of the term algebra TΣ(X) with variables X of a given signature Σ = (S,OP,X) see [EMC+01]
7Compare to [HM03] and [HEM05].

6.6. AMALGAMATED RULES, TRANSFORMATIONS & INTERACTION SCHEMES 65

6.6 Amalgamated Rules, Transformations & Interaction Schemes

Referring to [GBEE10] and [Gol10] the concept of amalgamated rules & transformations is introduced
within this section.

6.6.1 Kernel Morphism

Given rules pi = (Li
li←− Ki

ri−→ Ri) for i = 0, ..., n, a kernel morphism si : p0 → pi consists of morphisms
si,L : L0 → Li, si,K : K0 → Ki, si,R : R0 → Ri such that in the diagram (1i) and (2i) are pullbacks8 and
(1i) has a pushout complement for si,L ◦ l0, i.e. si,L satisfies the gluing condition w.r.t. l0. The pullbacks
(1i) and (2i) mean that K0 is the intersection of Ki with L0 and also of Ki with R0.

L0 K0 R0

Li Ki Ri

(1i) (2i)

l0 r0

si,L si,K si,R

Figure 6.7: Kernel Morphism
[GBEE10, Definition 1]

6.6.2 Amalgamated Rule

Given rules pi = (Li
li←− Ki

ri−→ Ri) for i = 0, ..., n with kernel morphisms si : p0 → pi(i = 1, ..., n),
then the amalgamated rule p̃ = (L̃←− K̃ −→ R̃) of p1, ..., pn via p0 is constructed as the componentwise
gluing of p1, ..., pn along p0. L̃ is the gluing of L1, ..., Ln with shared L0 leading to ti,L : Li → L̃. Similar

gluing constructions lead to K̃ and R̃ and we obtain kernel morphisms ti : pi → p̃ and ti ◦ si = t0 for
i = 1, ..., n. We call p0 kernel rule, and p1, ..., pn multi rules. [GBEE10, Definition 2]

6.6.3 Amalgamated Transformation

An amalgamated transformation ANI1
p̃

=⇒ ANI2 is a transformation via the amalgamated rule p̃.
[GBEE10, Definition 2]

6.6.4 Interaction Scheme

An interaction scheme is = {s1, ..., sk} is a set of kernel morphisms si : p0 → pj with j = (1, ..., k), where
p0 is the so called kernel rule and p1, ..., pk are the multi rules. (Compare to [GBEE10])

Consider that the model as it is presented within this work only includes interaction schemes of the
form is = {s1}, i.e. interaction schemes that contain exactly one kernel rule as well as one multi rule.

6.6.5 Amalgamated Rules Over Maximal Weakly Disjoint Matchings

Given an interaction scheme, it is desirable to apply as many multirules pj as often as possible over
a certain match of the kernel rule p0. Therefor, the concept of maximal weakly disjoint matchings is
introduced, where multi-amalgamable matchings of the multi rules are required, that are disjoint up to
the match of the kernel rule as well as maximal in the sense that no more valid matches for any multi rule in
the interaction scheme can be found. This leads to a bundle of kernel morphisms s′i : p0 → p′i (i = 1, ..., n)
with p̃′ being the amalgamated rule of p′1, ..., p

′
n via p0 over maximal weakly disjoint matchings. (Compare

to [GBEE10])
Consider that this construction already delivers an amalgamated match m̃ on which p̃′ is applicable

as well as the amalgamated transformation ANI1
p̃′,m̃
=⇒ ANI2. However, the model of chapter 7 uses

the here presented concept by first generating such an amalgamated rule over maximal weakly disjoint
matchings by an operation that is defined within a transition conditions of a certain transition, then
finding a suitable match for this amalgamated rule, testing whether the rule is applicable on this match
and finally applying that amalgamated rule via the found match.

8For an introduction to pullbacks refer to [EEPT06].

66 CHAPTER 6. MODELLING TECHNIQUES

6.7 The Functor VPTNet : AHLINets→ PTNet

First in section 6.7.1 the category PTNet is introduced whereupon in section 6.7.2 the functor VPTNet :
AHLINets→ PTNet is defined.

6.7.1 Category PTNet

The category PTNet consists of all P/T nets as objects and all P/T net morphisms. [PPE+05, Lemma
8.14]

6.7.1.1 P/T nets

A P/T net is defined as N = (P, T, pre, post) where

• P is the set of places,

• T is the set if transitions,

• pre, post : T → P⊕, defining the transitions’ pre- and postdomains, where P⊕ is the free commu-
tative monoid over P .

[PPE+05, Definition 8.11]

6.7.1.2 P/T net morphisms

Given two P/T nets Ni = (Pi, Ti, prei, posti), i ∈ {1, 2}, a P/T net morphism f : N1 → N2 is a tuple

f = (fP : P1 → P2, fT : T1 → T2)

such that the following diagram commute componentwise:

T1 P⊕1

T2 P⊕2

fT f⊕P

pre1

post1

pre2

post2

Figure 6.8: P/T Net Morphism

[PPE+05, Definition 8.12]

6.7.1.2.1 P/T net isomorphism A P/T net morphism f : N1 → N2 with f = (fP : P1 → P2, fT :
T1 → T2) is a P/T net isomorphism, iff fP , fT are bijective, i.e. f is componentwise bijective. [PPE+05,
Lemma 8.17]

Given two P/T nets Ni = (Pi, Ti, prei, posti), i ∈ {1, 2}, N1 and N2 are isomorphic, written N1
∼= N2,

if there exists a P/T net isomorphism i : N1 → N2.

6.7.2 VPTNet : AHLINets→ PTNet

The following construction converts an AHLI net ANI = (Σ, P, T, pre, post, cond, type,A, I,m) into a
P/T net N = (PN , TN , preN , postN) by forgetting all algebra specific notations and individual tokens
whereas the net structure is preserved:
VPTNet((Σ, P, T, pre, post, cond, type,A, I,m)) := (P, T, preN , postN : T → P⊕) where

preN (t ∈ T) =
∑

p∈PREP (t)

p

and
postN (t ∈ T) =

∑
p∈POSTP (t)

p

and VPTNet((fΣ, fP , fT , fA, fI)) := (fP , fT) with

9Compare to [MGE+10, Definition 3.1]

6.8. REVISITING THE REQUIREMENTS TOWARDS THE MODELLING TECHNIQUES 67

• PRE(t) = {(term, p) ∈ (TOP (X)⊗ P)|pre(t)(term, p) 6= 0}9,

• POST (t) = {(term, p) ∈ (TOP (X)⊗ P)|post(t)(term, p) 6= 0}9,

• PREP (t) = πP (PRE(t)) ⊆ P the place predomain of t9,

• POSTP (t) = πP (POST (t)) ⊆ P the place postdomain of t9,

It can be easily seen that functor VPTNet preserves isomorphisms, i.e. if f ∈ MorAHLINets is an
AHLI net isomorphism VPTNet(f) ∈MorPTNet is also a P/T net isomorphism.10

6.8 Revisiting the Requirements Towards the Modelling Tech-
niques

This section revisits the requirements of chapter 5 by checking whether the formal modelling techniques
as defined above fulfill these requirements.

rtechgen1 : An internal system state of the Living Place system can be represented by the current
structure and marking of an AHOIAHLI net. This includes also the current structure and marking of
the AHLI nets that are contained as tokens within this AHOIAHLI net. By changing the structure or
marking, another internal state of the system is obtained. So, requirement rtechgen1 is fulfilled.

rtechgen2 : The actions that cause a change of the internal system state can be represented by tran-
sitions of corresponding nets or transformation rules. The firing of a transition or the application of a
transformation rule represents the performance of such an action. Consider, that by defining a transition
or a transformation rule as a representation for an action of the system behaviour, the pre- and post-
conditions of this action also are formulated. The pre- and post domain of the transition define these
conditions and the left and right hand side of each transformation rule define these conditions in an anal-
ogous manner. The application of a transformation rule with individual tokens to a net with individual
tokens can change the marking and the structure of this net, therefore leading into a new internal system
state. Therefore, by using such transformation rules and nets as tokens within a superordinated net, the
firing of a corresponding transition of this superordinated net, which applies such a rule of the transition’s
predomain to such a net of the transition’s predomain, can change the marking and structure of that net
token. Consider, that changing the marking of a net by using transformation rules is only possible by
using the new approach of individual tokens. The usage of marking-changing rules is heavily used within
the model of the Living Place system of chapter 7 leading into an elegant model. Therefore, requirement
rtechgen2

is fulfilled by the modelling technique.

rtechgen3 : Modelling the whole system within distinguishable levels is enabled by using the defined
modelling techniques. The Data Level is represented by a signature & algebra contained in AHLI nets,
the Object Level is represented by these AHLI nets that are contained within an AHOIAHLI net of the
System Level as tokens. Furthermore, AHOI transformation rules upon this AHOIAHLI net as part of
a reconfigurable AHOI system constitute the User Level.

6.8.1 Data Level

rtech1 : The data and operations that are involved in the processing of the system, especially concerning
the communicating processes within the system, are represented by corresponding signatures & algebras
for the AHOIAHLI nets and rules and for the AHIO nets and rules.

6.8.2 Object Level

rtech2 : The requirement, that each device is an own distinguishable component, seperated from all
other components, can be fulfilled by modelling each device as a seperate AHLI net which is assigned as
an individual token to places within an AHOIAHLI net. Each individual token is distinguishable from
all other individual tokens and does not change the structure of all other nets assigned to the same place
within the same AHOIAHLI net.

10Compare to [EMC+01, Definition 26.2.1].

68 CHAPTER 6. MODELLING TECHNIQUES

rtech3 : The communication within the Living Place system can be modelled by firing corresponding
transitions. Since, all parallel enabled transitions can fire in parallel or in any abitrary order the possibility
to model asynchronous behaviour is given by the nature of the firing behaviour of the used AHLI nets.

6.8.3 System Level

rtech4 : By defining AHLI transformation rules as tokens assigned to places of an superordinated
AHOIAHLI net and communicating devices as AHLI net tokens assigned to places of the same superor-
dinated net in a way, so that the AHLI nets can be transformed by applying token rules in a firing step
of the AHOIAHLI net, the communication between several devices can be expressed. Therefor, the used
concept of individual token is suitable, since the communication can be modelled by marking-changing
transformation rules as tokens, that will be applied to AHLI net tokens within a firing step.

rtech5 : The simultaneous distribution of information to several devices can be expressed by amalga-
mated rules.

6.8.4 User Level

rtech6 : The change of the model on system level after the user applies a user operation upon the system
can be expressed by AHOI transformation rules as part of a reconfigurable AHOI system.

rtech7 : Analogously to requirement rtech6 this can be expressed by AHOI transformation rules as part
of a reconfigurable AHOI system. Furthermore, AHLI transformation rules are available as tokens for
the transformation of AHLI object nets within a firing step of a superordinated AHOIAHLI net.

6.9 Summary

The formal modelling techniques regarding to the modelling of the Living Place system of chapter 7 are
defined and it is checked whether the so defined techniques meet the requirements of chapter 5 leading into
the result that the techniques fulfill the requirements leading to the answer Yes concerning the question:
“Are the used formal modelling techniques expressive enough and therefore suitable for modelling the
Living Place system?”.

Futhermore it is clarified, that the theory of negative application conditions in combination with AHLI
transformation rules as it is used within the modelling of this work need to be reviewed in future work,
i.e. a new concept of satisfiability regarding to a negative application condition need to be developed.

The next chapter 7 presents the overall model of the internal system behaviour of the Living Place
system.

Chapter 7

Modelling the System of the Living Place:
Model of the System of the Living Place

Overall Model of the Living Place System

User Level

System Level

Object Level

〈〈Model〉〉
Message Oriented

Middleware
(i.S.B.)1

〈〈Model〉〉
Message
Broker

(i.S.B.)1

〈〈Model〉〉
Persistence

Layer
(i.S.B.)1

〈〈Model〉〉
Context

Interpreter
(i.S.B.)1

possible interactions between the communicating devices and the Message Oriented Middleware

communicating devices

〈〈Model〉〉
Alarm

Clock 2.0
(i.S.B.)1

〈〈Model〉〉
Daily

Planner
(i.S.B.)1

〈〈Model〉〉
Display
(i.S.B.)1

〈〈Model〉〉
Intelligent

Bed
(i.S.B.)1

〈〈Model〉〉
Positioning

System
(i.S.B.)1

〈〈Model〉〉
Weather- and Traffic
Information Service

(i.S.B.)1

〈〈Model〉〉
Location-Based

Screen
(i.S.B.)1

〈〈Model〉〉
Ambient

Light
(i.S.B.)1

possible user operations upon the communicating devices

possible user operations upon the Message Oriented Middleware

〈〈Model〉〉
stop

〈〈Model〉〉
restart/initialise

〈〈Model〉〉
plugin

〈〈Model〉〉
unplug

〈〈Model〉〉
set offline

〈〈Model〉〉
subscribe
to topic

〈〈Model〉〉
send / receive

topic-based
information

〈〈Model〉〉
unsubscribe
from topic

〈〈Model〉〉
set

online

〈〈Model〉〉
set

offline

〈〈Model〉〉
store
data

〈〈Model〉〉
remove

data

〈〈Model〉〉
request

data

possible user operations upon the Message Oriented Middleware

...

Data Level abstract data types

〈〈Model〉〉
abstract topic

data type

〈〈Model〉〉
abstract topic based

data data type

〈〈Model〉〉
abstract data request

data type

〈〈Model〉〉
abstract device status

data type

uses

uses uses

uses

uses

possible interactions between the communicating devices and the Message Oriented Middleware

Transformation Rules
Over AHOIAHLI Nets

AHLI Nets With
Elements of the

Carrier Sets
of the Algebras

As Tokens

Signatures &
Associated Algebras

AHOI Nets With
AHLI Nets &

Transformation Rules
Over AHLI Nets

As Tokens
(AHOIAHLI nets)

Transformation Rules
Over AHOIAHLI Nets

Figure 7.1: Submodels of the Overall Model of the Living Place System - an Overview

1i.S.B. = internal System Behaviour

69

70 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

In this chapter the modelling of the Living Place system will be presented. Because of the usage of
the modelling techniques as described in 6, in comparison to figure 7.1 the modelling is able to take place
in the following levels, where these levels represent the levels of modelling of chapter 3. Therefore, the
resulting model of the Living Place system reflects these levels of modelling in an intuitive way so that
requirement rgen of chapter 4 is fulfilled by the model.

1. User Level: The User Level is the topmost level. It provides AHOIAHLI transformation rules as
part of an reconfigurable AHOI system which allow different opportunities for the user to interact
with the system. In section 7.1.4 rules which can be applied by the user to interfere in the system
will be given. According to the concept of ubiquitous computing and ambient intelligence (see 2.1),
the whole Living Place system should act independently and automatically, but the user will always
keep the control over the whole system and should be able to intervene at any time.

2. System Level: On this level the Message Oriented Middleware will be modeled with the help of
AHOIAHLI nets. The AHOI nets contain AHLI-nets, representing the next level - the Object Level,
and AHLI transformation rules, which will influence the Object Level, as tokens. The Message Ori-
ented Middleware controls the behaviour of the whole system and regulates the communications of
all connected components (for further details see section 2.2.1). The Message Oriented Middleware
consists of a Message Broker, a Context Interpreter and a Persistence Layer. Additionally the
System Level contains a User Operation Processing Unit.

3. Object Level: The Object Level consists of AHLI nets with elements of the carrier sets of a given
algebra as tokens. Within this level all connected devices and their specific functionality will be
modelled. Each component in the Object Level is able to change pieces of information from the
Data Level.
In the modelling which is presented in this chapter, the Object Level and System Level are able
to exchange data with the help of graph transformation rules, because the devices within the
Living Place system exchange information indirectly over the Message Oriented Middleware. This
component needs to be modelled on a higher level than the devices, because it should be able to
control the communication and the connection of all devices.2

4. Data Level: The lowest level is the Data Level which contains the given signature ΣOL and
the ΣOL-algebra AOL. The algebra and its associated signature will be described in section 11.1
resp. 11.2 in the appendix. The Data Level contains primitive data of the devices, like pieces of
information which will be exchanged between different devices or internal states.

The initial system AHOIAHLI net of figure 7.26 together with the AHOI transformation rules as
described in the following of this chapter form the topmost construct, the reconfigurable AHOI system.
Consider, that this work aims to provide a model of the internal system behaviour of the Living Place
system. So, this initial net represents the initial state of the system. Every application of an AHOI
transformation rule leads into another possible state of the system. In analogous manner, every firing
step within the topmost AHOIAHLI net leads into another state of the system and therefore every firing
step within the object nets of the AHOIAHLI net also leads into another state of the system. So the
following presented model illustrates all possible system states of the Living Place system as well as all
possible actions that can lead into new states, where actions are defined as transformation rules and
transitions. In this way, by defining transition conditions and choosing the right net structure for every
such action it is specified which pre- und post-conditions concerning the application of such an action
exist, i.e. for every such action it is defined, which internal system state must prevail, so that the action
can be applied, and which internal system state results from the application of the corresponding action.

In the following the visual modelling of the Data Level, Object Level, System Level and User Level
will be introduced.

2See section 2.2.1.

7.1. MODEL IN A VISUAL DESCRIPTION 71

7.1 Model in a Visual Description

7.1.1 Data Level

The data within the Data Level consists of primitive data elements and operations which are visualized
by tokens assigned to the places within the object nets. The formal description of the Data Level is
depicted by carrier sets within the algebra of the Object Level in section 11.1.

7.1.2 Object Level

This section presents templates of each kind of device in offline resp. online mode which will be connected
to the Message Oriented Middleware. These templates will be used by all devices which will be modelled
for the Living Place project. The model of the Living Place system distinguishes between the following
three device types:

• Transceiver

• Receiver

• Sender

A more detailed introduction to those device types is given in 2.2.2. In the following a template for each
kind of device will be presented.

Most of the devices provide the possibility of direct user access, like the Alarm Clock 2.0 (see 7.1.2.7),
the Display and Daily Planner in the Multitouch Kitchen Counter (see 7.1.2.8 and 7.1.2.9), the Ambient
Light (see 7.1.2.13), the Location-Based Screen (see 7.1.2.12) or the Intelligent Bed and the Indoor-
Positioning-System (see 7.1.2.10 and 7.1.2.11). The modelling of those devices and their interfaces is
done on all three levels:

• Object Level: Like each other device, the device and its functionality is modelled as an object
net.

• User Level: If the user should be able to directly interact with this device, e.g. by inputing
his appointments or points of time to remind into the Daily Planner device, the device provide
interfaces to the outside, to enable direct user input. These interfaces will be modelled as an AHOI
rules.

• System Level: The Object Level and User Level are not able to exchange information directly
with each other, e.g. the modelling of the Daily Planner device, which is modelled as net on the
Object Level, is not able to directly receive new dates which will be provided with the help of
AHOI rules on the User Level. Instead, the System Level will mediate between them in applying a
corresponding rule which puts the relevant information directly to a place within the object net.

In the modelling of the devices which provide an interface for direct interaction with the user, it will
be mentioned explicitly that they supply additional AHOI and AHLI rules. The AHOI rules will be
presented in section 7.1.4 and their corresponding AHLI rules in section 7.1.3.

72 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.1 Template of a Receiver in Offline Mode

A receiving device is not able to send any pieces of information to the message broker, but it is able to
send requests to the persistence layer in the Message Oriented Middleware to order old data.

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

Figure 7.2: Net deviceofflinereceiver

7.1.2.2 Template of a Sender in Offline Mode

A sender is a device, e.g. a pressure sensor in the Intelligent Bed (see section 2.2.2.4), which only sends
data and holds no possibility of receiving any data. Even requesting past data over the persistence layer
will not be feasible for sensor devices.

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

Figure 7.3: Net deviceofflinesender

7.1.2.3 Template of a Transceiver in Offline Mode

A transceiver is able to receive and send messages. In contrast to a receiver which is only able to receive
data, e.g. devices executing commands, like switch on the light, and a sender which only sends data, e.g.
a sensor device. The difference between these three kinds of components lies in the presence of the places
Datareceived : DataReceived or DatatoSend : DataToSend and UnsubscribedTopics : Topic.
In offline mode, a device is not able to send or receive any messages and therefore is not able to process

7.1. MODEL IN A VISUAL DESCRIPTION 73

any task, even if the device is present in the Living Place system.
The marking of the template net is: One token offline is assigned to the place Status : DeviceStatus
representing the status of the device which is in offline mode. Another token is assigned to the place
: Sync which is connected to the transition ask device online. In using this token, the status of the device
can be set to askOnline which signals to the message broker to set this device to online mode.
The transition ask device offline is the inverse to the transition ask device online, which will, if activated,
set a token askOffline to the place Status : DeviceStatus.
If an individual device, which uses this template net, is interested in receiving any topics, tokens repre-
senting those topics will be assigned to the place UnsubscribedTopics : Topic. The places ‘Datareceived :
DataReceived and DatatoSend : DataToSend represent the data input and data output buffer of the
device.
The whole Living Place system holds the opportunity of requesting old data over a persistence layer.
Past data are saved into a database which can be queried by connected devices. The persistence layer
in the Message Oriented Middleware answers these requests in sending old data belonging to the queried
topic back to the device. The requesting devices should be subscribed to this topic to be able to fetch
these pieces of information. The place TopicstoRequest : TopictoRequest contains tokens representing topics
which will be necessary for receiving the requested old data.

The initial marking of a device in offline mode - the marking is identical for all devices in offline mode,
no matter if it is a transceiver, receiver or sender - is illustrated in the images 7.4, 7.2 and 7.3. It has a
token offline assigned to the place Status and a second token sync assigned to the place Sync which
is connected to the transition ask device online enabling the device to initiate the switch into online mode.

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 5 · online
askOnline askOffline

DatatoSend
: DataToSend

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

Figure 7.4: Net deviceofflinetransceiver

7.1.2.4 Template of a Receiver in Online Mode

Even in online mode, the template of a receiver does not contain any possibility to send data to the
Message Oriented Middleware, except from sending requests to the persistence layer of the Message
Oriented Middleware. Apart from that the template of the receiver in online mode is analog to the
template of the transceiver in online mode.
Three tokens online are assigned to the place Status : DeviceStatus because of the transitions receive
data, request data and ask device online resp. ask device offline should be able to fire parallel. The tokens
sync on the places : Sync are responsible for synchronizing the firing behaviour of each transition receive
data, request data and subscribe topic.

7.1.2.4.1 Revisiting the Requirements Towards the Model of the Template of a Receiver

rreceiver1 : The object net deviceofflinereceiver resp. deviceonlinereceiver contains the transition ask device online
which is initially able to fire and replaces the token offline assigned to Status : DeviceStatus by
askOnline. That means, the device internally announces, that it wants to be set into online mode. This

74 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

token will be checked by the message broker which transforms the object net from deviceofflinereceiver, i.e. the
object net of a receiver, into the net deviceonlinereceiver, i.e. the object net in online mode and at the same
time provides an individual connection identification to this object net. After changing into online mode,
the three tokens online will be assigned to Status, representing the internal mode of the device: online.
The place Status always represents the internal status of the device:

• offline means, the device is in offline mode.

• askOnline means, the device is in offline mode, but announces, that it wants to switch into online
mode.

• online means, the device is in online mode and able to process information.

• askOffline means, the device is in online mode, but announces, that it wants to switch into offline
mode.

The device is able to initiate the switch into offline mode in firing the transition ask device offline which
is the reverse to ask device online. Consequently the requirement rreceiver1 is fulfilled.

rreceiver2 : The individual connection identification will be set by the message broker, when the device
is set into online mode. The internal connection id is assigned as token to the place connectionid :
ConnectionID. (For the process of setting a device into online mode, see 7.29.) Therefore, the require-
ment rreceiver2 is fulfilled.

rreceiver3 : In online mode, the receiver contains the transition subscribe topic (resp. unsubscribe topic)
which will be fired for announcing that a topic should be subscribed (resp. unsubscribed). As a result,
the requirement rreceiver3 is fulfilled.

rreceiver4 : The message broker put new data for the device to the place DataI : InputData. The
device collects this data in firing the transition receive data. Therefore, the reqirement rreceiver4 is met.

rreceiver5 : The receiver contains the place TopicstoRequest : TopictoRequest to which tokens can be
assigned which represent topics to which requests for past data to the persistence layer should be queried.
For requesting stored data from the persistence layer, the transition request data will fire, but only if
the device is already subscribed to the corresponding topic of the request to the Living Place system.
Then, the request will be put to the place DataR : RequestData which will be collected by the Message
Oriented Middleware and particularly processed by the persistence layer. Following, the requirement
rreceiver5 is fulfilled.

rreceiver6 : In online mode, four tokens online are assigned to the place Status leading to the possibility
of firing the transitions receive data, request data, subscribe topic resp. ask device online in parallel.

To summarise, all requirements demanded to the object net of a receiver are fulfilled.

7.1. MODEL IN A VISUAL DESCRIPTION 75

7.1.2.4.2 Visual Model of the Template of a Receiver

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

Figure 7.5: Net deviceonlinereceiver

7.1.2.5 Template of a Sender in Online Mode

In contrast to a receiver, the sender is not able to receive any data and additionally is not able to pose
any requests to the persistence layer of the Message Oriented Middleware. Similar to the receiver, the
template of the sender in online mode is analog to the template of the transceiver in online mode.
Two tokens online are assigned to the place Status : deviceStatus because of the transitions send data
and ask device online resp. ask device offline should be able to fire parallel. Furthermore two tokens
sync are each assigned to a place : Sync for synchronizing the firing of send data.

76 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.5.1 Revisiting the Requirements Towards the Model of the Template of a Sender

rsender1 : Analog to a receiver, the object net deviceofflinesender resp. deviceonlinesender contains the transitions
ask device online resp. ask device offline in order to announce, that the device wants to switch into
online resp. offline mode. Because of that, this requirement rsender1 is fulfilled. For further details see
requirement rreceiver1 in 7.1.2.4.1.

rsender2 : Analog to the receiver, each sender contains the place connectionid : ConnectionID, to
which the individual connection identification will be assigned as token provided by the Message Oriented
Middleware after transforming the net from deviceofflinesender into deviceonlinesender when switching into online
mode. Consequently, the requirement rsender2 is fulfilled.

rsender3 : To send data to the Message Oriented Middleware, a sender holds the transition send data
and its connected places. After firing, the prepared data assigned to DatatoSend : DataToSend will be
removed, extended by the specific connection identification in order to convert the information into a
global data format. The resulting message which is ready for getting processed by the message broker
will be assigned to DataO : OutputData. The requirement rsender3 is fulfilled.

rsender4 : In addition to assigning data as tokens to DataO, a new token will be assigned to DataP :
DataForPersistenceLayer after firing send data, so that the persistence layer within the Message Ori-
ented Middleware is able to fetch this token and store it. Therefore, this requirement rsender4 is met.

To summarise, all requirements demanded are fulfilled by the model of a template object net of a
sender.

7.1.2.5.2 Visual Model of the Template of a Sender

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Figure 7.6: Net deviceonlinesender

7.1.2.6 Template of a Transceiver in Online Mode

After switching to online mode, essential parts are added to the device net of a transceiver, in order to
go into online mode and subscribe topics. After that the device is able to process data from and to the
Message Oriented Middleware.
After setting a device online, the place : ConnectionID is added to the device net to create an unique
identity of the connection between device and message broker. To subscribe topics for receiving data
from the Message Oriented Middleware, the transition subscribe topic can be fired and a token from
UnsubscribedTopics : Topic will be put to TopicsToSubscribe : TopictoSubscribe. The Message Oriented
Middleware will check this place and executes the final step for subscribing a topic (see 7.1.3.1.7). Reverse
to subscribing a topic, the unsubscribing of a topic will be performed analogously (see 7.41).

7.1. MODEL IN A VISUAL DESCRIPTION 77

The token askoffline which was assigned to the place Status : DeviceStatus is replaced by a number of
tokens online. The transceiver has five tokens assigned to the place Status because of the transitions
receive data, send data and request data should be able to fire simultaneously. Each of the last mentioned
three transitions are connected to a place : Sync which synchronizes the sending, requesting and receiving
of data, the subscribing of topics and the firing of ask device offline. All these transitions are able to fire
in parallel but each transition can only process one token at any time.
To receive data, the Message Oriented Middleware puts data for the specific device to the place DataI :
InputData which represents a queue belonging to a certain device which holds all the data which can
be collected by the device. If the device wants to receive data it should fire the transition receive data
to collect all pieces of information from DataI and puts them to the place Datareceived : DataReceived.
Therefore Datareceived represents the internal input data buffer of the device. In an individual transceiver
device which will contain this template in online mode, the part performing the tasks will be directly
connected to the places Datareceived and DatatoSend : DataToSend.
In contrast to receiving data, pieces of information which should be sent to the Message Oriented Mid-
dleware will be assigned as tokens to the place DatatoSend depicting the internal output buffer of the
device. To send pieces of information to the Message Oriented Middleware the transition send data fires
to put the data to the place DataO : OutputData, which corresponds to the external output queue of
the device whose tokens will be fetched by the Message Oriented Middleware. Additionally, the data to
send will be expanded by the individual connection identification of the device in order to publish the
individual sender of the information to the message broker, e.g. because to write the information to the
persistence layer, a connection identification is required.
Similar to sending data to the Message Oriented Middleware, requests to the persistence layer of the
Message Oriented Middleware can be sent in using the transition request data and the places DataR :
RequestData, : Sync and DataR : RequestData. Besides, in order to request past pieces of information
from the persistence layer, the appropriate topic have to be subscribed to the Message Oriented Middle-
ware. Requests will be sent to Message Oriented Middleware in order to collect past data from the time
before the device was connected, which might be relevant for the device, e.g. the Alarm Clock 2.0 will
need all dates from the Daily Planner which were registered in the past.
For requesting data from the persistence layer from the Message Oriented Middleware a token will be set
at startup to TopicstoRequest : TopictoRequest. This token will be consumed in performing the request.
During processing, no additional request is needed, because the device will receive every new message
belonging to this topic.

7.1.2.6.1 Revisiting the Requirements Towards the Model of the Template of a Transceiver

In section 4.2.2.3 it is already mentioned, that the transceiver is a combination of a sender and of a
receiver, so it should fulfil all requirements demanded for a receiver (see 4.2.2.1) and for a sender (see
4.2.2.2). Because of the transceiver being a combination of both device types, the fulfilment of all these
requirements is obvious. In addition, the transceiver has to meet the requirement rtransceiver1 .

rtransceiver1 : In online mode, five tokens are assigned to the place Status : DeviceStatus in order to
enable the transitions send data, receive data, request data, subscribe topic and ask device offline to fire
in parallel. As a result, the requirement rtransceiver1 is met.

78 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.6.2 Visual Model of the Template of a Transceiver

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

DatatoSend
: DataToSend

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3 s4

onlineonline

online

online
s5

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Figure 7.7: Net deviceonlinetransceiver

7.1.2.7 Alarm Clock 2.0

In the following the visual model of the Alarm Clock 2.0 in offline (see figure 7.8) resp. in online mode
(see figure 7.9) will be presented. It is a transceiving device which is subscribed to the topics Calendar,
Weather, Traffic, Context and Bed, and after processing, it sends a new message belonging to the topic
Alarm.

The main task of the Alarm Clock 2.0 will be the process of waking up and reminding the inhabitant
of the different steps of preparation, in order to attend an appointment in time. The preparation and
wake up time consists of the following steps:

• End sleeping,

• dressing,

7.1. MODEL IN A VISUAL DESCRIPTION 79

• washing and

• eating.

In concerning a preparation time, the Alarm Clock 2.0 does not alert the resident at a certain point of
time, instead it calculates preparation time to fulfil fixed steps before the appointment. For each step,
a duration of 15 minutes is assumed. To sum up, the pure preparation time for the person takes 60
minutes. Additionally, the device takes different external information, like weather and traffic service, or
internal information, like the current individual sleeping stage, into account to calculate the appropriate
wake up time for the user. The task of the Alarm Clock 2.0 as presented in [Ell11a] will be the waking
up of a sleeping user to a suitable moment.

The states asleep, hungry, unwashed and undressed, which are enumerated in table 2.1, are repre-
sented by the place Person : PersonState to which the 4-tuple (asleep, hungry, unwashed, undressed)
will be assigned as token, when a new wake up time was able to be calculated in firing the transition
calculate wake up time. Initially a token (undefined,undefined,undefined,undefined) is assigned to this
place, which means that the user has no tasks to fulfil if no valid or forthcoming appointment is available.

In order to operate, the Alarm Clock 2.0 requires appointment data which will be entered by the
resident in the Daily Planner whose model is presented in section 7.1.2.9. All information introduced
within the Daily Planner will be received by the Alarm Clock 2.0 because it is subscribed to the topic
Calendar. Additionally, the Alarm Clock 2.0 contains an internal timer which generates the current
time. As described in 2.2.2.1 resp. [Ell11a], the Alarm Clock 2.0 contains a TimeModule sending the
current time every minute. In the model, the timer is represented by the transition set time and the
place Timer : Timestamp. Because of the formal modelling techniques, as presented in chapter 6, the
timer can not be completely corresponding to a real internal clock. A further discussion of the problem
regarding time in AHOI systems will be presented in chapter 10.

In receiving new calendar data, the Alarm Clock 2.0 checks all available dates and compares them
with the current time generated by the timer. If the given timestamp of a calendar data token assigned to
the place Datareceived : DataReceived, is in the near future, which means within the next 240 minutes,
then this token will be transferred to the place NextAppointment : CalendarData and will be ready for
inferring the appropriate wake up time. Initially an invalid calendar data token (0, unknown) is assigned
to the place NextAppointment. In the model only one token is able to be set to that place at one time
because the Alarm Clock 2.0 should only be able to process one appointment at the same time. After
the appointment is passed, the token assigned to this place is initialised so that a new data record from
the topic Calendar is able to be checked.

Additionally, the Alarm Clock 2.0 is subscribed to the topics Weather and Traffic to receive the latest
weather and traffic information. After receiving, both kinds of data will be compared and according to
the rules in tables 4.1 resp. 4.2 additional time for preparation will be gathered. Both, weather and
traffic data will be collected analogously in checking all data on Datareceived for weather resp. traffic
information in firing the transition analyse traffic data resp. analyse weather data. Thereby, the extra
time because of possibly bad weather or traffic conditions will be calculated with the help of the opera-
tions calcAddT imeWeather resp. calcAddT imeTraffic. All operations used within the transitions will
be characterized in detail within the ΣOL-algebra AOL of the Object Level in 11.1. As a result the extra
time in minutes will be put to the place AddT ime : Timestamp. Initially a token with the value of 0
minutes is assigned to the place meaning that good weather and good traffic conditions are assumed.
As next step, the wake up time will be calculated in firing the transition calculate wake up time,
in order to generate a token representing the next appointment which will be assigned to the place
NextAppointment. For that, the timestamp from AddT ime will be required. In doing so the operation
calcWakeUpT ime calculates the optimal wake up time of the inhabitant. The operation is described in
11.1. In short it calculates:

time = x− (timetrafficAndWeather + 120), where

x is the timestamp from the next appointment,
timetrafficAndWeather contains extra time in minutes because of the traffic and weather condi-

tions,

80 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

120 because of:
60 is the assumed preparation time in minutes,
30 is the assumed time the user will need to get to the appointment in minutes and
30 is a time buffer in minutes because the Alarm Clock 2.0 possibly needs to wait
for the light sleeping phase to wake up the inhabitant.

The resulting wake up time will be placed to WakeUpT ime : Timestamp. At the same time all
tokens representing the resident tasks for the preparation time will be placed to Person : PersonState.
As next step, the wake up time needs to be compared to the current timestamp generated by the internal
timer whose result is assigned as token to the place Timer. For that, the transition wakeup needs to be
fired. Additionally, if both timestamps are identical, the actual sleeping phase of the user needs to be
checked in analysing the token assigned to Bed : BedData. If the user is in deep sleep phase, the Alarm
Clock 2.0 should wait until the resident reaches the next phase to make the phase of getting woken up
more comfortable to the resident.
For getting the current sleeping phase, the transition analyse bed data collects a token belonging to the
topic Bed from Datareceived and puts it to the place Bed. If the user is in the deep sleep phase, the wake
up time will be increased by one minute and put back to the place WakeUpT ime in order enable the
check if the person has changed his sleeping stage every minute and as long as necessary. In contrast,
if the user is not in a deep sleep phase, the Alarm Clock 2.0 initiates an alarm signal in the Living
Place system in putting (on,Alarm) to the place DatatoSend. This means, that the data on belonging
to the topic Alarm will be sent from the Alarm Clock 2.0 device to the Message Oriented Middleware.
Furthermode, the token containing the wake up time will be increased by 15 minutes and transferred
to the place WakeUpT ime′ : Timestamp and the state asleep will be removed from the place Person
representing that the user has been woken up and is not asleep anymore.

As shown before, the resident has four states which need to be fulfilled in order to stop the Alarm
Clock 2.0 from reminding the user of his tasks, which are assigned as 4-tuple to the place Person. After
firing the transition wake up, the state asleep will be removed in replacing the first position of the tuple
containing the state asleep by undefined. The remaining tasks hungry, unwashed and undressed will
be removed according to the received context data. For that, the transition analyse context data fires
and collects a token belonging to the topic Context (describing a 5W1H context) and transfers it to the
place Context : ContextData. Afterwards, the tansitions washing in bathroom, eating in kitchen and
dressing in sleeping area are able to check, if one of the states, included in the 4-tuple assigned to
Person, can be removed. To remove a task, the defined position of the task is replaced by undefined.
The static positions are: asleep, unwashed, undressed, hungry.
E.g. if the person is awake, has nothing else fulfilled until now and is currently eating, the 4-tuple (un-
defined, unwashed, undressed, hungry) will be replaced by (undefined, unwashed, undressed, undefined).

During the preparation time, that means, if the moment of the appointment is still in the fu-
ture, the Alarm Clock 2.0 device needs to remember the user of his tasks as long as they are not
fulfilled. That means, as long as there is a token assigned to Person, which is not equal to (unde-
fined,undefined,undefined,undefined), the transition alarm again is able to fire. Then, this transition
checks, if 15 minutes are gone in comparing the wake up time with the current timestamp. If 15 minutes
are gone and at lesat one task is still open, a new alarm (on,Alarm) will be generated and sent to
DatatoSend. As long as the internal timestamp of the Alarm Clock 2.0 is not equal to the timestamp of
the token assigned to NextAppointment, menaing that the appointment is not reached until now, this
procedure will be repeated until the user finished all of his tasks or the appointment has passed.

The transition is appointment over checks, if the current appointment has already passed an initiates
a reset of the relevant places: NextAppointment : CalendarData in changing the token assigned to
NextAppointment into the invalid calendar data token (0, unkwnon) and removing a synchronize token
from the place WakeUpMode : Sync while a new synchronize token is set to RemoveContext : Sync.
Both synchronize places regulate the deletion or processing of context data. If a token is assigned to
RemoveContext, the transition remove context is active and removes all context data from the received
data. This transition is only active, when no wake up time is available and the Alarm Clock 2.0 device
is in idle mode. Then, all incoming context data will be removed in order to prevent a wrong inference
process within the Alarm Clock 2.0 because of old and expired data. If the Alarm Clock 2.0 calculated
a new wake up time, it removes the synchronize token from RemoveContext and puts a new token to

7.1. MODEL IN A VISUAL DESCRIPTION 81

WakeUpMode in order to deactivate the transition remove context and to activate the transition analyse
context data which processes all incoming context data, in transforming it to the format of ContextData
and provides it to the transitions washing in bathroom, eating in kitchen and dressing in sleeping area
in assigning the data to the place Context : ContextData. The token assigned to Context consists of
a 3-tuple containing information regarding the tasks the inhabitant should perform. Initially it is set
to (unknown, unknown, unknown), because no information will be available, and in further processing
steps, it is able to be replaced by relevant context information. Every position represents a defined kind
of information regarding the tasks (see Person : PersonState), whereas the positions have the meaning:
unwashed, hungry, undressed. They will be replaced by the corresponding information, if an incoming
context belongs to one of the three relevant information.

The Alarm Clock 2.0 device is modelled on the Object Level. But in addition the inhabitant should
be able to interact with the Alarm Clock 2.0 in order to stop the device. For that, the AHOI rule
StopAlarmClockuser will be provided (see 7.1.4.5). It belongs to the User Level and resets the Alarm
Clock 2.0 in using the following transformation rules from System Level (see 7.1.3.5.1):

1. ruleDeleteNextAppointments, see 7.63,

2. ruleDeleteBedData, see 7.64,

3. ruleDeleteContextData, see 7.65,

4. ruleDeleteWakeUpT ime1, see 7.66,

5. ruleDeleteWakeUpT ime2, see 7.67,

6. ruleDeletePersonState, see 7.68,

7. ruleResetT imestamp, see 7.69, and

8. ruleResetSync, see 7.70.

7.1.2.7.1 Revisiting the Requirements Towards the Model of the Alarm Clock 2.0

In 4.2.2.4 the requirements regarding the description of the Alarm Clock 2.0 device were introduced.
In the following part, each specific requirement of the Alarm Clock 2.0 device will be revised for its
fulfilment by its modelling. Additionally, the Alarm Clock 2.0 is a transceiver, whose general requirements
are presented in 4.2.2.3 and the fulfilment of all general requirements for a transceiver device are checked
in 7.1.2.6.
The model of the Alarm Clock 2.0 device in offline resp. online mode is visualized in 7.8 resp. 7.9.

rAlarmClock2.01 : The first requirement demands, that the Alarm Clock 2.0 device should be able to sub-
scribe to resp. unsubscribe from the topics Weather, Traffic, Calendar, Bed and Context in order to receive
topic-based information. Because of the object net of the Alarm Clock 2.0 is a transceiver, it is able to re-
ceive topic-based information (see 7.1.2.6). Additionally, the tokens Calendar,Weather, Traffic, Context
and Bed are initially assigned to the place UnsubscribedTopics : Topic, all of them represent one of the
five topics to which the object net alarmClock2.0online will be able to subscribe, after it is set into online
mode.
Consequently, the requirement rAlarmClock2.01 is fulfilled.

rAlarmClock2.02 : The model of the Alarm Clock 2.0 device is able to provoke a signal in firing one
of the transitions wake up, alarm again or is appointment over. Then a new token (on,Alarm) will
be generated and assigned to the place DatatoSend : DataToSend. This tuple points to the data on
belonging to the topic Alarm. Afterwards this data will be extended to a triple and assigned to the
place DataO : OutputData. This triple corresponds to a general data format which is readable for all
other components of the Living Place system, i.e. all other connected devices on Object Level and the
Message Oriented Middleware on System Level. The message broker checks this place and distributes this
information to all devices subscribed to the specific topic Alarm. These devices are able to perform any
action in order to alarm the inhabitant of the Living Place apartment. Therefore the action of alarming
will not be executed by the Alarm Clock 2.0 device, instead it sends a message containing the signal for

82 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

other devices, that an alert should be provoked.
As a result, the requirement rAlarmClock2.02

is met by the model of the Alarm Clock 2.0 device.

rAlarmClock2.03 : The description of the Alarm Clock 2.0 requires, that the device should be able to
request past data according to the topic Calendar from the persistence layer of the Message Oriented
Middleware of the Living Place system. For that, a token Calendar is initially assigned to the place
TopicstoRequest : TopictoRequest. This token is able to be processed by the device net alarmClock2.0online.
After this token is processed by the persistence layer and the message broker, all past information re-
garding the calendar data will be provided in assigning each data record as token to the place DataI :
InputData.
Therefore, this requirement rAlarmClock2.03

is fulfilled by the model.

rAlarmClock2.04 : The transition analyse calendar data checks all available calendar with the following
operations

• isCalendarData(seconddataReceived(dr)) = tt
This condition checks, if the token assigned to Datareceived : DataReceived belongs to the topic
Alarm.

• isSoon(firstdataReceived(dr), ts2) = tt
This operation checks, if the timestamp of the selected token describes the time within the next
240 minutes.

• firstdataReceived(dr) = cal
The timestamp of the selected calendar data will be extracted from the triple.

• getInfo(cal′) = unknown
The token assigned to NextAppointment : CalendarData will only be replaced, if the processing
of the last appointment is finished. This will be indicated, when the second part of the tuple is
unknown.

Because of the usage of the operation isSoon, the requirement rAlarmClock2.04 is met.

rAlarmClock2.05 and rAlarmClock2.011 : To infer a new wake up time, the model of the Alarm Clock
2.0 fires the transitions analyse calendar data (see last requirement rAlarmClock2.04

) and analyse traffic
data resp. analyse weather data. Each of them selects weather resp. traffic information taking place in
the period of time of the way to the appointment. To get to the appointment, a duration of 30 minutes
is assumed.
If bad conditions are registered, additional time will be calculated and assigned as token to the place
AddT ime : Timestamp. The additional time because of bad weather resp. traffic conditions are based on
the tables 4.1 and 4.2. The corresponding operations calcAddT imeWeather and calcAddT imeTraffic
are mentioned in detail within the ΣOL-algebra AOL of the Object Level in 11.1. For the computation
of an appropriate wake up time, the transition calculate wake up time fires and, in the process, takes
the selected appointment assigned as token to NextAppointment and the additional time assigned to
AddT ime for its calculations. The wake up time will be assigned to WakeUpT ime : Timestamp.
The requirements rAlarmClock2.05

and rAlarmClock2.011
are fulfilled.

rAlarmClock2.06 and rAlarmClock2.07 : After infering an appropriate wake up time, the device net
alarmClock2.0online checks the current sleeping phase the user is in assigned to the place Bed : BedData
after firing analyse bed data. If the user is in deep sleep phase, the transition change wake up time will
fire and in doing so, it increases the wake up time by one minute and replaces the previous wake up time
assigned to WakeUpT ime : Timestamp by the new one. Because of a possible waiting time, an additional
buffer of 30 minutes is taken into account when infering the wake up time in firing the transition calculate
wake up time and especially using the operation calcWakeUpT ime(cal, T ime1) = time. The operation
is presented in explicit in 11.1.
If the user is not in a deep sleep phase, the object net of the Alarm Clock 2.0 initiates an alarm in firing
the transition wake up which generates the signal (on,Alarm).
The model of the Alarm Clock 2.0 device fulfils the requirements rAlarmClock2.06

and rAlarmClock2.07
.

7.1. MODEL IN A VISUAL DESCRIPTION 83

rAlarmClock2.08 : The requirement rAlarmClock2.08
demands an internal storage for administering the

four tasks the user should fulfil during the preparation time: getting up, washing, dressing and eating.
This storage is represented by the place Person : PersonState and the token assigned to this place.
Additionally, rAlarmClock2.08 demands a duration of 15 minutes for each task. The Alarm Clock 2.0
reminds the user of the fulfilment of each task after 15 minutes, if at least one task is still open. This
will be done by the transition alarm again which contains the following conditions:

• is15MinutesLater(ts1, ts2) = tt
This condition checks, if 15 minutes have passed since the last alarm.

• isBeforeNextAppointment(cal, ts1, time) = tt
This operation checks, if the time for leaving the apartment in order to get to the appointment has
not passed.

• +time(ts1, 15) = ts′1
The next alarm should possibly take place in 15 minutes, therefore the timestamp for the next
alarm will be increased by 15 minutes.

• isReadyStates(ps) = ff
An alarm will be provoked as long, as at least one task is not fulfilled.

When infering the wake up time in firing calculate wake up time, 60 minutes will be taken into account
for the preparation phase.
To summarise, the requirement rAlarmClock2.08

is fulfilled by the model of the Alarm Clock 2.0.

rAlarmClock2.09 : To check context data constantly, the transition analyse context data collects data
records belonging to the topic Context and classifies it. Afterwards one of the transitions washing in
bathroom, eating in kitchen and dressing in sleeping area evaluates the collected data and simultaneously, if
a new information describes a task, it will be removed from the task list assigned to Person : PersonState.
Consequently, the requirement rAlarmClock2.09

is met.

rAlarmClock2.010 : The device net alarmClock2.0online has two modes: If an appointment is currently
available and an alert is processed, context data will be collected and evaluated in order recognize the
processing of the tasks for the preparation time by the inhabitant of the Living Place apartment. For
that, a synchronize token will be assigned to the place WakeUpMode : Sync, whereas no token is set to
RemoveContext : Sync.
If no appointment is currently processed, the Alarm Clock 2.0 is in idle mode which is represented by a
token assigned to RemoveContext and no token assigned to WakeUpMode. Then, all incoming context
data will be removed with the help of the transition remove context.
As a result, the requirement rAlarmClock2.010 is fulfilled.

rAlarmClock2.012 : The requirement rAlarmClock2.012
demands an internal timer representing the TimeM-

odule. This time is represented by the place Timer : Timestamp, the token assigned to this place and
the transition set time. The token assigned to Timer contains the current time which will be used by the
transition analyse calendar data, which collects a new appointment, the transition wake up which initiates
a new message (on,Alarm), the transition alarm again, which generates the message (on,Alarm), again
and increases the wake up time by 15 minutes, and is appointment over which checks, if the point of time
for leaving the Living Place apartment is reached, which initiates the final (on,Alarm) signal and resets
the Alarm Clock 2.0 (see requirement rAlarmClock2.014).
The requirement rAlarmClock2.012

, which demands an internal timer, is met by the model of the Alarm
Clock 2.0 device.

rAlarmClock2.013 : To remind the user of the fulfilment of his tasks during the preparation time, a
message (on,Alarm) will be created after firing the transition alarm again. The transition fires every 15
minutes, but as long, as there are still some tasks open.
Therefore, this requirement rAlarmClock2.013

is met by the model.

84 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

rAlarmClock2.014 : The transition is appointment over checks, if the time for leaving the Living Place
apartment in order to get to the appointment in time, is reached. The following conditions are taken into
account:

• −time(getT imestampCalendar(cal′),+time(time, 30)) = ts2

This operation calculates the time for leaving the apartment, whereas

– getT imestampCalendar(cal
′) extracts the timestamp of the currently processed appointment

assigned as token to NextAppointment : CalendarData.

– time denotes the additional time assigned to AddT ime : Timestamp, resulting out of bad
weather and traffic conditions for the time for getting to the appointment, i.e. the time from
leaving the apartment and the exact timestamp of the appointment.

– 30 represents the assumed duration for the way to get to the appointment.

– ts2 is the current timestamp.

• cal = (0, unknown)
After firing the transition is appointment over, the appointment data assigned toNextAppointment :
CalendarData needs to be reset in replacing the current token by the tuple (0, unknown).

The transition is appointment over and alarm again are defined containing inverse transition conditions
to each other, so that they are in conflict, i.e. either alarm again or is appointment over is able to fire
for the same token set to the place WakeUpT ime′ : Timestamp.
Consequently, the requirement rAlarmClock2.014

is fulfilled.

rAlarmClock2.015 : After firing the transition is appointment over, the token assigned to AddT ime :
Timestamp will be replaced by 0t, which is described within the ΣOL-algebra AOL of the object net in
11.1. Additionally, the token assigned to NextAppointment : CalendarData is replaced by (0, unknown).
The syncronize token assigned to WakeUpMode : Sync will be removed, instead a token will be assigned
to RemoveContext : Sync in order to switch from processing into idle mode and to be able to remove
all incoming context data without evaluating them. In firing this transition, the timestamp for the next
reminding assigned as token to WakeUpT ime′ : Timestamp will be removed.
In order to reset the whole Alarm Clock 2.0, the internally stored tasks need to be reset. The reset of the
place Person : PersonState will be done, when a new wake up time will be calculated in firing calculate
wake up time.
Because of the removing of the current wake up time, the reset of the appointment, the additional time
and the internal mode of the Alarm Clock 2.0 (i.e. processing mode resp. idle mode), after firing the
transition is appointment over, and the reset of the internal task list after firing the transition calculate
wake up time, the requirement rAlarmClock2.015

is fulfilled.

rAlarmClock2.016 : The AHOI rule StopAlarmClockuser is provided, as described in section 7.1.4.5
enabling the inhabitant to stop and reset the device net alarmClock2.0online in using a set of AHLI rules
presented in 7.1.3.5.1.
Therefore, the requirement rAlarmClock2.016 is met.

rAlarmClock2.017 : The model of the Alarm Clock 2.0 is a transceiver, thus, the requirement rAlarmClock2.017

is fulfilled.

The model of the Alarm Clock 2.0 device in offline resp. online mode fulfils all requirements which
are presented in section 4.2.2.4.

7.1. MODEL IN A VISUAL DESCRIPTION 85

7.1.2.7.2 Alarm Clock 2.0 in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 5 · online
askOnline askOffline

DatatoSend
: DataToSend

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

t2

t3

t1

t4

t5

Weather
Traffic

Calendar

Context
Bed

TopicstoRequest
: TopictoRequest

t′Calendar

set time

Timer :
Timestamp

current
time

time

ts

0

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

calculate wake up time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

b

unknown

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

0t

time
tuple(
ona, alarm)

time

Figure 7.8: Net of the Alarm Clock 2.0 alarmClock2.0offline

86 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.7.3 Alarm Clock 2.0 in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Datareceived
: DataReceived

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online

sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

t2

t3

t1

t4

t5

Weather
Traffic

Calendar

Context
Bed

t′

Calendar

set time

Timer :
Timestamp

current
time

time

ts

0

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

calculate wake up time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

b

unknown

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

0t

time

tuple(
ona, alarm)

time

Figure 7.9: Net of the Alarm Clock 2.0 alarmClock2.0online

7.1. MODEL IN A VISUAL DESCRIPTION 87

7.1.2.8 Display in Multitouch Kitchen Counter

The Display of the Multitouch Kitchen Counter will be modelled as a receiving device. As described in
section 2.2.2.2, it is subscribed to information about weather, traffic and calendar, which will be collected
and shown on the screen of Multitouch Kitchen Counter.

In the model of the Living Place system, the functionality of the Multitouch Kitchen Counter is
splitted in two different devices: The Display described in this section and the Daily Planner explained
in section 7.1.2.9. The Display device represents the screen of the Multitouch Kitchen Counter showing
different kinds of information to the inhabitant. The Daily Planner is an application, collecting the resi-
dents appointments and moments to be remembered, which uses the Multitouch Kitchen Counter as an
input device.
Because of the possibility of direct user access, the modelling of the Display device and its interface
providing direct access is done on all three levels (see 7.1.2).

The topics Weather, Traffic and Calendar, to which the Display device is subscribed are initially as-
signed as tokens to the place UnsubscribedTopics : Topic. When receiving this kind of data, the necessary
information will be filtered in executing the operation firstdataReceived(dr) = d (and tdisplay(d) = ddisplay
for casting) in firing the transition receive and output data. The extracted information will be trans-
fered as token to the place display : DisplayData, which represents the output on the screen of the
Multitouch Kitchen Counter. Data presented on the screen can be removed by the user in applying the
AHOI rule ClearDisplayuser which is described in section 7.1.4.6. Then, the corresponding AHLI rule
ruleClearDisplaydisplay can be applied to remove a token from the place Display.

The Display device only requests data with respect to the topic Calendar from the persistence layer.
Old weather and traffic information are not relevant anymore, because it just Displays new incoming in-
formation regarding weather and traffic on the screen, but in contrast it shows all available calendar data.

7.1.2.8.1 Display in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics : Topic

TopicstoRequest
: TopictoRequest

t

Calendar

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

display
: DisplayData

ddisplay

Figure 7.10: Net displayoffline

88 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.8.2 Display in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

tCalendar

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

display
: DisplayData

ddisplay

Figure 7.11: Net displayonline

7.1.2.8.3 Revisiting the Requirements Towards the Model of the Display in the Multitouch
Kitchen Counter

The requirements that are imposed to the model of the Display device, will be revised in this section.
The requirements for this device net are introduced in section 4.2.2.5.

rDisplay1 : The Display device is able to subscribe resp. unsubscribe the topics Weather, Traffic and
Calendar. The topics are initially assigned as tokens to the place UnsubscribedTopics : Topic.
Therefore, the requirement rDisplay1

is fulfilled.

rDisplay2 : The transition receive and output data gets information belonging to one of the subscribed
topics. The transition extracts the first component out of the information and transfers it to the place

7.1. MODEL IN A VISUAL DESCRIPTION 89

display : DisplayData representing the screen within the Multitouch Kitchen Counter.
As a result, the requirement rDisplay2

is met.

rDisplay3 : The AHOI rule ClearDisplayuser will be provided to remove single data records from the
Display device. The AHOI rule is presented in 7.1.4.6.1.
Because of the availability of the AHOI rule ClearDisplayuser, the requirement rDisplay3

is fulfilled.

rDisplay4 : The object net of the Display device is modeled as a receiver, therefore the requirement
rDisplay4

is met.

7.1.2.9 Daily Planner

The Daily Planner, as described in section 2.2.2.3, is able to manage dates which will be input manually
by the inhabitant. The Daily Planner provides an interface for direct user access and therefore is modelled
on all three levels (see 7.1.2).

The Daily Planner is modelled as a sender, which is shown below in offline (7.1.2.9.2) and online
mode (7.1.2.9.3). The main task of the Daily Planner is to collect calendar data, the user wants to be
reminded of. For that, the resident enters his new calendar information directly into the system in using
the Multitouch Kitchen Counter. The direct input of new data by user the will be represented by the
AHOI rule EnterDataIntoDailyP lanneruser which is presented in section 7.1.4.7.
Afterwards, the corresponding AHLI rule ruleAddDataplanner which is presented in section 7.1.3.5.3 will
be applied which transforms the Daily Planner device net on Object Level in putting the new data as to-
ken to the place newCalendarData : CalendarData. The new information will be converted and sent to
the message broker in firing the transition analyse data. The input data is typed as CalendarData and
will be transformed to the type DataToSend (as described in detail as operation of ΣOL − algebraAOL
of the Object Level in section 11.1).
All calendar information entered by the inhabitant will be stored within the repository in the per-
sistence layer. To delete existing calendar data from repository in the persistence layer, which was
previously entered into the Daily Planner, the an AHOI rule out of the infinite set of AHOI rules
DeleteDataFromDaily− Planneruser,t,d can be used. It needs a corresponding AHLI rule out of the
infinite set of AHLI rule ruleRemoveDataplanner,t,d, which assigns a 4-tuple as token to the place DataP
containing remove as forth component instead of store, which is the default value. The term remove
signals to the persistence layer of the Message Oriented Middleware, that a corresponding data record
should be removed. The AHOI rule is presented in section 7.1.4.7 and the AHLI rule is introduced in
7.1.3.5.4.

7.1.2.9.1 Revisiting the Requirements Towards the Model of the Daily Planner

The requirements for the Daily Planner are presented in section 4.2.2.6, which will be revised in the
following section.

rplanner1 : The AHOI rule EnterDataIntoDailyP lanneruser,t,d, presented in explicit in 7.1.4.7, is
provided for entering new calendar data to the Daily Planner. It uses a corresponding AHLI rule rule−
AddDatat,d introduced in 7.1.3.5.3.
Therefore, the requirement rplanner1 is met.

rplanner2 : A second AHOI rule RemoveDataFromDailyP lanneruser,t,d, introduced in explicit in 7.99,
is available for removing calendar data which was previously entered to the Daily Planner. Consequently,
the requirement rplanner2 is fulfilled.

rplanner3 : The transition analyse data transforms the new calendar data entered with the help of
the AHOI rule EnterDataIntoDailyP lanneruser,t,d and assigns the data to the place DatatoSend :
DataToSend. After firing the transition send data, the token assigned to DatatoSend will be extended
and assigned to DataO. Then the Message Oriented Middleware is able to collect and process the data.
Therefore, the requirement rplanner3 is met.

90 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

rplanner4 : The object net of the Daily Planner is modeled as a sender, thus the requirement rplanner4
is fulfilled.

7.1.2.9.2 Daily Planner in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

Figure 7.12: Net dailyP lanneroffline

7.1.2.9.3 Daily Planner in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

Figure 7.13: Net dailyP lanneronline

7.1.2.10 Intelligent Bed

Similar to the description in section 2.2.2.4, the model of the Intelligent Bed contains parts represent-
ing the six pressure sensors. The collection of all six sensors are represented by the place Sensor :
PressureData. Pressure values resulting from measurement will be set as token to the corresponding
place Sensor. The value consists of a 6-tuple, where each position in this tuple represents a special sensor
according to the numbering in image 4.2.2.7. Initially a 6-tuple (0, 0, 0, 0, 0, 0) is assigned as token to this
place, meaning, that there is no pressure on the intelligent bed.
Because of the sensors should measure the pressure that is exerted by the weight of the human body which

7.1. MODEL IN A VISUAL DESCRIPTION 91

sits or lays on the bed, the model of the intelligent bed is done on all three levels: The pressure produced by
the weight of the body is regarded as an user input and therefore an AHOI rule exists for entering the pres-
sure data for all six sensors. The AHOI rule MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

will be presented in section 7.1.4.8 and the corresponding AHLI rule ruleMeasurePressurebed,v1,v2,v3,

v4,v5,v6,x1,x2,x3,x4,x5,x6
, for assigning the given 6-tuple with new measurement values as token to the place

Sensor within the device of the Intelligent Bed, is shown in section 7.1.3.5.5.

During processing, the transition receive data checks, if the token assigned to the place Sensor exceeds
a certain threshold 3. Additionally, it checks if the value has changed, which will be compared with a
buffer containing one data token, which consists of a 6-tuple. The last value will be stored in changing
the token assigned to LastV alueSensor : PressureDataOLD. Initially the values (0, 0, 0, 0, 0, 0) are set
to the place LastV alueSensor.
To recognize a sleeping phase for waking up, the comparison with the old and the new value needs to
be done, because a person in deep sleep phase, in which the inhabitant should not be woken up, has a
minimal muscle tone, so he does not move4, as a result the pressure on all sensors will be constant. A
change of pressure means a movement. Besides, the location of the pressure will be important: E.g. if a
sensor on the head of the bed (sensor 1 or 2) will exceed the determinated threshold, the resident will be
sitting in bed.

All the data from each sensor will be processed together and at the end, in firing the transition
evaluate data, compared with each other to infer, if the person is in deep sleeping phase, an other sleep-
ing phase, where waking-up is possible, or if he is awake.

The whole visual model of the Intelligent Bed in offline mode is presented in 7.14 and the model in
online mode is in 7.15.

7.1.2.10.1 Revisiting the Requirements Towards the Model of the Intelligent Bed

The requirements for the model of the Intelligent Bed will be revised in the following section. The
requirements are introduced in section 4.2.2.7.

rbed1 : The pressure data will be entered by the inhabitant of the Living Place apartment with
the AHOI rule MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

and its corresponding AHLI
rule ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 presented in detail in image 7.101 and 7.74.
Therefore, the requirement rbed1 is met.

rbed2 : The data entered consists of a 6-tuple, where each component represents the pressure values for
each sensor. In image 4.2.2.7, the position of each sensor is illustrated. The operations in the transition
conditions of receive data and evaluate data take over the scheme specified in that image when they are
evaluated.
The requirement rbed2

is fulfilled.

rbed3 : The last measurement values are stored within the token assigned to LastV alueSensor :
PressureDataOLD, which will be used by the transition receive data for comparing the old with the
new pressure in order to detect a change of the values, i.e. in order to detect a movement. Initially the
token assigned to LastV alueSensor contains the 6-tuple (0, 0, 0, 0, 0, 0), which means that all sensors
measure no pressure.
Because of the availability of the place LastV alueSensor and the token assigned to it containing the last
values measured, the requirement rbed3 is met.

rbed4 : Each xi within the 6-tuple takes a value of xi ∈ [0, ..., 10], i ∈ {1, 2, 3, 4, 5, 6}, which will be set
by the AHOI rule and its corresponding AHLI rule (see 7.1.4.8 and 7.1.3.5.5).
Therefore this requirement rbed4

is fulfilled.

3For further information see [Har11].
4See section 2.2.2.4.

92 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

rbed5 : The transition receive data contains the following conditions:

• thresholdExceeded(p) = p′′

This operation checks, if a defined threshold of 6 is exceeded by each value. If a value is below of
this threshold, it means that the pressure is too low to be excerted by the inhabitant, this value
will be replaced by 0. If the value is above of or equal to 6, it stays unchanged. The operation is
defined within the algebra of the Object Level in 11.1.
Because of the availability of this condition, this requirement rbed5

is met.

• hasChanged(fP (p′), p′′) = p1

The second operation compares if the 6-tuple containing the last pressure values differ from the
new ones. It returns a tuple containing tt, if they differ, else ff , and containing the previously
modified 6-tuple of pressure measurement values. This operation is part of the fulfilment condition
for requirement rbed3

, as already mentioned.

rbed6 and rbed7 :

• checkPressureChange(p1) = res
The operation checkPressureChange checks the previously evaluated values done by the transition
conditions in receive data and infers the correct sleeping phase. It gets a tuple containing the
boolean value b = tt or b = ff and the 6-tuple (x1, x2, x3, x4, x5, x6) containing the modified
pressure measurement values. This operation performs the following conditions and returns the
corresponding value (as defined in 11.1):

– awake
if x1 6= 0 ∨ x2 6= 0

– deepSleep
if (x3 6= 0 ∧ b = false) ∨ (x5 6= 0 ∧ b = false)

– deepSleep
if (x4 6= 0 ∧ b = false) ∨ (x6 6= 0 ∧ b = false)

– lightSleep
if (x3 6= 0 ∧ b = true) ∨ (x5 6= 0 ∧ b = true)

– lightSleep
if (x4 6= 0 ∧ b = true) ∨ (x6 6= 0 ∧ b = true)

– notInBed
if x1 = 0 ∧ x2 = 0 ∧ x3 = 0 ∧ x4 = 0 ∧ x5 = 0 ∧ x6 = 0

• transformToBed(res) = dsend
The value res ∈ {awake, deepSleep, lightSleep, notInBed} resulting out of checkPressureChange
will be taken and a tuple containing this value and the corresponding topic Bed will be created.

After firing the transition evaluate data, the resulting tuple created by transformToBed will be put to
the place DatatoSend : DataToSend. Afterwards it will be taken and expanded to the global readable
triple, which will be assigned to DataO : OutputData, so that the Message Oriented Middleware is able
to process this data.
Consequently the requirements rbed6

and rbed7
are fulfilled.

rbed8 : The device net of the Intelligent Bed is modeled as sensor, consequently the requirement rbed7

is met.

As a result of this revision, all requirements posed in section 4.2.2.7 are fulfilled by the model of the
Intelligent Bed.

7.1. MODEL IN A VISUAL DESCRIPTION 93

7.1.2.10.2 Intelligent Bed in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 0, 0, 0, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2 (0, 0, 0, 0, 0, 0)

Figure 7.14: Net intelligentBedoffline

7.1.2.10.3 Intelligent Bed in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 0, 0, 0, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2 (0, 0, 0, 0, 0, 0)

Figure 7.15: Net intelligentBedonline

94 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.11 Indoor-Positioning-System

The Indoor Positioning System is described in 2.2.2.5. It measures the position of the inhabitant of the
Living Place with the help of six sensors and sends an interpretation of the sensor data to the message
broker in stating, if the user currently stays in the north, in the south, in the middle, in the bathroom or
outside of the apartment.
All six sensors and the application receiving and interpreting the data will be modelled as one sending
component. In the following two parts, the visual modelling of the sending device in offline resp. online
mode will be presented. The formal model of the used signature and algebra is presented in 11.1.

The sensors of the Indoor-Positioning-System measure the current position of the resident, hence, the
measured values will be entered with the help of an AHOI rule. Therefore the Indoor-Positioning-
System will be modelled as object net, but additionally the sensor values will be entered with the
help of an AHOI rule and the System Level provides rules for exchanging the data from user to Ob-
ject Level. The sensor values consist of a 6-tuple containing triples, where each triple represents the
measured values of one sensor in 3D-coordinates: (X,Y,Z). So, the 6-tuple contains all data of all sen-
sors: (s1, s2, s3, s4, s5, s6) where si = (Xi, Yi, Zi) where X,Y, Z ∈ [0.0, ..., 15.8]. Initially it is set to
((0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0)).
The AHOI rule for entering data MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

is presented in sec-
tion 7.1.4.9. The corresponding AHLI rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 is
shown in section 7.1.3.5.6.
With the help of the AHOI rule, the 6-tuple containing measurement values of each sensor will be entered.
Afterwards the AHLI rule transfers the data to the place SensorData : SensorDataTuple in the object
net of the Indoor-Positioning-System indoorPositioningSystemonline. Assigning new data to the net is
only possible in online mode. As the next step, the sensor specific data will be interpreted as shown in
2.2.2.5 and also in the formal description of the operation transformToUbiTV (sensordata) within the
ΣOL-algebra AOL of the Object Level as listed in 11.1. As a result, a tuple containing the interpreted
value north, south, bathroom, middle or nothing and the name of the topic UbiTV will be send to the
place DatatoSend : DataToSend. From that place the information token is available for the next step,
where the token will be expanded by the connection identification of this sepcific device and afterwards
be sent to the message broker for further processing.

7.1.2.11.1 Revisiting the Requirements Towards the Model of the Indoor-Positioning-Sys-
tem

The Indoor-Positioning-System in online mode should fulfil the requirements which were set up in
section 4.2.2.8. The following section revises those requirements in regard to their fulfilment.

rindoor1 : The Indoor-Positioning-System is composed of six sensors. The measurement data will
be entered by the AHOI rule MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 which uses the AHLI
rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 . The AHOI rule is described in explicit in
7.1.4.9, the AHLI rule in 7.1.3.5.6.
The requirement rindoor1 is fulfilled.

rindoor2 : The token assigned to the place SensorData : SensorDataTuple represents the measurement
data of all six sensors. Each component of this 6-tuple contains a triple which represents the 3D position
values (xi, yi, zi), (i ∈ {1, 2, 3, 4, 5, 6}) for each sensor. If the token will be replaced in applying an AHLI
rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

, a token of the same sturcture has to be
assigned to this place.
Consequently, the requirement rindoor2 is fulfilled.

rindoor3 : The transition analyse data executes the transition condition transformToUbiTV(sensor-
data) = dsend according to the following conditions (see definition of this operation in 11.1):

• (south, UbiTV)
if (0.0 ≤ secondrealA(x1) < 5.5) ∨ (0.0 ≤ secondrealA(x2) < 5.5)

• (north, UbiTV)
if (10.0 ≤ secondrealA(x5) ≤ 15.8) ∨ (10.0 ≤ secondrealA(x6) ≤ 15.8)

7.1. MODEL IN A VISUAL DESCRIPTION 95

• (middle, UbiTV)
if ((5.5 ≤ secondrealA(x3) < 10.0) ∧ (firstrealA(x3) ≤ 8.0))
∨((5.5 ≤ secondrealA(x4) < 10.0) ∧ (firstrealA(x4) ≤ 8.0))

• (bathroom, UbiTV)
if ((5.5 ≤ secondrealA(x3) < 10.0) ∧ (firstrealA(x3) > 8.0))
∨((5.5 ≤ secondrealA(x4) < 10.0) ∧ (firstrealA(x4) > 8.0))

• (nothing, UbiTV)
else

The operation returns a tuple containing the resulting position data ∈ {north, south,middle, bathroom,
nothing} as first component and the topic UbiTV as second component. This tuple will be assigned to
the place DatatoSend : DataToSend.
Hence, the requirement rindoor3 is met.

rindoor4 : The tuple assigned to DatatoSend will be taken and extended to a global format in firing the
transition send data and set to the place DataO : OutputData. This data is able to be processed by the
message broker on System Level.
Consequently, the requirement rindoor4 is fulfilled.

rindoor5 : The Indoor-Positioning-System is modeled as sender, thus the requirement rindoor5 is met.
To summarise, all requirements set up in section 4.2.2.8 are fulfilled by the model of the Indoor-

Positioning-System.

7.1.2.11.2 Indoor-Positioning-System in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

Figure 7.16: Net indoorPositioningSystemoffline

96 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.11.3 Indoor-Positioning-System in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

Figure 7.17: Net indoorPositioningSystemonline

7.1.2.12 Location-Based Screen

The Location-Based Screen is introduced in section 2.2.2.7. In the following the visual modelling of the
Location-Based Screen will be presented.

The component representing the Location-Based Screen is modeled as receiving device, therefore the
template for a receiving device is expanded by a part which is responsible for processing the received data
belonging to the topic UbiTV and sending a corresponding activation signal to both television sets being a
part of this device. Each television set is represented by a place TV1 : TV State resp. TV2 : TV State. TV1

represents the television set which is located in the lounge area and TV2 the TV set in the sleeping area.
The tokens assigned to these places show the current state of the corresponding television set. The device
states can be composed as shown in the table 7.1. Consequently two dimensions describing the device
state are available: on/off is a state which will be set by the user in applying an AHOI transformation
rule (see 7.1.4.6.1), and the activation state which will be set by this Location-Based Screen device. The
on/off state shows if all television sets are switched on or off by the user, this state has the priority. The
activation state describes which TV set in the Living Place should show the current tv program, if the
user has switched the TV sets on. Consequently, only one TV set is activated, while all TV sets always
have the same on/off state and the user is only able to switch all TV sets on or off at the same time.
To infer the right state, the device has to be in online mode. Then, the data token will be fetched from
Datareceived and evaluated in applying the operation analyseUbiTV data. This operation checks the
received information and determines which TV set should be activated or deactivated. The decision is
made as follows:

• If firstdataReceived(dr) = north then activate TV1 because the inhabitant is in the lounge area and
deactivate TV2.

• If firstdataReceived(dr) = south then activate TV2 because the inhabitant is in the sleeping area
and deactivate TV1.

• If firstdataReceived(dr) = middle then deactivate both TV sets, because the inhabitant is out of
sight of both TV sets.

• If none of the previous conditions hold, then deactivate both TV sets, because the inhabitant is
either in the bathroom or has left the apartment.

7.1. MODEL IN A VISUAL DESCRIPTION 97

According to this decision, the activation state will be changed in firing the transitions change status of
TV1 and change status of TV2. The operation isActiveToken(x) = tt forces the transition to remove
the token representing the activation state from the place TV1 resp. TV2, in order to assign a new token
to the place representing the activation state. The token showing the on/off state stays untouched.

On/Off State Activation State What is the meaning?

on activate The television set shows the current tv program.
on deactivate The screen of the television set is switched off.

The sound of the current tv program can be heard.
off activate The television set is switched off. Nothing shown and heard.
off deactivate The television set is switched off. Nothing shown and heard.

Table 7.1: Possible states of a television set in the model of the Location-Based Screen

7.1.2.12.1 Location-Based Screen in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

analyse UbiTV data

isUbiTV Data(
seconddataReceived(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2t3

t4

off

inactive

off

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

u
UbiTV

a
Alarm

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = alarm1

firstdataReceived
(dr) = alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr
alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

Figure 7.18: Net locationBasedScreenoffline

98 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.12.2 Location-Based Screen in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse UbiTV data

isUbiTV Data(
seconddataReceived(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2t3

t4

off

inactive

off

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

u
UbiTV

a
Alarm

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)) = alarm1

firstdataReceived
(dr) = alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr
alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

Figure 7.19: Net locationBasedScreenonline

7.1. MODEL IN A VISUAL DESCRIPTION 99

7.1.2.12.3 Revisiting the Requirements Towards the Model of the Location-Based Screen

In section 4.2.2.11 requirements are set up, which should be fulfilled by the model of the Location-
Based Screen. The following section revises those requirements.

rscreen1 : Each place TV1 : TV State and TV2 : TV State represent one of both TV sets in the Living
Place apartment. TV1 represents the TV set in the lounge area, whereas TV2 stands for the TV set in
the sleeping area.
Thus, the requirement rscreen1

is met.

rscreen2 : The tokens UbiTV and Alarm initially assigned to the place UnsubscribedTopics : Topic
represent both topics to which the Location-Based Screen is able to subscribe resp. unsubscribe. In firing
the transitions subscribe topic resp. unsubscribe topic, the object net is able to initiate the subscription
resp. unsubscription of a topic. Consequently, the requirement rscreen2

is met.

rscreen3 : After subscribing to both topics, the object net locationBasedScreenonline is able to receive
data regarding both topics. The transition analyse UbiTV data collects all data token belonging to the
topic UbiTV and processes them.
The transition analyse alarm data fires, when a token belonging to the topic Alarm is assigned to the
place Datareceived : DataReceived. Then, it is able to process this token.
The processing of different data belonging to different topics is done seperately, thus the requirement
rscreen3

is fulfilled.

rscreen4 : The transition analyse alarm data is able to fire if a token of the topic Alarm is available on
the place Datareceived : DataReceived and processes this token with the help of the transition conditions
as follows:

• isAlarmData(seconddataReceived(dr)) = tt
This condition checks for tokens belonging to the topic Alarm.

• firstdataReceived(dr)) = alarm1 and firstdataReceived(dr) = alarm2

Both conditions evaluates the first component of the token which is a triple. This token will be casted
to the correct type : Data and assigned to the places AlarmTV1 : Data resp. AlarmTV2 : Data.
Afterwards either the transition switch on TVi or is on TVi is able to fire. They are inverse to
each other in order to either replace the token off assigned to the place TVi or replace the token
on (i ∈ {1, 2}).

Because of the model of the Location-Based Screen evaluates the on/off state for each TV set identical,
they are always switched on at the same time, resp. switched off at the same time.
Hence, the requirement rscreen4 is fulfilled.

rscreen5 : The transition condition analyseUbiTV data(firstdataReceived(dr)) = (r1, r2) evaluates the
data according to the following conditions (as presented in the formal description of this operation in
11.1):

• (active, inactive)
if x = north

• (inactive, active)
if x = south

• (inactive, inactive)
if x = middle

• (inactive, inactive)
else

The resulting tuple describes the new activation state, which will be assigned for each TV state. In
firing the transitions change status of TVi (i ∈ {1, 2}) and checking the internal transition conditions
isActiveToken(x) = tt, which is responsible that only the token with active or inactive will be used, the
activation state is able to be changed for each TV set.
As a result, the requirement rscreen5

is fulfilled.

100 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

rscreen6 : In table 7.1, the possible states of both TV sets, which are regarded in the model of the
Location-Based Screen, is illustrated. The states are assigned as tokens to the places TV1 : TV State and
TV2 : TV State, and follow the rules given in this table.
Hence, the model fulfils the requirement rscreen6 .

rscreen7 : The model of the Location-Based Screen is a receiver, therefore the requirement rscreen7 is
met.

rscreen8 : The inverse AHOI rules SwitchOffDisplayuser and SwitchOnDisplayuser are provided by
the model of Living Place system to enable the inhabitant to switch off resp. on both TV sets in the
apartment. Additionally, each AHOI rule has a corresponding AHLI rule ruleSwitchOffDisplaydisplay
resp. ruleSwitchOnDisplaydisplay presented in section 7.1.3.5.7. The AHOI rules are illustrated in ex-
plicit in 7.1.4.10.
As a result, the requirement rscreen8 is fulfilled.

To summarise, the model of the Location-Based Screen fulfils all requirements set up in section
4.2.2.11.

7.1.2.13 Ambient Light

The Living Place project will be equipped with an Ambient Light, which will be presented in the following
and has the following states:

• bright: Which means, the light is switched on and will shine bright, which is the default mode of
the lamp.

• dimmed: The light is switched on in deimmed mode. This happens when the Alarm Clock 2.0
signals, that the user should be woken up. Then the Ambient Light will be switched on by the
Living Place system in dimmed mode.

• off : The light is switched off.

The model of the light is described by a receiving device, whose individual part represents the state,
if the associated lamp in the apartment is turned on resp. turned off. The receiving device is subscribed
to the topic Light, therefore it receives all messages sent to this topic. An example for an information
belonging to this topic is: (bright, Light, 123) or (off, Light, 861). After receiving messages, the device
interpretes the message in firing the transition analyse data and change light and executing the operation
analyseLightData(dr) = l1. This means, the message contains a triple representing the data and the
operation takes the first element of the triple and checks its state. Afterwards this state will be assigned
as token to the place Light : LightState representing a certain lamp with its own state (lamp is switched
on or lamp is turned off). Additionally, if the topic of the incoming message is Alarm, the token dimmed
will be returned in order to change the state of the light into dimmed mode, when an alarm is provoked
within the Living Place system.
Only one token is able to be assigned to the place Light at one time, because the token assigned to this
place will be swaped with the new one generated by the operation analyseLightData.
Initially the light is switched off which is Displayed in assigning the token off to the place Light :
LightState.

The visual models of the device nets lightoffline and lightonline are illustrated in figure 7.20 and figure
7.21.

7.1.2.13.1 Revisiting the Requirements Towards the Model of the Ambient Light

In this section, the requirements set up for the model of the Ambient Light will be revised regarding
the fulfilment of each requirement by the object net lightonline (resp. lightoffline for the Ambient Light
device in offline mode. For processing messages, the device needs to be in online mode).

7.1. MODEL IN A VISUAL DESCRIPTION 101

rlight1 : One token is assigned to the place Light : LightState. Both, the place and the token assigned
to it, represent the light in the Living Place apartment. The token signals the current state of the light.
The following states of the light are possible:

• off : The light is switched off.

• bright : The light is switched on and shines brightly.

• dimmed : The light is switched on, but it is dimmed.

Because the model contains the representation of the current status of the light, the requirement rlight1
is fulfilled.

rlight2 : Initially, the tokens Light and Alarm are assigned to the place UnsubscribedTopics : Topic
representing the topics, to which the Ambient Light is able to get subscribed resp. unsubscribed.
Hence, the requirement rlight2 is met.

rlight3 : The transition analyse data and change light checks its transition condition when firing. The
condition analyseLightData(dr) = l1 is evaluated according to the following conditions (see 11.1:

• dimmed
if seconddataReceivedA(x) = Alarm

• firstdataReceivedA(x)
else

That means, every data belonging to the topic Alarm ensures that the light is switched on in dimmed
mode. If a token belonging to the topic Light is received, it sets the state of the light according to the
first component in this data triple.
The conditions set up by the requirement rlight3 are modelled, thus this requirement is fulfilled.

rlight4 : The object net representing the Ambient Light is modelled as a receiver. Therefore, the
requirement rlight4 is met.

rlight5 : The Living Place system provides the AHOI rules SwitchOffLightuser,bright, SwitchOff−
Lightuser,dimmed and SwitchOnLightuser in order to enable the inhabitant to change the state of the
Ambient Light. Each AHOI rule has a corresponding AHLI rule ruleSwitchOffLight,bright, ruleSwitch−
OffLight,dimmed resp. ruleSwitchOnLight in order to transform the object net lightonline. The AHOI
rules are presented in 7.1.4.11, the corresponding AHLI rules in 7.79, 7.80 and 7.1.3.5.9.
Because of the availability of these AHOI and AHLI rules, the requirement rlight5 is fulfilled.

Finally, all requirements set for the model of the Ambient Light are fulfilled by the model.

102 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.13.2 Ambient Light in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

Figure 7.20: Net lightoffline

7.1.2.13.3 Ambient Light in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

Figure 7.21: Net lightonline

7.1. MODEL IN A VISUAL DESCRIPTION 103

7.1.2.14 Weather Information System

The Weather Information System in the Living Place system will be modelled as a sending device which
generates weather data from a given set of weather data. The given set of weather data WeatherData
is defined in the ΣOL-algebra AOL of the Object Level (see 11.1). Currently it contains:

• sun,

• rain,

• storm,

• snow,

• wind,

• hail

The weather data can be generated in firing the transition create weather data. Then, the varibale w
will be assigned with one element from the collection Weather. Additionally, a timestamp needs to be
given defining the beginning of this weather condition in assigning the variable t. Then, this specivic data
will be converted into the global type Data in evaluating the term weatherToData(t, w) and afterwards,
extended by the specific topic Weather. The resulting tuple matches the type DataToSend and will be
assigned as token to the place DatatoSend : DataToSend.

7.1.2.14.1 Revisiting the Requirements Towards the Model of the Weather Information
System

In 4.2.2.9 the requirements regarding the Weather Information System were presented. In this section,
each requirement will be revised regarding its fulfilment by the model of the device.

rweather1 : When firing the transition create weather data, the variable time representing the timestamp
of the begin of this weather and the variable w representing the type of weather forecast need to be
assigned with an element out of the corresponding carrier set. time : Timestamp and w : Weather. The
operation weatherToData(time,w) converts the input values to the general format : Data. Afterwards
the tuple containing the newly generated weather information and the topic Weather will be assigned to
the place DatatoSend : DataToSend. The currently available set of weather data is enumerated in last
section 7.1.2.14.
The firing of the transition simulates the getting of a new weather forecast and therefore represents the
receiving of data over the internet. Hence, the requirement rweather1 is met.

rweather2 : The resulting weather information generated after firing the transition create weather data,
is a tuple including the weather forecast and a timestamp referring to the begin of this event.
As a result, the requirement rweather2 is fulfilled.

rweather3 : In firing the transition send data, the device net extends the currently processed token
by the specific connection identfifcation of this device. Then, the resulting data will be set to the place
DataO : OutputData. It satisfies the general data format, therefore the token is now able to get processed
the Message Oriented Middleware.
Consequently, the requirement rweather3 will be fulfilled.

rweather4 : The Weather Information System is modeled as a sender, thus this requirement rweather4 is
fulfilled.

104 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.2.14.2 Weather Information System in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

create weather data

tuple(weatherToData(time,w), weather)

Figure 7.22: Net weatherinformationystemoffline

7.1.2.14.3 Weather Information System in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create weather data

tuple(weatherToData(time,w), weather)

Figure 7.23: Net weatherinformationystemonline

7.1.2.15 Traffic Service

Similar to the Weather Information System (see 7.1.2.14), the Traffic Servcie is a sending component
which generates data from the following set of traffic information, which are represented by elements of
the carrier set of the type TrafficData in the ΣOL-algebra AOL, see 11.1:

• jam,

• accident,

• free,

• roadwork

The traffic data will be produced in firing the transition create traffic data. The resulting data tuple
containing the timestamp describing the start of the event and a description of this traffic situation, will

7.1. MODEL IN A VISUAL DESCRIPTION 105

be converted to match the type DataToSend in applying the operation trafficToData. Afterwards,
the resulting data can be asssigned as token to the place DatatoSend from where the information will be
processed further to the message broker.

7.1.2.15.1 Traffic Service in Offline Mode

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

create traffic data

tuple(trafficToData(time, tr), traffic)

Figure 7.24: Net trafficServiceoffline

7.1.2.15.2 Traffic Service in Online Mode

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create traffic data

tuple(trafficToData(time, tr), traffic)

Figure 7.25: Net trafficServiceonline

7.1.2.15.3 Revisiting the Requirements Towards the Model of the Traffic Service

In 4.2.2.9 the requirements regarding the Traffic Service were presented. In this section, each require-
ment will be revised regarding its fulfilment by the model of the device. The requirements regarding
the Traffic Service are similar to the ones set up for the Weather Information System. Consequently the
fulfilment of each requirement is analog.

rtraffic1 : When firing the transition create traffic data, the variable time representing the timestamp
of the begin of this traffic situation and the variable tr representing the traffic situation need to be
assigned with an element out of the corresponding carrier set. time : Timestamp and tr : Traffic. The

106 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

operation trafficToData(t, w) converts the input values to the general format : Data. Afterwards the
tuple containing the newly generated traffic information and the topic Traffic will be assigned to the
place DatatoSend : DataToSend. The currently available set of traffic data is enumerated in last section
7.1.2.15.
The firing of the transition simulates the getting of a new traffic forecast and therefore represents the
receiving of data over the internet. Hence, the requirement rtraffic1 is met.

rtraffic2 : The resulting traffic information generated after firing the transition create traffic data is a
tuple including the traffic forecast and a timestamp referring to the begin of this event.
As a result, the requirement rtraffic2 is fulfilled.

rtraffic3 : In firing the transition send data, the device net extends the currently processed token by
the specific connection identfifcation of this device. Then, the resulting data will be set to the place
DataO : OutputData. It satisfies the general data format, therefore the token is now able to get processed
by the Message Oriented Middleware.
Consequently, the requirement rtraffic3 will be fulfilled.

rtraffic4 : The Traffic Service is modeled as a sender, thus this requirement rtraffic4 is fulfilled.

7.1.2.16 Revisiting the Requirement Towards all Devices

The requirement rubio3
is demanded to the models of all devices (see 4.1.2). In this section, it will be

revised regarding its fulfilment by all models presented in this section 7.1.2. This requirement states,
that the prevailing context of the Living Place will be taken into account by the communicating devices
within their processing steps.

rubio3 : Each model of a device presented in this section is able to process the prevailing context in
a different manner, but each device reacts on the current context resp. on the change of the context.
Consequently, the requirement rubio3 is satisfied by the models of all devices.

7.1.3 System Level

In the following considerations of this chapter, the models of the System Level are defined as AHOIAHLI
nets5, i.e. the model of the internal system behaviour of the Message Oriented Middleware consisting of
the model of the internal system behaviour of the Message Broker, Context Interpreter as well as
Persistence Layer.

Additionally, the System Level contains a model of the internal system behaviour of the so called
User Operation Processing Unit that is defined within this chapter.

Figure 7.26 represents the overall model of the System Level in initial mode as one huge AHOIAHLI
net containing all these mentioned models of internal system behaviours that are contained in the System
Level, so that figure 7.26 gives an overview of all those models that are presented in detail in the coming
sections of this chapter.

Section 7.1.3.1 deals with the model of the internal system behaviour of the Message Broker, in sec-
tion 7.53 the model of the internal system behaviour of the Context Interpreter is defined, section 7.1.3.3
introduces the model of the internal system behaviour of the Persistence Layer and in section 7.1.3.2 the
model of the internal system behaviour of the User Operation Processing Unit is elaborated.

5For the definition of AHOIAHLI nets see section 6.3.

7.1. MODEL IN A VISUAL DESCRIPTION 107

User Operation
Processing Unit

Context Interpreter

Message Broker

Persistence
Layer

Offline
Devices
: AHLINetsOFFD

fire offline devices

t : Transitions
enabled(fOFFD(nOFFD), t) = tt

nOFFD

tOFFD(fire(
fOFFD(nOFFD), t))

Online
Devices
: AHLINetsOND

fire online devices

t : Transitions
enabled(fOND(nOND), t) = tt

tOND(fire(
fOND(nOND), t))

nOND

Receive
Data
Rules
: RulesR

set device online

m : Mor

cod(m) = fOFFD(nOFFD)
.
∪S n1

applicable(r,m) = tt

transform(r,m) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt
nOFFD

tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

SetSenderOnline
rro

SetReceiverOnline

rto

SetTransceiverOnline

ConnectionID
Counter : AHLINets

n1

n2
c counter

Data
Buffer

Repository
: AHLINets

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(fR(rR),m) = tt

transform(fR(rR),m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND
tOND(n1) n2

rR

copy data to queues
and to context interpreter

m : Mor

cod(m) = n
.
∪S fQ(nQ)

createRule(s, n
.
∪S fQ(nQ)) = r

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fQ(nQ), n1) = tt

Queues
: AHLI
NetsQ

q1

∅

CopyData
Schemes
: ISchemes

scd

n

nQ tQ(n1)

s copyData

ContextInterpreter
Queue : AHLINets

n

Send
Data
Rules
: Rules

rsd

sendData

send data to device

m : Mor

cod(m) = fOND(nOND)
.
∪S fQ(nQ)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

tQ(n2)

nQ

r

ask device to go offline

m : Mor

cod(m) = fOND(nOND)
.
∪S n

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Unplug
ConnectionIDs
: AHLINets

nOND

n

tOND(n1)

AskDevice
ToGoOffline
Rules
: Rules

r

subscribe topic

m : Mor

cod(m) = fOND(nOND)
.
∪S fQ(nQ)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

nQ

tQ(n1)

Subscribe
TopicRules
: Rules

rst rsubscribeTopic

unsubscribe topic

m : Mor

cod(m) = fOND(nOND)
.
∪S fQ(n)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

n

tQ(n1)

UnsubscribeTopicRules
: Rules

rut

r

unsubscribeTopic

clear input data

m : Mor
cod(m) = fOND(nOND)
createRule(s, fOND(nOND)) = r
applicable(r,m) = tt
transform(r,m) = n

ClearInputDataSchemes
: ISchemes

scd

tOND(n)

nOND

s

ClearInputData

set device offline

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

tOFFD(n)

nOND

rR

SetDevice
OfflineRules
: Rules

r

rso

SetSenderOffline
rro

SetReceiverOffline

rto

SetTransceiverOffline

throw an exception resp. crash

m : Mor

cod(m) = fQ(nQ)
.
∪S fOND(nOND)

createRule(s, fQ(nQ)
.
∪S fOND(nOND)) = r

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fQ(nQ), n1) = tt

nOND

nQ

tQ(n1)

HandleCrash
Schemes
: ISchemes

s

shc

handleCrash

get new data

m : Mor

cod(m) = n1

.
∪S n2

applicable(r,m) = tt
transform(r,m) = n

DataToInferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S n2

applicable(r,m) = tt
transform(r,m) = n1

Context
Repository
Rules
: Rules

TransformRules
: Rules

n1

n n

r

n1

r

T imer
: AHLINets

n2

set time

n2
n1

t

timer
n2

conjunction of data

n1 ⊕ n2

n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

Store
Data
Rules
: Rules

rsd storeData

rrd

removeData

Persistent
Data
: AHLINetsPer

dbdatabase

store data in persistence layer
or remove data

m : Mor

cod(m) = fOND(nOND)
.
∪S fPer(nPer)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND tOND(n1)

nPer
tPer(n2)

r

receive request from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Requests
: AHLINetsRq

nOND
tOND(n1)

tRq(n2)

ReceiveRequest
FromDevice

Rules
: Rules

r

rrr

receiveRequestFromDevice

create answer to request
and send it to queue

m : Mor

cod(m) = fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)

createRule(s, fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)) = r

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fQ(nQ), n1) = tt

CreateAnswer
ToRequest
Schemes
: ISchemes

sca

nQ
tQ(n1)

nRq

tPer(n2)

nPer

s

createAnswerToRequest

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

Figure 7.26: Overall Model of the System Level in Initial Mode as AHOIAHLI Net

108 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.1 Message Broker

The message broker is the central component of the Message Oriented Middleware. It organises the
connecting resp. disconnecting of all devices, it handles the process of subscribing resp. unsubscribing of
topics for each device. But its main task is to contol the communication within the Living Place system,
since it receives all messages sent by sending devices, processes them in checking the corresponding topic
and copies and distributes the message to all receiving devices which are subscribed to the specific topic.
Consequently, the message broker provides and handles an indirect connection between all devices in
online mode connected with the Living Place system.
The message broker is introduced in detail in section 2.2.1.3.

7.1.3.1.1 Subnets For Fire Transitions

The transitions fire offline devices and fire online devices enable the object net assigned as tokens to
the places OfflineDevices : AHLINetsOFFD resp. OnlineDevices : AHLINetsOND to fire the therein
defined transitions.6

Consider, that some transitions within the object nets are able to fire in parallel, for that there are
several more fire transitions defined regarding to the places OfflineDevices resp. OnlineDevices, which
enables the parallel firing of transitions of the object nets. These fire transitions are omitted in the vi-
sual presentation, however are implicitly formally defined, due to a better overview. An example for a
transition which enables the parallel firing of two transitions within an object net assigned as token to
OnlineDevices is given in image 7.28.

Offline
Devices
: AHLINetsOFFD

fire offline devices

t : Transitions
enabled(fOFFD(nOFFD), t) = tt

nOFFD
tOFFD(fire(

fOFFD(nOFFD), t))

Online
Devices
: AHLINetsOND

fire online devices

t : Transitions
enabled(fOND(nOND), t) = tt

tOND(fire(
fOND(nOND), t))

nOND

Figure 7.27: Fire Transitions in System Level

Online
Devices
: AHLINetsOND

fire online devices

t1, t2 : Transitions
enabled(fOND(nOND), t1) = tt
enabled(fOND(nOND), t2) = tt

(tOND(fire(
fire(fOND(

nOND), t1), t2))

nOND

Figure 7.28: Fire Transition Enabling a Parallel Firing of Two Transitions in an Object Net

7.1.3.1.2 Subnet for Setting Devices Online

If a device wants to be set into online mode, a token askOnline is assigned to the place Status :
DeviceStatus within the device net. Only the message broker is able to set the device into online mode.
For that the message broker contains two placesOfflineDevices : AHLINetsOFFD andOnlineDevices :
AHLINetsOND. Both places contain device nets as tokens. OfflineDevices contains all devices which

6Compare to [HEM05].

7.1. MODEL IN A VISUAL DESCRIPTION 109

are in offline mode, that means their whole net contains one of the template nets which are described
in sections 7.1.2.3, 7.1.2.1 and 7.1.2.2. Additionally the status of the device net will be set to offline or
askOnline in assigning the corresponding token to the place Status : DeviceStatus. Furthermore when
setting a device into online mode, the message broker creates a new connection identification number and
assigns a token with this number to the place connectionid : ConnectionID within the device net.
In contrast, the place OnlineDevices in the message broker contains all online devices which will use one
of the templates of an online device as presented in sections 7.1.2.6, 7.1.2.4 and 7.1.2.5. Their internal
status is set to online (resp. askOffline). Initially no online resp. offline device is available.
For setting a device online, whose net is assigned as a token to the place OfflineDevices : AHLINetsOFFD,
the message broker applies one of the three rules which are set as tokens to the place SetOnline :
Rules in firing the transition set device online. Each rule sets a certain type of device into online
mode: SetTransceiverOnline sets a transceiver into online mode, SetReceiverOnline a receiver and
SetSenderOnline a sender. All three rules excludes each other, so that no conflicts are able to occur in
applying the wrong rule to a device.
The transition takes a token from the place OfflineDevices, applies a rule to the token and puts the
transformed token to the place OnlineDevices and additionally puts a predefined token receiveData
to the place ReceiveDateRules : RulesR. In addition, in setting a device into online mode, its net
gets an individual connection identification which will be assigned as token to the place connectionid :
ConnectionID within the device net. The global counter, which represents an unique connection identifi-
cation for each device, is provided by the net counter which is assigned to the place ConnectionIDCounter :
AHLINets. Everytime a device is set into online mode, it gets the number which is stored within this net
by assigning the token id to Counter : ConnectionIDmessageBroker in setting a token with this number
to the place connectionid within the device net. After that the global counter is increased by one so that
each device gets another connection identification. The rule receiveData is shown in figure 7.33.

If a place is painted as dashed, it means, that more elements are connected with this place as illus-
trated in the current subnet.

Offline
Devices
: AHLINetsOFFD

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

set device online

m : Mor

cod(m) = fOFFD(nOFFD)
.
∪S n1

applicable(r,m) = tt

transform(r,m) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt

nOFFD tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

SetSenderOnline
rro

SetReceiverOnline

rto

SetTransceiverOnline
ConnectionID
Counter : AHLINets

n1

n2
c counter

Net
counter

Counter :
ConnectionID
messageBroker

id

1

Figure 7.29: Subnet setDeviceOnlinemessageBroker

110 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Rule SetSenderOnline for Setting a Sender Into Online Mode

The rule SetSenderOnline sets a sender into online mode in adding all the missing places, transitions,
tokens and assigning a unique connection identification to the place ConnectionID. The NAC prevents
the rule to be applied to transceivers, therefore it only can be applied to a sender.

NACso Lso Kso Rso

l rn

Datareceived
: DataReceived

Status
: Device
Status

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

s1

askOnline

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

s1

askOnline

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Counter
: ConnectionID
messageBroker

Status
: Device
Status DatatoSend

: DataToSend
s1 s2

online online

send
data

DataO
: Output
Data

dsend
online : Sync

s

s5

sync

: ConnectionID

id

id′

i

Counter
: ConnectionIDmessageBroker

id

succ(i)

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Figure 7.30: Rule SetSenderOnline

7.1. MODEL IN A VISUAL DESCRIPTION 111

Rule SetTransceiverOnline for Setting a Transceiver Into Online Mode

The rule SetTransceiverOnline sets a transceiver online in adding all the missing places, transitions
and tokens. This rule can only be applied to tokens representing a transceiver in offline mode.

Lto Kto Rto

l r

Datareceived
: DataReceived

Status
: Device
Status

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

s1

askOnline

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

id

i

Datareceived
: DataReceived

Status
: Device
Status

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

Status
: Device
Status DatatoSend

: DataToSend
Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3 s4

onlineonline

online online

s5

online
receive
data

DataI
: Input
Data

din

drcv(din)online
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend
online : Sync

s

s5

sync

: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id′

i

Counter
: ConnectionIDmessageBroker

id

succ(i)

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Figure 7.31: Rule SetTransceiverOnline

112 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Rule SetReceiverOnline for Setting a Receiver Into Online Mode

In applying the rule SetReceiverOnline, a receiver will be set into online mode in adding all the missing
places, transitions and tokens. The NAC prevents the rule to be applied to transceivers, therefore it only
can be applied to a receiver.

NACro Lro Kro Rro

l rn

DatatoSend
: DataToSend

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1

askOnline

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1

askOnline

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

Status
: Device
StatusDatareceived

: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online online

s4

online

receive
data

DataI
: Input
Data

din

drcv(din) online
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

i

Counter
: ConnectionIDmessageBroker

id

succ(i)

Figure 7.32: Rule SetReceiverOnline

7.1.3.1.3 Subnet for Receiving Data From The Devices

Each sending device, i.e. transceiver and sender, is able to create new messages for the Message
Oriented Middleware. If a device wants to send a new message, a message token will be put on its place
DataO : OutputData. The token is a tuple with the following pieces of information:

• An information,

• the name of the topic where the new information belongs to and

• the own device id.

The message broker collects all tokens from the places DataO belonging to the device nets assigned
to the place OnlineDevices : AHLINetsOND of the message broker. In firing the transition receive data
from device the rule receive data will be applied to a device net from OnlineDevices and creates a new
net dataBuffer which consists of a place : GlobalData. Additionally it copies the message token from
DataO of the device net to : GlobalData of the new net. After applying the rule, both nets will be split
and the device will be put back to the place OnlineDevices and the new net will be sent to the place
DataBufferRepository : AHLINets.

7.1. MODEL IN A VISUAL DESCRIPTION 113

The place DataBufferRepository represents a temporary buffer containing all new messages waiting
for being processed by the message broker.

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

rrd

receiveData

Data
Buffer
Repository
: AHLINets

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(fR(rR),m) = tt

transform(fR(rR),m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND
tOND(n1) n2

rR

Lrd Krd Rrd

l r

DataO
: Output
Data

d

dout

DataO
: Output
Data

DataO
: Output
Data

: Global
Data

d

tgldata(dout)

Figure 7.33: Subnet receiveDataFromDevicemessageBroker

7.1.3.1.4 Subnet for Distribution of Data

c : ConnectionIDmessageBroker

Connect1id

id

123

g : GlobalData

g Connect2g

d1

(off,Alarm, 15)

d2

(on,Alarm, 16)

t : Topic

t

t1

Alarm

Figure 7.34: Example for a net on the place Queues

Because of the message broker distributing all incoming data to the devices connected to the whole
system, it should know which device is subscribed to which topics. This information is deposit in the
place Queues : AHLINetsQ. An example for a net which is situated on the place Queues is illustrated
in the image 7.34.
The token assigned to the place Queues can contain more disjoint subnets as described in 7.34. Each
subnet contains the information, which device is subscribed to which topic. Because of each subnet cre-
ating one connection between the device identification of the individual device and one topic, more than
one subnet can exist for each device.
Between the places : ConnectionIDmessageBroker and : Topic the place : GlobalData exist to which
current messages, which are adressed to the specific device and belong to the certain topic, are assigned.

After the message broker has received data from one or more connected devices in online mode, the
data will be copied from the temporary data buffer to the place ContextInterpreterQueue : AHLINets

114 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

which represents the input data queue of the context interpreter (see image 7.53. Furthermore, the in-
formation will be copied to each place : GlobalData which is connected to the suitable topic in the net
which is assigned to the place Queues.
When the transition copy data to queues and to database fires, the net from the place Queues, a to-
ken from the place DataBufferRepository : AHLINets will be transformed in applying the amalga-
mated rule generated out of the interaction scheme CopyData to the input nets. The output of the
transformation will be a modified queue net and a token with the new data which will be placed to
ContextInterpreterQueue.

The initial marking of this subnet is, that a token is assigned to the place Queues which initially
contains an empty net, which means that no device is subscribed to any topic. A token including the
interaction scheme copyData is assigned to the place CopyDataSchemes : ISchemes.

Data
Buffer
Repository
: AHLI
Nets

copy data to queues
and to context interpreter

m : Mor

cod(m) = n
.
∪S fQ(nQ)

createRule(s, n
.
∪S fQ(nQ)) = r

applicable(r,m) = tt

transform(r,m) = n2

.
∪S n3

isomorphicPTNET (fQ(nQ), n2) = tt

Queues
: AHLI
NetsQ

q1

∅

Copy
Data
Schemes
: ISchemes

scd

n

nQ tQ(n2)

s

copyData

Lcdkernel rule
Rcdkernel rule

Kernel
rule
−→

Lcdmulti rule
Rcdmulti rule

Multi
rule
−→

: Global
Data

d1

g

: Global
Data

d1

g

: Global
Data

d1

g
Connect2

: Topic

: Global
Data

t

g

t

topic(g)

: Global
Data

d1

g
Connect2

: Topic

: Global
Data

t

g

t

topic(g)

d2

g

Context
Interpreter
Queue
: AHLI
Nets

n

Figure 7.35: Subnet copyDataToQueuesAndToContextInterpretermessageBroker

7.1.3.1.5 Subnet for Sending Data to The Devices

After distributing data to the queues of each subscribed device, the message broker sends the data
to the device according to the net assigned as token to the place Queues : AHLINetsQ. The transition
send data to device takes a device from OnlineDevices : AHLINetsOND and the net from Queues and
applies the rule sendData to deploy new data to the device. The rule moves the data token which was
assigned to : GlobalData from the queue to the input data buffer of the device DataI : InputData.
Afterwards the modified device net is put back to its place OnlineDevices and the modified queue to its
corresponding place Queues.
In the initial marking, no online device is available.

7.1. MODEL IN A VISUAL DESCRIPTION 115

Online
Devices
: AHLI
NetsOND

Send
Data
Rules
: Rules

rsd

sendData

Queues
: AHLINetsQ

q1

∅

send data to device

m : Mor

cod(m) = fOND(nOND)
.
∪S fQ(nQ)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
nOND

tOND(n1)

tQ(n2)

nQ
r

Lsd Ksd Rsd

l r

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

d1

g

i2

i

: ConnectionID

i1

i

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

i2

i

: ConnectionID

i1

i

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

d1

tindata(g)

i2

i

: ConnectionID

i1

i

Figure 7.36: Subnet SendDataToDevicemessageBroker

7.1.3.1.6 Subnet for Preparing a Device to go Into Offline Mode

If a device should go into offline mode, it needs a token set to the place : Sync which is connected
to the transition ask device offline. Only afterwards the device is able to change its status from online
to askOffline because of the transition ask device offline is enabled and can be fired to set a token
askOffline to the place Status : DeviceStatus.
The message broker is able to assign a token sync to the correct place within the device net in ap-
plying a rule AskGoOfflinei (i ∈ {2, 4, 5}) to a device net which is assigned as token to the place
OnlineDevices. The user initiates the deactivation of the device in assigning a token to the place
UnplugConnectionIDs : AHLI in applying the AHOI rule UnplugDeviceuser,nConnectionID as described
in 7.82. An example of a token with the value 123 set to UnplugConnectionIDs is illustrated in the
following image. This means, the user wants the device with the connection identification 123 to be
unplugged.

: ConnectionIDmessageBroker

i123

Figure 7.37: Example for the Object Net nConnectionIDid With id = 123

Afterwards the transition ask device to go offline is enabled (see figure 7.38, if a token is assigned
to the place OnlineDevices and a rule AskGoOfflinei can be applied if the connection identifica-
tion mentioned within the token in UnplugConnectionIDs is also available in one net assigned as to-

116 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

ken to OnlineDevices. The rule AskGoOfflinei sets the necessary token sync to the according place
within the device net. After performing this task, the modified device net will be put back to the place
OnlineDevices, but the token taken from UnplugConnectionIDs will be deleted.
The initial marking of this subnet is empty, except from the rule AskGoOfflinei assigned as token to
the place AskDeviceToGoOffline : Rules.

Online
Devices
: AHLINetsOND

ask device to go offline

m : Mor

cod(m) = fOND(nOND)
.
∪S n

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Unplug
ConnectionIDs
: AHLINets

nOND

n

tOND(n1)

AskDevice
ToGoOffline
Rules
: Rules

r

rg2 AskGoOffline2

rg3

AskGoOffline3

rg4

AskGoOffline4

Figure 7.38: Subnet AskDeviceToGoOfflinemessageBroker

The following image illustrates the rules AskGoOffline2 for setting a sender into offline mode,
AskGoOffline4 for setting a receiver into offline mode and AskGoOffline5 for setting a transceiver
into offline mode, where the value of x is to be set to x ∈ {2, 4, 5} depending on the rule used.

Lgo Kgo Rgo

l r

Status
: Device
Status

ask
device offline

: Sync

s

x · online
askOffline

: ConnectionID

id

id

: ConnectionID
messageBroker

id

id

Status
: Device
Status

ask
device offline

: Sync

s

x · online
askOffline

: ConnectionID

id

id

: ConnectionID
messageBroker

id

id

Status
: Device
Status

ask
device offline

: Sync

s

x · online
askOffline

: ConnectionID

id

id

s2

sync
: ConnectionID
messageBroker

id

id

Figure 7.39: Rule AskGoOfflinex

7.1. MODEL IN A VISUAL DESCRIPTION 117

7.1.3.1.7 Subnet for Subscribing a Device to a Topic

If a device wants to subscribe itself to a topic, within its device net, it needs a token set to Unsub-
scribedTopics : Topic and to : Sync so that it is able to fire the transition subscribe topic. The topics
assigned as tokens to UnsubscribedTopics are available regarding the needs of the individual device which
is represented by this net.
It the transition subscribe topic is able to fire, it moves a token from UnsubscribedTopics to TopicsTo-
Subscribe.

Subsequently, the message broker executes the process of subscribing a device to a certain topic in
adding a new subnet to the net assigned as token to the place Queues : AHLINetsQ. This can be done
in applying the rule rSubscribe to a token from OnlineDevices and the token from Queues : AHLI
while firing the transition subscribe topic. As a result, a new subnet as part of all queues is created.
Additionally the token representing the topic is moved from TopicsToSubscribe to SubscribedTopics
within the device net. The modified device net resp. the extended queue net are put back to its former
places.

OnlineDevices
: AHLINetsOND

subscribe topic

m : Mor

cod(m) = x
.
∪S fQ(nQ)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQ

nQ

tQ(n1)

SubscribeTopicRules
: Rules

rst

r

subscribeTopic

Lst Kst Rst

l r

TopicsToSubscribe
: TopictoSubscribe

t1

t1

SubscribedTopics
: Topicsubscribed

: ConnectionID

id

id

TopicsToSubscribe
: TopictoSubscribe

SubscribedTopics
: Topicsubscribed

: ConnectionID

id

id

TopicsToSubscribe
: TopictoSubscribe

SubscribedTopics
: Topicsubscribed

t1

t1

: ConnectionID

id

id

: ConnectionID
messageBroker

Connect1id

id

id

: GlobalData

g Connect2g

: Topic

t

t1

t1

Figure 7.40: Subnet SubscribeTopicmessageBroker

7.1.3.1.8 Subnet for Unsubscribing a Device from a Topic

Unsubscribing a device from a specified topic is the reverse process to subscribing a topic as described
in the last section 7.1.3.1.7 and therefore it is similar, too.
Within the device net a subscribed topic is moved to the place TopicsToUnsubscribe : TopictoUnsubscribe
in firing the transition unsubscribe topic. Next, the message broker applies the rule rUnsubscribe to
the device net and to the token assigned to the place Queues : AHLINetsQ. The result is a modified
device net which is put back to its place OnlineDevices : AHLINetsOND. Within the device net the
topic token is moved from TopicsToUnsubscribe : TopictoUnsubscribe to UnsubscribedTopics : Topic.
Furthermore the subnet representing the device being subscribed to a specified topic is deleted from the
queue net which will be put back to the place Queues : AHLINetsQ.

118 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

OnlineDevices
: AHLINetsOND

unsubscribe topic

m : Mor

cod(m) = fOND(nOND)
.
∪S fQ(nQ)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQ

nQ

tQ(n1)

UnsubscribeTopicRules
: Rules

rut

r

unsubscribeTopic

Lut Kut Rut

l r

TopicsToUnsubscribe
: TopictoUnsubscribe

t1

t1

UnsubscribedTopics
: Topic

: ConnectionID

id

id

: ConnectionID
messageBroker

Connect1id

id

id

: GlobalData

g Connect2g

: Topic

t

t1

t1

UnsubscribedTopics
: Topic

TopicsToUnsubscribe
: TopictoUnsubscribe

: ConnectionID

id

id

UnsubscribedTopics
: Topic

t1

t1

TopicsToUnsubscribe
: TopictoUnsubscribe

: ConnectionID

id

id

Figure 7.41: Subnet UnSubscribeTopicmessageBroker

7.1.3.1.9 Subnet for Setting a Device Offline

If a device net sets a token askOffline to the place Status : DeviceStatus, it signals a request
of going into offline mode to the message broker. But all messages should be processed before the
device is able to go into offline mode. In the model shown in the images 7.42 and 7.43 all messages
which are currently located on the input buffer of the device DataI : InputData will be deleted in
applying the amalgamated rule generated out of the interaction scheme ClearInputData first. The
transition clear input data takes a device net token, deletes all tokens within the device net which are
assigned to the place DataI . The amalgamated rule generated out of the interaction scheme as pre-
sented in figure 7.42 deletes all tokens on DataI in one step. (A rule which can be applied several times
deleting one token after another is also conceivable. Such a rule will correspond to the second part

(Lcdmultirule

lmulti←−−−− Kcdmultirule

rmulti−−−−→ Rcdmultirule
) of the interaction scheme ClearInputData.

Only if no token is set to the place DataI , the device can be set to offline mode. To change the device sta-
tus the transition set device offline needs to be fired in order to apply one of the rules assigned to the place
SetDeviceOfflineRules : Rules. Each of the three rules SetReceiverOffline, SetTransceiverOffline
and SetSenderOffline sets one type of device into offline mode in deleting places, transitions and tokens
from the device net as shown in figures 7.45, 7.44 and 7.46.
After firing the transition set device offline, a token receiveData is deleted from the place Receive-
DataRules : RulesR and the modified device net is transferred from OnlineDevices : AHLINetsOND to
OfflineDevices : AHLINetsOFFD. The rule receiveData which is represented by a token is illustrated in
image 7.33.

7.1. MODEL IN A VISUAL DESCRIPTION 119

Online
Devices
: AHLI
NetsOND

clear input data

m : Mor
cod(m) = fOND(nOND)
createRule(s, fOND(nOND)) = r
applicable(r,m) = tt
transform(r,m) = n

ClearInputDataSchemes
: ISchemes

scd

tOND(n) nOND

s

ClearInputData

Lcdkernelrule
Kcdkernelrule

Rcdkernelrule

lkernel rkernel

Lcdmultirule
Kcdmultirule

Rcdmultirule

lmulti rmulti

DataI
: Input
Data

Status
: Device
Status

s1

askOffline

DataI
: Input
Data

Status
: Device
Status

s1

askOffline

DataI
: Input
Data

Status
: Device
Status

s1

askOffline

DataI
: Input
Data

x

x

Status
: Device
Status

s1

askOffline

DataI
: Input
Data

Status
: Device
Status

s1

askOffline

DataI
: Input
Data

Status
: Device
Status

s1

askOffline

Figure 7.42: Subnet ClearInputDatamessageBroker with interaction scheme ClearInputData

Online
Devices
: AHLINetsOND

Offline
Devices
: AHLINetsOFFD

Receive
Data
Rules
: RulesR

set device offline

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

tOFFD(n)nOND

rR

SetDevice
OfflineRules
: Rules r

rso

SetSenderOffline
rro

SetReceiverOffline

rto

SetTransceiverOffline

Figure 7.43: Subnet setDeviceOfflinemessageBroker

120 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Rule SetTransceiverOffline for Setting a Transceiver Into Offline Mode

The interaction scheme SetTransceiverOffline (see image 7.44) can be applied, if no token is as-
signed to the place DataI anymore. Then, many places, transitions and tokens will be deleted from
the net in order to stop the device and prevent any processing. Additonally, the device status is set to
offline, that means that the device is in offline mode.

Lto Kto Rto

l rStatus
: Device
Status DatatoSend

: DataToSend
Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3 s4

onlineaskOffline

online online

s5

online
receive
data

DataI
: Input
Data

din

drcv(din)online
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dend, id)

dsend
online : Sync

s

s5

sync

: ConnectionID
id

i
id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

TopicstoRequest
: TopictoRequest

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

s1

offline

TopicstoRequest
: TopictoRequest

Figure 7.44: Rule SetTransceiverOffline

Rule SetReceiverOffline for Setting a Receiver Into Offline Mode

The interaction scheme SetReceiverOffline (see image 7.45) changes the status of a receiver into offline
mode in assigning the token offline to the place Status : DeviceStatus. Additionally important places,
transitions and tokens for enabling the processing of messages are deleted. The rule calculated out of
this interaction scheme is only able to change receivers because of the NACro no match to a net which
contains the place DatatoSend : DataToSend can be found. Furthermore, this rule can only be applied if
no tokens are assigned to DataI : InputData.

7.1. MODEL IN A VISUAL DESCRIPTION 121

NACro Lro Kro Rro

l rn

DatatoSend
: DataToSend

Status
: Device
StatusDatareceived

: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

askOffline

online online

s4

online

receive
data

DataI
: Input
Data

din

drcv(din) online: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

: ConnectionID

id

i

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

Status
: Device
StatusDatareceived

: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

askOffline

online online

s4

online

receive
data

DataI
: Input
Data

din

drcv(din) online: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

: ConnectionID

id

i

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1

offline

TopicstoRequest
: TopictoRequest

Figure 7.45: Rule SetReceiverOffline

Rule SetSenderOffline for Setting a Sender in Offline Mode

The interaction scheme SetSenderOffline (see image 7.46) is similar to the interaction scheme to
SetReceiverOffline. It is applicable to sender nets which do not have any tokens assigned to the
place DataI : InputData. After execution, places, transitions and tokens are deleted from the sender net
and its device status is set to offline, which represents the offline mode.

NACso Lso Kso Rso

l rn

Datareceived
: DataReceived

Status
: Device
Status DatatoSend

: DataToSend
s1 s2

askOffline online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend
online : Sync

s

s5

sync

: ConnectionID

id

i

id

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Status
: Device
Status DatatoSend

: DataToSend
s1 s2

askOffline online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend
online : Sync

s

s5

sync

: ConnectionID

id

i

id

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

Status
: Device
Status

DatatoSend
: DataToSend

Status
: Device
Status

DatatoSend
: DataToSend

s1

offline

Figure 7.46: Rule SetSenderOffline

122 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.1.10 Subnet for Handling an Exception or Crash within the Message Broker

When an exception or crash of a certain device occurs, it will be handled in deleting the device and
its queues. The user needs to solve such a problem manually so that a defect device should not be kept
within the list of online devices, i.e. the problematic device net should not be kept as token assigned to
OnlineDevices : AHLINetsOND. To reassign the repaired device, the user needs to intervene in the
system in using the AHOI rule PluginDeviceuser (see 7.83).
To delete a defective device, the amalgamated rule generated out of the interaction scheme handleCrash
is applied. It deletes the device from the place OnlineDevices : AHLINetsOND and changes the net
from Queues : AHLINetsQ in deleting all subnets referring to the specific connection identification of
the device.

Online
Devices
: AHLINetsOND

Queues
: AHLINetsQ

throw an exception resp. crash

m : Mor

cod(m) = fQ(nQ)
.
∪S fOND(nOND)

createRule(s, fQ(nQ)
.
∪S fOND(nOND)) = r

applicable(r,m) = tt

transform(r,m) = n2

.
∪S n3

isomorphicPTNET (fQ(nQ), n2) = tt

nOND

nQ

tQ(n2)
HandleCrash
Schemes
: ISchemes

s

shc

handleCrash

Lhckernel rule
Khckernel rule

Rhckernel rule

lkernel rkernel

Lhcmulti rule
Khcmulti rule

Rhcmulti rule

lmulti rmulti

: ConnectionID

id

id

: ConnectionID

id

id

: ConnectionID

id

id

: ConnectionID

id

id

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: ConnectionID

id

id

: ConnectionID

id

id

Figure 7.47: Subnet exceptionRespCrashmessageBroker

7.1. MODEL IN A VISUAL DESCRIPTION 123

7.1.3.1.11 Revisiting the Requirements Towards the Message Broker

In section 4.2.3.1 the requirements set up for the message broker are presented. Furthermore, the
Living Place includes the characteristics of a ubiquitous computing system (see 2.1), from which new
requirements follow which are mentioned in 4.1. This section deals with the revision of these two kinds
of requirements regarding their fulfilment by the model of the message broker.

rmombroker1
: The model of the Living Place system provides user operations PluginDeviceuser,y (see

7.83) which enable the user to add a new device in offline mode to the Living Place system. This de-
vice is assigned as token to the place OfflineDevices : AHLINetsOFFD. To be set into online mode,
the device fires the transition ask device online in order to assign a token askOnline to its internal
place Status : DeviceStatus. Afterwards, the message broker is able to fire the transition set device
online and in this process is able to apply one of the rules setReceiverOnline, setSenderOnline or
setTransceiverOnline which corresponds to the type of the device (receiver, sender or transceiver) and
which transforms the device net in adding an individual connection id and adding the parts to enable the
processing of messages to the device net in order to switch the device into online mode. Furthermore,
the device net in online mode will be assigned as token to the place OnlineDevices : AHLINetsOND.
So, the requirement rmombroker1

is fulfilled.
The transition and its rules are illustrated in 7.29, 7.32, 7.30 and 7.31.

rmombroker2
: A device announces that it wants do get disconnected in assigning the token askOffline to

its place Status : DeviceStatus. Then, if messages are assigned as tokens to the place DataI : InputData
within the object net of the device, these tokens will be removed in firing the transition clear input data
and applying a rule generated out of the interaction scheme clearInputData (see 7.42). Therefore, the
requirement rmombroker2

is met.

rmombroker3
: After a device has announced, that it wants to go into offline mode and if no mes-

sages are assigned as tokens to DataI : InputData, the message broker is able to fire the transition set
device offline and in this process applies one of the rules setReceiverOffline, setSenderOffline or
setTransceiverOffline, see 7.43, 7.45, 7.46 and 7.44. For each type of device another rule is provided,
e.g. the rule setReceiverOffline sets a receiver into offline mode.
No match can be found, if tokens are assigned to SubscribedTopics : Topicsubscribed or to TopicsTo-
Subscribe : TopictoSubscribe, or to DataO : OutputData, or to DataP : DataForPersistenceLayer, or
to DataR : RequestData. These tokens have to be processed before the device can be set into offline
mode. Then, the part for processing will be removed from the object net of the device and the specific
connection id will be deleted. The device will be removed from OnlineDevices : AHLINetsOND and its
object net in offline mode will be assigned to OfflineDevices : AHLINetsOFFD.
Consequently, the reqirement rmombroker3

is fulfilled.

rmombroker4
: If a token representing a specific topic is assigned to TopicsToSubscribe : TopictoSubscribe

within a device net in online mode, the message broker is able to apply the rule subscribeTopic in firing
the transition subscribe topic (see 7.40). In doing so, the subnet assigned to Queues : AHLINetsQ will
be extended by a new structure representing the association between the given topic and the connection
id of the device. An example of such an association is given in image 7.34. This subnet standing for
an association also represents an internal data buffer for all messages which should be distributed to the
device.
In applying the rule subscribeTopic, the token assigned to TopicsToSubscribe will be removed and
assigned to SubscribedTopics : Topicsubscribed. Therefore a notification of a successful subscription will
be provided to the device.
This step satisfies the requirement rmombroker4

.

rmombroker5
: In order to announce that a topic should get unsubscribed by the message broker, the

device assigns the specifc topic to the place TopicsToUnsubscribe : TopicstoUnsubscribe. The message
broker unsubscribes the topic in applying the rule unsubscribeTopic in firing the transition unsubscribe
topic (see 7.41). Then, the subnet representing the association between topic and connection id of the
device will be removed from the object net assigned to Queues : AHLINetsQ. Additionally, the topic

124 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

assigned as token to TopicsToUnsubscribe will be removed and placed to UnsubscribedTopics : Topic
within the device net, so that the device is notified.
Consequently, the requirement rmombroker5

is fulfilled.

rmombroker5
: If a device crashs, the message broker is able to fire the transition throw an exception

resp. crash, which applies the amalgamated rule calculated out of the interaction scheme handleCrash
to the device assigned as token to OnlineDevices : AHLINetsOND. The rule removes the subnet
representing the association between topic and connection id of the device within the object net assigned
to Queues : AHLINetsQ. After firing the transition, the token representing the defective device, will be
deleted (see 7.47). Therefore the requirement rmombroker5

is fulfilled.

rmombroker7
: As presented in detail in section 7.1.2, each device contains a place DataO : OutputData

which represents the output data buffer for the message broker. When firing the transition receive data
from device and, in this process, applying one of the rules receiveData (see 7.33), the message assigned
as token to the place DataO within the object net of the device, will be collected and stored into a newly
created AHLI Net representing an internal data buffer of the message broker. This data buffer will be
assigned as token to the place DataBufferRepository : AHLINets. Hence, the requirement rmombroker7

is met.

rmombroker8(a)
: Every time the transition set device online fires, a new rule receiveData will be assigned

as token to the place ReceiveDataRules : RulesR. Consequently, for each device in online mode, a rule
is assigned to this place, e.g. if five devices are assigned to OnlineDevices : AHLINetsOND, then five
rules receiveData will be available. (When removing a device, one rule will be removed, too.) Therefore,
the transition receive data is able to fire in parallel for each device net assigned to OnlineDevices. So,
the requirement rmombroker8

is met.

rmombroker9
: After infering new 5W1H context data, the Context Interpreter puts this information as

token to the place DataBufferRepository : AHLINets, in order to distribute this information by the
message broker, which fires the transition copy data to queues and to context interpreter, first (see 7.35).
Additionally, the persistence layer assigns its answer to a request directly to the place : GlobalData
within the corresponding subnet within Queues : AHLINetsQ, which represents the correct association
between the topic of the request and the connection id of the requesting device.
In both cases, the final distributing of data will be done by the message broker which fires the transition
send data to device. Hence, this requirement rmombroker9

is met.

rmombroker10
: Because of the existence of the object net assigned to Queues : AHLINetsQ and the

possible modifications on this net provoked by the transitions subscribe topic, copy data to queues and to
context interpreter and send data to device, the requirement rmombroker10

is fulfilled.

rmombroker11
: Each disjoint subnet of the object net assigned to Queues : AHLINetsQ represents an

association between the connection id of a device and a topic. When distributing new messages to the
subscribed devices, the rule created out of the interaction scheme copyData will be applied when firing
the transition copy data to queues and to context interpreter. This rule copies the message to the place
: GlobalData of all disjount subnets, which include the specific topic of the message. Afterwards the
transition send data fires in order to remove the token assigned to : GlobalData and assign it to the place
DataI : InputData of the corresponding device net (the device net containing the same connection id).
That means, only devices subscribed to the specific topic will receive the message. All other devices do
not get this information. Consequently, the requirement rmombroker11

is satisfied.

rmombroker12
: After firing the transition copy data to queues and to context interpreter, the information

is copied and forwarded to the place ContextInterpreterQueue : AHLINets, which stands for the data
input buffer of the Context Interpreter (see 7.35). It follows, that the requirement rmombroker12

is met.

rmombroker13
: The corresponding AHLI transformation rules, that are defined as tokens within the

AHOIAHLI net of the Message Oriented Middleware are defined in a way, so that only the interface net
structure of each device resp. AHLI net token of place OnlineDevices resp. OfflineDevice is defined
within these rules so that only the interface of each device is known to the Middleware. Therefore, the

7.1. MODEL IN A VISUAL DESCRIPTION 125

Middleware completely abstracts from further implementation details of each communicating device. So,
requirement rmombroker13

is met.

rubio2 and rubis2 : The message broker collects data from all sending devices, processes them and
distributes them to corresponding receiving devices. Therefore the message broker enables the commu-
nication between devices. It controlls the internal states of the devices, e.g.: Should the message broker
subscribe a new topic for a device? Does a device request a switch into offline mode?, etc. and therefore
guarantees the communication between devices. Because of that, the requirements rubio2

and rubis2 are
met.

To summarise, all requirements (presented in 4.2.3.1 and the requirements rubio2 and rubis2 in 4.1)
demanded to the model of the message broker are fulfilled.

7.1.3.2 User Operation Processing Unit - Subnet for Entering User Data to The Corre-
sponding Online Device

In chapter 3 the levels of modelling are presented, which take place on three levels: object, system and
User Level. The inhabitant of the Living Place system is only able to interact with the system in applying
AHOI rules which will be presented in section 7.1.4. AHOI rules can be applied to the System Level in
order to change its behaviour, but no AHOI rule is directly able to change the Object Level, therefore, the
user is not able to change the state of a device connected to the system in applying an AHOI rule directly.
But the Living Place system contains some devices which provide interfaces for direct user access, like
the Daily Planner, the Display in the Multitouch Kitchen Counter, the Alarm Clock 2.0, the Ambient
Light and the Location-Based Screen. For that, the model of the Living Place system contains the subnet
presented in the image 7.48. It consits of a transition which applies an AHLI rule which is assigned to
the place EnterDataIntoDeviceRules : Rules in order to interact with an online device and fulfil the
requirement that the inhabitant should be able to interact with the connected devices, e.g. switching the
Alarm Clock 2.0 off or entering new calendar data to the Daily Planner.
The workflow of changing an online device is as follows: The user applies a specific AHOI rule which
assigns a corresponding AHLI rule to the place EnterDataIntoDeviceRules. Afterwards this rule can
be automatically applied to a corresponding device assigned as object net to the place OnlineDevices :
AHLINetsOND in firing the transition enter data to device on System Level. As a result, an online
device is modified, if a match was found, according to the inhabitants request. Therefore, the user access
to connected devices is modelled on all three levels: an AHOI rule which assigns an AHLI rule to a place
on System Level which will be assigned to a net on Object Level.
A rule assigned to EnterDataIntoDeviceRules will only be applied once. After firing the transition
enter data to device, this rule will be removed.

Initially no rule is assigned to the place EnterDataIntoDeviceRules. The following table enumerates
the available AHOI rules and their corresponding AHLI rules for an interaction of the inabitant with the
device nets on Object Level:

AHOI rule AHLI rule Corresponding
Device
(on Object Level)

ResetAlarmClock2.0user ruleDeleteNextAppointments Alarm Clock 2.0
(see 7.1.4.5) (see 7.63)
ResetAlarmClock2.0user ruleDeleteBedData Alarm Clock 2.0

(see 7.64)
ResetAlarmClock2.0user ruleResetContextData Alarm Clock 2.0

(see 7.65)
ResetAlarmClock2.0user ruleDeleteWakeUpT ime1 Alarm Clock 2.0

(see 7.66)
ResetAlarmClock2.0user ruleDeleteWakeUpT ime2 Alarm Clock 2.0

(see 7.67)
ResetAlarmClock2.0user ruleDeletePersonState Alarm Clock 2.0

(see 7.68)

126 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

ResetAlarmClock2.0user ruleResetT imestamp Alarm Clock 2.0
(see 7.69)

ResetAlarmClock2.0user ruleResetSync Alarm Clock 2.0
(see 7.70)

ClearDisplayuser,d ruleClearDisplayd Display
(see 7.1.4.6.1) (see 7.1.3.5.2)
EnterDataToDaily− ruleAddDataplanner,t,d Daily Planner
Planneruser,t,d (see 7.1.3.5.3)
(see 7.1.4.7)
RemoveDataFromDaily− ruleRemoveDataplanner,t,d Daily Planner
Planneruser,t,d (see 7.1.3.5.4)
(see 7.1.4.7)
MeasurePressureIn− ruleMeasure− Intelligent Bed
Beduser,x1,x2,x3,x4,x5,x6 Pressurebed,x1,x2,x3,x4,x5,x6

(see 7.1.4.8) (see 7.1.3.5.5)
MeasurePositionuser,x1,x2,x3,x4,x5,x6

ruleMeasure− Indoor Positioning
(see 7.1.4.9) Positionindoor,x1,x2,x3,x4,x5,x6 System

(see 7.1.3.5.6)
SwitchOnTVuser ruleSwitchOnTV Location-Based Screen
(see 7.1.4.10) (see 7.76)
SwitchOffTVuser ruleSwitchOffTV Location-Based Screen
(see 7.1.4.10) (see 7.77)
SwitchOnLightuser ruleSwitchOnLight Ambient Light
(see 7.1.4.11) (see 7.1.3.5.9)
SwitchOffLightuser,bright ruleSwitchOffLight,bright Ambient Light
(see 7.1.4.11) (see 7.79)
SwitchOffLightuser,dimmed ruleSwitchOffLight,dimmed Ambient Light
(see 7.1.4.11) (see 7.80)

Table 7.2: AHLI rules for Access to an Online Device and Their Corresponding AHOI rules

Online
Devices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

Figure 7.48: Subnet EnterDataIntoOnlineDevicemessageBroker

7.1. MODEL IN A VISUAL DESCRIPTION 127

7.1.3.3 The Persistence Layer

The persistence layer is part of the message broker and contains information which were exchanged
through the Message Oriented Middleware and were stored in a special database. These data can be
demanded by connected components. Each device which is able to receive data over the Message Oriented
Middleware (i.e. receiver and transceiver) contains a part for requesting information from the persistence
layer.7.
In the following, the parts for the communication with the persistence layer within the Message Oriented
Middleware and for storing incoming data will be illustrated.

7.1.3.3.1 Subnet for Storing Data From the Device in the Persistence Layer

Each message which is sent by a device net to the message broker is additionally put to the place
DataP : DataForPersistenceLayer in the device net. The message broker explicitly collects all informa-
tion, which are assigned as 4-tuple tokens containing store as forth element, to this place in all device nets.
For that, the rule storeData needs to be applied to the nets assigned to OnlineDevices : AHLINetsOND
and PersistentData : AHLINetsPer, which copies the data from the local place DataP of the device net
to the place PersistentData of the persistence layer representing a database containing all information
ever processed in the Message Oriented Middleware.
In contrast, if a 4-tuple token containing remove is assigned to the place DataP , the corresponding data
record should be removed from the persistence layer. For deleting data, the AHLI rule removeData will
be applied when firing the transition store data in persistence layer or remove data, if a match could be
found.

Online
Devices
: AHLINetsOND

Store
Data
Rules
: Rules

rsd

storeData
rrd

removeData
Persistent
Data
: AHLINetsPer

db

database

store data in persistence layer
or remove data

m : Mor

cod(m) = fOND(nOND)
.
∪S fPer(nPer)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND
tOND(n1)

nPer
tPer(n2)

r

Lsd Ksd Rsd

l r

DataP
: DataFor
Persistence
Layer

d

4tuple(x, y, z, store)

: Persistent
Data

DataP
: DataFor
Persistence
Layer

: Persistent
Data

DataP
: DataFor
Persistence
Layer

: Persistent
Data

d

triple(x, y, z)

Net database

db
: Persistent
Data

Figure 7.49: Subnet storeDataInPersistenceLayerpersistenceLayer

7The transition request data (within the device nets of a transceiver of a receiver) is responsible for requesting data from
the persistence layer, compare 7.5 and 7.7.

128 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Lsd Ksd Rsd

l r

DataP
: DataFor
Persistence
Layer

d

4tuple
(x, y, z, remove)

: Persistent
Data

d

triple
(x, y, z)

DataP
: DataFor
Persistence
Layer

: Persistent
Data

DataP
: DataFor
Persistence
Layer

: Persistent
Data

Figure 7.50: Rule removeData

7.1.3.3.2 Send a Message to the Persistence Layer and Generate an Answer

If a device requests information from the persistence layer in the Message Oriented Middleware, a
token will be assigned to the place DataR : RequestData. The persistence layer fetches the request
in applying the rule receiveRequestFromDevice. For that a requesting device from OnlineDevices :
AHLINetsOND will be taken, and the token containing the request will be deleted and a new place
Request : GlobalDataTmp will be created to which the request token is assigned. The resulting net
will be split and the transformed device net will be put to the place OnlineDevices. The newly cre-
ated net containing the place Request : GlobalDataTmp with its token will be assigned to the place
Requests : AHLINetsRq of the message broker.

Online
Devices
: AHLI
NetsOND

receive request from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Requests
: AHLINetsRq

nOND

tOND(n1)

tRq(n2)

ReceiveRequest
FromDevice
Rules
: Rules

r

rrr

receiveRequestFromDevice

Lrr Krr Rrr

l r

DataR
: Request
Data

x

dreq

DataR
: Request
Data

DataR
: Request
Data

Request
: Global
DataTmp

x

tgdata(dreq)

Figure 7.51: Subnet receiveRequestFromDevicemessageBroker

Afterwards the request will be evaluated in collecting all past data belonging to the specified topic
and copying all appropriate information from the database of the persistence layer to the message queue
of the requesting device. For that, the rule createAnswerToRequest will be applied to the nets from
Requests : AHLINetsRq, Queues : AHLINetsQ and PersistentData : AHLINetsPer. The net as-
signed to the place Requests will be taken to compare the requested topic with the topics stored in the
database of the persistence layer which is represented by the place PersistentData. The net previously

7.1. MODEL IN A VISUAL DESCRIPTION 129

assigned to Requests will be deleted after applying the rule. In contrast, the net from PersistentData
will stay unchanged. Instead, the subnet belonging to the requesting device id and the specified topic
will be extended by all tokens containing past information belonging to the topic. It will be assigned to
Queues.

Requests
: AHLINetsRq

create answer to request
and send it to queue

m : Mor

cod(m) = fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)

createRule(s, fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)) = r

applicable(r,m) = tt

transform(r,m) = n4

.
∪S n

isomorphicPTNET (fQ(nQ), n4) = tt

Persistent
Data
: AHLINetsPer

Queues
: AHLINetsQ

CreateAnswer
ToRequest
Schemes
: ISchemes

sca

nQtQ(n4)

nRq

nPer

tPer(n2)

s

createAnswerToRequest

Lcakernel rule
Kcakernel rule

Rcakernel rule

lk rk

Lcamulti rule
Kcamulti rule

Rcamulti rule

lm rm

: Global
DataTmp

x

tuple(topic, id)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Global
DataTmp

x

tuple(topic, id)

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id : Global
Data

g

Connect2

g

: Topic

tt1 t1

x

triple(a, topic, id′)

Figure 7.52: Subnet createAnswerToRequestmessageBroker

130 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.3.3 Revisiting the Requirements Towards the Persistence Layer
In section 4.2.3.2 requirements regarding the model of the persistence layer as part of the Message

Oriented Middleware were set up. In the following, these requirements will be revised.

rmompersistence1
: As presented in section 7.1.2, each device in online mode contains a place DataP :

DataForPersistenceLayer. Furthermore, each message provided for the message broker, will be assigned
additionally to the place DataP . The token assigned to this place will be copied when the transition
store data in persistence layer or remove data fires and because of that applies the rule storeData. This
is a part of the model of the persistence layer, as shown in image 7.51.
So, the requirement rmompersistence1

is fulfilled by the model.

rmompersistence2
: The AHLI net assigned as token to the place PersistentData : AHLINetsPer contains

the stored data. Therefore, this requirement rmompersistence2
is satisfied.

rmompersistence3
: The rule removeData which can be applied when firing the transition store data in

persistence layer or remove data, deletes a single data record from the data storage. Following, the
requirement rmompersistence3

is fulfilled.

rmompersistence4
: Device nets in online mode of the kind receiver or transceiver contain a part for

sending requests to the persistence layer. This part consists of: the transition request data and the places
connected to this transitions: DataR : RequestData to which tokens can be assigned, characterising
requests ready to be processed by the persistence layer, the place TopicstoRequest : TopictoRequest to
which tokens representing topics are assigned, the places : Sync (with a synchronize token assigned to
it), Status : DeviceStatus and connectionid : ConnectionID.8

After a token is assigned to DataR within the device net, it can be collected by the persistence layer in
firing receive request from device and applying the rule receiveRequestFromDevice.
As a result, the requirement rmompersistence3

is met.

rmompersistence5
: After receiving a new request, it will be processed in firing the transition create

answer to request and send it to queue. In doing so, a rule created out of the interaction scheme
createAnswerToRequest will be applied. It collects all information belonging to the topic which is
specified by the request. Because of that, the requirement rmompersistence5

is satisfied.

rmompersistence6
: When firing the transition create answer to request and send it to queue, all collected

data records belonging to the topic, which is specified by the request, will be assigned to the place
: GlobalData within the object net assigned to Queues : AHLINetsQ, which is connected to the given
topic and the connection id of the requesting device. Consequently, the place : GlobalData pictures a
data buffer for the device.
Afterwards, the message broker checks this object net assigned to Queues and distributes the data to
the corresponding device in firing the transition send data to device. To summarise, the persistence layer
collects the data and associates them to the correct device, but the sending of the collected data will be
performed by the message broker.
As a result, the requirement rmompersistence6

is fulfilled.

8Compare 7.5 and 7.7.

7.1. MODEL IN A VISUAL DESCRIPTION 131

7.1.3.4 The Context Interpreter as a Part of the Message Broker

As described in section 2.2.1.5, a part of the Living Place system is the Context Interpreter, a component
which collects all incoming data and attempts to infer a context according to the 5W1H model9. For
the Living Place project, the usage of a Context Interpreter is introduced in [Vos09] and [OV10], but the
development of this component is still at its very beginning, so the formal modelling which is presented
as visualization below, is still very simple. Its main task is to infer the appropriate context which can be
used by the Alarm Clock 2.0 device which is shown in section 7.1.2.7. For that the following rules which
create an appropriate 5W1H context are used by the Context Interpreter: ruleEating presented in 7.54,
ruleRelaxing1 in 7.55, ruleRelaxing2 in 7.56, ruleWashing in 7.57, ruleSleeping1 in 7.58, ruleSleeping2

in 7.59, ruleDressing in 7.60 and ruleOutside presented in 7.61.
The transition conjunction of data is able to combine two AHLI nets to one net in creating the dis-
joint union. This is necessary, if a rule needs to aggregate more than one information to infer a new
5W1H context, e.g. the AHOI rule ruleDressing is dependent on two kinds of data stored within
an AHLI net. Consequently it needs a disjoint union of the necessary two AHLI nets assigned to
DataToInferContext : AHLINets as input net in order to infer the correct 5W1H context.
The rule ruleTransform as shown in 7.62 is used to convert the AHLI net within the token assigned to
ContextInterpreterQueue : AHLINets of the type : GlobalData which is a triple of Data × Topic ×
ConnectionID to data of the type : LocalData which describes a triple of Data× Topic× Timestamp.
This rule will be applied after new data is put to the place ContextInterpreterQueue by the message
broker system in order to remove the connection identification and replace it by the current timestamp
provided by the place Time : AHLINets. The current time is put to the place in firing the transition
set time and assigning the current time as value to the variable currentT imeNet. It is assumed, that
the correct timestamp will always be assigned to this place. The general problem of time in AHLI Nets
will be discussed in chapter 10.
After converting all incoming data, the transformed token will be assigned to DataToInferContext :
AHLINets. As next step, one of the rules mentioned can be applied which directly convert the data
within the token represented by an AHLI net to 5W1H context data. Each rule will only be applied to
new tokens, meaning, the timestamp of the token is less than one minute old, i.e. the timestamps of the
token assigned to DataToInferContext is identical with the timestamp assigned to Timer. Initially, the
timer is set to 0 as visualized in the object net timer.
The rules will be described in their corresponding sections. After applying one of these rule the trans-
formed token will be assigned to DataBufferRepository : AHLINets in order to enable the message
broker to distribute the resulting context information.

In the model presented below, the main concept of a Context Interpreter is followed in providing
a component which creates complex 5W1H context data out of simple data sent by all devices. But
in contrast to the ideas presented by Dey, Abword and Sabler in [DAS99] and [SDA99], the Context
Interpreter in the Living Place system is currently very simple, not operating on different levels, instead
it infers a complex context directly with the help of the mentioned rules.

9The 5W1H context is mentioned in section 2.2.1.5 and described in detail in [JW05].

132 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.4.1 Infer new Results with the Help of the Context Interpreter

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataToInferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt
transform(r,m) = n1

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

TransformRules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

conjunction of data

n1 ⊕ n2n1

.
∪S n2

Net timer

t :
Timestamp

t

0

t

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

Figure 7.53: Subnet contextInterpretermessageBroker

7.1.3.4.2 Rule ruleEating

The rule ruleEating converts a data token of the type : LocalData with the value (middle, UbiTV)
to a 5W1H context with the values:

• who = user

• where = kitchen

• when = undefined

• what = eating

• how = undefined

• why = undefined

Because of the current model of the Living Place system only providing two sensor devices: the pressure
sensors in the Intelligent Bed10 and the Indoor-Positioning-System11, the context needs to be inferred out
of very few data. Additionally the current model of the system is not able to provide all relevant informa-
tion, like how. Because the Living Place system is developed for only one person, the component who will
be static and always containing the only inhabitant internally named user. The resulting context have to
be converted to the type : GlobalData in order to be able to be sent and processed by the message broker,
therefore, the context will be put to the triple: (<user, kitchen, undefined, eating, undefined, undefined
>, Context, 0), where <user, kitchen, undefined, eating, undefined, undefined> is typed as Data, Context

10See 7.1.2.10.
11See 7.1.2.11.

7.1. MODEL IN A VISUAL DESCRIPTION 133

is the name of the topic and 0 is a connection identification. Because of all data of the type : GlobalData
need a connection identification and the Context Interpreter does not establish any connection to the
message broker in the conventional way, it does not contain any specific identification, so the connection
identification is filled with 0. The connection identifications of all devices will be greater than 0.

Leat Keat Reat

l r

: LocalData

d

triple(
middle, ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
userc, kitchenc,
undefinedc, eatingc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.54: Rule ruleEating

7.1.3.4.3 Rules ruleRelaxing1 and ruleRelaxing2

Similar to ruleEating in 7.54, the rule ruleRelaxing1 infers the token of the type : LocalData
which contains the tuple (north, UbiTV) to the triple (<user, loungeArea, undefined, relaxing, unde-
fined, undefined>, Context, 0) containing the 5W1H context, that the only person user is situated in the
lounge area and is possibly relaxing.
The second rule ruleRelaxing2 infers (<user, sleepingArea, undefined, relaxing, undefined, undefined>,
Context, 0) out of the tokens (awake,Bed).

Lrelax1 Krelax1 Rrelax1

l r

: LocalData

d

triple(
north, ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
userc, loungeAreac,
undefinedc, relaxingc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.55: Rule ruleRelaxing1

134 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Lrelax2
Krelax2 Rrelax2

l r

: LocalData

d

triple(
awake, bed, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
(userc, sleepingAreac,
undefinedc, relaxingc,
undefinedc, undefinedc),
context, 0c)

Figure 7.56: Rule ruleRelaxing2

7.1.3.4.4 Rule ruleWashing

The rule ruleWashing transforms a tuple of the kind : LocalData to a triple (<user, bathroom,
undefined, washing, undefined, undefined>, Context, 0) which implies the 5W1H context describing that
the person is currently in the bathroom and perhaps washing himself.

Lwash Kwash Rwash

l r

: LocalData

d

triple(
bathroom,
ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
userc, bathroomc,
undefinedc, washingc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.57: Rule ruleWashing

7.1.3.4.5 Rule ruleSleeping1 and ruleSleeping2

To recognize a 5W1H context regarding the user being in bed sleeping, the Intelligent Bed sensor
device needs to send information regarding the topic Bed. A sleeping person is either in deep or in light
sleep phase. Therefore the Intelligent Bed sends data regarding both sleeping stages and both stages
need to be infered to get an appropriate context. For that, the rules ruleSleeping1 and ruleSleeping2

are available.
Both rules need a token of the type : LocalData, indeed ruleSleeping1 needs a token which contains the
information (deepSleep,Bed) and ruleSleeping2 the token providing the information (lightSleep,Bed).
Both rules infer a triple describing the 5W1H context of the kind : GlobalData with: (<user, sleepin-
gArea, undefined, sleeping, undefined, undefined>, Context, 0), where <user, sleepingArea, undefined,
sleeping, undefined, undefined> is the 5W1H context, Context is the corresponding topic and 0 is a
pseudo connection identification provided within messages generated by the Context Interpreter.

7.1. MODEL IN A VISUAL DESCRIPTION 135

Lsleep Ksleep Rsleep

l r

: LocalData

d

triple(
deepSleep,
bed, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(userc,
sleepingAreac,
undefinedc, sleepingc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.58: Rule ruleSleeping1

Lsleep Ksleep Rsleep

l r

: LocalData

d

triple(
lightSleep,
bed, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(userc,
sleepingAreac,
undefinedc, sleepingc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.59: Rule ruleSleeping2

7.1.3.4.6 Rule ruleDressing

The rule ruleDressing needs both kinds of sensor systems: The Indoor-Positioning-System and the
Intelligent Bed. The Indoor-Positioning-System sends data of the topic UbiTV and the Intelligent Bed
sends information of the topic Bed. Both kinds of information are necessary to recognize a person in the
sleeping area who is not sleeping, instead possibly dressing himself. On the one hand, the rule needs
a token (notInBed,Bed) assigned to a place of the type : LocalData and on the other hand a token
(south, UbiTV) assigned to another place of the type : LocalData. If this condition is met, a new net
consisting of a place : GlobalData and a token assigned to this place with the value (<user, sleepingArea,
undefined, dressing, undefined, undefined>, Context, 0) can be inferred.

Ldress Kdress Rdress

l r

: LocalData

d

triple(
notInBed,
bed, time)

: LocalData

d

triple(
south,

ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
userc, sleepingAreac,
undefinedc, dressingc,
undefinedc, undefinedc),
context, 0c)

Figure 7.60: Rule ruleDressing

136 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.4.7 Rule ruleOutside

If the person has left the apartment, the Indoor-Positioning-System is not able to locate the inhabitant
in the apartment. Then an information containing the token (nothing, UbiTV) will be distributed to the
Context Interpreter. Then the resulting data (<user, outsideApartment, undefined, undefined, undefined,
undefined>, Context, 0) can be inferred, meaning that no information about the inhabitant is available
except that he is not in the apartment.

Lout Kout Rout

l r

: LocalData

d

triple(
nothing,
ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(userc,
outsideApartmentc,
undefinedc,
undefinedc,
undefinedc,
undefinedc),
context, 0c)

Figure 7.61: Rule ruleOutside

7.1.3.4.8 Rule ruleTransform

As already mentioned in 7.53, the rule ruleTransform transforms the AHLINet containing a place
: GlobalData with a token which describes a triple (x, y, z) assigned to this place to a new AHLI net
containing a place : LocalData with a token assigned to the place which pictures a triple (x, y, time).
This rule is necessary for removing the connection identification because it is not relevant anymore but
instead it is replaced by the current timestamp, when inferring a new context.

Ltr Ktr Rtr

l r

: GlobalData

d

triple(x, y, z)

: Timestamp

d

time

: LocalData

d

triple(x, y, time)

Figure 7.62: Rule ruleTransform

7.1.3.4.9 Revisiting the Requirements Towards the Context Interpreter

In this section, the requirements, presented in 4.2.3.3 will be revised regarding their fulfilement by
the model of the Context Interpreter. The Context Interpreter is part of the net on System Level which
is illustrated in 7.26.

rmomci1
: Every message sent by the devices to the message broker are directly copied and forwarded

to the Context Interpreter in firing the transition copy data to queues and to context interpreter within
the message broker (see subnet copyDataToQueuesAndToContextInterpretermessageBroker illustrated in
7.35). After firing, the message will be transmitted to the place ContextInterpreterQueue : AHLINets.

7.1. MODEL IN A VISUAL DESCRIPTION 137

Therefore, every information will be forwarded to the Context Interpreter, which satisfies the requirement
rmomci1

.

rmomci2
: The model of the Context Interpreter includes an internal timer, whereas the current time

is part of the object net assigned to the place Timer : AHLINets. When firing the transition get
new data, each message will be transformed in adding the timestamp of the moment of the receipt.
Afterwards, when firing infer context data and thus applying a rule for infering new information, the
current timestamp will be compared with the timestamp set within the message assigned as token to
DataToInferContext : AHLINets. If the timestamps are identical, the token will be used for the
inference.
Consequently, only actual data will be taken for the inference process, so the requirement rmomci2

is met.

rmomci3
: The rules assigned to the place ContextRepositoryRules : Rules infer new 5W1H context

data. These rules are presented in 7.54, 7.55, 7.56, 7.57, 7.58, 7.59, 7.60 and 7.61. So, the requirement
rmomci3

is fulfilled.

rmomci4
: Some rules infer a 5W1H context out of an aggregation of different data tokens, e.g. the

rule ruleDressing infers new data out of combination of two different data. When firing the transition
conjunction of data, two data will be combined. Thus, this requirement rmomci4

is met.

rmomci5
: After infering a new 5W1H context, the resulting message which belongs to the topic Context

will be assigned as token to the place DataBufferRepository : AHLINets. This place contains all data
which need to be processed by the message broker. Therefore, the new message containing the 5W1H
context is ready to get distributed to all devices subscribed to Context by the message broker. The
requirement rmomci5

is fulfilled.

To summarise, all requirements set up for the Context Interpreter are fulfilled by the model which is
illustrated in image 7.53.

7.1.3.5 AHLI Rules and Interaction Schemes Mediating Between User and Object Level
Supporting User Interaction With The Object Level

The Living Place system is modeled on the subsequent levels: data, object, system and User Level. All
devices are placed on the Object Level, but in contrast user interaction is only possible on the User Level,
therefore the User Level provides rules for user interaction. To perform an action on a device, the System
Level supplys AHLI rules to mediate between user and Object Level. Consequently the user is able to
change the behaviour of the devices in applying an AHOI rule which uses AHLI rules which change a net
on Object Level.

7.1.3.5.1 AHLI Rules for Stopping the Alarm Clock 2.0

To stop the Alarm Clock 2.0, the AHOI rule StopAlarmClockuser will be applied which transforms
the Alarm Clock 2.0 device on Object Level in using the AHLI rules presented in this section.
Concurrent with stopping, the Alarm Clock 2.0 device will be resetted. For that the following steps are
necessary:

• Reset the appointment which is assigned to the place NextAppointments : CalendarData, in order
to remove the active process of waking up resp. reminding. Because the place NextAppointments is
only able to contain one token at one time, this token will be removed and a new token (0, unknown)
will be assigned in transforming the Alarm Clock 2.0 device with the help of the rule ruleDeleteNext-
Appointments presented in 7.63.

• The bed data token will be resetted in removing the active tokens assigned to the place Bed :
Data from the device net and set an initial token unknown to that place in applying the rule
ruleDeleteBedData (see 7.64).

• The place Context : ContextData within the net alarmClock2.0online will be cleared in applying
an aggregated rule generated out of the interaction scheme ruleDeleteContextData (see 7.65) and
a new token (unknown, unknown, unknown) will be assigned to this place to reset the context data.

138 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

• In order to delete the active wake up timestamp, the rule ruleDeleteWakeUpT ime will be applied to
the Alarm Clock 2.0 device net. Now, the device is not able to remind the user of any appointments
any more.

• During the preparation time, the user needs to perform several tasks: end sleeping, dressing, eating
and washing. A 4-tuple containing the necessary tasks for the preparation phase for an appointment,
will be assigned to the place Person : PersonState in the device net. This token needs to be reset
in using the rule ruleDeletePersonState (see 7.68), which deletes the current token and assigns
the tuple (undefined, undefined, undefined, undefined) to this place meaning, that no tasks need to
be fulfilled.

• The waiting times because of the current traffic or weather conditions need to be resetted in the
Alarm Clock 2.0 device in deleting the token assigned to AddT ime : Timestamp and set a new
token to this place refering to 0 minutes meaning no extra time assumed because of the weather
and traffic conditions. The rule ruleResetT imestamp changes this token (see 7.69).

• The synchronise token will be reset in applying the AHLI rule ruleResetSync. It removes the token
assigned to the place WakeUpMode : Sync, which redirects incoming context data for analysing
the context information if a token is set to this place, and a new synchronize token will be assigned
to the place RemoveContext : Sync, which removes incoming context data, because the Alarm
Clock 2.0 should be inactive after resetting the device net (see 7.70).

The corresponding AHOI rule is illustrated in section 7.1.4.5 and the object net of the Alarm Clock 2.0
in 7.1.2.7.

Lda Kda Rda

l r

Next
Appointment
: Calendar
Data

cal

x

analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

Datareceived
: DataReceived

dr

cal cal′

Next
Appointment
: Calendar
Data

analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

Datareceived
: DataReceived

dr

cal cal′

Next
Appointment
: Calendar
Data

cal

(0, unknown)

analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

Datareceived
: DataReceived

dr

cal cal′

Figure 7.63: User interaction rule ruleDeleteNextAppointments

Ldbmulti rule
Kdbmulti rule

Rdbmulti rule

l r
Bed
: BedData

b

x
Bed
: BedData

Bed
: BedData

b

unknownb

Figure 7.64: User interaction rule ruleDeleteBedData

7.1. MODEL IN A VISUAL DESCRIPTION 139

Ldc Kdc Rdc

l r

Context
: ContextData

c

x

Context
: ContextData Context

: ContextData

c

triple(unknownc,
unknownc, unknownc)

Figure 7.65: User interaction rule ruleDeleteContextData

Ldw Kdw Rdw

l r

WakeUpT ime
: Timestamp

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

Bed
: BedData

bed

ts1ts′1

d

x

WakeUpT ime
: Timestamp

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

Bed
: BedData

bed

ts1ts′1

WakeUpT ime
: Timestamp

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

Bed
: BedData

bed

ts1ts′1

Figure 7.66: User interaction rule ruleDeleteWakeUpT ime1

Lrs Rrs

Bed
: BedData

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

Person
: PersonState

WakeUpT ime
: Timestamp

WakeUpT ime′

: Timestamp

DatatoSend
: DataToSend

RemoveContext
: Sync

WakeUpMode
: Sync

t
time

s

s

tuple(ona, alarm)

ts1

ts′1

ps′

ps

bed′bed

Bed
: BedData

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

Person
: PersonState

WakeUpT ime
: Timestamp

WakeUpT ime′

: Timestamp

DatatoSend
: DataToSend

RemoveContext
: Sync

WakeUpMode
: Sync

s

s

tuple(ona, alarm)

ts1

ts′1

ps′

ps

bed′bed

Figure 7.67: Rule ruleDeleteWakeUpT ime2

140 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Ldp Kdp Rdp

l r

Person
: Person
State

ps

x

Person
: Person
State

Person
: Person
State

ps

(undefinedp, undefinedp
undefinedp, undefinedp)

Figure 7.68: User interaction rule ruleDeletePersonState

Lrt Rrt

AddT ime
: Timestamp

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal)
= time

Datareceived
: DataReceived

dr

time′

time

ti

x

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal)
= time

dr

time′

time

AddT ime
: Timestamp

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal)
= time

Datareceived
: DataReceived

dr

time′

time

ti

0t

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal)
= time

dr

time′

time

Figure 7.69: Rule ruleResetT imestamp

Lrs Rrs

Bed
: BedData

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

Person
: PersonState

WakeUpT ime
: Timestamp

WakeUpT ime′

: Timestamp

DatatoSend
: DataToSend

RemoveContext
: Sync

WakeUpMode
: Sync

sc

s

s

s

tuple(ona, alarm)

ts1

ts′1

ps′

ps

bed′bed

Bed
: BedData

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

Person
: PersonState

WakeUpT ime
: Timestamp

WakeUpT ime′

: Timestamp

DatatoSend
: DataToSend

RemoveContext
: Sync

WakeUpMode
: Sync

sc

s

s

s

tuple(ona, alarm)

ts1

ts′1

ps′

ps

bed′bed

Figure 7.70: Rule ruleResetSync

7.1. MODEL IN A VISUAL DESCRIPTION 141

7.1.3.5.2 Clear Display

In 7.1.2.8 the Display device of the Multitouch Kitchen Counter is presented which is required for
Displaying calendar data entered by the resident of the Living Place apartment. Additionally it receives
and displays all incoming traffic and weather data.
Old data need to be removed manually from the Display in applying an AHOI rule ClearDisplayuser,d,
where d is a the data displayed on the screen (see 7.1.4.6.1). The Living Place system contains an
infinite set of AHOI rules dependent on the data d specified by the user. According to each AHOI
rule, a corresponding AHLI rule is available, which will be assigned by the AHOI rule to the place
EnterDataIntoDeviceRules : Rules. The corresponding AHLI rule ruleClearDisplayd removes the
given Display data d from the place display : DisplayData in the device net of the Display in the Mul-
titouch Kitchen Counter in Object Level, which is described in 7.1.2.8, if a match can be found.
Because of an infinite set of AHOI and AHLI rules for removing data, both kinds of rules are presented
more general with an indice d, standing for all available AHLI rules and as a consequence additionally
for all corresponding AHOI rules
E.g. the AHOI rule ClearDisplayuser,rain refers to the AHLI rule ruleClearDisplayrain which removes
the data token rain from the place display : DisplayData within the device net displayonline of the
Display in the Multitouch Kitchen Counter.

Lcd Kcd Rcd

l r
display : DisplayData

sddisplay

display : DisplayData display : DisplayData

Figure 7.71: Rule ruleClearDisplayd

7.1.3.5.3 Enter Data to Daily Planner

In section 7.1.2.9 the Daily Planner was introduced. It requires calendar data which will be en-
tered by the inhabitant of the Living Place. For that the an infinite set of AHOI transformation rules
EnterDataIntoDailyPlanneruser,t,d, where t describes a timestamp and d is the description of an ap-
pointment, are available (see 7.1.4.7). Each AHOI rule assigns a corresponding AHLI transformation rule
ruleAddDataplanner,t,d containing the values (t, d) which should be entered to the Daily Planner. Because
of an infinite set of AHOI rules and consequently an infinite set of AHLI rules, a general description of the
rule will be taken in the following model: Each rule contains the indices representing the specific rule. Each
AHLI rule ruleAddDataplanner,t,d assigns a token (t, d) to the place newCalendarData : CalendarData
to the device net, if a match was found. After that, the device net on Object Level is able to send the
new appointment data to the message broker of the Living Place system. In general, the object net of
the Daily Planner is only able to operate, if the AHOI rules EnterDataIntoDailyP lanneruser,t,d and
their corresponding AHLI rules ruleAddDataplanner,t,d are available.
E.g. EnterDataIntoDailyP lanneruser,12000,Work describes an AHOI rule which assigns the AHLI rule
ruleAddDataplanner,12000,Work to the place EnterDataIntoDeviceRules : Rules in the system layer,
afterwards in applying this AHLI rule, a new token (12000,Work) will be assigned to the place newCal-
endarData : CalendarData within the object net of the Daily Planner.

Lcd Kcd Rcd

l r
newCalendarData
: CalendarData

newCalendarData
: CalendarData

newCalendarData
: CalendarData

n(t, d)

Figure 7.72: Rule ruleAddDataplanner,t,d

142 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.3.5.4 Remove Single Data From Datastore in the Persistence Layer With the Daily
Planner

The inverse to the AHLI rule ruleAddDataplanner,t,d presented in last section 7.1.3.5.3, is the infinite
set of AHLI rules presented in this section. The AHLI rule ruleRemoveDatasystem,d,t,id needs a corre-
sponding AHOI rule DeleteDataFromDailyP lanneruser,d,t,id (see 7.1.4.7), which assigns this AHLI rule
to the place EnterDataIntoDeviceRules : Rules. The indices d, t and id, (where d is the description
of an appointment, t is the timestamp and id the connection id of the previously stored message (i.e.
the connection id of the Daily Planner)), denotes a specific AHOI rule and its corresponding AHLI rule
which transforms an object net as follows: The AHLI rule assigns a token (d, t, id, remove) to the place
DataP : DataForPersistenceLayer in the device net of the Daily Planner representing the data to delete
as 4-tuple, e.g. (< 12000,Work >,Calendar, 1, remove). The last element of the 4-tuple remove signals,
that the described data should be removed from the persistence layer. The deletion of data from the
persistence layer will be performed when firing the transition store data in persistence layer or remove
data.

In applying the AHOI ruleDeleteDataFromDailyP lanneruser,d,t,id the inhabitant of the Living Place
is able to delete single data from the persistence layer with the help of ruleRemoveDatasystem,d,t,id.

Ldel Rdel

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

1

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

tr

4tuple(
d, t, id, remove)

Figure 7.73: Rule ruleRemoveDatasystem,d,t,id

7.1.3.5.5 Measure Pressure in the Intelligent Bed

In order to operate, the Intelligent Bed needs data from the six pressure sensors, as described in detail
in 7.1.2.10. The pressure data will be entered in using an AHOI rule MeasurePressureInBeduser,v1,v2,v3,

v4,v5,v6,x1,x2,x3,x4,x5,x6 , where vi, xi ∈ R ∧ vi, xi ∈ [0.0, ..., 10.0], i ∈ {1, 2, 3, 4, 5, 6} (see 7.1.4.8) which rep-
resents all pressure data for all six sensors as input values. The AHOI rule assigns a corresponding AHLI
rule ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

, where vi, xi ∈ R ∧ vi, xi ∈ [0.0, ..., 10.0], i ∈
{1, 2, 3, 4, 5, 6}, which takes the pressure data and assigns a token to the place Sensor : PressureData
in the AHLI device net intelligentBedonline in Object Level, if a possible match was found.
Afterwards the new pressure data is able to be processed by the device net in Object Level.
The indices v1, v2, v3, v4, v5, v6, x1, x2, x3, x4, x5 and x6 in the system and its corresponding AHOI rule
represent all available rules for each possible vi, xi in the given range vi, xi ∈ R ∧ xi ∈ [0.0, ..., 10.0], i ∈
{1, 2, 3, 4, 5, 6}.

7.1. MODEL IN A VISUAL DESCRIPTION 143

Lcd Kcd Rcd

l r

Sensor
: PressureData

n

(v1, v2, v3, v4, v5, v6)

Sensor
: PressureData

Sensor
: PressureData

n

(x1, x2, x3, x4, x5, x6)

Figure 7.74: Rule ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

7.1.3.5.6 Measure Position of the User in Living Place Apartment with the Indoor-Posi-
tioning-System

Similar to the measurement of pressure sensor data of the Intelligent Bed, the user position for
the Indoor-Positioning-System, which is presented in section 7.1.2.11, gets its 3-dimansional position
data with the help of an AHOI rule MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

, where vi =
(Xvi , Yvi , Zvi), xi = (Xxi

, Yxi
, Zxi

)∧Xvi , Yvi , Zvi , Xxi
, Yxi

, Zxi
∈ R∧Xvi , Yvi , Zvi , Xxi

, Yxi
, Zxi

∈ [0.0, ...,
10.0], i ∈ {1, 2, 3, 4, 5, 6} (see 7.1.4.9) and a corresponding AHLI rule ruleMeasurePositionindoor,v1,v2,v3,

v4,v5,v6,x1,x2,x3,x4,x5,x6 containing position data for all six sensors, in order to generate new position data
for the device net indoorPositioningSystemonline of the Indoor-Positioning-System. The AHLI rule is
shown below. Each component in the tuple consists of a triple with 3-dimensional data (X,Y, Z).

Lcd Kcd Rcd

l r

SensorData
: SensorDataTuple

n

(v1, v2, v3, v4, v5, v6)

SensorData
: SensorDataTuple

SensorData
: SensorDataTuple

n

(x1, x2, x3, x4, x5, x6)

Figure 7.75: Rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

7.1.3.5.7 Switch on Location-Based Screen

The Location-Based Screen includes two TV sets which need to be switched on or off by the inhabitant
of the Living Place apartment. The device net of the Location-Based Screen in Object Level is presented
in section 7.1.2.12.
Both TV sets will be switched on or off simultaneously by the resident, because both TV sets work
alternating depending on the current position of the resident: If the resident stays in the lounge area,
the TV set in this area is active, whereas the TV set in the sleeping area is active if the person sojourns
in the sleeping area. Both TV sets will be inactive, if the person is out of view of both TV sets, i.e.
the person is in the middle, the bathroom or outside of the apartment. Being active means, that a TV
set shows the TV program, if it is switched on. An inactive TV set does not show any TV program
even if it is powered on. If disabled, no TV set will show anything even if the inhabitant stays in the
corresponding area. Consequently, both TV sets will be switched on or off simultaneously but will show
the TV program alternating or nothing.

To switch on both TV sets, the user is able to apply the AHOI rule SwitchOnTVuser for powering
on or use SwitchOffTVuser for powering off. Both AHOI rules are presented in 7.1.4.10. They ap-
ply the corresponding AHLI rules ruleSwitchOnTV resp. ruleSwitchOffTV which change the on/off
state of both TV sets simultaneously. The AHLI rules are illustrated in the following images 7.76 and 7.77.

144 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Lson Kson Rson

l r
TV1 : TV State

TV2 : TV State

t1

t2

offTV

offTV

TV1 : TV State

TV2 : TV State

TV1 : TV State

TV2 : TV State

t1

t2

onTV

onTV

Figure 7.76: Rule ruleSwitchOnTV

7.1.3.5.8 Switch off Location-Based Screen

The AHLI rule ruleSwitchOffTV is the opposite to ruleSwitchOnTV and is described in detail in
the previous section.

Lsoff Ksoff Rsoff

l r
TV1 : TV State

TV2 : TV State

t1

t2

onTV

onTV

TV1 : TV State

TV2 : TV State

TV1 : TV State

TV2 : TV State

t1

t2

offTV

offTV

Figure 7.77: Rule ruleSwitchOffTV

7.1.3.5.9 Switch on Light

The model of the Ambient Light, as introduced in section 7.1.2.13, needs user interaction to switch on
or off the whole light in the Living Place apartment. For this purpose the AHOI rules SwitchOnLightuser
for switchin on the light and SwitchOffLightuser,l, where l ∈ {bright, dimmed} for disabling the Am-
bient Light are available (see 7.1.4.11). All AHOI rules change the state of the light with the help of the
AHLI rules ruleSwitchOnLight resp. ruleSwitchOffLightl, where l ∈ {bright, dimmed}.

Switching the light on sets a token bright to the place Light : LightState in the device net on Object
Level, meaning that the light in the apartment is switched on in full brightness. In contrast, the AHLI
rule ruleSwitchOffLight replaces any kind of token assigned to the place Light by a token referring to
the value off representing a disabled light.

Both AHOI rules get an AHLI device net as input parameter, but a match can only be found if the
entered device net contains a place of the type LightState, which is only possible in the current modelling
if the input device net is a net lightonline as shown in section 7.1.2.13.

7.1. MODEL IN A VISUAL DESCRIPTION 145

Lson Kson Rson

l r

Light : LightState

t1 offl

Light : LightState Light : LightState

t1 brightl

Figure 7.78: Rule ruleSwitchOnLight

7.1.3.5.10 Switch off Light

The reverse of the rule ruleSwitchOnLight is the rule ruleSwitchOffLightl presented below, where
l ∈ {bright, dimmed}.

Lsoff Ksoff Rsoff

l r

Light : LightState

t1 brightl

Light : LightState Light : LightState

t1 offl

Figure 7.79: Rule ruleSwitchOffLight,bright

Lsoff Ksoff Rsoff

l r

Light : LightState

t1 dimmedl

Light : LightState Light : LightState

t1 offl

Figure 7.80: Rule ruleSwitchOffLight,dimmed

7.1.4 User Level

The User Level provides the possibility for the user to interfere in the procedure of the Living Place
system in applying one of the rules mentioned below. As already described, all transformation rules are
only able to change the System Level meaning the user is able to intervene in the message broker and
beyond change the behaviour of the whole system including the system, object and the data net.

7.1.4.1 Rules for the Administration of the Devices of the Living Place System

The inhabitant of the Living Place apartment is able to administer all devices of the Living Place system
in applying one of the following three AHOI rules:

• SetDeviceOfflineuser for changing the device mode into offline mode.

• PluginDeviceuser for adding a device in offline mode to the Living Place system. Then, each device
will be in offline mode and assigned to the place OfflineDevices : AHLINetsOFFD in the net of
the message broker on System Level.

• UnplugDeviceuser for removing a device in offline mode from the whole Living Place system.

The following use case presents the AHOI rules for administering the Living Place system.

146 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Administration

SetDeviceOfflineuser

PluginDeviceuser

UnplugDeviceuser

Figure 7.81: Use Case for the Administration of the Living Place System

7.1.4.1.1 User Disconnects Device

For disconnecting a device manually in setting it into offline mode, the user needs to announce the con-
nection identification of the device, which should be set into offline mode, to the message broker to initiate
the disconnection of this device. The user applies the AHOI rule SetDeviceOfflineuser,nConnectionID,
which contains the indice nConnectionID standing for an AHLI net containing the connection id of a
device net on Object Level, which should be set into offline mode. The Living Place system contains
many concrete AHOI rules SetDeviceOfflineuser,nConnectionID. In this work, a template for an AHOI
rule is presented, where nConnectionID represents an AHLI net including the connection identification
of the device which should be set into offline mode. The rule sets a new token representing the connection
identification to remove to the place UnplugConnectionIDs : AHLINets. The net which is assigned
as token to this place is illustrated in image 7.37. Afterwards the message broker is able to unplug the
device in firing the transition ask device to go offline described in the subnet 7.38.

Lud Kud Rud

l r

Online
Devices
: AHLINetsOND

ask device to go offline

m : Mor

cod(m) = n
.
∪S fOND(nOND)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Unplug
ConnectionIDs
: AHLINets

: Rules

nOND

n

tOND(n1)

r

Online
Devices
: AHLINetsOND

ask device to go offline

m : Mor

cod(m) = n
.
∪S fOND(nOND)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Unplug
ConnectionIDs
: AHLINets

: Rules

nOND

n

tOND(n1)

r

Online
Devices
: AHLINetsOND

ask device to go offline

m : Mor

cod(m) = n
.
∪S fOND(nOND)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Unplug
ConnectionIDs
: AHLINets

: Rules

nOND

n

tOND(n1)

n1

nConnectionID

r

Figure 7.82: AHOI rule SetDeviceOfflineuser,nConnectionID

7.1.4.1.2 User Adds a Device

To add a new device to the Living Place system, a new device net will be assigned by the user as
token to the place OfflineDevices : AHLINetsOFFD in executing the rule PluginDeviceuser,y. The
Living Place system includes many AHOI rules of the kind PluginDeviceuser,y, where the indice y
represents an AHLI device net. Concrete AHOI rules are for example: PluginDeviceuser,lightoffline

or
PluginDeviceuser,alarmClock2.0offline

, etc.
This rule takes the device net in offline mode and assigns it as token to the place OfflineDevices :

7.1. MODEL IN A VISUAL DESCRIPTION 147

AHLINetsOFFD.

Lpd Kpd Rpd

l r

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

d

y

Figure 7.83: AHOI rule PluginDeviceuser,y

7.1.4.1.3 User Removes a Device

The reverse to the rule PluginDeviceuser,y is the following rule UnplugDeviceuser,y. Thereby, a de-
vice net in offline mode represented by a token assigned to OfflineDevices : AHLINetsOFFD will be
removed from this place.

Lpd Kpd Rpd

l r

Offline
Devices
: AHLI
NetsOFFD

d

y

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Figure 7.84: AHOI rule UnplugDeviceuser,y

7.1.4.2 Interaction Schemes for Setting the Whole Living Place System Offline in Emer-
gency

Another part of the administration of the whole Living Place system is the possibility of setting the whole
system in offline mode in case of an emergency. Then two steps are necessary whose interaction schemes
are enumerated in the following use case.

Emergency Off

EmergencyOffofflineuser

EmergencyOffonlineuser

Figure 7.85: Use Case for Emergency Off of the Living Place System

7.1.4.2.1 User Interaction Schemes

148 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

The subsequent AHOI interaction schemes EmergencyOffonlineuser and EmergencyOffofflineuser are
analogously. In applying the amalgamated rules generated out of these interaction schemes, the user
deletes all device nets which are assigned to OnlineDevices : AHLINetsOND resp. OfflineDevices :
AHLINetsOFFD.
The rule calculated out of the interaction scheme EmergencyOffonlineuser deletes all device nets in online
mode, accordingly all device nets in offline mode will be removed from the message broker in executing
a rule calculated out of the interaction scheme EmergencyOffofflineuser

Leoonline
kernel rule

Keoonline
kernel rule

Reoonline
kernel rule

lkernel rkernel

Leoonline
multi rule

Keoonline
multi rule

Reoonline
multi rule

lmulti rmulti

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

d

nOND Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

Figure 7.86: User interaction scheme EmergencyOffonlineuser

Leooffline
kernel rule

Keooffline
kernel rule

Reooffline
kernel rule

lkernel rkernel

Leooffline
multi rule

Keooffline
multi rule

Reooffline
multi rule

lmulti rmulti

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

d

nOFFD Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Figure 7.87: User interaction scheme EmergencyOffofflineuser

7.1.4.3 Initialising the Whole System

To initialise the whole system, all tokens assigned to the places Queues : AHLINetsQ, Requests :
AHLINetsRq, ReceiveDataRules : RulesR and PersistentData : AHLINetsPer need to be deleted.
For that, the following AHOI rules and user interaction schemes need to be applied by the user manually.
As input parameter by the user, some rules resp. interaction schemes get the net resp. rule which should
be deleted by the rule.

The use case enumerates the AHOI rules and user interaction schemes for initialising the whole Living
Place system, which will be introduced in detail in this section.

7.1. MODEL IN A VISUAL DESCRIPTION 149

Initialising

DeleteQueueuser

DeleteReceiveDataRulesuser

DeleteRequestsuser

DeletePersistentDatauser

Figure 7.88: Use Case for the Administration of the Living Place System

7.1.4.3.1 Delete Queues

On part of initialising the whole system is to delete all existing queues in the system net representing
the message broker.
Only one token, containing an AHLI net with all available queues representing the connections and sub-
scriptions between message broker and all devices, is assigned to the place Queues : AHLINetsQ, so
the rule DeleteQueueuser needs no input parameter. It resets the only token assigned to the place Queues.

Ldq Kdq Rdq

l r

Queues
: AHLINetsQ

q

nQ

Queues
: AHLINetsQ

Queues
: AHLINetsQ

q

∅

Figure 7.89: AHOI rule DeleteQueueuser

7.1.4.3.2 Delete All Rules receiveData

To delete all receive data rules in one step from the place ReceiveDataRules : RulesR, the user
applies the following interaction scheme DeleteReceiveDataRulesuser.

150 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

Ldrdkernel rule
Kdrdkernel rule

Rdrdkernel rule

lkernel rkernel

Ldrdmulti rule
Kdrdmulti rule

Rdrdmulti rule

lmulti rmulti

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

rd

receiveData Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Figure 7.90: User interaction scheme DeleteReceiveDataRulesuser

7.1.4.3.3 Delete Requests

Multiple request can be assigned to the place Requests : AHLINetsRq in the message broker net
which have to be removed to reset the whole Living Place system. To delete all requests from the place
Requests, the user applies the interaction scheme DeleteRequestsuser.

Ldrqkernel rule
Kdrqkernel rule

Rdrqkernel rule

lkernel rkernel

Ldrqmulti rule
Kdrqmulti rule

Rdrqmulti rule

lmulti rmulti

Requests
: AHLINetsRq

Requests
: AHLINetsRq

Requests
: AHLINetsRq

Requests
: AHLINetsRq

rq

nRq
Requests
: AHLINetsRq

Requests
: AHLINetsRq

Figure 7.91: AHOI rule DeleteRequestsuser

7.1.4.3.4 Delete all Data From Persistent Dataset Assigned to PersistentData

Only one token is assigned to the place PersistentData : AHLINetsPer in the part of the system net
representing the persistence layer, therefore the rule DeletePersistentDatauser needs no input parameter
and deletes the token assigned to the place PersistentData and assigns a new token emptyDataSet to
this place. The net emptyDataSet describes an empty dataset resp. a dataset in initial mode. The net
emptyDataSet is defined in the ΣSL-Algebra ASL in 11.3.

7.1. MODEL IN A VISUAL DESCRIPTION 151

Ldp Kdp Rdp

l r

Persistent
Data
: AHLINetsPer

p

nPer

Persistent
Data
: AHLINetsPer

Persistent
Data
: AHLINetsPer

p′

emptyDataSet

Figure 7.92: AHOI rule DeletePersistentDatauser

7.1.4.4 Revisiting the Requirements Towards the User Operations Causing a Change of
the Internal State of the Message Oriented Middleware

In section 4.2.4.1 the requirements for all user operations are presented, which cause a change of the
internal state of the Message Oriented Middleware. I.e. those requirements refer to the AHOI rules which
directly access the System Level in order to change its internal state. In this section, these requirements
will be revised regarding their fulfilment by the AHOI rules and AHOI interaction schemes presented in
sections 7.1.4.1, 7.1.4.2 and 7.1.4.3. In addition, the Living Place system includes the characteristics of a
ubiquitous computing system, as presented in 2.1. These characteristics lead to requirements which have
to be fulfilled by the model of the Living Place system, which are mentioned in section 4.1.

rmomuser1
: The AHOI rule SetDeviceOfflineuser,nConnectionID assigns an object net containing a

specific connection id to the place UnplugConnectionIDs : AHLINets. Afterwards the Message Ori-
ented Middleware is able to take this connection id and sets the corresponding device into offline mode.
Therefore, this requirement rmomuser1

is fulfilled.

rmomuser2
: The inhabitant is able to add a new device in applying a concrete AHOI rule of the

kind PluginDeviceuser,y. Then, the given device in offline mode will be assigned as token to the place
OfflineDevices : AHLINetsOFFD, meaning that this device is now added to the Living Place system.
Thus, the requirement rmomuser2

is met by this AHOI rule.

rmomuser3
: The opposite to the previous rule is the rule UnplugDeviceuser,y which removes the given

device from the place OfflineDevices : AHLINetsOFFD, if it is assigned to this place, so, this device
is removed from the Living Place system. Consequently, the requirement rmomuser3

is fulfilled.

rmomuser4
: The user interaction schemes EmergencyOffonlineuser and EmergencyOffofflineuser are given

for setting the Living Place into offline mode in case of an emergency. They delete all devices assigned
to the places OnlineDevices : AHLINetsOND resp. OfflineDevices : AHLINetsOFFD. Hence, this
requirement rmomuser4

is fulfilled by the models of both interaction schemes.

rmomuser5
: To initialise the whole Living Place system, the following rules and interaction schemes are

provided:

• DeleteQueueuser
This rule resets the object net containing all available queues which represent the connections
between the devices and the topics to which they are subscribed and which contains an internal
data buffer for all messages which should be distributed to the corresponding devices. The new
object net assigned as token to the place Queues : AHLINetsQ is empty.

• DeleteReceiveDataRulesuser
All rules receiveData will be removed from the place ReceiveDataRules : RulesR. Each rule
receiveData enables the parallel receiving of data from all devices.

152 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

• DeleteRequestsuser
Each device is able to request past data from the persistence layer. An initialisation of the Living
Place system removes all requests in applying the amalgamated rule created out of this interaction
scheme.

• DeletePersistentDatauser
The object net assigned as token to the place PersistentData : AHLINetsPer (within the persis-
tence layer) contains all stored data processed by the message broker until now. This rule resets
the object net representing the internal database with an object net containing no data.

All conditions of this rmomuser5
are fulfilled by the AHOI rules and user interaction schemes presented in

chapter 7.1.4.3.

rubio1 , rubis1 and rubiu1 : The AHOI rules SetDeviceOfflineuser,nConnectionID, PluginDeviceuser,y
and UnplugDeviceuser,y are provided which enable the connection of devices to resp. disconnection
of devices from the Living Place system. Each device is assigned as an own token either to the place
OfflineDevices : AHLINetsOFFD or to the place OnlineDevices : AHLINetsOND, hence they are
independent from each other and will not influence each other when a device will be added to or removed
from the the Living Place system. Consequently, these requirements rubio1 , rubio1 and rubiu1 are satisfied.

As a result, all requirements demanded to the AHOI rules and user interaction schemes causing a
change of the internal state of the Message Oriented Middleware, are fulfilled.

7.1.4.5 Rule for Interaction With the Alarm Clock 2.0

User Interaction with the Alarm Clock 2.0

StopAlarmClockuser

ruleDeleteNextAppointments

ruleDeleteBedData

ruleDeleteContextData

ruleDeleteWakeUpT ime1

ruleDeleteWakeUpT ime2

ruleDeletePersonState

ruleResetT imestamp

ruleResetSync

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

Figure 7.93: Use Case for the Interaction with the Alarm Clock 2.0

The Living Place intends that the inhabitant should have the full control over the whole system. Even if
the Alarm Clock 2.0 should remind the user independently of coming appointments and tasks the user
has to perform before attending the appointment, the inhabitant will be able to stop the Alarm Clock
2.0 from reminding. The AHOI rule StopAlarmClockuser will be provided to stop the Alarm Clock 2.0.

7.1. MODEL IN A VISUAL DESCRIPTION 153

It transforms the device net alarmClock2.0online in applying the following eight AHLI rules to stop the
device:

• ruleDeleteNextAppointments, see 7.63,

• ruleDeleteBedData, see 7.64,

• ruleDeleteContextData, see 7.65,

• ruleDeleteWakeUpT ime1, see 7.66,

• ruleDeleteWakeUpT ime2, see 7.67,

• ruleDeletePersonState, see 7.68,

• ruleResetT imestamp, see 7.69 and

• ruleResetSync, see 7.70.

The use case presents the user interaction for stopping the Alarm Clock 2.0 (compare 7.1.2.7). The
following figure illustrates the AHOI transformation rule StopAlarmClockuser.

Lsa Ksa Rsa

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

r1

ruleDeleteNextAppointments

r2

ruleDeleteBedData

r3

ruleDeleteContextData r4

ruleDeleteWakeUpT ime

r5ruleDeletePersonState

r6

ruleResetT imestamp

r7

ruleResetSync

Figure 7.94: AHOI rule StopAlarmClockuser

7.1.4.5.1 Revisiting the Requirement Towards the User Operations Causing a Change of
the Alarm Clock 2.0 Device

In section 4.2.4.2.1 a requirement is presented, which should be fulfilled by the user operation presented
in this section 7.1.4.5. In the following this requirement will be revised in order to proove its fulfilment.

ralarmuser1
: The AHOI rule StopAlarmClockuser is provided in order to stop the Alarm Clock 2.0 device

assigned as token to the place OnlineDevices : AHLINetsOND within the Message Oriented Middleware
on System Level. This AHOI rule assigns the given rules to the place EnterDataIntoDeviceRules :
Rules:

• ruleDeleteNextAppointments
Removes the currently selected appointment assigned to NextAppointment : CalendarData.

154 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

• ruleDeleteBedData
Replaces the token assigned to Bed : BedData by unknown. So, the internally stored sleeping
phase of the user is resetted.

• ruleDeleteContextData
Replaces the token assigned to Context : ContextData by the initial triple (unknown, unknown,
unknown), which means, that no specific context is recognized, right now.

• ruleDeleteWakeUpT ime1

If a wake up time is assigned to WakeUpT ime : Timestamp, then this token will be removed.

• ruleDeleteWakeUpT ime2

If a wake up time is assigned to WakeUpT ime′ : Timestamp, then this token will be removed.

• ruleDeletePersonState
The internal task list assigned as token to Person : PersonState will be replaced by the token
(undefined, undefined, undefined, undefined).

• ruleResetT imestamp
The timestamp containing the additional waiting time because of bad weather resp. traffic con-
ditions will be removed and the initial value of 0 will be assigned to the corresponding place
AddT ime : Timestamp.

• ruleResetSync
If available, the synchronise token will be removed from WakeUpMode : Sync, which represents the
processing mode of the Alarm Clock 2.0 device and a new token will be assigned to RemoveContext :
Sync representing the idle mode of the Alarm Clock 2.0 device, which enables the device to remove
all incoming context data.

Because of the availability of these user and these AHLI rules, the requirement ralarmuser1
is fulfilled by

the model.

7.1.4.6 Rules for Direct User Interaction With the Display in the Multitouch Kitchen
Counter

To interact with the Display device (see 7.1.2.8) the model supplies the following AHOI rules presented
in the use case and described in detail in this section.

User Interaction with the Display

ClearDisplayuser

Figure 7.95: Use Case for the Interaction with the Display in the Multitouch Kitchen Counter

7.1.4.6.1 Clear Display

The Living Place will offer the opportunity that the user is able to remove selected data records
from the Display of the Multitouch Kitchen Counter. The AHOI rule ClearDisplayuser,d is provided for
deleting a single data record from the Display. The AHOI resp. AHLI rule are presented as template,
where the indice d should be replaced by a concrete data referring to a concrete data which should be
removed. Because of a possibly infinte set of data which could be shown by the Display device, an infinite
set of AHOI rules with their corresponding AHLI rules are available.

The AHOI rule assigns its corresponding AHLI rule ruleClearDisplayd to the place EnterDataIntoDe-
viceRules : Rules within the system net. The AHLI rule removes the data d from the place Display : Data
within the object net of the Display in online mode. The template of the corresponding AHLI rule is
presented in 7.1.3.5.2.

7.1. MODEL IN A VISUAL DESCRIPTION 155

7.1.4.6.2 Revisiting the Requirement Towards the User Operations Causing a Change of
the Display

In section 4.2.4.2.2 one requirement rDisplayuser1
is presented, which should be fulfilled by the user

operation which consists of a user and its corresponding AHLI rule introduced in this section 7.1.4.6.1.
In the following this requirement will be revised regarding its fulfilment.

rDisplayuser1
: The AHOI rule ClearDisplayuser,d and its corresponding AHLI rule ruleClearDisplayd

removes a given data record from the place display : DisplayData within the device net of the Display,
which should be assigned as token to the place OnlineDevice : AHLINetsOND within the net of the
message broker.
Therefore, this requirement rDisplayuser1

, which is demanded to the model, is met.

Lcd Kcd Rcd

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleClearDisplayd

Figure 7.96: AHOI rule ClearDisplayuser,d

7.1.4.7 Rules for Direct User Input Into the Daily Planner

Calendar data for the Daily Planner (see 7.1.2.9) will be entered by the resident in applying the AHOI
rule EnterDataIntoDailyP lanneruser,t,d, where t describes a concrete timestamp and d is a concrete
description of an appointment. Because of an infinite set of possibilities, the AHOI rule presented in this
section is only a template for all possible concrete AHOI rules.
The AHOI rule assigns the AHLI rule ruleAddDataplanner,t,d, as presented in 7.1.3.5.3, to the place
EnterDataIntoDeviceRules : Rules in the system net of the Message Oriented Middleware.

To remove data from the Daily Planner, the AHOI rule RemoveDataFromDailyP lanneruser,t,d is
available which assigns an AHLI rule ruleRemoveDataplanner,t,d to the place EnterDataIntoDeviceRules.
The AHLI rule assigns a token to be removed to the place DataP within the device net of the Daily Plan-
ner in order initiate the deletion of of stored information from the persistence layer.

In the following image the use case regarding the interaction of the user with the Daily Planner
is presented below, the AHOI rules EnterDataIntoDailyP lanneruser,t,d and RemoveDataFromDaily-
Planneruser,t,d are shown.

156 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

User Interaction with the
Daily Planner

EnterDataIntoDailyP lanneruser

RemoveDataFromDailyP lanneruser

Figure 7.97: Use Case for the Interaction with the Daily Planner in the Multitouch Kitchen Counter

Lad Kad Rad

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleAddDataplanner,t,d

Figure 7.98: AHOI rule EnterDataIntoDailyP lanneruser,t,d

7.1. MODEL IN A VISUAL DESCRIPTION 157

Lrd Krd Rrd

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleRemoveDataplanner,t,d

Figure 7.99: AHOI rule RemoveDataFromDailyP lanneruser,t,d

7.1.4.7.1 Revisiting the Requirements Towards the User Operations Causing a Change of
the Daily Planner

In this section, the requirements set up in section 4.2.4.2.3 will be revised regarding its fulfilment by
the model of the AHOI rules and its corresponding AHLI rules illustrated in this section.

rplanneruser1
: The AHOI transformation rule EnterDataIntoDailyP lanneruser,t,d assigns an AHLI

rule ruleAddDataplanner,t,d to the place EnterDataIntoDeviceRules : Rules within the net on Sys-
tem Level. The indices t and d represent the new appointment data, where t denotes the timestamp
of this appointment and d its description. After applying the AHOI rule, ruleAddDataplanner,t,d can
be applied directly to the device net of the Daily Planner in firing the transition enter data into de-
vice within the net on System Level, which assigns the new appointment as tuple (t, d) to the place
newCalendarData : CalendarData within the device net. From this place, the new appointment will be
processed and sent to the Message Oriented Middleware.
Consequently, the requirement rplanneruser1

is fulfilled by the AHOI rule EnterDataIntoDailyPlanneruser,t,d
and by the AHLI rule ruleAddDataplanner,t,d.

rplanneruser2
: Similar to the rules for entering new data, the AHOI transformation rules RemoveData-

FromDailyPlanneruser,t,d and the corresponding AHLI rules ruleRemoveDataplanner,t,d are provided in
order to remove data. The AHOI rule assigns the AHLI rule to the place EnterDataIntoDeviceRules :
Rules so that the AHLI rule can be applied to the device net of the Daily Planner. The AHLI rule
assigns a token (d, t, id, remove) in order to announce to the persistence layer of the Message Oriented
Middleware that the given calendar data should be removed from the Living Place system.
As a result, this requirement rplanneruser2

is met.

7.1.4.8 Rule MeasurePressureInBeduser for Input of Pressure Data in the Intelligent Bed

The user communicates indirectly with the bed pressure sensors because the user interacts with the bed
and thereby provides new stimuli to the pressure sensors. As described in 7.1.2.10, the Intelligent Bed
needs pressure data which will be assigned as tokens to the place Sensor : PressureData. The data
consists of a 6-tuple containing the data for each of the six sensors. Similar to the AHOI resp. AHLI
rule presented in last section 7.1.4.6.1, the indices in this AHOI rule represent concrete values. In the
following, the template for a concrete AHOI rule will be presented.

158 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

New measurement data will be set in applying an AHOI rule MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,

x1,x2,x3,x4,x5,x6 , where vi, xi ∈ R ∧ vi, xi ∈ [0.0, ..., 10.0], i ∈ {1, 2, 3, 4, 5, 6}, as illustrated in image 7.101.
The values xi represent the current pressure data of the Intelligent Bed, whereas all vi stand for the last
measured pressure data. The AHOI rule assigns an AHLI rule ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,

x2,x3,x4,x5,x6
to the place EnterDataIntoDeviceRules : Rules for transforming the device net which is

presented in 7.1.3.5.5.

The following picture presents the use case showing the interaction between the user and the Intelli-
gent Bed.

User Operation with
Pressure Sensors in Bed

MeasurePressureInBeduser

Figure 7.100: Use Case for the User Operation with the Pressure Sensors in the Intelligent Bed

7.1.4.8.1 Revisiting the Requirement Towards the User Operations Causing a Change of
the Intelligent Bed

In section 4.2.2.7 one requirement for the user operation causing a change on the Intelligent Bed is
presented, which will be revised in the following regarding its fulfilment.

rbeduser1
: The AHOI rules MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

and the corre-
sponding AHLI rules ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 are provided for entering
new pressure data to the device net of the Intelligent Bed. Because of that, the requirement rbeduser1

is
met.

Lmb Kmb Rmb

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleMeasurePressure
bed,v1,v2,v3,v4,v5,v6,

x1,x2,x3,x4,x5,x6

Figure 7.101: AHOI rule MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

7.1. MODEL IN A VISUAL DESCRIPTION 159

7.1.4.9 Rule MeasurePositionuser for Input of Current User Position in the Living Place
apartment

Similar to the pressure sensors of the Intelligent Bed as presented in last section, the Indoor-Positioning-
System (see 7.1.2.11) gets the current position of the inhabitant, which will be measured automatically
and therefore indirectly entered by the user.
In the model of the Living Place system the position data will be entered as 3-dimensional value
(X,Y,Z) with the help of an AHOI rule MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

, where vi =
(Xvi , Yvi , Zvi), xi = (Xxi , Yxi , Zxi)∧Xvi , Yvi , Zvi , Xxi , Yxi , Zxi ∈ R∧Xvi , Yvi , Zvi , Xxi , Yxi , Zxi ∈ [0.0, ...,
10.0], i ∈ {1, 2, 3, 4, 5, 6}, which is presented below. The first image shows the use case about enter-
ing position measurement data to the Living Place system. The second image presents the AHOI rule,
which assigns the AHLI rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

(see 7.1.3.5.6) to
the place EnterDataIntoDeviceRules : Rules.

User Operation
Input Current Position

MeasurePositionuser

Figure 7.102: Use Case for the Operation regarding the Input of Current User Position

Lmp Kmp Rmp

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleMeasurePosition
indoor,v1,v2,v3,v4,v5,v6,

x1,x2,x3,x4,x5,x6

Figure 7.103: AHOI rule MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

7.1.4.9.1 Revisiting the Requirement Towards the User Operations Causing a Change on
the Indoor-Positioning-System

In section 4.2.2.8 one requirement for the user operation causing a change on the Intelligent Bed is
presented, which will be revised in the following regarding its fulfilment.

rindooruser1
: The AHOI rules MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

and the correspond-
ing AHLI rules ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 are provided for entering new
position data to the device net of the Indoor-Positioning-System. Therefore, the requirement rindooruser1

is satisfied.

160 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

7.1.4.10 Rule for Switching the Location-Based Screen On or Off

Both TV sets as part of the Location-Based Screen (see 7.1.2.12) are able to be switched on and off
simultaneously by the resident of the Living Place apartment. Both TV sets are showing their program
alternative or both show nothing corresponding to the current position of the inhabitant, i.e. according
to the user being in sight of the TV set or not. Therefore both TV sets need to switched on together in
order to the Location-Based Screen operate correctly.
The possible interactions of the inhabitant of the Living Place apartment with the Location-Based Screen
is presented in the following use case.

User Interaction with
Location-Based Screen

SwitchOnTVuser

SwitchOffTVuser

Figure 7.104: Use Case Switching Location-Based Screen on or off

The model of the Living Place system provides two AHOI rules illustrated in the following figures:
SwitchOnTVuser for switching on both TV sets and SwitchOffTVuser the opposite AHOI rule. Each
rule assigns the corresponding AHLI rule ruleSwitchOnTV resp. ruleSwitchOffTV to the place Enter-
DataIntoDeviceRules : Rules in the system net in order to transform the device net of the Location-Based
Screen in Object Level, if a match can be found. Both AHLI rules are described in 7.76 and 7.77.

7.1.4.10.1 Switch On Location-Based Screen

Lson Kson Rson

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleSwitchOnTV

Figure 7.105: AHOI rule SwitchOnTVuser

7.1. MODEL IN A VISUAL DESCRIPTION 161

7.1.4.10.2 Switch Off Location-Based Screen

Lsoff Ksoff Rsoff

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleSwitchOffTV

Figure 7.106: AHOI rule SwitchOffTVuser

7.1.4.10.3 Revisiting the Requirements Towards the User Operations Causing a Change
on the Location-Based Screen

In section 4.2.2.11, requirements are presented which should be fulfilled by the models of the user
operations described in this section 7.1.4.10. In the following, the requirements will be revised regarding
their fulfilments.

rscreenuser1
: The AHOI rule SwitchOnTVuser and its corresponding AHLI rule ruleSwitchOnTV are

provided which cause, that the internal on/off state of both TV set represented by a token assigned
to each of the places TV1 : TV State and TV2 : TV State will be replaced by on. This represents the
case, that both TV set within the Living Place system are switched on. Consequently, the requirement
rscreenuser1

is fulfilled.

rscreenuser2
: In contrast, the AHOI rule SwitchOffTVuser and its corresponding AHLI rule ruleSwitch-

OffTV cause the change of both internal TV states, that the token assigned to the places TV1 : TV State
and TV2 : TV State will be replaced by off . Therefore, the requirement rscreenuser2

is met by the model
of the Living Place system.

7.1.4.11 Rule for Switching the Light On or Off in the Living Place Apartment

In the model of the Living Place system the light, as presented in section 7.1.2.13, is able to be set in
the following states: bright, dimmed and off. The inhabitant is able to directly switch the light on into
bright mode or switch the light off in the apartment in applying the AHOI rules SwitchOnLightuser
resp. SwitchOffLightuser,bright or SwitchOffLightuser,dimmed illustrated in the use case below and in
the following pictures 7.108, 7.109 and 7.110.
Each of the AHOI rules have a corresponding AHLI rule ruleSwitchOnLight, ruleSwitchOffLight,bright
resp. ruleSwitchOffLight,dimmed presented in sections 7.1.3.5.9, 7.79 and 7.80.

162 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

User Interaction with
Light

SwitchOnLightuser

SwitchOffLightuser,bright

SwitchOffLightuser,dimmed

Figure 7.107: Use Case Switching Location-Based Screen on or off

7.1.4.11.1 Revisiting the Requirements Towards the User Operations Causing a Change
of the Ambient Light

The requirements presented in section 4.2.2.12 should be fulfilled. Therefore, both requirements will
be revised in order to check, if they are fulfilled by the models presented in this section 7.1.4.11.

rlightuser1
: The AHOI rule SwitchOnLightuser is provided, which uses the AHLI rule ruleSwitchOnLight

for changing the internal state of the Ambient Light within its object net to on. The internal state of the
Light is represented by the token assigned to the place Light : LightState. Following, the requirement
rlightuser1

is fulfilled.

rlightuser2
: For switching the Light off, two AHOI rules are available: SwitchOffLightuser,bright and

SwitchOffLightuser,dimmed and their corresponding AHLI rules ruleSwitchOffLight,bright and rule-
SwitchOffLight,dimmed. Both rules change the internal state of the Ambient Light represented by a token
assigned to the place Light : LightState within the device net to off . As a consequence, the requirement
rlightuser2

is met.

7.1.4.11.2 Switch On Light

Lsoff Ksoff Rsoff

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleSwitchOnLight

Figure 7.108: AHOI rule SwitchOnLightuser

7.1. MODEL IN A VISUAL DESCRIPTION 163

7.1.4.11.3 Switch Off Light

Lsoff Ksoff Rsoff

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleSwitchOffLight,bright

Figure 7.109: AHOI rule SwitchOffLightuser,bright

Lsoff Ksoff Rsoff

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleSwitchOffLight,dimmed

Figure 7.110: AHOI rule SwitchOffLightuser,dimmed

7.1.4.12 Revisiting the Requirements Towards the User Operations

The following requirements are demanded to the user operations provided by model of the Living Place
system, which will be revised in this section regarding its fulfilment by the model.

164 CHAPTER 7. MODEL OF THE SYSTEM OF THE LIVING PLACE

rubiu3 : By applying the AHOI transformation rules resp. interaction schemes EmergencyOffonlineuser ,
EmergencyOffofflineuser , DeleteQueueuser, DeleteReceiveDataRulesuser, DeleteRequestsuser and Delete-
PersistentDatauser of figures 7.86, 7.87, 7.89, 7.90, 7.91 and 7.92 on the AHOIAHLI system net, the user
is able to take control over the system by shutting it down or restarting resp. initialising the whole
system. These rules are defined in a way, so that they are always applicable in the considered situations.
Therefore, the user is able to take control over the system at any time. So, requirement rubiu3

is fulfilled.

rubiu2 and rubis3 : In applying the user operations presented in section 7.1.4, the user is able to
influence the behaviour of the Living Place system. This leads to the fulfilment of the requirement
rubiu2 . In addition, each AHOI rule resp. user interaction scheme, presented provokes a defined re-
action to this operation, e.g. the AHOI rule PluginDeviceuser,y adds a new device to the Living
Place system, or the AHOI rule SwitchOnLightuser assigns a rule ruleSwitchOnLight to the place
EnterDataIntoDeviceRules : Rules in order to provoke the transformation of the device net of the
Ambient Light in online mode, so that the internal state of the light can be switched to on. Therefore,
each user operation causes a defined reaction of the Living Place system. Consequently, the requirement
rubis3 is met, too.

7.2 Model in a Formal Description

7.2.1 Data Level

The models of the Data Level are represented by the signature ΣOL and ΣOL-Algebra AOL as defined in
section 11.1 resp. 11.2.

7.2.1.1 Revisiting the Requirement Towards the Data Level

In section 4.2.1 the requirement rdata1 is set up which demands:
The communication in the Living Place system between all connected devices takes place with the help
of topics (see 2.2.1.3), hence, the model on the Data Level has to provide a data type for topic with a
corresponding carrier set enabling identifiers for all relevant topics.
The ΣOL-Algebra AOL contains the type AOLTopic

with a carrier set which enables the generation of
identifiers for topics. Hence, this requirement is fulfilled. Additionally, the same algebra includes carrier
sets for the data that are typed over these topics. Therefor, requirement rubid1 , which is put forward in
section 4.1, is also fulfilled.

7.2.2 Object Level

The models of the Object Level are defined as AHLI nets as introduced in section 6.1.1. All defined
AHLI nets share the same signature ΣOL and ΣOL-Algebra AOL as defined in section 11.1 resp. 11.2.

The explicit formal notation of these AHLI nets is omitted, since the visual representation of the
previous section 7.1 is meaningful enough. However. in section 11.5 an exemplary formal notation for
AHLI net deviceofflinesender of figure 7.6 is given.

7.2.3 System Level

The models of the System Level are defined resulting into one huge AHOIAHLI net as introduced in
section 6.3. The so defined AHOIAHLI net includes signature ΣSL and ΣSL-Algebra ASL as defined in
section 11.3 resp. 11.4.

Consider, that all rule places p ∈ P with type(p) = Rules of this AHOIAHLI net are contextual,
i.e. for all transitions t ∈ T connected with p there exists variable x ∈ X, so that pre(t)|p = post(t)|p.
Compare to definition of Higher-Level Net and Rule Systems in [HEM05].

The explicit formal notation of this AHOIAHLI net is omitted, since the visual representation of the
previous section 7.1 is meaningful enough. However. in section 11.5 an exemplary formal notation for
AHLI net deviceofflinesender of figure 7.6 is given.

Consider, that as already mentioned in section 6.2.2, the morphsisms l, r of each AHLI transformation
rule defined as a token within this AHOIAHLI net are morphisms of the form lΣOL

= rΣOL
= idΣOL

and
lAOL

= rAOL
= idAOL

resp. lTΣOL
(X) = rTΣOL

(X) = idTΣOL
(X), where the nets L,K,R share the same

7.3. SUMMARY 165

signature ΣOL and also the same ΣOL-Algebra AOL resp. the same corresponding term algebra with
variables TΣOL

(X).12

Furthermore, the AHOIAHLI net of the System Level contains the AHLI nets of the Object Level
as tokens.

7.2.4 User Level

The explicit formal notations of the AHOIAHLI transformation rules defined in the User Level as part
of the topmost reconfigurable AHOI system are omitted, since the visual representations of the previous
section 7.1 are meaningful enough. However. in section 11.5 an exemplary formal notation for AHLI
net deviceofflinesender of figure 7.6 is given.

Consider, that as already mentioned in section 6.2.2, the morphsisms l, r of each AHOIAHLI trans-
formation rule defined in the User Level as part of the topmost reconfigurable AHOI system, that is
intended to be applied to the topmost AHOIAHLI net, are morphisms of the form lΣSL

= rΣSL
= idΣSL

and lASL
= rASL

= idASL
resp. lTΣSL

(X) = rTΣSL
(X) = idTΣSL

(X), where the nets L,K,R share the same
signature ΣSL and also the same ΣSL-Algebra ASL resp. the same corresponding term algebra with
variables TΣSL

(X).13

The reconfigurable AHOI system of the User Level is defined as (N,R), where N is the AHOIAHLI
system net in initial mode of figure 7.26 and R is the set of AHOIAHLI transformation rules of the User
Level as defined in this chapter.

7.3 Summary

This chapter presents the formal overall model of the Living Place system using the formal modelling
techniques of chapter 6.

Within the here presented modelling it is clarified, that the resulting model fulfills requirement rgen

of chapter 4 as well as any other therein defined requirement. Therefore, this model can be considered
as an adequate, elegant model of the Living Place system.

By modelling this system that way, it is shown, that the used modelling techniques of Algebraic-High
Level Nets with Individual Tokens and the rule-based transformation of such nets following the double
pushout approach are expressive enough and therefore suitable to be used as formal tools to model
systems of such high complexity in an elegant manner.

Therefore, the question Are the used formal modelling techniques expressive enough and therefore
suitable for modelling the Living Place system? can be answered with: Yes.

In the next chapter 8 the elaborated model is used by considering an exemplary scenario and simulating
the therin occuring system behaviours of the Living Place system by using the model.

12Refer to sections 11.1 and 11.2 for the definition of signature ΣOL and ΣOL-Algebra AOL.
13Refer to sections 11.3 and 11.4 for the definition of signature ΣSL and ΣSL-Algebra ASL.

Chapter 8

Simulation of a Test Scenario

A simulation of a scenario of the Living Place system with all components presented in the modelling in
chapter 7 will be illustrated in the current chapter. The scenario which will be simulated will contain the
following steps the Living Place system:

1. At the beginning of the scenario, the user attaches all devices except the Alarm Clock 2.0 and the
Display in the Multitouch Kitchen Counter to the Living Place system. The devices which will be
plugged in are:

• Daily Planner

• Intelligent Bed

• Indoor-Positioning-System

• Location-Based Screen

• Weather Information Service

• Traffic Information Service

• Ambient Light

Afterwards the devices need to be set into online mode and, if necessary, all topics will be subscribed
automatically and requests for old data will be sent to the persistence layer which is a part of the
Message Oriented Middleware.

2. As next step the inhabitant enters a new appointment to the Daily Planner with the help of the
Multitouch Kitchen Counter.

3. Now the Alarm Clock 2.0 and the Display in the Multitouch Kitchen Counter will be plugged in
to the Living Place system. Both devices request all past data belonging to the topic “Calendar”
from the persistence layer.

4. After going to sleep, the Intelligent Bed sends information about the sleeping phases the user is
in. Additionally the Alarm Clock 2.0 analyses the calendar data the user has entered and checks
current weather and traffic conditions to infer an appropriate wake up time. Then, the Alarm Clock
2.0 compares its internal wake up time with the current timestamp and the sleeping phase. If all
conditions are fulfilled, an alarm will be provoked, which illuminates the Ambient Light in dimmed
mode and switches on the TV set of the Location-Based Screen.

5. After getting up because of the alarm, the person enters the bathroom to wash. The Living Place
apartment will recognize this and removes the task from the internal list.

6. As next step, after 20 minutes, the person goes to the sleeping room to dress. Meanwhile the TV
set of the sleeping area will be activated automatically. Because the inhabitant does not fulfil the
last task, the Alarm Clock 2.0 tries to remind the user of having breakfast regularily.

7. Before leaving the apartment, the user switches off the whole Living Place system.

All steps of the scenario mentioned, will be presented in detail in this chapter.

166

8.1. INITIAL MODE OF THE LIVING PLACE SYSTEM 167

8.1 Initial Mode of the Living Place System

Before starting the scenario the Message Oriented Middleware of the Living Place system is set to initial
mode, which is illustrated in image 7.26.
In the part representing the message broker, no devices are assigned as tokens to the placesOnlineDevices :
AHLINetsOND or OfflineDevices : AHLINetsOFFD in the system net, meaning that no device is con-
nected to the Living Place system. The counter for the connection identifications is initially set to 1. In
addition no topics are subscribed, hence no subnets representing available queues connections are existing
in the AHLI net assigned to the place Queues : AHLINets. At startup no messages were sent, therefore
no data are assigned to the place : GlobalData within the object net DataBuffer1.
The part of the persistence layer within the Message Oriented Middleware in initial mode contains the
object net database with one place db : PersistentData without any tokens assigned to it.
The Context Interpreter contains no data. In the whole system net of the Message Oriented Middleware,
all necessary rules are available and assigned to its corresponding places.12

8.2 Attach Devices to the Message Oriented Middleware of the
Living Place System

As first step, the inhabitant attaches all devices to the Message Oriented Middleware of the Living Place
system. The process of attaching is always done in the sequence presented exemplarily for the device net
of the Ambient Light.

1. Extract from system net System in initial
mode (see 7.29):

Offline
Devices
: AHLINetsOFFD

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

set device online

mG : MorGen
cod(mG) = fOFFD(nOFFD)

.
∪S n1

applicable(r,mG) = tt

transform(r,mG) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt

nOFFD tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

setSenderOnline
rro

setReceiverOnline

rto

setTransceiverOnline
ConnectionID
Counter : AHLINets

n1

n2
c counter

No device is assigned to the places OfflineDevices :
AHLINetsOFFD resp. OnlineDevices :
AHLINetsOND in the system net of the part
refering to the message broker.
The net counter in initial mode is set to the place
ConnectionIDCounter : AHLINets. Initially the
counter is set to 1, whose object net is shown below:

Counter :
ConnectionIDmessageBroker

id 1

Figure 8.1: Attach a Device

99K

2. Apply AHOI rule
PluginDeviceuser,lightoffline

to
the system net System (see

7.83):

Lpd Kpd Rpd

l r

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

d

lightoffline

The inhabitant exe-
cutes the AHOI rule
PluginDeviceuser,lightoffline

first, which provides a concrete
AHLI net lightoffline of the
device net representing the
Ambient Light in offline mode
which should be plugged in.
Now, the device net lightoffline
will be added to the Message
Oriented Middleware.

Figure 8.2: Attach a Device

1In this chapter mainly extracts of nets are presented. Dashed places have the meaning that additional parts are
connected to this place but are not mentioned in the specific picture because it shows only a subnet.

2All devices added to the system are situated on OnlineDevices : AHLINetsOND or OfflineDevices :
AHLINetsOFFD. Connected to these places are fire transitions as described in 7.1.3.1.1. Therefore, the device nets
are able to fire. The firing of transitions within object nets triggered by the fire transitions in system level, will not be
presented within this scenario in explicit.

168 CHAPTER 8. SIMULATION OF A TEST SCENARIO

3. System net System′ extended by a new
offline device lightoffline assigned to the

place OfflineDevices : AHLINetsOFFD (see
7.29):

Offline
Devices
: AHLINetsOFFD

l lightoffline

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

set device online

mG : MorGen
cod(mG) = fOFFD(nOFFD)

.
∪S n1

applicable(r,mG) = tt

transform(r,mG) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt

nOFFD tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

setSenderOnline
rro

setReceiverOnline

rto

setTransceiverOnline
ConnectionID
Counter : AHLINets

n1

n2
c counter

After applying the AHOI rule
PluginDeviceuser,lightoffline

with the indice
lightoffline, which is the device net of the
Ambient Light in offline mode, a new de-
vice lightoffline is assigned to the place
OfflineDevices : AHLINetsOFFD in the
system net of the part refering to the message
broker.

Figure 8.3: Attach a Device

99K

4. Device net lightoffline which is
assigned to the place OfflineDevices
in the system net System′ (see 7.20):

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

The device net lightoffline, which is part
of the Object Level, is assigned to the
place OfflineDevices in the system net
System′. It is initially set to offline mode
but is able to request to be set into online
mode.

Figure 8.4: Attach a Device

5. Device net lightoffline:

Status
: Device
Status

s1

offline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

s2 sync

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

To request the activation into online mode,
the transition ask device online in the
device net fires.

Figure 8.5: Attach a Device

99K

6. Device net light′offline:

Status
: Device
Status

s1

askOnline

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

Afterwards the tokens sync resp. offline
are removed from the places sync1 resp.
Status. Instead a new token askOnline is
assigned to the place Status.

Figure 8.6: Attach a Device

8.2. ATTACH DEVICES TO THE MESSAGE ORIENTED MIDDLEWARE 169

7. The system net System′ is able
to apply the rule setReceiverOnline

to the device net light′offline:

Offline
Devices
: AHLINetsOFFD

l lightoffline

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

set device online

mG : MorGen
cod(mG) = fOFFD(nOFFD)

.
∪S n1

applicable(r,mG) = tt

transform(r,mG) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt

nOFFD tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

setSenderOnline
rro

setReceiverOnline

rto

setTransceiverOnline
ConnectionID
Counter : AHLINets

n1

n2
c counter

The object net light′offline is a receiv-
ing device. Because of the modification
of the object net in last steps 5. and
6., the system net is able to apply
the rule setReceiverOnline in firing
the transition set device online to
transforms the device net completely
into a the device net of the Ambient
Light in online mode.

Figure 8.7: Attach a Device

99K

8. AHLI rule setReceiverOnline which will
be applied to the device net lightoffline and
the object net counter when firing set device
online in order to change the device status

from offline to online (see 7.32):

NACro Lro Kro Rro

l rn

DatatoSend
: DataToSend

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1

askOnline

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1

askOnline

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

id

i

Status
: Device
Status

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

TopicstoRequest
: TopictoRequest

Counter
: ConnectionID
messageBroker

Status
: Device
StatusDatareceived

: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online online

s4

online

receive
data

DataI
: Input
Data

din

drcv(din) online
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

i

Counter
: ConnectionIDmessageBroker

id

succ(i)

The rule setReceiverOnline will be applied to the
device net light′offline in order to change its status
into online mode and furthermore the AHLI rule
transforms the object net counter. The variables
i mentioned on the left-hand-side Lro and on the
right-hand-side Rro in this rule will be substituted,
where i is represented by the match morphism
m = eval(X), with i ∈ X will be depicted as 1, i.e.
evalX(i) = 1. Then, the connection identification
provided by the object net counter and which will
replace i, will be increased from 1 to 2 in executing
this rule.
The counter gets the current connection identifi-
cation which will be increased with every device
set into online mode, i.e. everytime the transition
set device online fires.

The rules setSenderOnline (see 7.30) and
setTransceiverOnline (see 7.31) operate similar
to setReceiverOnline.

Figure 8.8: Attach a Device

170 CHAPTER 8. SIMULATION OF A TEST SCENARIO

9. Device net lightonline after
transformation by the rule

setTransceiverOnline (see 7.21):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

The object net lightonline is the result
of the transformation with the rule
setReceiverOnline.

Figure 8.9: Attach a Device

99K

10. Object net counter′ after its
transformation by the rule
setTransceiverOnline:

Counter :
ConnectionIDmessageBroker

id 2

After applying the rule setReceiverOnline, the
token 1 assigned to Counter is removed and re-
placed by succ(1) = 2.

Figure 8.10: Attach a Device

11. The system net System′′ after firing
set device online in order to set the device

net into online mode:

Offline
Devices
: AHLINetsOFFD

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

l

lightonline

r1

tR(receiveData)

set device online

mG : MorGen
cod(mG) = fOFFD(nOFFD)

.
∪S n1

applicable(r,mG) = tt

transform(r,mG) = n3

.
∪S n2

isomorphicPTNET (n1, n2) = tt

nOFFD tOND(n3)

receiveData

SetDevice
OnlineRules
: Rulesr

rso

setSenderOnline
rro

setReceiverOnline

rto

setTransceiverOnline
ConnectionID
Counter : AHLINets

n1

n2
c counter′

After firing the transition set device online,
the object net counter′ is modified as
shown in 10. and put back to its place
ConnectionIDCounter. The device net which
was assigned to OfflineDevices is removed.
Instead the transformed object net lightonline
is assigned to OnlineDevices. Additionally
a new token receiveData is set to the place
ReceiveDataRules, which is regulates the par-
allel receiving of data for each device assigned
to OnlineDevices.

Figure 8.11: Attach a Device

The object net representing the Light was plugged in with the help of the AHOI rule PluginDeviceuser
which was initiated by the inhabitant of the Living Place apartment. The device net was able to request
the change into online mode. Afterwards the message broker as part of the Message Oriented Middle-
ware system net automatically sets the device into online mode. For all kinds of devices, these steps are
identical, no matter if they are senders, receivers or transceivers. All other devices will be attached to the
Living Place system analogously, therefore it will not be presented in explicit for all other device nets.

For receiving devices, i.e. receivers and transceivers, the process of plugging-in contains the subscrip-
tion of all necessary topics. Afterwards it is possible to send requests to the persistence layer in order to
get all past data which were stored, if necessary.
The first steps will be presented in explicit for the Ambient Light in the following part. For all other
devices, the process of subscribing topics is analogously, hence it is not shown for each device in explicit.

8.2. ATTACH DEVICES TO THE MESSAGE ORIENTED MIDDLEWARE 171

12. Device net lightonline, ready to
request subscription of topics:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

a
Alarm

As next step, the net light′online is able to
alert the message broker of new topics the
device wants to be subscribed in firing the
transition subscribe topic.

Figure 8.12: Attach a Device, Subscribe Topic

99K

13. Device net light′online, ready to
request subscription of the second

topic:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li
Light

aAlarm

One of both topics Alarm is transferred to
the place TopicsToSubscribe. The transi-
tion subscribe topic still is enabled.

Figure 8.13: Attach a Device, Subscribe Topic

172 CHAPTER 8. SIMULATION OF A TEST SCENARIO

14. Device net light′′online, with both
topics on TopicsToSubscribe:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li

Light
aAlarm

After shifting the second topic Light to the
place TopicsToSubscribe, the transition
subscribe topic is deactivated. The message
broker on System Level should now sub-
scribe the device to all requested topics in
the Living Place system.
The device net light′′online representing the
Ambient Light should be subscribed to the
topics: “Alarm” and “Light”.

Figure 8.14: Attach a Device, Subscribe Topic

99K

15. Extract from the system net System′′

for subscribing a device to a topic:

OnlineDevices
: AHLINetsOND

subscribe topic

mG : MorGen
cod(mG) = x

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQ

nQ

tQ(n1)

subscribeTopicRules
: Rules

rst

r

subscribeTopic

l

light′′online

q1

∅

Once a device assigned toOnlineDevices has set
tokens to its place TopicsToSubscribe as shown
in step 14, the rule subscribeTopic is able to be
applied to the device net in firing the transition
subscribe topic.

Figure 8.15: Attach a Device, Subscribe Topic

16. AHLI rule subscribeTopic for
subscribing a device to a topic:

Lst Kst Rst

l r

TopicsToSubscribe
: TopictoSubscribe

t1

t1

SubscribedTopics
: Topicsubscribed

: ConnectionID

id

id

TopicsToSubscribe
: TopictoSubscribe

SubscribedTopics
: Topicsubscribed

: ConnectionID

id

id

TopicsToSubscribe
: TopictoSubscribe

SubscribedTopics
: Topicsubscribed

t1

t1

: ConnectionID

id

id

: ConnectionID
messageBroker

Connect1id

id

id

: GlobalData

g Connect2g

: Topic

t

t1

t1

The AHLI rule subscribeTopic will be applied
for each topic assigned to TopicsToSubscribe
within the device net and for each device net.
It transfers a topic assigned to
TopicsToSubscribe to the place
SubscribedTopics and creates a new sub-
net specifying the connection between the
device and a certain topic which has to be
stored within the Message Oriented Middleware
in order to allocate messages correctly regarding
its topic and the subscribed devices.

Because of the object net light′′online containing
two topics to subscribe, this rule will be applied
twice.

Figure 8.16: Attach a Device, Subscribe Topic

8.2. ATTACH DEVICES TO THE MESSAGE ORIENTED MIDDLEWARE 173

17. System net System′′′ after firing
subscribe topic twice:

OnlineDevices
: AHLINetsOND

subscribe topic

mG : MorGen
cod(mG) = x

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQ

nQ

tQ(n1)

subscribeTopicRules
: Rules

rst

r

subscribeTopic

l

light′′′online

q1

q

After firing the transition subscribe topic
of the system net of the Message Oriented
Middleware twice, the rule subscribeTopic
was applied twice for each topic which
should be subscribed. Afterwards the device
net light′′′online was transformed as shown
in image 19 and put back to the place
OnlineDevices. Additionally the token as-
signed to Queues was modified resulting the
object net q which is presented in the next
figure 18.

Figure 8.17: Attach a Device, Subscribe Topic

18. Object net q, after firing
subscribe topic twice:

c1 : ConnectionID
messageBroker

Connect1id

id

1

g1 : GlobalData

g Connect2g

t1 : Topic

t

t1

Alarm

c1 : ConnectionID
messageBroker

Connect3id

id

1

g2 : GlobalData

g Connect4g

t2 : Topic

t

t2

Light

In the object net q extended after applica-
tion of the rule subscribeTopic, a direct re-
lation between the connection identification
of the specific device and each topic was cre-
ated. For each topic and device, a disjoint
subnet will be generated.

Figure 8.18: Attach a Device, Subscribe Topic

99K

19. Device net light′′′online, after
subscription of both topics:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li

Light

a Alarm

The rule subscribeTopic has been applied
for each topic assigned to TopicsToSubscribe
within the device net and for each device net.
It transfered a topic assigned to
TopicsToSubscribe to the place
SubscribedTopics and creates a new sub-
net specifying the connection between the
device and a certain topic which has to be
stored within the Message Oriented Middleware
in order to allocate messages correctly regarding
its topic and the subscribed devices.

Because of the object net light′′online contained
two topics to subscribe, this rule has been
applied twice.

Figure 8.19: Attach a Device, Subscribe Topic

Similar to the device net of the Ambient Light, all other devices can be connected to the Message
Oriented Middleware.

174 CHAPTER 8. SIMULATION OF A TEST SCENARIO

20. Extract from the system net
System4 after plugging-in all devices
except the Alarm Clock 2.0 and the
Display in the Multitouch Kitchen
Counter and after subscribing their

topics:

OnlineDevices
: AHLINetsOND

subscribe topic

mG : MorGen
cod(mG) = x

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQnQ

tQ(n1)

subscribeTopicRules
: Rules

rst

r

subscribeTopic

q1

q′

l

light′′′online

p

dailyP lanneronline

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

All devices except the Alarm Clock 2.0 and the
Display in the Multitouch Kitchen Counter
are set into online mode and assigned to
OnlineDevices. Some devices need to be sub-
scribed to topics. This process is similar to
the steps presented in 12. - 19. and the
resulting device nets are similar to the de-
vice net light′′′online shown in step 19: All
topics are assigned as tokens to the place
SubscribedTopics.
The devices are plugged in in the following or-
der resulting in the mentioned connection ids
between device and Message Oriented Middle-
ware:

1. light′′′online, connection ID 1, see 7.21 or
step 19 in the figure above,

2. dailyP lanneronline, connection ID 2, see
7.13,

3. intelligentBedonline, connection ID 3,
see 7.15,

4. indoorPositioningSystemonline, con-
nection ID 4, see 7.17,

5. locationBasedScreenonline, connection
ID 5, see 7.19,

6. weatherInformationSystemonline,
connection ID 6, see 7.23,

7. trafficServiceonline, connection ID 7,
see 7.25.

Figure 8.20: Attach a Device, Subscribe Topic

99K

21. Object net q′ contains subnets
representing all subscriptions at this

stage:

c1 : ConnectionID
messageBroker

Connect1id

id

1

g1 : GlobalData

g Connect′1g

t1 : Topic

t

t1

Alarm

c2 : ConnectionID
messageBroker

Connect2id

id

1

g2 : GlobalData

g Connect′2g

t2 : Topic

t

t2

Light

c3 : ConnectionID
messageBroker

Connect3id

id

5

g3 : GlobalData

g Connect′3g

t3 : Topic

t

t3

UbiTV

c4 : ConnectionID
messageBroker

Connect4id

id

5

g4 : GlobalData

g Connect′4g

t4 : Topic

t

t4

Alarm

The object net q′ contains all subscriptions
after attaching all devices, except the Alarm
Clock 2.0 and the Display in the Multitouch
Kitchen Counter, to the Message Oriented
Middleware and subscribing all available top-
ics. The object net q′ contains subscriptions
for the device nets: light′′′online with the con-
nection ID 1 and locationBasedScreenonline
with the connection id 5.

Figure 8.21: Attach a Device, Subscribe Topic

8.3. THE USER ENTERS A NEW APPOINTMENT TO THE DAILY PLANNER 175

8.3 The User Enters a new Appointment to the Daily Planner

As second step, the user enters a new appointment to the Daily Planner, in applying the AHOI rule
EnterDataIntoDailyP lanneruser which adds a new appointment to the Daily Planner device with the
help of the AHLI rule ruleAddDataplanner. Afterwards, the newly entered data will be transferred to
the persistence layer of the Message Oriented Middleware on System Level.

1. Extract from the system net
System4 for entering new data

to a device (see 7.48):

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

l

light′′′online

p

dailyP lanneronline

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

To enter a new data to a device net, a
AHOI rule have to be applied which
puts a AHLI rule to the given place
EnterDataIntoDeviceRules : Rules
in order to assign the new data
token to a certein place in the
device net on Object Level. Each
AHOI rule for entering data has
one corresponding AHLI rule (or
more in the case of the AHOI rule
ResetAlarmClock2.0user), which
matches to a special kind of device
net.

The following two illustrations
show a general AHOI rule
EnterDataIntoDailyP lanneruser,t,d
and its general AHLI rule
ruleAddDataplanner,t,d for adding
new data (t, d) to the Daily Planner.
The indices t and d are placeholders
for concrete data which will be trans-
ferred as new data to the device net
on Object Level. Therfore, an infinite
set of AHOI rules and associated
AHLI rules exist for adding new
information to the Daily Planner.

Figure 8.22: Enter Appointment

99K

2. General AHOI rule
EnterDataIntoDailyP lanneruser,t,d to enter
a new appointment to the Daily Planner

(see 7.98):

Lad Kad Rad

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleAddDataplanner,t,d

Figure 8.23: Enter Appointment

3. The corresponding general AHLI rule
ruleAddDataplanner,t,d to enter a new

appointment to the Daily Planner (see
7.74):

Lcd Kcd Rcd

l r

newCalendarData
: CalendarData

newCalendarData
: CalendarData

newCalendarData
: CalendarData

n

(t, d)

Figure 8.24: Enter Appointment

176 CHAPTER 8. SIMULATION OF A TEST SCENARIO

4. Concrete AHOI rule
EnterDataIntoDailyP lanneruser,12340,Work to
enter the appointment “12340, Work” to

the Daily Planner:

Lad Kad Rad

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleAddData
planner,12340,Work

The concrete AHOI rule
EnterDataIntoDailyP lanneruser,12340,Work

assigns its corresponding AHLI rule
ruleAddDataplanner,12340,Work to the place
EnterDataIntoDeviceRules within the system
net.

Figure 8.25: Enter Appointment

99K

5. Concrete AHLI rule
ruleAddDataplanner,12340,Work to enter
the appointment “12340, Work” to

the Daily Planner:

Lcd Kcd Rcd

l r

newCalendarData
: CalendarData

newCalendarData
: CalendarData

newCalendarData
: CalendarData

n

(12340,Work)

The concrete AHLI rule
ruleAddDataplanner,12340,Work assigns
the token (12340,Work) to the place
newCalendarData : CalendarData
within the device net dailyP lanneronline.

Figure 8.26: Enter Appointment

6. Extract from the system net System5

after applying the AHOI rule
EnterDataIntoDailyP lanneruser,12340,Work:

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

l

light′′′online

p

dailyP lanneronline

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

r

ruleAddDataplanner,12340,Work

After applying the AHOI rule
EnterDataIntoDailyP lanneruser,12340,Work,
a new token refering to the AHLI rule
ruleAddDataplanner, 12340,Work is put to
the place EnterDataIntoDeviceRules : Rules.
Now the transition enter data into device is
able to fire in order to transform the device net
of the Daily Planner.

Figure 8.27: Enter Appointment

99K

7. Device net dailyP lanneronline
before entering calendar data (see

7.13):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

The image illustrates the object net
dailyP lanneronline before adding new
calendar data to the device net.

Figure 8.28: Enter Appointment

8.3. THE USER ENTERS A NEW APPOINTMENT TO THE DAILY PLANNER 177

8. Extract from the system net System6

after firing enter data into device :

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

l

light′′′online

p

dailyP lanner′online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

After firing the transition enter data into de-
vice, the rule ruleAddDataplanner,12340,Work is
deleted and the device net of the Daily Planner
is modified.

Figure 8.29: Enter Appointment

99K

9. Device net dailyP lanner′online after
applying the AHLI rules

ruleAddDataplanner,12340,Work:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

d 12340,Work

A new calendar data token is assigned to
the place newCalendarData after applying
the rule ruleAddDataplanner,12340,Work.
Now, the transition analyse data is
activated. It executes the operation
transformToCalendar(cal) in order to
transform the calendar data to a more general
data type DataToSend consisting of a tuple
Data× Topic.

Figure 8.30: Enter Appointment

10. Device net dailyP lanner′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

d

tuple(< 12340,Work >,Calendar)

After firing the transition analyse data
the token assigned to newCalendarData
is removed and a modified token
(< 12340,Work >,Calendar) containing
the transformed calendar data and the
appropriate topic is assigned to the place
DatatoSend.
The transition send data is activated and can
be fired in order to send the new appointment
to the Message Oriented Middleware.

Figure 8.31: Enter Appointment

99K

11. Device net dailyP lanner′′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

d1

(< 12340,Work >,Calendar, 2)

d1

(< 12340,Work >,Calendar, 2, store)

The transition send data has fired and a new
token (< 12340,Work >,Calendar, 2) is as-
signed to DataO representing the new infor-
mation, whereas 12340 is the timestamp and
Work the description of the new appoint-
ment, Calender is the topic and 2 the con-
nection id of the device. A second token
(< 12340,Work >,Calendar, 2, store) is cre-
ated and assigned to DataP in order to store
the new data within the persistence layer.

Figure 8.32: Enter Appointment

178 CHAPTER 8. SIMULATION OF A TEST SCENARIO

12. Extract from the system net
System6 for storing data in the
persistence layer (see 7.49):

Online
Devices
: AHLINetsOND

Store
Data
Rules
: Rules

rsd

storeData

rrd

removeData

Persistent
Data
: AHLINetsPer

db

database

store data in persistence layer
or remove data

m : Mor

cod(m) = fOND(nOND)
.
∪S fPer(nPer)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S tPer(n2)

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

nPer
tPer(n2)

r
l

light′′′online

p

dailyP lanner′′′online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

The system net System6 is now able to collect
new data from the place DataP which is pro-
vided by the device net dailyP lanner′′′online in
order to store the data to the internal database
of the persistence layer. For that the transi-
tion store data in persistence layer or remove
data is able to fire.
Assigned to the place StoreDataRules :
Rules are two opposite rules storeData and
removeData. To distinguish the application
of one of both rules, the token assigned to
the place DataP : PersistentData within the
object net of an online device, is a 4-tuple,
consisting of the actual information (e.g. <
12340,Work >), the topic (e.g. Calendar)
and the connection id (e.g. 2). The forth com-
ponent of the tuple contains a keyword k ∈
{store, remove}. It signals, if the data should
be stored in applying the rule storeData or
if it should be removed in using the rule
removeData.

Figure 8.33: Enter Appointment, Store Data

99K

13. AHLI rule storeData:

Lsd Ksd Rsd

l r

DataP
: DataFor
Persistence
Layer

d

4tuple(x, y, z, store)

: Persistent
Data

DataP
: DataFor
Persistence
Layer

: Persistent
Data

DataP
: DataFor
Persistence
Layer

: Persistent
Data

d

triple(x, y, z)

The image illustrates the AHLI rule which is
assigned to the place StoreDateRules : Rules
in n6. It only stores data, if a token as 4-tuple
is assigned to the plave DataP within the de-
vice net, and if the keyword store is situated at
the last position of the 4-tuple. This indicates,
that new data should be stored to the persis-
tence layer with the help of the rule storeData
which is set to the place StoreDataRules :
Rules within the system net.

Figure 8.34: Enter Appointment, Store Data

14. Object net db representing the
database in the persistence layer:

db
: Persistent
Data

The object net database consists of only one
place db : PersistentData at that stage.
During processing, new data will be stored
in the persistence layer of the Message
Oriented Middleware and assigned as tokens
to the place db within the object net database.

Figure 8.35: Enter Appointment, Store Data

8.3. THE USER ENTERS A NEW APPOINTMENT TO THE DAILY PLANNER 179

15. Extract from the system net
System7 after storing data in the

persistence layer:

Online
Devices
: AHLINetsOND

Store
Data
Rules
: Rules

rsd

storeData

rrd

removeData

Persistent
Data
: AHLINetsPer

db

database′

store data in persistence layer

m : Mor

cod(m) = fOND(nOND)
.
∪S fPer(n)

applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

n
tPer(n2)

rl

light′′′online

p

dailyP lanner4
online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

The transition store data in persistence layer
was fired and changed the object nets
database′ and dailyP lanner4 because of the
application of the AHLI rule storeData.

Figure 8.36: Enter Appointment, Store Data

16. Object net database′ after storing
data in the persistence layer:

db
: Persistent
Data

d1

(< 12340,Work >,Calendar, 2)

The object net database′ is extended by a
token (< 12340,Work >,Calendar, 2) repre-
senting the first data record in the database of
the persistence layer.

Figure 8.37: Enter Appointment, Store Data

99K

17. Object net dailyP lanner4
online after

storing data in the persistence layer:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

d1

(< 12340,Work >,Calendar, 2)

The device net dailyP lanner4
online was mod-

ified after applying the rule storeData. The
token assigned to DataP is removed and
stored in the persistence layer.
As next step, the output data assigned to
DataO can be processed by the message
broker.

Figure 8.38: Enter Appointment, Store Data

180 CHAPTER 8. SIMULATION OF A TEST SCENARIO

18. Extract from system net System7

for receiving data from a device (see
7.33):

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

rrd

receiveData

Data
Buffer
Repository
: AHLINets

receive data from device

mG : MorGen
cod(mG) = fOND(nOND)
applicable(fR(rR),mG) = tt

transform(fR(rR),mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

n2

rRl

light′′′online

p

dailyP lanner4
online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

To receive data from a device, the tran-
sition receive data from device fires and
in this process the rule receiveData will
be applied to an online device assigned to
OnlineDevices. A new token which will be as-
signed to DataBufferRepository will be cre-
ated.

Figure 8.39: Enter Appointment, Receive Data

99K

19. AHLI rule receiveData:

Lrd Krd Rrd

l r

DataO
: Output
Data

d

dout

DataO
: Output
Data

DataO
: Output
Data

: Global
Data

d

tgldata(dout)

The AHLI rule receiveData copies the token
assigned to the place DataO : OutputData
within the device net to a newly created place
: GlobalData.
As result of the transformation, two disjoint
subnets will be created. The one being
isomorphic in the category of PTNET
to the original device net, will be put to
OnlineDevices. The other will be assigned
as new token to DataBufferRepository.

Figure 8.40: Enter Appointment, Receive Data

20. Extract from system net System8

after receiving data from a device (see
7.33):

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

rrd

receiveData

Data
Buffer
Repository
: AHLINets

receive data from device

mG : MorGen
cod(mG) = fOND(nOND)
applicable(fR(rR),mG) = tt

transform(fR(rR),mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

n2

rRl

light′′′online

p

dailyP lanner5
online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

db1

data
Buffer1

To receive data from a device, the transition
receive data from device fires and in this
process the rule receiveData will be applied
to an online device assigned to OnlineDevices
and a new token which will be assigned to
DataBufferRepository will be created.
Both resulting object nets are shown in the
following images 21. and 22.

Figure 8.41: Enter Appointment, Receive Data

99K

21. Object net dataBuffer1 after
applying the rule receiveData:

: GlobalData

d1(< 12340,Work >,Calendar, 2)

Figure 8.42: Enter Appointment, Receive Data

22. Object net dailyP lanner5
online after

applying the rule receiveData:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

2

DataP
: Data
For
Persistence
Layer4tuple(dsend, id, store)

analyse data

transformToCalendar(cal) = dsend

dsend

newCalendarData
: CalendarData

cal

Figure 8.43: Enter Appointment, Receive Data

8.3. THE USER ENTERS A NEW APPOINTMENT TO THE DAILY PLANNER 181

23. Extract from system net System8

for distributing data (see 7.35):

Data
Buffer
Repository
: AHLI
Nets

copy data to queues
and to context interpreter

mG : MorGen
cod(mG) = n

.
∪S fQ(nQ)

createRule(s, n
.
∪S fQ(nQ)) = r

applicable(r,mG) = tt

transform(r,mG) = n2

.
∪S n3

isomorphicPTNET (fQ(nQ), n2) = tt

Queues
: AHLI
NetsQ

q1

q′

CopyDataSchemes
: ISchemes

scd

n

nQ tQ(n2)

s

copyData

Context
Interpreter
Queue
: AHLI
Nets

ndb1

data
Buffer1

To distribute data, the transition copy
data to queues and to context inter-
preter will be fired which applies an
amalgamated rule generated out of the
interaction scheme copyData assigned to
CopyDataSchemes : ISchemes. The gen-
erated rule contains the maximum match
regarding the object nets dataBuffer1

and q′. Then, the object net dataBuffer1

will be taken and the information repre-
sented by this AHLI net will be copied
to each subnet in q′ assigned to Queues,
which represents a device subscribed to
the specific topic provided by the input
token. Additionally the input token from
DataBufferRepository : AHLINets
will be directly copied to the place
ContextInterpreterQueue. The process-
ing of the information within the Context
Interpreter will be presented in explicit in
images 6-13 in part five of the simulation
of this scenario in section 8.6.

Figure 8.44: Enter Appointment, Distribute
Data

99K

24. System interaction scheme
copyData:

Lcdkernel rule
Rcdkernel rule

Kernel
rule
−→

Lcdmulti rule
Rcdmulti rule

Multi
rule
−→

: Global
Data

d1

g

: Global
Data

d1

g

: Global
Data

d1

g
Connect2

: Topic

: Global
Data

t

g

t

topic(g)

: Global
Data

d1

g
Connect2

: Topic

: Global
Data

t

g

t

topic(g)

d2

g

The interaction scheme copyData will be
used to create a rule with the maximum
number of matches which will is able to
be applied. The resulting rule gets an in-
formation belonging to a certain topic and
copies the data token to each subnet repre-
senting a device subscribed to the specific
topic.
I.e., at this stage, the data triple (<
12340,Work >,Calendar, 2) is assigned to
: GlobalData. It will be copied to each
queue referring to the topic “Calendar”.
Because of no device, which is plugged in at
this moment, is subscribed to this specific
topic, no data will be copied. In section
8.4, this rule will be used to copy data.

Figure 8.45: Enter Appointment, Distribute
Data

182 CHAPTER 8. SIMULATION OF A TEST SCENARIO

25. Extract from system net System8 after the distribution of data:

Data
Buffer
Repository
: AHLI
Nets

copy data to queues
and to context interpreter

mG : MorGen
cod(mG) = n

.
∪S fQ(nQ)

createRule(s, n
.
∪S fQ(nQ)) = r

applicable(r,mG) = tt

transform(r,mG) = n2

.
∪S n3

isomorphicPTNET (fQ(nQ), n2) = tt

Queues
: AHLI
NetsQ

q1

q′

CopyDataRules
: Rules

rcd

n

nQ tQ(n2)

r

copyData

Context
Interpreter
Queue
: AHLI
Nets

n

db1

data
Buffer1

After finishing the distribution of the information, the token dataBuffer1 formerly assigned to
DataBufferRepository is copied to ContextInterpreterQueue. As mentioned before, the object
net q′ stays unchanged.

Figure 8.46: Enter Appointment, Distribute Data

The user enters new data to the Daily Planner as presented in this section. For that, the user in-
puts the data with the help of the AHOI rule EnterDataIntoDailyP lanneruser. The AHOI rule adds
an appointment to the device net on Object Level with the help of the AHLI rule ruleAddDataplanner
which mediates between both levels. Afterwards, the device net processes the message and provides it
once for direct storing it into the persistence layer and one data record available for the processing in the
message broker. The system net representing the Message Oriented Middleware will collect both types
of data and stores one data record directly to the database of persistence layer. The second data record
will be processed, sent to the Context Interpreter and to the devices subscribed to the specific topic. At
the moment, presented in this section, no devices are interested in data concerning the topic “Calendar”,
so no data will be copied for other devices.

8.4 Attach Alarm Clock 2.0 and Display to the Message Ori-
ented Middleware and Send Request

In the next phase, the Alarm Clock 2.0 and the Display of the Multitouch Kitchen Counter are connected
to the Living Place system and subscribed to all necessary topics enumerated below: The Alarm Clock
2.0 will be subscribed to the topics (see 7.1.2.7):

• Weather,

• Traffic,

• Calendar,

• Bed and

• Context.

Whereas the Display will be subscribed to (see 7.1.2.8):

• Weather,

• Traffic and

• Calendar.

The process of plugging-in is analogue to the steps presented in section 8.2 and will not be presented in
explicit. The resulting system net System9 and object net q′′ are illustrated below in 1. and 2.

8.4. ATTACH ALARM CLOCK 2.0 AND DISPLAY AND SEND REQUEST 183

1. Extract from the system net System9

after plugging-in all devices and
subscribing their topics:

OnlineDevices
: AHLINetsOND

subscribe topic

mG : MorGen
cod(mG) = nOND

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n2) = tt

nOND

tOND(n2)

Queues
: AHLINetsQnQ

tQ(n1)

subscribeTopicRules
: Rules

rst

r

subscribeTopic

q1

q′

l

light′′′online

p

dailyP lanner5
online

d displayonline

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

All devices are set into online mode and as-
signed to OnlineDevices. A visual descrip-
tion of each device in online mode is given in
chaper 7:

1. light′′′online, connection ID 1,

2. dailyP lanneronline, connection ID 2,

3. intelligentBedonline, connection ID 3,

4. indoorPositioningSystemonline, con-
nection ID 4,

5. locationBasedScreenonline, connection
ID 5,

6. weatherInformationSystemonline,
connection ID 6,

7. trafficServiceonline, connection ID 7,

8. alarmClock2.0online, connection ID 8,

9. displayonline, connection ID 9.

Figure 8.47: Attach a Alarm Clock 2.0 and Display

99K

2. Object net q′′ contains subnets
representing all subscriptions:

c1 : ConnectionID
messageBroker

Connect1idid 1

g1 : GlobalData

g Connect′1g

t1 : Topic

t t1Alarm

c2 : ConnectionID
messageBroker

Connect2idid 1

g2 : GlobalData

g Connect′2g

t2 : Topic

t t2Light

c3 : ConnectionID
messageBroker

Connect3idid 5

g3 : GlobalData

g Connect′3g

t3 : Topic

t t3UbiTV

c4 : ConnectionID
messageBroker

Connect4idid 5

g4 : GlobalData

g Connect′4g

t4 : Topic

t t4Alarm

c5 : ConnectionID
messageBroker

Connect5idid 8

g5 : GlobalData

g Connect′5g

t5 : Topic

t t5Calendar

c6 : ConnectionID
messageBroker

Connect6idid 8

g6 : GlobalData

g Connect′6g

t6 : Topic

t t6Weather

c7 : ConnectionID
messageBroker

Connect7idid 8

g7 : GlobalData

g Connect′7g

t7 : Topic

t t7Traffic

c8 : ConnectionID
messageBroker

Connect8idid 8

g8 : GlobalData

g Connect′8g

t8 : Topic

t t8Bed

c9 : ConnectionID
messageBroker

Connect9idid 8

g9 : GlobalData

g Connect′9g

t9 : Topic

t t9Context

c10 : ConnectionID
messageBroker

Connect10idid 9

g10 : GlobalData

g Connect′10
g

t10 : Topic

t t10Weather

c11 : ConnectionID
messageBroker

Connect11idid 9

g11 : GlobalData

g Connect′11
g

t11 : Topic

t t11Traffic

c12 : ConnectionID
messageBroker

Connect12idid 9

g12 : GlobalData

g Connect′12
g

t12 : Topic

t t12Calendar

Now, all devices are connected and subscribed
to their necessary topics.

Figure 8.48: Attach a Alarm Clock 2.0 and Display

After subscribing all necessary topics, connected devices in online mode are able to request old data
from the persistence layer, if they are either a receiver or a transceiver and if they have at least one
token assigned to the place TopicstoRequest within their individual device net. Only a few devices need
old data from the persistence layer, in the current modeling, the device nets alarmClock2.0online and
displayonline request old data. Both devices request the topic “Calendar” meaning that old calendar
data are relevant for both devices. The process of requesting past data by a device on Object Level, the
collection of appropriate information within the persistence layer of the Message Oriented Middleware
on System Level and the receiving of the data will be described in explicit for the Daily Planner. It is
analogue for the Alarm Clock 2.0.

184 CHAPTER 8. SIMULATION OF A TEST SCENARIO

3. Device net displayonline after
plugging-in all devices and subscribing

all topics (see 7.11):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

tCalendar

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

After being subscribed to all topics, a re-
quest for past data from the persistence layer
can be executed. For that, the transition
request data needs to fire.

Figure 8.49: Request Data From Persistence Layer

99K

4. Device net display′online ready to
request data from the topic

“Calendar”:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t(Calendar, 9)

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

After firing the transition request data, a tu-
ple containing the topic and the specific con-
nection identification (Calendar, 9) is trans-
ferred to the place DataR.

Figure 8.50: Request Data From Persistence Layer

5. Extract from the system net System9

showing part for receiving a request
from a device (see 7.51):

OnlineDevices
: AHLINetsOND

receive request from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Requests
: AHLINetsRq

nOND

tOND(n1)

tRq(n2)

ReceiveRequest
FromDevice
Rules
: Rules

r

rrr

receiveRequestFromDevice

l

light′′′online

p

dailyP lanner5
online

d display′online

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

To receive a request from a device, the transi-
tion receive request from device in the system
net needs to fire. Then, it applies the AHLI
rule receiveRequestFromDevice.

Figure 8.51: Request Data From Persistence Layer

99K

6. AHLI rule receiveRequestFromDevice:

Lrr Krr Rrr

l r

DataR
: Request
Data

x

dreq

DataR
: Request
Data

DataR
: Request
Data

Request
: Global
DataTmp

x

tgldata(dreq)

The AHLI rule receiveRequestFromDevice
removes a token assigned to DataR in the
device net and copies it to a newly created
place Request : GlobalDataTmp.

Figure 8.52: Request Data From Persistence Layer

8.4. ATTACH ALARM CLOCK 2.0 AND DISPLAY AND SEND REQUEST 185

7. Extract from the system net
System10 after receiving a request from

a device:

OnlineDevices
: AHLINetsOND

receive request from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Requests
: AHLINetsRq

nOND

tOND(n1)

tRq(n2)

ReceiveRequest
FromDevice
Rules
: Rules

r

rrr

receiveRequestFromDevice

l

light′′′online

p

dailyP lanner5
online

d display′′online

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

r

request

After the Message Oriented Middleware has
collected the request in firing the transition
receive request from device, the device net
display′′online is modified as shown in step 9.
and a new token is assigned to the place
RequestsAHLINets, which is presented in
step 8.

Figure 8.53: Request Data From Persistence Layer

8. Object net request containing the
request:

Request
: GlobalDataTmp

t (Calendar, 9)

Figure 8.54: Request Data From Persistence Layer

99K

9. Device net display′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

The token containing the request data to the
persistence layer is removed.

Figure 8.55: Request Data From Persistence Layer

186 CHAPTER 8. SIMULATION OF A TEST SCENARIO

10. Extract from the
system net System10

showing part for creating
an answer to the request

(see 7.52):

Requests
: AHLINetsRq

create answer to request
and send it to queue

m : Mor

cod(m) = fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)

createRule(s, fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)) = r

applicable(r,m) = tt

transform(r,m) = n4

.
∪S n

isomorphicPTNET (fQ(nQ), n4) = tt

Persistent
Data
: AHLINetsPer

Queues
: AHLINetsQ

CreateAnswer
ToRequest
Schemes
: ISchemes

sca

nQtQ(n4)

nRq

nPer

tPer(n2)

s

createAnswerToRequest

r

request

db

database′

q1

q′′

Within the persistence layer
of the Message Oriented Mid-
dleware, the request needs to
be processed. For that, the
transition create answer to re-
quest and send it to queue
will fire in order to apply
a rule calculated with the
help of the interaction scheme
createAnswerToRequest. The
transition gets the objects nets
request, q′′ and database′ as in-
put parameters and executes the
request in copying all data ac-
cording to the request to the cor-
responding queue. The object
net database′ stays unchanged,
whereas the processed request
will be removed and the object
net q′′ will be extended by to-
kens fulfiling the requested data
from the persistence layer.

Figure 8.56: Request Data From Per-
sistence Layer, Create Answer

99K

11. Interaction scheme createAnswerToRequest (see
7.52):

Lcakernel rule
Kcakernel rule

Rcakernel rule

lk rk

Lcamulti rule
Kcamulti rule

Rcamulti rule

lm rm

: Global
DataTmp

x

tuple(topic, id)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Global
DataTmp

x

tuple(topic, id)

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic

tt1 t1

: Persistent
Data

y

triple(a, topic, id′)

: ConnectionID
messageBroker

Connect1id

id

id : Global
Data

g

Connect2

g

: Topic

tt1 t1

x

triple(a, topic, id′)

The interaction scheme createAnswerToRequest serves as
template for creating a rule which will be applied while
firing the transition create answer to request and send it to
queue. The formal description of the process of creating a
rule out of an interaction scheme is presented in chapter 6.

Figure 8.57: Request Data From Persistence Layer, Create An-
swer

8.4. ATTACH ALARM CLOCK 2.0 AND DISPLAY AND SEND REQUEST 187

12. Concrete rule r created out of interaction
scheme createAnswerToRequest and the three object

nets request, q′′ and database′:

Lca Kca Rca

l r

: Global
DataTmp

x

(Calendar, 9)

: Persistent
Data

y

(< 12340,Work >,
Calendar, 2)

: ConnectionID
messageBroker

Connect1id

id

9
: GlobalData

g

Connect2

g

: Topic t

t1

Calendar

: Persistent
Data

y

(< 12340,Work >,
Calendar, 2)

: ConnectionID
messageBroker

Connect1id

id

id
: GlobalData

g

Connect2

g

: Topic t

t1

Calendar

: Persistent
Data

y

(< 12340,Work >,
Calendar, 2)

: ConnectionID
messageBroker

Connect1id

id

id : Global
Data

g

Connect2

g

: Topic t

t1

Calendar

x

(< 12340,Work >,
Calendar, 2)

When firing the transition create answer to request and send
it to queue, the operation createRules gets the interaction
scheme createAnswerToRequest and the disjoint union of
the three nets q′′

.
∪S database′

.
∪S request and generates the

concrete rule r out of them as described in detail in chapter
6, which will be applied.

Figure 8.58: Request Data From Persistence Layer, Create An-
swer

99K

13. Extract from system
net System11 after firing

create answer to request and
send it to queue:

Requests
: AHLINetsRq

create answer to request
and send it to queue

m : Mor

cod(m) = fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)

createRule(s, fQ(nQ)
.
∪S fPer(nPer)

.
∪S fRq(nRq)) = r

applicable(r,m) = tt

transform(r,m) = n4

.
∪S n

isomorphicPTNET (fQ(nQ), n4) = tt

Persistent
Data
: AHLINetsPer

Queues
: AHLINetsQ

CreateAnswer
ToRequest
Schemes
: ISchemes

sca

nQtQ(n4)

nRq

nPer

tPer(n2)

s

createAnswerToRequest

db

database′

q1

q′′′

As a result, the token assigned
to Requests : AHLINets is
removed and the object net q′′′

is transformed as shown in the
next illustration.

Figure 8.59: Request Data From
Persistence Layer, Create Answer

14. Object net q′′′:

c1 : ConnectionID
messageBroker

Connect1idid 1

g1 : GlobalData

g Connect′1g

t1 : Topic

t t1Alarm

c2 : ConnectionID
messageBroker

Connect2idid 1

g2 : GlobalData

g Connect′2g

t2 : Topic

t t2Light

c3 : ConnectionID
messageBroker

Connect3idid 5

g3 : GlobalData

g Connect′3g

t3 : Topic

t t3UbiTV

c4 : ConnectionID
messageBroker

Connect4idid 5

g4 : GlobalData

g Connect′4g

t4 : Topic

t t4Alarm

c5 : ConnectionID
messageBroker

Connect5idid 8

g5 : GlobalData

g Connect′5g

t5 : Topic

t t5Calendar

c6 : ConnectionID
messageBroker

Connect6idid 8

g6 : GlobalData

g Connect′6g

t6 : Topic

t t6Weather

c7 : ConnectionID
messageBroker

Connect7idid 8

g7 : GlobalData

g Connect′7g

t7 : Topic

t t7Traffic

c8 : ConnectionID
messageBroker

Connect8idid 8

g8 : GlobalData

g Connect′8g

t8 : Topic

t t8Bed

c9 : ConnectionID
messageBroker

Connect9idid 8

g9 : GlobalData

g Connect′9g

t9 : Topic

t t9Context

c10 : ConnectionID
messageBroker

Connect10idid 9

g10 : GlobalData

g Connect′10
g

t10 : Topic

t t10Weather

c11 : ConnectionID
messageBroker

Connect11idid 9

g11 : GlobalData

g Connect′11
g

t11 : Topic

t t11Traffic

c12 : ConnectionID
messageBroker

Connect12idid 9

g12 : GlobalData

g Connect′12
g

t12 : Topic

t t12Calendar

x

(< 12340,Work >,Calendar, 2)

After transforming with the help of the rule r resulting from the interaction scheme
createAnswerToRequest and the disjoint union of the three nets q′′

.
∪S database′

.
∪S request,

the resulting object net q′′′ is extended by one new token assigned to the place g12 : GlobalData,
which represents the message queue regarding the topic Calendar of the device with the connection
identification 9, i.e. of the Display device.

Figure 8.60: Enter Appointment, Distribute Data

188 CHAPTER 8. SIMULATION OF A TEST SCENARIO

15. Extract from system net System11

showing part for sending data to a
device (see 7.36):

Online
Devices
: AHLI
NetsOND

Send
Data
Rules
: Rules

rsd

sendData

Queues
: AHLINetsQ

q1

q′′′

send data to device

mG : MorGen
cod(mG) = fOND(nOND)

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

tQ(n2)

nQ

r

l

light′′′online

p

dailyP lanner5
online

d display′′online

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

To send data to a device, the transition send
data to device is activated and is able to fire.
In doing this, the rule sendData described
in next illustration is applied.

Figure 8.61: Request Data From Persistence
Layer, Send Answer

99K

16. Rule sendData (see 7.36):

Lsd Ksd Rsd

l r

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

d1

g

i2

i

: ConnectionID

i1

i

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

i2

i

: ConnectionID

i1

i

DataI
: Input
Data

: ConnectionID
messageBroker

Connect1

: Global
Data

i

g

d1

tindata(g)

i2

i

: ConnectionID

i1

i

The rule sendData gets a disjoint union of
a device net, at this stage the device net
display′′online, and the AHLI net assigned to
Queues : AHLINets, currently it is q′′′. When
applying, this rule copies the data assigned to
the specific message queue belonging to this de-
vice to the place DataI : InputData of the de-
vice net. DataI represents the input buffer of
the device.

Figure 8.62: Request Data From Persistence Layer,
Send Answer

17. Object net display′′online before firing
send data to device:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

Figure 8.63: Request Data From Persistence
Layer, Send Answer

99K

18. Object net display′′′online after firing
send data to device:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

x

(< 12340,Work >,Calendar, 2)

After receiving the new data token on DataI :
InputData, the transition receive data is acti-
vated in order to process the information.

Figure 8.64: Request Data From Persistence
Layer, Send Answer

8.4. ATTACH ALARM CLOCK 2.0 AND DISPLAY AND SEND REQUEST 189

19. Object net display4
online while

processing new data:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

x

(< 12340,Work >,Calendar, 2)

Afterwards, the data token is able to be
processed by the transition receive and out-
put data. It executes two operations in
order to extract the actual information <
12340,Work > and forwards it to the place
display : DisplayData.

Figure 8.65: Request Data From Persistence
Layer, Send Answer

99K

20. Object net display5
online while

processing new data:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync DataR
: RequestData

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

9

t1

t2

t3

Weather

Traffic

Calendar

receive and output data

firstdataReceived(dr) = d
tdisplay(d) = ddisplay

dr

activateDisplay
: Sync

s9

sync

s

display
: DisplayData

ddisplay

x

< 12340,Work >

The data token < 12340,Work > finally
arrived at the place display : DisplayData,
which represents the screen and its currently
shown output data of the Display device in
the Multitouch Kitchen Counter.

Figure 8.66: Request Data From Persistence
Layer, Send Answer

21. Extract from system net System12 after processing the requests of the Display
device:

Online
Devices
: AHLI
NetsOND

Send
Data
Rules
: Rules

rsd

sendData

Queues
: AHLINetsQ

q1

q4

send data to device

mG : MorGen
cod(mG) = fOND(nOND)

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

tQ(n2)

nQ

r

l

light′′′online

p

dailyP lanner5
online

d display5
online

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficServiceonline

After processing the request of the Display de-
vice, the system net System12 is in the presented
state. The device net of the Display was trans-
formed to display5

online and the object net q4

assigned to Queues : AHLINets is equal to the
net q′′ shown in figure 2 in this step. The token
formerly set to g12 : GlobalData was removed
after firing the transition send data to device in
the system net and simultaneously applying the
rule sendData.

Figure 8.67: Request Data From Persistence Layer

Additionally to the Display device, the Alarm Clock 2.0 needs to send its request for data belonging
to the topic “Calendar” to the persistence layer of the Message Oriented Middleware. The processing of
the Alarm Clock 2.0’s request is analogue to the steps described in explicit for the Display. Thus, the
resulting object net alarmClock2.0′online will be shown in the following illustration:

190 CHAPTER 8. SIMULATION OF A TEST SCENARIO

22. Object net alarmClock2.0′online after processing its requests:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Datareceived
: DataReceived

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topic
subscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online

sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

8

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

t1

t2

t3

t4

t5

Weather

Traffic

Calendar

Context

Bed

set time

Timer :
Timestamp

current
time
time

ts

0

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

b

unknown

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

x

(< 12340,Work >,
Calendar, 2)

0t

time

tuple(
ona, alarm)

time

Figure 8.68: Request Data From Persistence Layer

8.5 Wake up the Inhabitant

The user has entered an appointment in step 2 (see 8.3). If the user is in bed sleeping and the appointment
gets closer, the Alarm Clock 2.0 needs to infer an appropriate wake up time according to the sleeping
phase the inhabitant is in. The Alarm Clock 2.0 should no alert the user in deep sleep phase. Additionally
the weather and traffic conditions need to be taken into account for calculating the suitable wake up time.
When the inhabitant should be woken up, the Ambient Light will be switched on in dimmed mode and
additionally, the TV sets of the Location-Based Screen will be activated and switched on.

8.5. WAKE UP THE INHABITANT 191

1. Object net trafficServiceonline
creates (free, 12340) (see 7.1.2.15.2):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

7

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create traffic data

tuple(trafficToData(time, tr), T raffic)

The device net of the traffic service generates
a new token in firing create traffic data.

Figure 8.69: Traffic Service Sends (free, 12340)

99K

2. Object net trafficService′online sends
data tuple (free, 12340):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

7

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create traffic data

tuple(trafficToData(time, tr), T raffic)
x(< free, 12340 >, Traffic)

Figure 8.70: Traffic Service Sends (free, 12340)

3. Object net trafficService′′online sends
data tuple (free, 12340):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

7

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create traffic data

tuple(trafficToData(time, tr), T raffic)

x

(< free, 12340 >, Traffic, 7)

x

(< free, 12340 >, Traffic, 7, store)

After generating a new token free, it will
be converted and transferred to the places
DataP : DataForPersistenceLayer and to
DataO : OutputData, ready to be processed
by the Message Oriented Middleware on Sys-
tem Level.
The new information will be sent to other
devices, (the token for that is assigned to
DataO), and stored to the persistence layer
(for this task, a token is assigned to DataP).

Figure 8.71: Traffic Service Sends (free, 12340)

99K

4. Extract from the system net
System12 showing part for receiving

data:

Online
Devices
: AHLINetsOND

Receive
Data
Rules
: RulesR

rrd

tR(receiveData)

Data
Buffer
Repository
: AHLINets

receive data from device

mG : MorGen
cod(mG) = fOND(nOND)
applicable(fR(rR),mG) = tt

transform(fR(rR),mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

nOND

tOND(n1)

n2

rRl

light′′′online

p

dailyP lanner5
online

d display5
online

a

alarmClock2.0online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficService′online

As next step, the transition receive data from
device can be fired. It applies the AHLI rule
receiveData, which is already mentioned in
the second step (see section 8.3) in image 19.

Figure 8.72: Traffic Service Sends (free, 12340)

5. Object net dataBuffer2 assigned to
DataBufferRepository : AHLINets:

: GlobalData

d2(< free, 12340 >, Traffic, 7)

After the application of the AHLI rule
receiveData, a new object net dataBuffer2

was created which contains the information to
process furter.

Figure 8.73: Traffic Service Sends (free, 12340)

192 CHAPTER 8. SIMULATION OF A TEST SCENARIO

6. Extract from system net
System12 for distributing data:

Data
Buffer
Repository
: AHLI
Nets

copy data to queues
and to context interpreter

mG : MorGen
cod(mG) = n

.
∪S fQ(nQ)

createRule(s, n
.
∪S fQ(nQ)) = r

applicable(r,mG) = tt

transform(r,mG) = n2

.
∪S n3

isomorphicPTNET (fQ(nQ), n2) = tt

Queues
: AHLI
NetsQ

q1

q4

CopyDataSchemes
: ISchemes

scd

n

nQ tQ(n2)

s

copyData

Context
Interpreter
Queue
: AHLI
Nets

ndb2

data
Buffer2

In order to distribute data, the tran-
sition copy data to queues and to con-
text interpreter will fire in order to
apply the rule generated out of the
interaction scheme copyData, which
is shown in next image 6. Addition-
ally the data will be sent to the Con-
text Interpreter. The distribution of
data to the Context Interpreter will
be shown in explicit in a later step.

Figure 8.74: Traffic Service Sends
(free, 12340)

99K

7. Concrete rule r created out of the
interaction scheme copyData and

dataBuffer2

.
∪S q4:

Lcd Rcd

=⇒
: Global
Data

d2

(< free, 12340 >, Traffic, 7)

Connect2

: Topic

: Global
Data

t

g

t

Traffic

Connect2

: Topic

: Global
Data

t

g

t

Traffic

: Global
Data

d2

(< free, 12340 >,
Traffic, 7)

Connect2

: Topic

: Global
Data

t

g

t

Traffic

d2

(< free, 12340 >,
Traffic, 7)

Connect2

: Topic

: Global
Data

t

g

t

Traffic

d2

(< free, 12340 >,
Traffic, 7)

The interaction scheme copyData generates a rule r
in dependence of the disjoint union of the input ob-
ject nets dataBuffer2 and q4 according to the formal
description given in chapter 6.
The interaction scheme copyData is already shown in
illustration 24 in the second step of the scenario in
section 8.3.

Figure 8.75: Traffic Service Sends (free, 12340)

8. Object net q5:

c1 : ConnectionID
messageBroker

Connect1idid 1

g1 : GlobalData

g Connect′1g

t1 : Topic

t t1Alarm

c2 : ConnectionID
messageBroker

Connect2idid 1

g2 : GlobalData

g Connect′2g

t2 : Topic

t t2Light

c3 : ConnectionID
messageBroker

Connect3idid 5

g3 : GlobalData

g Connect′3g

t3 : Topic

t t3UbiTV

c4 : ConnectionID
messageBroker

Connect4idid 5

g4 : GlobalData

g Connect′4g

t4 : Topic

t t4Alarm

c5 : ConnectionID
messageBroker

Connect5idid 8

g5 : GlobalData

g Connect′5g

t5 : Topic

t t5Calendar

c6 : ConnectionID
messageBroker

Connect6idid 8

g6 : GlobalData

g Connect′6g

t6 : Topic

t t6Weather

c7 : ConnectionID
messageBroker

Connect7idid 8

g7 : GlobalData

g Connect′7g

t7 : Topic

t t7Traffic

c8 : ConnectionID
messageBroker

Connect8idid 8

g8 : GlobalData

g Connect′8g

t8 : Topic

t t8Bed

c9 : ConnectionID
messageBroker

Connect9idid 8

g9 : GlobalData

g Connect′9g

t9 : Topic

t t9Context

c10 : ConnectionID
messageBroker

Connect10idid 9

g10 : GlobalData

g Connect′10
g

t10 : Topic

t t10Weather

c11 : ConnectionID
messageBroker

Connect11idid 9

g11 : GlobalData

g Connect′11
g

t11 : Topic

t t11Traffic

c12 : ConnectionID
messageBroker

Connect12idid 9

g12 : GlobalData

g Connect′12
g

t12 : Topic

t t12Calendar

d2

(< free, 12340 >, Traffic, 7)

d2

(< free, 12340 >, Traffic, 7)

After executing the transition copy data to queues and to context interpreter, the rule r (see
image 6.) transformed the object net representing the queues for all connected devices to the given
net q5.

Figure 8.76: Traffic Service Sends (free, 12340)

8.5. WAKE UP THE INHABITANT 193

9. Extract from system
net System13 for sending

data to a device:

Online
Devices
: AHLI
NetsOND

Send
Data
Rules
: Rules

rsd

sendData

send data to device

mG : MorGen
cod(mG) = fOND(nOND)

.
∪S fQ(nQ)

applicable(r,mG) = tt

transform(r,mG) = n1

.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt

Queues
: AHLINetsQ

q1

q5

nOND

tOND(n1)

tQ(n2) nQ

r

l

light′′′online

p

dailyP lanner5
online

d display′′online

a

alarmClock2.0′online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystemonline

t

trafficService′′online

Afterwards, the new data
will be sent to all devices,
which are subscribed to the
corresponding topic. This
will be done in firing the
transition send data to de-
vice and in applying the rule
sendData to the disjoint co-
product of q5 and the device
net of the Alarm Clock 2.0
alarmClock2.0′online.
This process is presented in
detail in image 15 and 16 in
step 3 of this scenario (see sec-
tion 8.4).
(Because the system has two
devices subscribed to the topic
“Traffic”, this transition is
able to fire a second time for
the device display′′online, which
will be analogue and therefore
will not be presented in ex-
plicit.)

Figure 8.77: Traffic Service Sends
(free, 12340)

99K

10. Object net alarmClock2.0′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Datareceived
: DataReceived

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topic
subscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online

sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

8

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

t1

t2

t3

t4

t5

Weather

Traffic

Calendar

Context

Bed

set time

Timer :
Timestamp

current
time
time

ts

0

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

b

unknown

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

x

(< 12340,Work >,
Calendar, 2)

x′

(< free, 12340 >,
Traffic, 7)

0t

time

tuple(
ona, alarm)

time

The resulting device net of the Alarm Clock 2.0 after the traffic
device has sent its data to the Message Oriented Middleware
and the data has been processed and distributed to all devices
subscribed to the topic “Traffic” by the message broker.

Figure 8.78: Traffic Service Sends (free, 12340)

194 CHAPTER 8. SIMULATION OF A TEST SCENARIO

11. Device
weatherInformationSystemonline creates

and processes the information
(rain, 12320) (see 7.23):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

6

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

create weather data

tuple(weatherToData(time,w),Weather)

x

(< rain, 12320 >,Weather, 6)

x

(< rain, 12320 >,Weather, 6, store)

Similar to the device net of the Traffic Service,
the Weather Information System creates a new
token in firing the transition create weather
data. The new token will be processed within
this device net until it is transferred to the
places DataO and DataP . The resulting de-
vice net of the Weather Information System is
illustrated in this image.

Figure 8.79: Weather Information System sends
(rain, 12320)

99K

12. Concrete AHOI rule
MeasurePressureInBeduser,0,0,0,0,0,0,0,0,9,0,8,0

for measuring new data for the
Intelligent Bed (For the general rule see

7.101.):

Lmb Kmb Rmb

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleMeasurePressure
bed,0,0,0,0,0,0,0,0,9,0,8,0

New data for the pressure sensors in the
Intelligent Bed will be entered indirectly
by the user when he is moving around
in the Living Place apartment. For
the input of data to the model of the
Intelligent Bed device, the AHOI rule
MeasurePressureInBeduser,0,0,0,0,0,0,0,0,9,0,8,0,
is available, which assigns
its corresponding AHLI rule
ruleMeasurePressurebed,0,0,0,0,0,0,0,0,9,0,8,0
to the place EnterDataIntoDeviceRules :
Rules within the system net in order to apply
the given AHLI rule to the object net of the
Intelligent Bed. Each value for xi represents
a new value for each sensor in the Intelligent
Bed, where:

• x1 = 0,

• x2 = 0,

• x3 = 9,

• x4 = 0,

• x5 = 8,

• x6 = 0

Each vi represents an old value representing
by the 6-tuple assigned to Sensor with vi =
0, i ∈ {1, 2, 3, 4, 5, 6}.
The corresponding AHLI rule is presented in
next image 13, the extract from the system net
in image 14.

Figure 8.80: Intelligent Bed sends data

8.5. WAKE UP THE INHABITANT 195

13. Concrete AHLI rule
ruleMeasurePressurebed,0,0,0,0,0,0,0,0,9,0,8,0
for assigning the measurement data to

the Intelligent Bed device (For the
general rule see 7.74.):

Lcd Kcd Rcd

l r

Sensor
: PressureData

n

(0, 0, 0, 0, 0, 0)

Sensor
: PressureData

Sensor
: PressureData

n

(0, 0, 9, 0, 8, 0)

The concrete AHLI rule
ruleMeasurePressurebed,0,0,0,0,0,0,0,0,9,0,8,0
assigns the 6-tuple (0, 0, 9, 0, 8, 0) contain-
ing measurement values for each of the six
sensors in the Intelligent Bed to the place
Sensor : PressureData within the device
net. The device net intelligentBed′online will
be shown in image 15., where this rule will be
already executed.

Figure 8.81: Intelligent Bed sends data

99K

14. Extract from the system net
System14 for entering new data:

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

r

tOND(n)

nOND

l

light′′′online

p

dailyP lanner5
online

d display′′online

a

alarmClock2.0′′online

b

intelligentBedonline

p

indoorPositioningSystemonline

s

locationBasedScreenonline

w

weatherInformationSystem′online

t

trafficService′′online

t

ruleMeasurePressurebed,0,0,9,0,8,0

The AHLI rule
ruleMeasurePressurebed,0,0,9,0,8,0
is already assigned to the place
EnterDataIntoDeviceRules and is able to be
applied to the device net intelligentBedonline
in firing the transition enter data into device.

Figure 8.82: Intelligent Bed sends data

15. Device net intelligentBed′online (see 7.15):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

3

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 0, 0, 0, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2 (0, 0, 9, 0, 8, 0)

The device net of the Intelligent
Bed, after the AHOI and AHLI
rule, mentioned in the last illus-
trations 12. - 14., are applied, con-
tains the new token (0, 0, 9, 0, 8, 0)
assigned to the place Sensor :
PressureData.
In the next step, the transition re-
ceive data will be fired.

Figure 8.83: Intelligent Bed sends data

196 CHAPTER 8. SIMULATION OF A TEST SCENARIO

16. Device net intelligentBed′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

3

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 9, 0, 8, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2

((0, 0, 9, 0, 8, 0), tt)

The transition receive data
executes the operations
thresholdExceeded which re-
turns p′′ = (0, 0, 9, 0, 8, 0). The
second operation compares
the last measured value as-
signed to LastV alueSensor :
PressureDataOLD (initially it
is set to 0 for each xi) and
it finds a difference between
the last value token and the
new data and therefore returns
((0, 0, 9, 0, 8, 0), tt) = p1. The
value of p1 will be forwarded to
the place SensorThresholded :
PressureInfo. Additionally the
last value will be exchanged by
the new one for the processing of
the next incoming pressure data.

Figure 8.84: Intelligent Bed sends data

17. Device net intelligentBed′′′online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

3

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 9, 0, 8, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2

(lightSleep,Bed)

The transition evaluate
data uses the operation
checkPressureChange first,
which checks the values
received from the place
SensorThresholded and in-
fers one of the following states of
the inhabitant of the Living Place
apartment:

• lightSleep

• deepSleep

• awake

• notInBed

An explicit definition of the oper-
ation is given in the ΣOL-algebra
AOL of the Object Level in section
11.1.
In the current step, the phase
lightSleep was infered and the re-
sulting token is set to the place
DatatoSend.

Figure 8.85: Intelligent Bed sends data

8.5. WAKE UP THE INHABITANT 197

18. Device net intelligentBed4
online:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

3

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 9, 0, 8, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2

(lightSleep,Bed, 3)

v2

(lightSleep,Bed, 3, store)

The results from the inter-
nal processing steps of the In-
telligent Bed device are ex-
tended in order to send them
to the Message Oriented Mid-
dleware. There, the data
will be processed in executing
the steps: receive data from
the device net, copy the data
to the queues of devices sub-
scribed to the topic “Bed” and
transfer the data to the con-
text interpreter. The only de-
vice subscribed to this topic
is the Alarm Clock 2.0. As
last step, the information will
be given to the Alarm Clock
2.0 device in assigning the
token to the place DataI :
InputData within its object
net.

Figure 8.86: Intelligent Bed sends data

19. Extract from device net
alarmClock2.0′′′online showing only the

part for receiving data:

Status
: Device
Status

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

Datareceived
: DataReceived

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

x

(< 12340,Work >,
Calendar, 2)

x′

(< free, 12340 >,
Traffic, 7) x′′

(< rain, 12320 >,
Weather, 6)

x′′′(lightSleep,
Bed, 3)

This image describes an extract from the ob-
ject net alarmClock2.0′′′online after receiving
data regarding the topics Calendar, Traffic
and Bed.
In the next step, the transition receive
data will fire in processing the token
(lightSleep,Bed, 3) from its predomain.

Figure 8.87: Intelligent Bed sends data

99K

20. Extract from device net
alarmClock2.04

online showing only the
part for receiving data:

Status
: Device
Status

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

Datareceived
: DataReceived

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

x

(< 12340,Work >,
Calendar, 2)

x′

(< free, 12340 >,
Traffic, 7) x′′

(< rain, 12320 >,
Weather, 6)

x′′′
(lightSleep,
Bed, 3)

The token (lightSleep,Bed, 3) is transferred
to the place Datareceived.

Figure 8.88: Intelligent Bed sends data

198 CHAPTER 8. SIMULATION OF A TEST SCENARIO

21. Extract from the device net
alarmClock2.04

online showing part for
processing data belonging to the

topic “Bed”:

Datareceived
: DataReceived

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

b

unknown

x′′′
(lightSleep,
Bed, 3)

The transition analyse bed data is now
able to fire. For that, it checks, if the
token taken from the predomain belongs
to the topic “Bed” in using the operation
isBedData. If this check was successful,
the first component of the input triple from
Datareceived will be taken and exchanged
with the token assigned to Bed : BedData.
Initially the token assigned to Bed is set to
unknown.

Figure 8.89: Intelligent Bed sends data

99K

22. Extract from the device net
alarmClock2.05

online showing part for
processing data belonging to the

topic “Bed”:

Datareceived
: DataReceived

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

b

lightSleep

The token assigned to Bed : BedData
is replaced by the newly received token
lightSleep.

Figure 8.90: Intelligent Bed sends data

23. Summary of the following steps:

The whole night, the Intelligent Bed sends
a huge amount of data of recorded pres-
sure data created by the user sleeping in
bed. To shorten the scenario up, the In-
telligent Bed should send the same data
again, that means, the steps 12. - 22. will
be repeated with the same preassure val-
ues (0, 0, 9, 0, 8, 0). The difference between
the current process and the last one is,
that the last values received by the device
net of the Intelligent Bed and the current
ones are identical. So, the resulting phase
deepSleep will be inferred by the operation
checkPressureChange which will be exe-
cuted when firing evaluate data within the
device net of the Intelligent Bed. Finally
the triple (deepSleep,Bed, 3) will be trans-
ferred to and processed within the device
net of the Alarm Clock 2.0.

Figure 8.91: Intelligent Bed sends data

99K

24. Extract from the device net
alarmClock2.06

online showing part for
processing data belonging to the

topic “Bed”:

Datareceived
: DataReceived

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

b

deepSleep

After executing the steps mentioned in 23.,
the token deepSleep is assigned to Bed :
BedData.

Figure 8.92: Intelligent Bed sends data

Now, the Alarm Clock 2.0 will fire the transition set time sending the current timestamp 12100 in
order to start the inference process of an appropriate wake up time. It is assumed, that the correct
current time will be distributed by the operation currenttime. The general problem of time in AHLI
nets resp. AHOI nets is discussed in chapter 10 and will be neglected in this chapter.

8.5. WAKE UP THE INHABITANT 199

25. Extract from
alarmClock2.07

online after
transferring both

tokens from DataI to
Datareceived:

Status
: Device
Status

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

Datareceived
: DataReceived

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

x

(< 12340,Work >,
Calendar, 2)

x′

(< free, 12340 >,
Traffic, 7)

x′′
(< rain, 12320 >,
Weather, 6)

After firing the transition
receive data twice, both
tokens are transferred to
Datareceived in order to get
processed.

Figure 8.93: Calculate Wake
Up Time

26. Extract from
alarmClock2.07

online

showing part for
generating the current

time:

set time
Timer :

Timestamp

current
time

time

ts

0

The transition set time
should now fire in or-
der to replace the to-
ken assigned to Timer :
Timestamp by the current
time in executing the oper-
ation currenttime.
The extract from the de-
vice net of the Alarm Clock
2.0 represents the internal
time component “TimeM-
odule” of the Alarm Clock
2.0 (for further details see
2.2.2.1). Initially the token
assigned to Timer is set to
0.

Figure 8.94: Calculate Wake
Up Time

99K

27. alarmClock2.08
online after firing settime:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Datareceived
: DataReceived

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topic
subscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online

sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

8

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

t1

t2

t3

t4

t5

Weather

Traffic

Calendar

Context

Bed

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

x

(< 12340,Work >,
Calendar, 2)

x′
(< free, 12340 >,

Traffic, 7)

x′′

(< rain, 12320 >,
Weather, 6)

b

deepSleep

ts

12100

0t

time

tuple(
ona, alarm)

time

After firing the transition set time, the current timestamp 12100
was generated in executing the operation currenttime. As
next step, the transition analyse calendar data will fire in using
the token (< 12340,Work >,Calendar, 2) from its predomain,
because all conditions of this transition are fulfilled resp. the
operations are able to be executed correctly.
For a detailed definition of the operations see the algebra for the
Object Level in section 11.1.

Figure 8.95: Calculate Wake Up Time

200 CHAPTER 8. SIMULATION OF A TEST SCENARIO

28. Extract from alarmClock2.09
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

x′
(< free, 12340 >,

Traffic, 7)

x′′

(< rain, 12320 >,
Weather, 6)

b

deepSleep

ts

12100

0t

time

tuple(
ona, alarm)

time

After firing the transition analyse calendar data, a the token assigned to NextAppointment :
CalendarData is replaced by the new token 12340,Work, which represents the next appointment
soon to come.

The transition analyse traffic data is able to fire in processing the token (< free, 12340 >, Traffic, 7)
from the place Datareceived and possibly adding additional time to the token assigned to AddT ime :
Timestamp, if a bad traffic condition is described. This will be infered in using the conditions of
this transition:

• isTrafficData(seconddataReceived(dr)) = tt : Returns true, because the second component of
the token (< free, 12340 >, Traffic, 7) belongs to the topic “Traffic”.

• calcAddT imeTraffic(tTraffic(firstdataReceived(dr)), time′, cal) = time : Returns no addi-
tional time, because even if the event occurs on the way to the appointment (this is the interval
between appointment − 30minutes and the timestamp of the appointment), the parameter
free signals good traffic conditions.

As a result, the traffic conditions are good and no extra time will be considered.

Figure 8.96: Calculate Wake Up Time

8.5. WAKE UP THE INHABITANT 201

29. Extract from alarmClock2.010
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

x′′

(< rain, 12320 >,
Weather, 6)

b

deepSleep

ts

12100

0t

time

tuple(
ona, alarm)

time

The token assigned to AddT ime : Timestamp still contains no additional time after the processing
step shown in image 28.

The transition analyse weather data is analogue to the transition analyse traffic data but processes
the last token (< rain, 12320 >,Weather, 6) assigned to the place Datareceived. The conditions will
be evaluated as follows:

• isWeatherData(seconddataReceived(dr)) = tt : Returns true, because the second component of
the token (< rain, 12320 >,Weather, 6) is the topic “Weather”.

• calcAddT imeWeather(tWeather(firstdataReceived(dr)), time
′, cal) = time : Retuns an addi-

tionaly time of 10 minutes which will be added to the token assigned to AddT ime, because the
event occurs on the way to the appointment and the description rain causes an additional time
of 10 minutes.

A detailed definition of the operations are given within the ΣOL-algebra AOL of the Object Level in
section 11.1.

Figure 8.97: Calculate Wake Up Time

202 CHAPTER 8. SIMULATION OF A TEST SCENARIO

30. Extract from alarmClock2.011
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

0t
WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, undefined

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

deepSleep

ts

12100

0t

time

tuple(
ona, alarm)

time

The transition Calculate Wake Up Time is able to fire and in doing so, it calculates an appropriate
wake up time, but only if the token assigned to NextAppointment : CalendarData is not equal to
unknown. This condition will be fulfilled and the wake up time will be calculated as follows:

calculateWakeUpT ime(cal, time1) = time = cal − 120− time1 = 12340− 120− 10 = 12210, where

• cal = 12340 is the timestamp of the appointment,

• time1 = 10 is the additionaly time and

• 120 is an assumed time for the user to get to the appointment: 60 minutes for preparation
(getting up, washing, dressing, eating, see next step in the scenario 8.6), 30 minutes for the
way to work and 30 minutes as buffer, if the Alarm Clock 2.0 have to wait until the person
finishes the deep sleep phase for an optimal waking up.

The new wake up time will be put to the place WakeUpT ime : Timestamp. In addition the token
assigned to Person : PersonState will be exchanged by the 4-tuple (asleep, unwashed, undressed,
hungry), which will be needed in the next step of the scenario in 8.6.
Afterwards the internal timer generates a new timestamp 12210 in firing set time. Normally, the
timer should generate the current timestamp every minute. To shorten the scenario up, it sets the
time needed (analogue to image 26 or 31).

Figure 8.98: Calculate Wake Up Time

8.5. WAKE UP THE INHABITANT 203

31. Extract from alarmClock2.012
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

0t

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(asleep, unwashed,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

deepSleep

ts

12210

w

12210

0t

time

tuple(
ona, alarm)

time

The token assigned to WakeUpT ime : Timestamp represents the new wake up time. As next
step, the transition change wake up time will fire because the token assinged to Bed : BedData is
deepSleep signalling that the user is in a deep sleep phase. Consequently, the wake up time will be
increase by one minute in order to check next minute again.

Figure 8.99: Calculate Wake Up Time

204 CHAPTER 8. SIMULATION OF A TEST SCENARIO

32. The Intelligent
Bed infers lightSleep:

Similar to the steps 12.-22.
and 23., the Intelligent Bed
measures a new pressure
data tuple which differs
from the old one but
exceeds the threshold and
therefore infers the state
lightSleep. As a result,
the token assigned to the
place Bed : BedData
within the device net
alarmClock2.012

online will
be replaced by a token
lightSleep.

Figure 8.100: Attach a Device

33. The internal timer
generates the next
timestamp 12211,

extract from
alarmClock2.013:

set time
Timer :

Timestamp

current
time

time

ts

12210

The internal timer gener-
ates the next timestamp
12211, in firing set time.

Figure 8.101: Attach a Device

99K

34. Extract from alarmClock2.013
online showing individual

processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(asleep, unwashed,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

ligthSleep

ts

12211

w

12211

0t

time

tuple(
ona, alarm)

time

Because of the token lightSleep assigned to the plave
Bed : BedData and the wake up time is equal to the cur-
rent timestamp, the transition wake up is able to fire. It modifies
the current wake up timestamp in adding additional 15 minutes,
which will be necessary to remember the user of the tasks, he
should fulfil before leaving the Living Place apartment. All open
tasks are stored to the place Person : PersonState. The first
component asleep will be removed from the task list when the
person is woken up by the Alarm Clock 2.0 device. Additionally
the synchronize token assigned to RemoveContext : Sync will be
removed, because from now on, no received context data should
get removed without being processed. Instead, a new token will
be assigned to the place WakeUpMode : Sync enabling the device
to process all new incoming context data. The token ligthSleep
set to Bed.
In order to wake the person up, a token tuple(ona, alarm) will
be created which will be put to DatatoSend and will be further
processed and transformed within the Alarm Clock 2.0 device net
until a token containing this information is assigned to DataO
and another token to DataP .

Figure 8.102: Calculate Wake Up Time

8.5. WAKE UP THE INHABITANT 205

35. Object net alarmClock2.014
online :

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 5 · online
askOnline askOffline

Unsubscribed
Topics
: Topic

DatatoSend
: DataToSend

Datareceived
: DataReceived

s1 s2

s3 s4

onlineonline

online

online
s5

online

receive
data

DataI
: Input
Data

din

drcv(din)

online

sync3
: Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topic
subscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4
: Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online

sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

8

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

t1

t2

t3

t4

t5

Weather

Traffic

Calendar

Context

Bed

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(0, unknown)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, unwashed,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12211

w

12226

sc

s

d

(on,Alarm, 8) p

(on,Alarm, 8, store)

0t

time

tuple(
ona, alarm)

time

The illustration shows the device net alarmClock2.014
online providing the signal (on,Alarm, 8) resp.

(on,Alarm, 8, store) to the Message Oriented Middleware.

The Message Oriented Middleware processes the data and distributes it to the device nets
locationBasedScreenonline and light′′′online which are all devices subscribed to the topic “Alarm”.
The processing of data on System Level is always analogue to the procedure presented in detail for
the device net of the Traffic Service in 3.-10. in this section, and consequently will not be shown in
explicit anymore.

Figure 8.103: Calculate Wake Up Time

206 CHAPTER 8. SIMULATION OF A TEST SCENARIO

36. Ambient Light receives the
token (on,Alarm, 8) (see 7.21):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li

Light
aAlarm

d

(on,Alarm, 8)

The token (on,Alarm, 8) is assigned to
the place DataI : InputData within the
device net of the Ambient Light after
finishing the processing of thie data within
the Message Oriented Middleware. Now,
the data will be collected in firing the
transition receive data.

Figure 8.104: Signal Waking Up, With Light

99K

37. Ambient Light processes the
token (on,Alarm, 8):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1off
l1

l2

dr

li

Light

Alarm

d

(on,Alarm, 8)

The transition analyse data and change
light is now able to fire. Its opera-
tion analyseLightData checks the incom-
ing data and if it contains on as first com-
ponent and Alarm as second component,
the token assigned to Light : LightState
will be replaced by a token dimmed. If
this condition is not met, that means, the
topic of this message is “Light”, the value
assigned to Light : LightState will be re-
placed by a new state which is represented
by the first component of this message.
The operation will be defined within the
algebra of the Object Level in section 11.1.

Figure 8.105: Signal Waking Up, With Light

8.5. WAKE UP THE INHABITANT 207

38. Ambient Light processes the
token (on,Alarm, 8) (see 7.21):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

1

analyse data and change light

analyseLightData
(dr) = l1 Light

: LightState

t1dimmed
l1

l2

dr

li

Light
aAlarm

After firing the transition analyse data and
change light, the resulting value dimmed
will be assigned to Light : LightState, at
the same time off is removed.

Figure 8.106: Signal Waking Up, With Light

99K

39. Location-Based Screen receives the
token (on,Alarm, 8) (see 7.19):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

5

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

off

inactive

off

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

u
UbiTV

a
Alarm

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr
alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

d

(on,Alarm, 8)

After a token is assigned to the place DataI , the
processing is able to start with firing the transition
receive data. Then, the token will be forwarded to
the place Datareceived.

Figure 8.107: Signal Waking Up, With TVs

208 CHAPTER 8. SIMULATION OF A TEST SCENARIO

40. Location-Based Screen processes the
token (on,Alarm, 8) (see 7.19):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

5

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

off

inactive

off

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

u
UbiTV

a
Alarm

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr
alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

d

(on,Alarm, 8)

The transition analyse alarm data checks, if
the received information belongs to the topic
“Alarm”. Afterwards it takes the first compo-
nent of the triple, which is on, and assigns this
value as token to the places AlarmTV1 : Data
resp AlarmTV2 : Data.
If a triple is received which belongs to the topic
“Alarm”, it always has on as first component of
the triple. Currently, an information regarding
the topic “Alarm” is only created by the Alarm
Clock 2.0 device in the model presented in this
work. It only sends a data token (on,Alarm, 8).

Figure 8.108: Signal Waking Up, With TVs

99K

41. Extract from net
locationBasedScreen′′online showing device

specific part:

Datareceived
: DataReceived

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

off

inactive

off

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

d1

on

d2

on

The TV sets are initially in offline mode, so
the transitions switch on TVi are activated (i ∈
{1, 2}) in order to change the mode to online.

Figure 8.109: Signal Waking Up, With TVs

42. Extract from net
locationBasedScreen′′′online showing device

specific part:

Datareceived
: DataReceived

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

on

inactive

on

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

Finally both TV sets are switched on which
is represented by the token on assigned to the
places TV1 : TV State resp. TV2 : TV State.
But none of them will show any image. For
that, position data from the Indoor-Positioning-
System are necessary in order to show the TV
program on one of both TV screens. In order to
wake up the inhabitant with the help of the TV
set in the sleeping area, the Indoor-Positioning-
System will send the position information of
the user who stays in bed. Afterwards the
Location-Based Screen evaluates the information
belonging to the topic “UbiTV” similar to
the processing of data belonging to the topic
“Alarm” and changes the state of the TV set
in the sleeping area to active. This will not be
presented in explicit, here. The switching on of
a certain screen will be shown in the 6th part of
the scenario in section 8.7.

Figure 8.110: Signal Waking Up, With TVs

8.6. PREPARATION PHASE FOR AN APPOINTMENT: USER IS IN BATHROOM 209

43. Current state of the object net database′′ containing all persistent data:

db
: Persistent
Data

d1

triple(< 12340,Work >,Calendar, 2)

d2

triple(< free, 12340 >, Traffic, 7)

d3 triple(< rain, 12340 >,Weather, 6)

d4

triple(lightSleep,Bed, 3)

d6

triple(lightSleep,Bed, 3)

d5

triple(deepSleep,Bed, 3)

d7

triple(on,Alarm, 8)

At the end of part 4 of the whole scenario, the presented pieces of information were processed by
the Message Oriented Middleware and therefore stored within the object net assigned to the place
PersistentData : AHLINets. This place is situated in the system net describing the Message
Oriented Middleware. The token database′′ assigned to PersistentData represents the persistent
database of the Living Place system.

Figure 8.111: Signal Waking Up, With TVs

8.6 Preparation Phase For an Appointment: User is in Bath-
room

After the inhabitant has been woken up by the Living Place apartment, he has about one hour for
preparing for the appointment, during that time, the user has to fulfil the following tasks:

• washing in bathroom,

• dressing in sleeping area and

• eating in kitchen.

These tasks are internally stored within the Alarm Clock 2.0 device net, so that it is able to check the
fulfilment of each task. If an action still remains, the Alarm Clock 2.0 device reminds the user of per-
forming this action in initiating an alarm. This will be done every 15 minutes, in order to ensure enough
time to fulfil the specific task.
The process of reminding takes place, until the user should leave the apartment to keep the appointment.
To get to the appointment, a duration of 30 minutes is assumed.

In this phase of the scenario, the following steps will be described:

• The inhabitant is in the bathroom of the Living Place apartment. The position of the user will be
recognized and interpreted by the Indoor-Positioning-System.

• Afterwards the interpreted position will be passed to the Message Oriented Middleware which
distributes the data.

• The Context Interpreter being a part of the Message Oriented Middleware evaluates a 5W1H3

context out of this information. The resulting data will be distributed.

• The Alarm Clock 2.0 receives and processes the 5W1H context. As a result, the task of washing is
fulfilled and the state “unwashed” will be removed from the internal list.

3See [JW05].

210 CHAPTER 8. SIMULATION OF A TEST SCENARIO

1. Concrete AHOI rule
MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

for
generating position data for the

Indoor-Positioning-System (see 7.103):

Lmp Kmp Rmp

l r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleMeasurePosition
indoor,v1,v2,v3,v4,v5,v6,

x1,x2,x3,x4,x5,x6

Similar to the measurement of pressure data in the
Intelligent Bed (see illustrations 12.-15. in last section
8.6), a concrete AHOI rule out of a huge set of AHOI rules
will be applied which assigns its corresponding AHLI rule
ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6 .
In the case of adding position data, each vi, xi consists
of a triple (Xi, Yi, Zi) describing the current 3D position
coordinate of the user (i ∈ {1, 2, 3, 4, 5, 6}).
The indices of the concrete user and its corresponding
AHLI rule used in that step, will be: vi, xj = (0, 0, 0),
for , j ∈ {1, 2, 4, 5, 6} and x3 = (9, 6, 0). That means,
only the third sensor is able to detect the position of the
user, because of the inhabitant sojourning in the range of
measurement of the third sensor.

Figure 8.112: Send Position bathroom

99K

2. Concrete AHLI rule
ruleMeasurePosition

indoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

for generating position data
for the

Indoor-Positioning-System
(see 7.75):

Lcd Kcd Rcd

l r

SensorData
: SensorDataTuple

n

(v1, v2, v3, v4, v5, v6)

SensorData
: SensorDataTuple

SensorData
: SensorDataTuple

n

(x1, x2, x3, x4, x5, x6)

The corresponding AHLI rule
will be assigned to the place
EnterDataIntoDeviceRules :
Rules which is situated within
the system net (see 7.48). This
rule will be applied to a device
net in online mode in firing the
transition enter data into device.
A match can be found in using
indoorPositioningSystemonline

out of the predomain of this
transition.
The assignements are:
vi, xj = (0, 0, 0), for i ∈
{1, 2, 3, 4, 5, 6}, j ∈ {1, 2, 4, 5, 6}
and x3 = (9, 6, 0).

Figure 8.113: Send Position
bathroom

3. Device net indoorPositioningSystem′online after entering new data (see 7.17):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

4

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (9, 6, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

After executing the AHLI rule
ruleMeasurePositionindoor,x1,x2,x3,x4,x5,x6

,
(xi = (0, 0, 0), i ∈ {1, 2, 4, 5, 6}, x3 =
(9, 6, 0)), the data token assigned to
SensorData : SensorDataTuple is re-
placed by the tuple given in this image. The
transition analyse data is now activated.

Figure 8.114: Send position bathroom

8.6. USER IS IN BATHROOM 211

4. Device net indoorPositioningSystem′′online while processing data:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

4

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (9, 6, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

d

(bathroom,UbiTV)

After firing the transition analyse data, the
token (bathroom,UbiTV) was infered by the
operation transformToUbiTV . A detailed
definition if this operation is given in the
ΣOL-algebra AOL of the Object Level in 11.1.
As next step, the transition send data will fire
which transforms the token in order to put it
to the place DataO resp. DataP .

Figure 8.115: Send Data bathroom

5. Device net indoorPositioningSystem′′′online while processing data:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

4

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (9, 6, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

d1

(bathroom,UbiTV, 4)

d2

(bathroom,UbiTV, 4, store)

After firing the transition send data, a token
(bathroom,UbiTV, 4) is assigned to DataO :
OutputData which should be distributed by
the message broker directly to all devices sub-
scribed to the topic “UbiTV”. A second to-
ken (bathroom,UbiTV, 4, store) is assigned to
DataP : DataForPersistenceLayer, which
should be stored to the persistence layer
of the Message Oriented Middleware repre-
sented by the system net.

Figure 8.116: Send Data bathroom

The information will be collected by the Message Oriented Middleware in firing the transitions receive
data from device, copy data to queues and to context interpreter and send data to device which are parts
of the system net System15 (e.g. see 7.26).
The only device subscribed to this topic “UbiTV” is the Location-Based Screen, which will receive this
message. Because of the current position “bathroom”, the states of both TV sets represented by the
places TV1 : TV State resp. TV2 : TV State in the device net of the Location-Based Screen will stay
unchanged, that means, both TV sets are still on but inactive.
The transition copy data to queues and to context interpreter performs two tasks: copying the new data
to the corresponding queue of all devices subscribed to the specific topic. In addition, the information
will be passed to the Context Interpreter, which is a part of the Message Oriented Middleware. It infers
a new context out of the given data according to a set of rules. The model of the Context Interpreter is
presented in detail in 7.53. In the following step, the inference process of an information will be illustrated.

212 CHAPTER 8. SIMULATION OF A TEST SCENARIO

6. Extract from system net System15 showing the
part of the Context Interpreter (see 7.53):

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i8

dataBuffer8

It is assumed, that in the last data processing steps of
the Message Oriented Middleware, the Context Interpreter
collected the incoming tokens in firing the transition get
new data. Because of that, all past message token are
equiped with an older timestamp and are assigned to the
place DataToInferContext : AHLINets.
This following illustration shows, as an example, the object
net dataBuffer7. It contains the data sent by the Alarm
Clock 2.0 (on,Alarm) and the timestamp of the moment,
when the Context Interpreter fired the transition get new
data in order to get this data and provide it for a possible
derivation of a new context.

LocalData

d7

triple(on,Alarm, 12211)

The new object net dataBuffer8, which contains the data
token triple(bathroom,UbiTV, 4), will be transformed in
firing the transition get new data. It applies the rule
ruleTransform (see 7.62 or step 12 in next part of the
scenario) to the disjoint union of two nets from its predo-
main. Now, it takes the object nets: dataBuffer8

.
∪S time

in order to equip the token with the current timestamp.
The Context Interpreter only infers new data which have
the same timestamp than the object net timer, old data
will be ignored.

Figure 8.117: Send Data bathroom, Context Interpreter

99K

7. Object net timer
containing the current
timestampp 12215:

t :
Timestamp

t

12215

The current timestamp
is assigned to th place
t : Timestamp within the
object net timer. The
actual timestamp is now
12215, four minutes after
the inhabitant has been
woken up by the Living
Place system.

Figure 8.118: Send Data
bathroom, Context Interpreter

8. Object net
dataBuffer8 containing

the new data
triple(bathroom,UbiTV, 4):

: GlobalData

d8

(bathroom,UbiTV, 4)

The object net
dataBuffer8 con-
tains the data token
triple(bathroom,UbiTV, 4)
which was created and sent
by the Indoor-Positioning-
System.

Figure 8.119: Send Data
bathroom, Context Interpreter

8.6. USER IS IN BATHROOM 213

9. Extract from system net System16

showing the part of the Context
Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i8

dataBuffer′8

The token is transformed and forwarded to
the place DataToInferContext : AHLINets.
The resulting object net is shown in image
10. Now, the transition infer context data
is able to fire and concurrently is applyies
the rule ruleWashing to the disjoint union of
dataBuffer′8 and the object net timer contain-
ing the current timestamp. The rule is presented
in image 11.

Figure 8.120: Send Data bathroom, Context Inter-
preter

99K

10. Object net dataBuffer′8 after
firing get new data:

: LocalData

d8

(bathroom,UbiTV, 12215)

Figure 8.121: Send Data bathroom, Context In-
terpreter

11. AHLI rule ruleWashing (see 7.57):

Lwash Kwash Rwash

l r

: LocalData

d

triple(
bathroom, ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
(userc, bathroomc,
undefinedc, washingc,
undefinedc,
undefinedc),
context, 0c)

Figure 8.122: Send Data bathroom, Context In-
terpreter

12. Extract from system net System17 showing the part of
the Context Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i8

dataBuffer′′8

After firing the transition infer context data, a new 5W1H context
was infered out of the data (bathroom,UbiTV). The object net con-
taining the 5W1H context is illustrated in the next image.
The Context Interpreter contains a set of rules assigned to
ContextRepositoryRules : Rules. Each rule is presented in detail
in the modelling of the Context Interpreter in 7.53.

Figure 8.123: Send Data bathroom, Context Interpreter

99K

13. Object net
dataBuffer′′8 after

firing
infer context data:

: GlobalData

d8

(< user, bathroom, undefined,washing,
undefined, undefined >,Context, 0)

Figure 8.124: Send Data
bathroom, Context Inter-
preter

214 CHAPTER 8. SIMULATION OF A TEST SCENARIO

The 5W1H context information infered by the Context Interpreter will be distributed to all devices
subscribed to the topic “Context”. For that, the transitions copy data to queues and to context interpreter
and send data to device will be used, analogue to the processing of information sent by a connected device
in online mode.
Currently, only the Alarm Clock 2.0 is subscribed to the topic “Context”, hence the data will only be
sent to the net alarmClock2.015

online, which receives the data in firing its transition receive data. The
following illustrations describe the processing of this context data.

14. Extract from alarmClock2.016
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

c

(unknown,
unknown,
unknown)

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, unwashed,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12215

w

12226

sc

s

0t

time

tuple(
ona, alarm)

time

x

(< user, bathroom,
undefined,washing,

undefined, undefined >,
Context, 0)

The token (< user, bathroom, undefined,washing, undefined, undefined >,Context, 0) assigned
to Datareceived belongs to the topic “Context”, therefore, the transition analyse context data is
able to fire. It contains two operations, the first one isContextData checks, if the second compo-
nent of the triple is identical to the topic “Context”. The second operation toContext evaluates
the input data and possibly changes the token assigned to Context : ContextData which repre-
sents the interpreted contexts, which were not processed until now. Initially this token is set to
(unknown, unknown, unknown). After receiving the 5W1H context, that the user is washing in the
bathroom, it will be replaced by (washing, unknown, unknown).
A definition of both operations is given within the ΣOL-algebra AOL for the Object Level in 11.1.

Figure 8.125: Alarm Clock 2.0 Processes Data bathroom

8.6. USER IS IN BATHROOM 215

15. Extract from alarmClock2.017
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, unwashed,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12215

w

12226

sc

s

0t

time

tuple(
ona, alarm)

time

c

(washing,
unknown,
unknown)

After firing the transition analyse context data, the token assigned to Context : ContextData is
replaced by the triple (washing, unknown, unknown). The transition washing in bathroom will fire
next. It checks the first component of the triple, if it is equal to “washing”, if true, the first component
of this triple will be reset (in executing the operation removeUnwashedc. Additionally, the second
component unwashed of the 4-tuple set to the place Person : PersonState will be reset in replacing
it with undefined.
That means, the user has fulfilled one of the tasks internally stored within the Alarm Clock 2.0 and
to whose the inhabitat should be reminded of.

Figure 8.126: Alarm Clock 2.0 Processes Data bathroom

216 CHAPTER 8. SIMULATION OF A TEST SCENARIO

16. Extract from alarmClock2.018
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12215

w

12226

sc

s

0t

time

tuple(
ona, alarm)

time

c

(unknown,
unknown,
unknown)

After processing the data (< user, bathroom, undefined,washing, undefined, undefined >
,Context, 0), the task unwashed is fulfilled and will be removed from the list of unrealised tasks
assigned as 4-tuple to the place Person : PersonState.

Figure 8.127: Alarm Clock 2.0 Processes Data bathroom

8.7 Preparation Phase For an Appointment: User is Dressing
in Sleeping Area

The inhabitant stays in the bathroom for 20 minutes. Meanwhile, the Alarm Clock 2.0 checks the inter-
nal task list an generates an alarm because there are still actions left to fulfil by the inhabitant. After
leaving the bathroom, the user enters the sleeping area to dress. This will be recognized by the Indoor-
Location-Based system leading to a deletion of the task undressed within the Alarm Clock 2.0. Beyond,
the Location-Based Screen automatically activates the TV set in the sleeping area.

8.7. USER IS DRESSING IN SLEEPING AREA 217

1. Extract from alarmClock2.019
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12226

w

12226

sc

s

0t

time

tuple(
ona, alarm)

time

c

(unknown,
unknown,
unknown)

The internal timer has switched to 12226. Now, the transition alarm again is able to fire and
executing the operations as follows:

• is15MinutesLater(ts1, ts2) = tt : Returns tt because the timestamps ts1 and ts2 are equal
and the condition is fulfilled.

• isBeforeNextAppointment(cal, ts1, time) = tt : The actual appointment lies in the future, so
this operation returns tt.

• +time(ts1, 15) = ts′1 : The timestamp for the next reminding will be increased by 15 minutes
and it will be returned to the place WakeUpT ime′.

• isReadyStates(ps) = ff : As long as there are still tasks to fulfil available (ps 6=
(undefined, undefined, undefined, undefined)), this operation returns tt.

All conditions of the transition alarm again are fulfilled, so a alarm will be initiated in producing
the token (on,Alarm).

Figure 8.128: Alarm Clock 2.0 Sends Alarm

218 CHAPTER 8. SIMULATION OF A TEST SCENARIO

2. Extract from alarmClock2.020
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12226

w

12241

sc

s

0t

time

tuple(
ona, alarm)

time

c

(unknown,
unknown,
unknown)

a (on,Alarm, 8)

The next timestamp for a possible reminding is increased to 12241 assigned to the place
WakeUpT ime′ : Timestamp. Furthermore the token (on,Alarm) is set to DatatoSend and ready
for the next processing steps: The token will be completed and assigned to the places DataO resp.
DataP within the Alarm Clock 2.0 device net. Aftwerwards it will be collected by the Message
Oriented Middleware, analysed in order to distribute the information to all devices subscribed to
“Alarm”. These devices will produce the defined reaction to this signal.
In the given scenario, only the Ambient Light is able to react to this signal in switching the light on
in dimmed mode or the Location-Based Screen reacts to messages belonging to the topic “Alarm”
in switching on and activate a TV set, if the person is within its visible range. The processing of
messages concerning the topic “Alarm” is presented in the illustrations 36-42 of the forth part of the
whole scenario, see 8.5.

Figure 8.129: Alarm Clock 2.0 Sends Alarm

8.7. USER IS DRESSING IN SLEEPING AREA 219

3. Indoor-Positioning-System sends south:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

4

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

analyse data

transformToUbiTV
(sensordata) = dsendSensorData

: SensorDataTuple

sensor
data

dsend

v1
((0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

d1

(south, UbiTV, 4)

d2

(south, UbiTV, 4, store)

As next step, the Indoor-Positioning-System
measures values leading to the resulting message
(south, UbiTV, 4), as shown in this illustration.
The process of entering and processing new mea-
surement values are presented in explicit in im-
ages 1-5 in last part of the scenario (see 8.6).

Figure 8.130: Send Data south

4. Intelligent Bed sends notInBed:

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 2 · online
askOnline askOffline

DatatoSend
: DataToSend

s1 s2

online

online

send
data

DataO
: Output
Data

triple(dsend, id)

dsend

online sync5 : Syncs

s5

sync

connectionid
: ConnectionID

id

id

3

DataP
: Data
For
Persistence
Layer

4tuple(dsend, id, store)

evaluate data

checkPressureChange
(p1) = res
transformToBed(res)
= dsend

Sensor
Thresholded
: PressureInfo

receive data

thresholdExceeded(p) = p′′

hasChanged(fP (p′), p′′) = p1
Sensor
: PressureData

LastV alueSensor
: PressureDataOLD

v1 (0, 0, 0, 0, 0, 0)

p

p′

tP (p′′)

p1

p1

dsend

v2

(notInBed,Bed, 3)

v2

(notInBed,Bed, 3, store)

Analogue to the steps presented
in 12-18 in the forth part of
this simulation of the scenario
(see 8.5), the Intelligent Bed rec-
ognizes no pressure on its sen-
sors, so the data notInBed will
be transmitted to the Message
Oriented Middleware. The im-
age shows the state of the device
net intelligentBed5

online, where
the information is evaluated and
ready to be accepted and pro-
cessed by the Message Oriented
Middleware.

Figure 8.131: Send Data notInBed

Both kinds of information send by the Indoor-Positioning-System and by the Intelligent bed will be
processed within the Message Oriented Middleware and distributed to all devices subscribed to the topic
“UbiTV” resp. “Bed”. Furthermore, both data will be forwarded to and interpreted by the Context
Interpreter.
The Location-Based-Sceen is subscribed to the topic “UbiTV”. The processing of this message will be
shown first. Afterwards, the inferece of both information within the Context Interpreter will be described.
The last step presented is, that the Alarm Clock 2.0 receives and evaluates the messages sent by the In-
telligent Bed and by the Context Interpreter.

220 CHAPTER 8. SIMULATION OF A TEST SCENARIO

5. Location-Based Screen processes the
token (south, UbiTV, 4) (see 7.19):

Status
: Device
Status

ask
device online

ask
device offline

sync2
: Sync

s

sync1
: Sync

s

offline 4 · online
askOnline askOffline

Datareceived
: DataReceived

Unsubscribed
Topics
: Topic

s1 s2

s3

online

online

online
s4

onlinereceive
data

DataI
: Input
Data

din

drcv(din)

online

sync3 : Sync

s

s8

sync

Topics
ToSubscribe
: TopictoSubscribe

Subscribed
Topics
: Topicsubscribed

Topics
ToUnsubscribe
: TopictoUnsubscribe

subscribe
topic

sync4 : Sync

s

s6

sync

unsubscribe
topic

online
ask
Offline

t

ttoS(t)

ttoU (tsub)

tsub

connectionid
: ConnectionID

request
data

t = ttrq

t

online

sync6
: Sync

s

s7

sync
DataR
: Request
Data

tuple(ttrq, id)

TopicstoRequest
: TopictoRequest

ttrq

id

id

5

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

on

inactive

on

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

u
UbiTV

a
Alarm

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

drcv(din)

alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

d

(south, UbiTV, 4)

In the image, the token triple(south, UbiTV, 4)
has already been passed from the place
DataI : InputData to the place Datareceived :
DataReceived in firing the transition receive
data. Now, the transition analyse UbiTV data is
active, which executes its operations as follows:

• isUbiTV Data(seconddataReceived(dr)) = tt
is fulfilled because the topic of the informa-
tion triple is equal to “UbiTV”.

• analyseUbiTV data(firstdataReceived
(dr)) = (r1, r2) returns the tuple
(inactive, active) due to the first com-
ponent of the received data is south,
which characterises, that the inhabitant is
currently in the sleeping area.

As result, the value inactive will be transferred
to the place resultTV1 : TV State and the value
active will be assigned to resultTV2 : TV State.

Figure 8.132: Location-Based Screen receives south

99K

6. Extract from net
locationBasedScreen5

online showing device
specific part:

Datareceived
: DataReceived

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

on

inactive

on

inactive

r1

r1

r1

r2

r1

r3

r2

r4

dr

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

d1

inactive

d2

active

As next step, both transitions change status of
TVi (i ∈ {1, 2}) are able to fire. They take a to-
ken, which contains the value active or inactive
from the place TVi : TV State and replace it by
the token, which has been assigned to the corre-
sponding place resultTVi. The outcome of the
firing of both transitions is illustrated in the next
image.

Figure 8.133: Location-Based Screen receives south

7. Extract from net
locationBasedScreen6

online showing device
specific part:

Datareceived
: DataReceived

analyse UbiTV data

isUbiTV Data(seconddataReceived
(dr)) = tt
analyseUbiTV data
(firstdataReceived(dr))
= (r1, r2)

resultTV1 : TV State

resultTV2 : TV State

change status of TV1

isActiveToken(r3) = tt

change status of TV2

isActiveToken(r4) = tt

TV1 : TV State

TV2 : TV State

t1

t2

t3

t4

on

inactive

on

active

r1

r1

r1

r2

r1

r3

r2

r4

dr

analyse alarm data

isAlarmData
(seconddataReceived
(dr)) = tt
firstdataReceived
(dr)
= alarm1

firstdataReceived
(dr)
= alarm2

AlarmTV1

: Data

switch on TV1

is on TV1

AlarmTV2

: Data

switch on TV2

is on TV2

dr alarm1

alarm1

alarm1

alarm2

alarm2

alarm2

onTV

offTV

onTV

onTV

offTV

onTV

Both TV sets are still switched on. Furthermore,
the TV set located in the sleeping area is ac-
tivated because the resident sojourns within its
view. The state of the TV set in the sleeping
area is represented by the place TV2 : TV State,
whereas TV1 : TV State stands for the state of
the TV set situated in the lounge area.

Figure 8.134: Location-Based Screen receives south

8.7. USER IS DRESSING IN SLEEPING AREA 221

8. Extract from system net System18 showing the part of
the Context Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i9 dataBuffer9

i10

dataBuffer10

Both information sent by the Indoor-Positioning-System and by the
Intelligent Bed are assigned to the place ContextInterpreterQueue :
AHLINets. Each token consists of an AHLI Net which contains
the information, as shown in the images 9 and 10. The AHLI net
dataBuffer9 contains the data triple(south, UbiTV, 4) assigned as
token to the place : GlobalData, whereas dataBuffer10 contains
triple(notInBed,Bed, 3).
Beyond, the AHLI net timer has changed in replacing the timestamp
by the current one 12231 as presented in the 11th picture.

The transition get new data is now activated and able to fire.
It will fire twice in order to process both tokens assigned to
ContextInterpreterQueue. In doing so, the rule ruleTransform will
be applied to dataBuffer9

.
∪S timer resp. dataBuffer10

.
∪S timer.

Figure 8.135: Context Interpreter gets south and notInBed

99K

9. Object net
dataBuffer9:

: GlobalData

d9

(south, UbiTV, 4)

Figure 8.136: Context In-
terpreter gets south and
notInBed

10. Object net
dataBuffer10:

: GlobalData

d10

(notInBed,Bed, 3)

Figure 8.137: Context In-
terpreter gets south and
notInBed

11. Object net
timer containing

the current
timestampp 12231:

t :
Timestamp

t 12231

Figure 8.138: Context In-
terpreter gets south and
notInBed

222 CHAPTER 8. SIMULATION OF A TEST SCENARIO

12. AHLI rule ruleTransform of the Context Interpreter (see 7.62):

Ltr Ktr Rtr

l r

: GlobalData

d

triple(x, y, z)

: Timestamp

d

time

: LocalData

d

triple(x, y, time)

The rule ruleTransform will be
applied to a data record assigned
to ContextInterpreterQueue :
AHLINets and in using the
timestamp represented by the
AHLI net assigned to Timer :
AHLINets when the transition
get new data fires. This rule re-
moves the connection id from the
triple containing the message and
replaces it by the current time.

Figure 8.139: Context Interpreter gets south and notInBed

13. Extract from system net System19 showing the part of
the Context Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i9

dataBuffer′9

i10

dataBuffer′10

The transition conjunction of data needs to fire in order to combine
both object nets dataBuffer′9 and dataBuffer′10 so that the rule
ruleDressing is able to be applied in the next step.

Figure 8.140: Context Interpreter gets south and notInBed

99K

14. Object net
dataBuffer′9:

: LocalData

d9

(south, UbiTV, 12231)

Figure 8.141: Context In-
terpreter gets south and
notInBed

15. Object net
dataBuffer′10:

: LocalData

d10

(notInBed,Bed, 12231)

Figure 8.142: Context In-
terpreter gets south and
notInBed

8.7. USER IS DRESSING IN SLEEPING AREA 223

16. Extract from system net System20

showing the part of the Context
Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i9

dataBuffer′9

i10

dataBuffer′10

i9,10

dataBuffer9
.
∪S 10

Finally, the transition infer context data is able
to fire and the rule ruleDressing can be ap-
plied to the object net dataBuffer9

.
∪S 10 and

timer. The object net dataBuffer9
.
∪S 10 is il-

lustrated in 16, the AHLI rule ruleDressing in
18. The AHLI rule compares both timestamps
being part of the triples assigned to : LocalData
with the timestamp assigned to : Timestamp
in order to use new data and no older ones.
If all timestamps are equal, the 5W1H context
<user, sleepingArea, undefined, dressing, unde-
fined, undefined> is inferred.

Figure 8.143: Context Interpreter gets south and
notInBed

99K

17. Object net dataBuffer9
.
∪S 10:

p1 : LocalData

d9

(south, UbiTV, 12231)

p2 : LocalData

d10

(notInBed,Bed, 12231)

Figure 8.144: Context Interpreter gets south
and notInBed

18. AHLI rule ruleDressing (see 7.60):

Ldress Kdress Rdress

l r

: LocalData

d

triple(
notInBed,
bed, time)

: LocalData

d

triple(
south,

ubiTV, time)

: Timestamp

d

time

: GlobalData

d

triple(6tuple(
(userc, sleepingAreac,
undefinedc, dressingc,
undefinedc, undefinedc),
context, 0c)

Figure 8.145: Context Interpreter gets south
and notInBed

19. Extract from system net System21 showing the part of
the Context Interpreter:

Context
Interpreter
Queue
: AHLINets

get new data

m : Mor

cod(m) = n1

.
∪S t

applicable(r,m) = tt
transform(r,m) = n

DataTo
InferContext
: AHLINets

infer context data

m : Mor

cod(m) = n
.
∪S t

applicable(r,m) = tt

transform(r,m) = n1

.
∪S t′

isomorphicPTNET (t, t′) = tt

DataBuffer
Repository
: AHLINets

Context
Repository
Rules
: Rules

Transform
Rules
: Rules

n1 n n

r

n1

r

T imer
: AHLINets

t

set time

current
T imeNet

t

t timer

t

conjunction of data

n1 ⊕ n2n1

.
∪S n2

ri1

ruleEating

ri2

ruleRelaxing1

ri3

ruleWashing

ri4

ruleSleeping1 ri5

ruleSleeping2

ri6
ruleDressing

ri7
ruleOutside

ri8

ruleRelaxing2

rt ruleTransform

i1

dataBuffer1

i2

dataBuffer2

i3

dataBuffer3

i4

dataBuffer4

i5

dataBuffer5

i6

dataBuffer6

i7

dataBuffer7

i9,10

dataBuffer′
9

.
∪S 10

After firing infer context data, the object net dataBuffer′
9

.
∪S 10

is

assigned as token to DataBufferRepository : AHLINets. This
object net is visualized in the next picture.

Figure 8.146: Context Interpreter gets south and notInBed

99K

20. Object net
dataBuffer′

9
.
∪S 10

:

: GlobalData

d9,10

(< user, sleepingArea, undefined, dressing,
undefined, undefined >,Context, 0)

Figure 8.147: Context In-
terpreter gets south and
notInBed

224 CHAPTER 8. SIMULATION OF A TEST SCENARIO

Having infered the new data (< user, sleepingArea, undefined, dressing, undefined, undefined >,Context, 0),
the information from the Context Interpreter was processed by the message broker in firing copy data
to queues and to context interpreter and send data to device. The Alarm Clock 2.0 is subscribed to the
topics “Bed” and “Context” and, because of that, both information regarding these topics were passed
to the Alarm Clock 2.0 device.

21. Extract from alarmClock2.021
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undressed, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

unknown

ts

12231

w

12241

sc

s

0t

time

tuple(
ona, alarm)

time

c

(unknown,
unknown,
unknown)

x′

(notInBed,
Bed, 3)

x′′

(< user, sleepingArea,
undefined, dressing,

undefined, undefined >,
Context, 0)

The internal timer of the Alarm Clock 2.0 replaced its timestamp with 12231. The Alarm Clock
2.0 device received both data. Now it is able to process both tokens assigned to Datareceived :
DataReceived. The context information, that the user is dressing in the sleeping area will be pro-
cessed analogue to the steps presented in 14-16 in the last part of the scenario (see 8.6):

1. Fire analyse context data.

2. The token assigned to Context : ContextData is changed to (unknown, unknown, dressing).

3. Fire dressing in sleeping area.

4. The token assigned to Context : ContextData is changed to (unknown, unknown, unknown)
and the token assigned to Person : PersonState is changed to
(undefined, undefined, undefined, hungry).

In parallel the token (notInBed,Bed, 3) is able to be processed in fire analyse bed data. Afterwards,
the token assigned to Bed : BedData is replaced by a token notInBed. The resulting device net of
the Alarm Clock 2.0 after performing all these steps is illustrated in next image.

Figure 8.148: Alarm Clock 2.0 processes information

8.8. SWITCH OFF THE WHOLE LIVING PLACE SYSTEM 225

22. Extract from alarmClock2.022
online showing individual processing part of the device:

Datareceived
: DataReceived

DatatoSend
: DataToSend

set time

Timer :
Timestamp

current
time
time

analyse traffic data

isTrafficData(
seconddataReceived
(dr)) = tt
calcAddT imeTraffic(
tTraffic(firstdataReceived
(dr)), time

′, cal) = time

analyse weather data

isWeatherData(
seconddataReceived
(dr)) = tt
calcAddT imeWeather(
tWeather(firstdataReceived
(dr)), time

′, cal) = time

AddT ime
T imestamp

time′

time

dr

ti

10

time′

time

dr analyse calendar data

isCalendarData(seconddataReceived
(dr)) = tt
isSoon(firstdataReceived
(dr), ts2) = tt
firstdataReceived(dr) = cal
getInfo(cal′) = unknown

NextAppointment
: CalendarData

cal

cal′

dr

ts2

cal

(12340,Work)

cal

cal

analyse bed data

isBedData(seconddataReceived
(dr)) = tt
firstdataReceived
(dr) = bed

Bed
: BedData
bed

bed′

dr

analyse context data

isContextData(seconddataReceived
(dr)) = tt
toContext(firstdataReceived
(dr), c

′) = c

Context
: Context
Data

c
c′

dr

Calculate Wake Up Time

calcWakeUpT ime(cal,
time1) = time
getInfo(cal) 6= unknown

time1

WakeUpT ime
: Timestamp

time

cal

change wake up time

isdeepSleep(bed) = tt
ts1 = ts2

+time(ts1, 1) = ts′1

ts′1

ts1

bed

wake up

ts1 = ts2

isdeepSleep(bed) = ff
+time(ts1, 15) = ts′1
bed′ = unknown
removeAsleepps(ps) = ps′

WakeUp
T ime′

: Timestamp

bed

bed′

ts′1

ts2

alarm again

is15MinutesLater(ts1, ts2) = tt
isBeforeNextAppointment(cal, ts1, time) = tt
+time(ts1, 15) = ts′1
isReadyStates(ps) = ff

ts1

ts′1

tuple(
ona, alarm)

tuple(
ona, alarm)

ts1

cal

ts2

Person
: Person
State

ps(undefined, undefined,
undefined, hungry)

ps ps′

ps

washing in bathroom

isWashingInBathroom(c) = tt
c′ = removeUnwashedc(c)
removeUnwashedps(ps) = ps′

ps

ps′

c
c′

eating in kitchen

isEatingInKitchen(c) = tt
c′ = removeHungryc(c)
removeHungryps(ps) = ps′ ps

ps′

c
c′

dressing in sleeping area

isDressingInSleepingArea(c) = tt
c′ = removeUndressedc(c)
removeUndressedps(ps) = ps′

bed′ = unknown

ps

ps′

c c′

bedbed′

is appointment over

−time(getT imestampCalendar(cal′),
+time(time, 30)) = ts2

cal = (0, unknown)

ts′1 ts2

persontasks

ps

cal

cal′

remove context

isContextData(seconddataReceived
(dr)) = tt

dr

RemoveContext
: Sync

sc

s

s

s

WakeUpMode
: Sync

s

s

s

s

b

notInBed

ts

12231

w

12241

sc

s

0t

time

tuple(
ona, alarm)

time

c

(unknown,
unknown,
unknown)

Figure 8.149: Alarm Clock 2.0 processed information

The inhabitant does not fulfil all tasks during the preparation time, because he does not have break-
fast. Because of that, the Alarm Clock 2.0 reminds the user regularily of the missing task in sending new
alarm signals to the Living Place system, until the time for leaving the apartment in order to get to the
appointment is reached. The process of generating new data triple(on,Alarm, 8) is shown in the images
1 and 2 in this section.
Another way for the resident to end the constant reminding is the switching off of the Alarm Clock 2.0
(in applying the AHOI rule StopAlarmClockuser which is described in 7.1.4.5). The third possibility is
presented in the last part of the simulation of this scenario: The user switches the whole Living Place
system off and resets it.

8.8 Switch off the whole Living Place system

Only the user is able to switch off the whole Living Place system, normally this is only done in the case
of an emergency. For that, a set of AHOI rules need to be applied, whose use case is presented in the first
picture. Afterwards the inhabitant will initialise the whole system in applying the AHOI rules, whose
use case diagram is shown in the second image.

226 CHAPTER 8. SIMULATION OF A TEST SCENARIO

1. Switching the whole Living Place
system off (see 7.1.4.2):

Emergency Off

EmergencyOffofflineuser

EmergencyOffonlineuser

Figure 8.150: Use Case: Switch Off in Emer-
gency

99K

2. Initialise the Living Place system
(see 7.1.4.3):

Initialising

DeleteQueueuser

DeleteReceiveDataRulesuser

DeleteRequestsuser

DeletePersistentDatauser

Figure 8.151: Use Case: Initialise the Whole
System

3. User interaction scheme
EmergencyOffofflineuser (see 7.87):

Leooffline
kernel rule

Keooffline
kernel rule

Reooffline
kernel rule

lkernel rkernel

Leooffline
multi rule

Keooffline
multi rule

Reooffline
multi rule

lmulti rmulti

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

d

nOFFD Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

In general, an amalgamated rule will be
created out of the interaction scheme
EmergencyOffofflineuser based on the max-
imal match, which deletes all object
nets assigned as tokens to the place
OfflineDevices : AHLINetsOFFD in the
system net. However, the current system
net System22 have no tokens assigned to
this place, so that no rule can be created
out of this interaction scheme, right now.

Figure 8.152: Emergency Off

99K

4. User interaction scheme
EmergencyOffonlineuser (see 7.86):

Leoonline
kernel rule

Keoonline
kernel rule

Reoonline
kernel rule

lkernel rkernel

Leoonline
multi rule

Keoonline
multi rule

Reoonline
multi rule

lmulti rmulti

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

d

nOND Online
Devices
: AHLI
NetsOND

Online
Devices
: AHLI
NetsOND

In contrast to step 3, a rule can be
generated out of the interaction scheme
EmergencyOffonlineuser based on the max-
imal match. It will be applied to the
system net System22 in order to remove
all device in online mode assigned to the
place OnlineDevices : AHLINetsOND.

Figure 8.153: Emergency Off

5. Extract from system net System22

before applying the rule created out
of EmergencyOffonlineuser :

OnlineDevices
: AHLINetsOND

l

light′′′online

p

dailyP lanner5
online

d display5
online

a

alarmClock2.022
online

bintelligentBed7
online

p

indoorPositioningSystem4
online

s

locationBasedScreen6
online

w

weatherInformationSystem′′online

t

trafficService′′′online

All devices in online mode are assigned to
the place OnlineDevices.

Figure 8.154: Emergency Off

99K

6. Extract from system net System23

after applying the rule created out
of EmergencyOffonlineuser :

OnlineDevices
: AHLINetsOND

All object nets are removed from the
place OnlineDevices after applying the
rule created out of EmergencyOffonlineuser .
Therfore, no processing of data within the
device nets is possible anymore.

Figure 8.155: Emergency Off

8.8. SWITCH OFF THE WHOLE LIVING PLACE SYSTEM 227

7. AHOI rule DeleteQueueuser (see
7.89):

Ldq Kdq Rdq

l r

Queues
: AHLINetsQ

q

nQ

Queues
: AHLINetsQ

Queues
: AHLINetsQ

q

∅

The queue assigned to the place
Queues : AHLINetsQ within the system
net System23 will be reset. In the current
system net, the object net q6 will be
replaced (which is equal to the net q′′ in
image 2 in the third part of the scenario
(see 8.4)) by an empty object net.

Figure 8.156: Initialise: Delete Queues

99K

8. User interaction scheme
DeleteReceiveDataRulesuser (see 7.90):

Ldrdkernel rule
Kdrdkernel rule

Rdrdkernel rule

lkernel rkernel

Ldrdmulti rule
Kdrdmulti rule

Rdrdmulti rule

lmulti rmulti

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

rd

receiveData Receive
Data
Rules
: RulesR

Receive
Data
Rules
: RulesR

Out of the user interaction scheme,
based on the maximal match,
deleteReceiveDataRulesuser a AHOI
rule will be created which deletes all
rules assigned as tokens to the place
ReceiveDataRules : RulesR. Every
time a device net was set into online
mode, a rule receiveData was put to this
place, hence nine rules are currently still
available.

Figure 8.157: Initialise: Delete All Rules
receiveData

9. Extract from system net System24

before applying rule created out of
DeleteReceiveDataRulesuser:

ReceiveDataRules
: RulesR

r1

receiveData

r2

receiveData

r3 receiveData

r4

receiveData

r5receiveData

r6

receiveData

r7

receiveData

r8

receiveData

r9

receiveData

Figure 8.158: Initialise: Delete All Rules
receiveData

99K

10. Extract from system net
System25 after applying rule created
out of DeleteReceiveDataRulesuser:

ReceiveDataRules
: RulesR

All tokens are removed from the place
ReceiveDataRules.

Figure 8.159: Initialise: Delete All Rules
receiveData

228 CHAPTER 8. SIMULATION OF A TEST SCENARIO

11. System interaction scheme
DeleteRequestsuser (see 7.91):

Ldrqkernel rule
Kdrqkernel rule

Rdrqkernel rule

lkernel rkernel

Ldrqmulti rule
Kdrqmulti rule

Rdrqmulti rule

lmulti rmulti

Requests
: AHLINetsRq

Requests
: AHLINetsRq

Requests
: AHLINetsRq

Requests
: AHLINetsRq

rq

nRq
Requests
: AHLINetsRq

Requests
: AHLINetsRq

Currently, no requests are processed by
the persistence layer of the system net
System26, so no rule can be created out
of this interaction scheme.

Figure 8.160: Initialise: Delete Requests

99K

12. AHOI rule
DeletePersistentDatauser (see 7.92):

Ldp Kdp Rdp

l r

Persistent
Data
: AHLINetsPer

p

nPer

Persistent
Data
: AHLINetsPer

Persistent
Data
: AHLINetsPer

p′

emptyDataSet

The token database′′′ assigned to the
place PersistentData : AHLINetsPer
within the system net System26 will
be reset in applying the AHLI rule
DeletePersistentDatauser.

Figure 8.161: Initialise: Reset Persistent
Database

13. Extract from system net
System26 and the object net

database′′′ before applying the AHOI
rule DeletePersistentDatauser:

PersistentData
: AHLINetsPer

db database′′′

Before applying the AHOI rule
DeletePersistentDatauser, the object
net database′′′ is assigned as token to the
place PersistentData : AHLINetsPer.
The object net database′′′ is presented
below:

db
: Persistent
Data

d1

(< 12340,Work >,Calendar, 2)

d2

(< free, 12340 >, Traffic, 7)

d3 (< rain, 12340 >,Weather, 6)

d4

(lightSleep,Bed, 3)

d6

(lightSleep,Bed, 3)

d5

(deepSleep,Bed, 3)
d7

(on,Alarm, 8)

d8

(bathroom,UbiTV, 4)

d9

(south, UbiTV, 4)

d10

(notInBed,Bed, 3)

Figure 8.162: Initialise: Reset Persistent
Database

99K

14. Extract from system net
System27 after applying the AHOI

rule deletePersistentDatauser:

PersistentData
: AHLINetsPer

db emptyDataSet

After applying the AHOI rule
DeletePersistentDatauser, the object
net database′′′ is replaced by the net
emptyDataSet, which is described below:

db
: Persistent
Data

Figure 8.163: Initialise: Reset Persistent
Database

8.9 Summary

Within this chapter a possible scenario that can occur in the Living Place and therefore can be processed
by the Living Place system is considered by using the model of chapter 7 for a simulation of the considered
scenario. Therefore, since the model of chapter 7 is a model of the internal system behaviour of the
Living Place system, on the basis of this model it can be reconstructed, how the system behaves within
the presented scenario. Thus, this chapter shows up one possibility of how the obtained formal model of
the Living Place system can be used to help us to improve our understanding of this system.

Chapter 9

Analysis

In chapter 7 a model of the system of the Living Place is formally defined.
In this chapter it is checked whether this formal overall model of the Living Place system fulfils the

following requirements of chapter 4 by formally analyzing this model using formal analysis techniques:

• rmombroker8(a)
The message broker can receive information from different devices in parallel. (Com-

pare to 4.2.3.1)

• rmombroker8(b)
The message broker can not receive information from the same device in parallel.

(Compare to 4.2.3.1)

• rmomuser6
Those changes of the internal state of the system of the Living Place, which are caused

by the execution of the user operations plugin device and unplug device regarding two different
devices, can proceed in parallel. (Compare to 4.2.4.1)

• ruser The change of the internal state of the system of the Living Place, which is caused by the
execution of the user operation enter appointment and the processing of a previous user operation
can proceed in parallel. (Compare to 4.2.4.2)

.
Consider, that as mentioned in chapter 3 the overall model of the Living Place system consists of

several submodels that are classified into the following four levels: Data Level, Object Level, System
Level and User Level. Thus, the above mentioned requirements towards the overall model of the Living
Place system become requirements towards those submodels, which represent the system behaviours that
are contained in the requirements, so that by analyzing the overall model, these submodels are analyzed,
i.e. in particular with reference to the mentioned requirements the following submodels of the System-
resp. User Level are analyzed in this chapter:

• System Level: rmombroker8(a)
, rmombroker8(b)

→ the model of the internal system behaviour of the

message broker (compare to figure 7.26); ruser → the model of the internal system behaviour of the
user-operation processing unit (compare to figure 7.26)

• User Level: rmomuser6
→ the model of the user operation plugin device (compare to figure 7.83);

rmomuser6
→ the model of the user operation unplug device (compare to figure 7.84); ruser → the

model of the user operation enter appointment (compare to figure 7.48)

By defining these submodels as AHOIAHLI
1 subnets of the system net2 resp. transformation rules

over AHOIAHLI nets3 in chapter 7 it is clarified, which behaviour of the system is represented by which
submodel in what extent, so that with this knowledge in mind, the requirements mentioned above can
be reformulated as follows:

• rmombroker8(a)
The twice enabled transition receive data from device of subnet ReceiveDataFrom-

DevicemessageBroker, using a different token of place OnlineDevices for each token selection, can
fire in parallel, under the consideration that each device is represented by one of these tokens and
the procedure of receiving information from a device by the message broker is represented by firing
the transition receive data from device.

1For the definition of AHOIAHLI nets see section 6.3.
2Compare figure 7.26 for an overview of the system net.
3For the definition of transformation rules over AHOIAHLI nets see section 6.4

229

230 CHAPTER 9. ANALYSIS

• rmombroker8(b)
Analogous to rmomuser6

(a): The twice enabled transition receive data from device

of subnet ReceiveDataFromDevicemessageBroker, using the same token of place OnlineDevices for
each token selection, can not fire in parallel.

• rmomuser6
The simultaneously on the system net applicable transformation rules PluginDeviceuser,

device1 and UnplugDeviceuser,device2 can be applied on this net in parallel, under the consideration
that the change of the internal state of the system of the Living Place, which is caused by the
execution of the user operation plugin device resp. unplug device regarding two different devices
device1 and device2 is represented by rule PluginDeviceuser,device1 resp. UnplugDeviceuser,device2
and the procedure of the respective change of the internal system state is represented by the
application of the corresponding rule.

• ruser The on the system net applicable transformation rule EnterDataIntoDailyP lanneruser,0,test
and the simultaneously enabled transition enter data into device of subnet EnterDataIntoDevicepro-

cessingUnit can be applied on the system net resp. fired in parallel, under the consideration
that the procedure of processing a previous user operation is represented by firing the transition
enter data into device and the change of the internal state of the system of the Living Place, which
is caused by the execution of a certain user operation enter appointment, where in this example
an appointment of name test and timestamp 0 is entered into the system as a representative for all
possible such user operations, is represented by the rule EnterDataIntoDailyP lanneruser,0,test, so
that the procedure of this change is represented by its application.

These requirements contain the following three kinds of parallel independence, that need to be con-
sidered within the analysis of the submodels:

1. Parallel Independence of two Direct Transformations: Two simultaneously on the same net
applicable transformation rules can be applied on this net in parallel, if the two so resulting direct
transformations are parallel independet to each other.

2. Parallel Independence of a Firing Step and a Direct Transformation: An enabled tran-
sition and a transformation rule that is simultaneously applicable on the net which contains the
enabled transition, can fire resp. be applied on this net in parallel, if the so resulting firing step
and direct transformation are parallel independet to each other.

3. Parallel Independence of two Firing Steps: Two simultaneously enabled transitions of the
same net can fire in parallel, if the two so resulting firing steps are parallel independent to each
other.

First, the formal analysis techniques considering these three kinds of parallel independence are de-
scribed in section 9.1 before they are used within the analysis of the considered submodels in section
9.2.

9.1 Formal Analysis Techniques

In section 9.1.1 the term parallel independence of two direct transformations is defined, which is used
within the analysis of section 9.2.1. Section 9.1.2 introduces definitions that lead to the terms parallel
independence of a firing step and a direct transformation as well as parallel independence of two firing
steps, which are used within the analysis of sections 9.2.2 and 9.2.3.

9.1.1 Parallel Independence of two Direct Transformations

Two direct transformations4 G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent if there exist morphisms

i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2: [EEPT06, Definition 5.9]

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

r1 l1 r2l2

g1 f1 g2f2

k1n1 k2 n2m1 m2 ij

Two direct transformations that are not parallel independent, are called parallel dependent.

4Compare to definition 6.2.3 of direct AHLI transformations.

9.1. FORMAL ANALYSIS TECHNIQUES 231

9.1.2 AHLI Transition Rules & Canonical Transformations of AHLI Nets

The following definitions lead to the terms parallel independence of a firing step and a direct transfor-
mation as well as parallel independence of two firing steps by stating in section 9.1.2.3, that every firing
step can be simulated by a certain direct transformation, so that the definition of the parallel indepen-
dence of two direct transformations of the former section 9.1.1 can be used when considering the parallel
independence of a firing step and a direct transformation or the parallel independence of two firing steps.

9.1.2.1 AHLI Transition Rule

Given an AHLI net6 ANI = (Σ, P, T, pre, post, cond, type,A, I,m) we define the transition rule for a
consistent transition assignment (t, asg) ∈ CTANI7, enabled under the token selection S = (M,m,N, n)8,
as the rule

%(t, S, sag) = (Lt
l← Kt

r→ Rt) with

• the common fixed AHL net partANt = (Σ, Pt, t, pret, postt, typet, A), where Pt = ENVP (t), pret(t) =
pre(t), postt(t) = post(t), typet(p) = type(p) with ENVP (t) is the place environment of t,

• Lt = (ANt,M,mt : M → A⊗ Pt), with mt(x) = m(x),

• Kt = (ANt, ∅, ∅ : ∅ → (A× Pt)),

• Rt = (ANt, N, nt : N → A⊗ Pt), with nt(x) = n(x),

• l, r being the obvious inclusions on the rule nets.

[MGE+10, Definition 3.13]

9.1.2.2 Canonical Direct Transformation of AHLI Nets

A direct transformation4 ANI1
%,f
=⇒ ANI2 by rule % = (L

l← K
r→ R) with l, r being inclusions is called

canonical if

• fI is injective

• fΣ is injective on the set of variables of ΣANI1

• the morphisms in the span (ANI1 ← ANI0 → ANI2) of the DPO transformation diagram below
are inclusions, and

• I2 = I0 ∪ (IR \ r(IK)).

[MGE+10, Definition 3.14]

RKL

ANI2ANI0ANI1

rl

f f∗

9.1.2.3 Equivalence of Canonical Direct Transformations and Firing of AHLI Nets

Theorem 3.1 “equivalence of canonical direct transformations and firing of AHLI nets” in [MGE+10]

implies, that for each firing step ANI
t,asg
� ANI ′8 via token selection S = (M,m,N, n)7 a canonical

direct transformation ANI
%(t,S,asg),f

=⇒ ANI ′ via the transition rule %(t, S, asg) matched by the inclusion
match f : L→ ANI can be given, so that it is guaranteed that this direct transformation simulates the
firing step resulting into the same net.

5Compare to definition 6.1.1 of AHLI Net.
6Compare to definition 6.1.2.1 of Consistent Transition Assignment.
7Compare to definition 6.1.2.2 of Token Selection.
8Compare to definition 6.1.2 of Firing of AHLI net.

232 CHAPTER 9. ANALYSIS

Thus, the parallel independence of firing steps can be considered as the parallel independence of the
corresponding direct transformations.

This result is useful when analysing the parallel independence of two firing steps resp. the parallel
independence of a firing step and a direct transformation in section 9.2.

A similar concept to the here considered parallel independence of firing steps is given in [PPE+05] as
the concept of concurrency and parallelism in P/T nets.

9.2 Revisiting Some Requirements Towards the Model

In this section the submodels considered above are analysed by using the formal analysis techniques
described in section 9.1 to check whether these submodels fulfil the considered four requirements.

9.2.1 Parallel Independence of two Direct Transformations

First it is checked, whether the model of the Living Place system fulfils requirement rmomuser6
. Therefor, it

is analysed whether the two transformation rules PluginDeviceuser,device1 and UnplugDeviceuser,device2,
that are simultaneously applicable on the system net as illustrated in figure 9.1, can be applied on this
net in parallel by analysing whether the two so resulting direct transformations are parallel independent
to each other.

Rplugin Kplugin Lplugin

r1 l1

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

n2

device1

Lunplug Kunplug Runplug

l2 r2

Offline
Devices
: AHLI
NetsOFFD

n1

device2

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

g1f1 g2 f2

n1 k1 m1 n2k2m2

Offline
Devices
: AHLI
NetsOFFD

n1

device2

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

Offline
Devices
: AHLI
NetsOFFD

n1

device2

Offline
Devices
: AHLI
NetsOFFD

n1

device2

n2

device1

ij

Figure 9.1: Revisiting Requirement rmomuser6

For this analysis definition 9.1.1 can be used directly. Consider, that only the necessary subnet of the
system net is illustrated in figure 9.1.

Obviously there exist morphisms i and j, such that g2◦ i = m1 and g1 ◦ j = m2. Thus, the considered
two direct transformations are parallel independent and therefor can proceed in parallel. Therefore, the
model of the Living Place system fulfils requirement rmomuser6

.

9.2.2 Parallel Independence of a Firing Step and a Direct Transformation

In this section it is checked, whether the model of the Living Place system fulfils requirement ruser.
Therefor, it is analysed whether the enabled transition enter data into device and the transformation
rule EnterDataIntoDailyP lanneruser,0,test that is simultaneously applicable on the net which contains
the enabled transition as illustrated in figure 9.2, can fire resp. be applied on this net in parallel by
analysing whether the so resulting firing step and direct transformation are parallel independent to each
other.

9.2. REVISITING SOME REQUIREMENTS TOWARDS THE MODEL 233

R1 K1 L1

r1 l1

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterDataIntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r

ruleAddDataplanner,0,test

L2 K2 r2

l2 r2

OnlineDevices
: AHLINetsOND

enter data into device

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r2

ruleSwitchOnLight

n1 lightonline

OnlineDevices
: AHLINetsOND

enter data into device

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

n1 light′online

g1f1 g2 f2

n1 k1 m1 n2k2m2

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r2

ruleSwitchOnLight

n1 lightonline

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

n1 light′online

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r2

ruleSwitchOnLight

n1 lightonline

OnlineDevices
: AHLINetsOND

enter data into device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt
transform(r,m) = n

EnterData
IntoDeviceRules
: Rules

nONDtOND(n)

r

r2

ruleSwitchOnLight

n1 lightonline

r

ruleAddDataplanner,0,test

ij

Figure 9.2: Revisiting Requirement ruser

For this analysis definition 9.1.1 and also the definitions of section 9.1.2 are used. Consider, that only
the necessary subnet of the system net is illustrated in figure 9.2.

As an example that is considered in this analysis, the transition enter data into device is enabled
under token selection
({r2, n1}, r2 7→ (ruleSwithOnLight, EnterDataIntoDeviceRules);n1 7→ (lightonline, OnlineDevices),
{n1}, n1 7→ (light′online, OnlineDevices)) and a corresponding enabled consistent transition assignment
as a representative for all possibilities of processing a previous user operation, where the previous user
operation is represented by the token ruleSwitchOnLight in this example.

By using the definitions of section 9.1.2, for the resulting firing step of transition enter data into device
a canonical direct transformation via the considered transition rule matched by the inclusion match m2

is given as illustrated in figure 9.2, so that the parallel independence of the resulting firing step and the
considered direct transformation, that need to by analysed, can be considered as the parallel independence
of the given direct transformation for the firing step and the other considered direct transformation.
Therefore, for this analysis definition 9.1.1 can be used now.

Obviously there exist morphisms i and j, such that g2◦ i = m1 and g1 ◦ j = m2. Thus, the considered
two direct transformations are parallel independent and therefor can proceed in parallel. Therefore, the
model of the Living Place system fulfils requirement ruser.

9.2.3 Parallel Independence of two Firing Steps

In this section it is checked, whether the model of the Living Place system fulfils requirement rmombroker8(a)
.

Therefor, it is analysed whether the twice enabled transition receive data from device using a different
token of place OnlineDevices for each token selection, can fire in parallel by analysing whether the so
resulting firing steps are parallel independent to each other.

234 CHAPTER 9. ANALYSIS

R1 K1 L1

r l

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r1

receiveData

d1

net1

L2 K2 r2

l r

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n2

device2

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n2

device2′

r2

receiveData

d2

net2

g1f1 g2 f2

n1 k1 m1 n2k2m2

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

n2

device2

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

n2

device2′

r2

receiveData

d2

net2

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n2

device2

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r1

receiveData

n2

device2

r2

receiveData

d1

net1

ij

Figure 9.3: Revisiting Requirement rmombroker8(a)

For this analysis definition 9.1.1 and also the definitions of section 9.1.2 are used. Consider, that only
the necessary subnet of the system net is illustrated in figure 9.3.

As an example that is considered in this analysis, the transition receive data from device is enabled
under token selection
({r1, n1}, r1 7→ (receiveData,ReceiveDataRules);n1 7→ (device1, OnlineDevices),
{r1, n1, d1}, r1 7→ (receiveData,ReceiveDataRules);n1 7→ (device1′, OnlineDevices);
d1 7→ (net1, DataBufferRepository)) and a corresponding enabled consistent transition assignment as
well as under token selection
({r2, n2}, r2 7→ (receiveData,ReceiveDataRules);n2 7→ (device2, OnlineDevices),
{r2, n2, d2}, r2 7→ (receiveData,ReceiveDataRules);n2 7→ (device2′, OnlineDevices);
d2 7→ (net2, DataBufferRepository)) and a corresponding enabled consistent transition assignment as
a representative for a twice enabled transition receive data from device using a different token of place
OnlineDevices for each token selection.

By using the definitions of section 9.1.2, for the resulting firing steps of transition receive data from
device canonical direct transformations via the considered transition rules matched by the inclusion
matches m1 resp. m2 are given as illustrated in figure 9.3, so that the parallel independence of the
resulting firing steps, that need to be analysed, can be considered as the parallel independence of the
given direct transformations for these firing steps. Therefore, for this analysis definition 9.1.1 can be used
now.

Obviously there exist morphisms i and j, such that g2◦ i = m1 and g1 ◦ j = m2. Thus, the considered
two direct transformations are parallel independent and therefor can proceed in parallel. Therefore, the
model of the Living Place system fulfils requirement rmombroker8(a)

.

Furthermore it is checked, whether the model of the Living Place system fulfils requirement rmombroker8(b)
.

Therefor, it is analysed whether the twice enabled transition receive data from device using the same
token of place OnlineDevices for each token selection, can not fire in parallel by analysing whether the
so resulting firing steps are parallel dependent to each other.

For this analysis definition 9.1.1 and also the definitions of section 9.1.2 are used. Consider, that only
the necessary subnet of the system net is illustrated in figure 9.4.

As an example that is considered in this analysis, the transition receive data from device is enabled
under token selection
({r1, n1}, r1 7→ (receiveData,ReceiveDataRules);n1 7→ (device1, OnlineDevices),
{r1, n1, d1}, r1 7→ (receiveData,ReceiveDataRules);n1 7→ (device1′, OnlineDevices);
d1 7→ (net1, DataBufferRepository)) and a corresponding enabled consistent transition assignment as
well as under token selection
({r2, n1}, r2 7→ (receiveData,ReceiveDataRules);n1 7→ (device1, OnlineDevices),
{r2, n1, d2}, r2 7→ (receiveData,ReceiveDataRules);n1 7→ (device1′, OnlineDevices);

9.3. SUMMARY 235

d2 7→ (net1, DataBufferRepository)) and a corresponding enabled consistent transition assignment as
a representative for a twice enabled transition receive data from device using the same token of place
OnlineDevices for each token selection.

By using the definitions of section 9.1.2, for the resulting firing steps of transition receive data from
device canonical direct transformations via the considered transition rules matched by the inclusion
matches m1 resp. m2 are given as illustrated in figure 9.4, so that the parallel dependence of the resulting
firing steps, that need to be analysed, can be considered as the parallel dependence of the given direct
transformations for these firing steps. Therefore, for this analysis definition 9.1.1 can be used now.

Obviously there exist no morphisms i and j, such that g2 ◦ i = m1 and g1 ◦ j = m2. Thus, the
considered two direct transformations are parallel dependent and therefor can not proceed in parallel.
The one direct transformation deletes a token which is used by the other direct transformation and vice
versa, so that both transformations are in a conflict. Therefore, the model of the Living Place system
fulfils requirement rmombroker8(b)

.

Consider, that the firing steps of the same transition never can be parallel independent in general.
R1 K1 L1

r l

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r1

receiveData

d1

net1

L2 K2 r2

l r

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

Online
Devices
: AHLI
NetsOND

receive data
from device

DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r2

receiveData

d2

net1

g1f1 g2 f2

n1 k1 m1 n2k2m2

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1

r1

receiveData

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

r1

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r1

receiveData

r2

receiveData

d2

net1

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

r2

receiveData

Online
Devices
: AHLI
NetsOND

receive data from device

m : Mor
cod(m) = fOND(nOND)
applicable(r,m) = tt

transform(r,m) = n1
.
∪S n2

isomorphicPTNET (fOND(nOND), n1) = tt
DataBuffer
Repository
: AHLINets

ReceiveData
Rules : Rules

nOND tOND(n1)

r r

n2

n1

device1′

r1

receiveData

r2

receiveData

d1

net1

i|j |

Figure 9.4: Revisiting Requirement rmombroker8(b)

9.3 Summary

In this chapter four requirements of chapter 4 towards the model of the Living Place system are considered
again, where each of these requirements demands, that certain behaviours can proceed in parallel resp.
can not proceed in parallel in this model.

Therefor, the model of the Living Place system is formally analyzed by analyzing whether these
behaviours can or can not proceed in parallel in this model using formal analysis techniques.

The used analysis techniques are described and the result of the analysis is given clarifying, that the
considered requirements are met by the model.

So, by analysing the formal model of the Living Place system as it is elaborated in chapter 7 using
formal analysis techniques, results can be obtained that help us to improve our understanding of this
system.

In [EEPT06] a critical pair is defined as a pair of parallel dependent direct transformations H1
p1,m1⇐=

G
p2,m2
=⇒ H2 such that (m1,m2) ∈ E ′ for the corresponding matches m1 and m2 and a given E ′ −M′

pair factorization, i.e. (m1,m2) are jointly surjective when considering the used theory within this work.
Although just one critical pair is considered within this chapter in figure 9.4, it is desirable to consider
all critical pairs regarding to certain transformation rules resp. enabled transitions by an automated
critical pair analysis to find dependencies and conflicts in general as it is supported for attributed graph
transformations by the tool AGG as stated in [Tec]. Consider, that the within chapter 7 defined model of

236 CHAPTER 9. ANALYSIS

the Living Place contains an infinite set of transformation rules, so that a complete critical pair analysis
regarding all these transformation rules is impossible.

Chapter 10

Summary

10.1 Conclusion

This work considers a system of ubiquitous computing an ambient intelligence, the so called Living Place
system, and provides a formal model of the internal system behaviour of this system as it is elaborated
in chapter 7. Furthermore, the simulation of a scenario in chapter 8 by using this model as well as the
presented analysis upon this model and their results in chapter 9 show, how this model can be used to
help us to improve our understanding of this system and therefore the nature of this kind of ubiquitous
computing systems in general.

By modelling the system of the Living Place in chapter 7 it is clarified, that the used formal modelling
techniques as they are presented in chapter 6 are powerful enough in their expressiveness to enable the
adequate and elegant modelling of systems of such a complexity as it can be found in the Living Place
system.

By using AHLI net transformations as a modelling technique, i.e. transformations with “individual”
tokens as markings, instead of approaches with “collective”markings, the marking of a net with individual
tokens can be manipulated with rules, i.e. marking-changing rules can be formulated, which is not
possible with the collective token approach. This possibility to manipulate the marking of a net with
rules is heavily used within the presented model of the Living Place system of chapter 7 within this work,
since this feature of the used formal modelling techniques contributes significantly to the expressiveness
of these techniques leading into possibly elegant models.

In the following section 10.2 some aspects concerning the modelling of the Living Place system that
have been discovered within this work and that are open for research in future work are discussed.

10.2 Future Work

10.2.1 Tool Support

Chapter 7 illustrates the formal model of the Living Place system predominantly in a visual form that
consists of several AHLI nets, signatures & algebras, AHLI transformation rules as well as several other
formal constructs of chapter 6. As it can be seen from these illustrations, the model is characterized by
high complexity. Therefore, it requires a lot of effort to keep all these nets, rules, algebras & signatures
consistent with one another. So, a tool support is desirable that enables the visual definition of AHLI
nets, i.e. nets with individual tokes, the visual definition of arbitrarily signatures & algebras for these
nets, the visual definition of AHOI nets, i.e. nets featuring nets and rules as tokens, the visual definition
of AHLI transformation rules, the visual definition of amalgamated rules and simple nested application
conditions, the visual definition of reconfigurable AHLI systems as well as the definition of all other
formal constructs that are defined in chapter 6 in an appropriate and consistent manner.

Furthermore, such a tool should support the firing and therefore the simulation of such AHLI resp.
AHOIAHLI

1 nets as well as the application of transformation rules of an arbitrarily reconfigurable AHLI
system on such a net as it is exemplarily done in the scenario of chapter 8.

Additionally, such a tool should support analysis techniques that can be automatically applied to
these nets and rules, such as the critical pair analysis2. In figure 9.4 of chapter 9 a critical pair as part of

1See section 6.3 for the definition of AHOIAHLI nets.
2Compare to chapter 9

237

238 CHAPTER 10. SUMMARY

such a critical pair analysis relating to the presented model within this work is given by hand. Performing
a complete critical pair analysis on the model of chapter 7 by hand seems to be impossible.

“The Attributed Graph Grammar System” tool, short AGG [Tec], already supports the critical pair
analysis. “RON: An editor for Reconfigurable Object Nets“ [RON] already supports the visual definition
and simulation of so called Reconfigurable Object Nets, which are a simplified version of Algebraic
Higher-Order Nets. Furthermore, in [Fis10] an editor for AHLI nets is introduced.

It is part of future work to integrate all the mentioned aspects into one tool.

10.2.2 E ′ −M′-Pair Factorization

In chapter 9 it is stated, that it is desirable to be able to perform a critical pair analysis for certain parts
of the model of chapter 7.

Therefor, an E ′ −M′-pair factorization is needed for category AHLINets(Σ) with E ′ as the class
of jointly epimorphic morphisms. See also [EEPT06, Definition 5.25] and [EEPT06, Definition 6.20] for
more details on that subject.

10.2.3 Negative Application Conditions

In section 6.2.6.1 a problem concerning negative application conditions and its satisfiability regarding to
a morphism is discussed. Therefor, a new concept of satisfiability regarding to a negative application
condition need to be developed.

10.2.4 Distribution of Algebras

In the model of the Living Place system as it is presented in chapter 7, every AHLI object net, as part of
the superordinate AHOIAHLI net, shares the same huge signature ΣOL and huge ΣOL-Algebra AOL.3 It
is desirable to define for every AHLI object net an independent algebra and even independent signature
due to better readability, since every communicating device as they are defined in chapter 3 is represented
by its own AHLI object net, where the signature and algebra of this AHLI net defines the operations
and data the corresponding communicating device operates on. However, this seems quite tricky by using
the formal techniques of chapter 6, so that every such AHLI object net shares this same signature and
algebra.

10.2.5 Modelling of Time

Maybe it is desirable to model the cylce of time as part of the model of the Living Place system as it is
presented in chapter 7, since some communicating devices, like the Alarm Clock 2.0, uses timepoints for
their operations. The cycle of time is not considered by the model of the Living Place system due to the
nature of the used modelling techniques that do not support such modelling of time. In the model of the
Living Place system of chapter 7 the current time is represented by an individual token that is assigned
to a data element representing the current time on a specific place. Therefore, the current time is part
of the current state of the Living Place system but in order to update the current time, this token must
be replaced by a god-like hand which can be the user that uses this model. However, this update of the
current time is not supported by simulating the model resp. the net itself. Therefore, the concept of
Timed Petri Nets4 is needed to model such a behaviour.

10.2.6 On Restricting the Matches

Within this work several AHLI nets and AHLI transformation rules are defined in chapter 7. To restrict
the matches of these rules to these nets, the places of the nets are unambiguously typed, so that a rule
can only match on those places as provided.

The restriction of the matches via the typing of the places is working but not elegant, since a variety of
conversion operations need to be defined in the corresponding signature & algebra of the nets that contain
these places - for every additional type, one conversion operation. See signature ΣOL and ΣOL-Algebra
AOL in section 11.1 resp. 11.2 and the nets which uses this algebra in chapter 7 for more details.

It is desirable to introduce an additional formal construct, that allows the restriction of the matches
in an appropriate way.

3See section 11.1 for the definition of signature ΣOL and 11.2 for the definition of algebra AOL.
4Refer to [Wan07] for an introduction to timed petri nets

10.2. FUTURE WORK 239

10.2.7 Instantiation of Transformation Rules

The model of the Living Place system contains an infinite set of transformation rules, since for every
possible user operation upon this system there is one transformation rule that represents the change of
the internal system behaviour that is caused by this user operation.

Therefore, for example for every possible appointmenet a resident of the Living Place can enter
into the Living Place system, a transformation rule is defined. So, there is a transformation rule
EnterAppointmentuser,xyz,0 that represents the input of appointment xyz at timepoint 0 into the sys-
tem, a transformation rule EnterAppointmentuser,abc,10 that represents the input of appointment abc at
timepoint 10 into the system, etc., where all these transformation rules follow the same pattern.

Therefor, it is desirable to be able to define only one transformation rule pattern with input parameters
- EnterAppointment(INname : {w∗|w ∈ {a, ..., z}}, time : N) - that illustrates the main pattern, so that
this rule pattern can be instantiated, i.e. all variables name and time within this pattern are substituted
by the corresponding values resulting into a valid transformation rule. Therefor, a formal notation need
to be developed.

10.2.8 Rule Amalgamation

The model of the Living Place system of chapter 7 includes several interaction schemes for rule amalga-
mation over maximal matching in the context of AHLI nets. In order to be able to use this concept in
its full extent in [MGE+10] it is stated, that it need to be shown that the used category of AHLI nets
has effective pushouts.

Chapter 11

Appendix

11.1 Signature ΣOL

This section defines signature ΣOL which is included in each AHLI net of the object level, i.e. each AHLI
object net that is contained by the superordinated AHOIAHLI net of the system level as illustrated in
figure 7.26 as a token.

Therefore, the in the following defined signature is included in each model of the internal system
behaviour of a communicating device of the object level as introduced in chapter 7.

Signature ΣOL is defined as follows:

ΣOL =
sorts : Data, Topic, TopictoSubscribe, T opictoUnsubscribe, T opicsubscribed, T opictoRequest,

DeviceStatus,DataReceived,DataToSend, InputData,OutputData,RequestData,
DataForPersistenceLayer, ConnectionID,ConnectionIDmessageBroker, Sync,
GlobalData,GlobalDataTmp, SensorReal, SensorData, SensorDataTuple,Bool
TV State, LightState,WeatherData, TrafficData, PressureData, PressureInfo,
CalendarData, T imestamp, PersonState, LocalData,DisplayData,BedData,
PressureDataOLD, ContextData,Action, PersonStatesingle, ContextDatasingle,
5W1HContext,Weather, Traffic

opns : tt :→ Bool,
ff :→ Bool,
online :→ DeviceStatus,
offline :→ DeviceStatus,
askOnline :→ DeviceStatus,
askOffline :→ DeviceStatus,
ttoS : Topic→ TopictoSubscribe,
ttoU : Topicsubscribed → TopictoUnsubscribe,
tuple : Topic× ConnectionID → RequestData,
tuple : Data× Topic→ DataToSend,
triple : Data× Topic× ConnectionID → OutputData,
triple : Data× Topic× ConnectionID → GlobalData,
triple : Data× Topic× Timestamp→ LocalData,
triple : ContextDatasingle × ContextDatasingle × ContextDatasingle → ContextData,
4tuple : Data× Topic× ConnectionID ×Action→ DataForPersistenceLayer,
6tuple : 5W1HContext× 5W1HContext× 5W1HContext× 5W1HContext×

5W1HContext× 5W1HContext→ Data,
drcv : InputData→ DataReceived,
transformToUbiTV : SensorDataTuple→ DataToSend,
analyseUbiTV data : Data→ TV State,
analyseLightData : DataReceived→ LightState,
isActiveToken : TV State→ Bool,
weatherToData : Timestamp×WeatherData→ Data,
trafficToData : Timestamp× TrafficData→ Data,
thresholdExceeded : PressureData→ PressureData,

240

11.1. SIGNATURE ΣOL 241

hasChanged : PressureData× PressureData→ PressureInfo,
checkPressureChange : PressureInfo→ BedData,
transformToBed : BedData→ DataToSend,
transformToCalendar : CalendarData→ DataToSend,
firstreal : SensorData→ SensorReal,
secondreal : SensorData→ SensorReal,
thirdreal : SensorData→ SensorReal,
firstdataReceived : DataReceived→ Data,
seconddataReceived : DataReceived→ Data,
thirddataReceived : DataReceived→ Data,
isTrafficData : Data→ Bool,
isWeatherData : Data→ Bool,
isCalendarData : Data→ Bool,
isBedData : Data→ Bool,
isContextData : Data→ Bool,
isUbiTV Data : Data→ Bool,
isAlarmData : Data→ Bool,
calcAddT imeTraffic : Data→ Timestamp,
calcAddT imeWeather : Data→ Timestamp,
toCalendar : Data→ CalendarData,
getT imestampCalendar : CalendarData→ Timestamp,
getInfoCalendar : CalendarData→ Data,
isSoon : Data→ Bool,
calcWakeUpT ime : CalendarData× Timestamp→ Timestamp,
toContext : Data× ContextData→ ContextData,
isdeepSleep : Data→ Bool,
isLightSleep : Data→ Bool,
is15MinutesLater : Timestamp× Timestamp→ Bool,
isBeforeNextAppointment : CalendarData× Timestamp→ Bool,
isWashingInBathroom : ContextData→ Bool,
isEatingInKitchen : ContextData→ Bool,
isDressingInSleepingArea : ContextData→ Bool,
isNotInBed : ContextData→ Bool,
hasPersonLeftHome : ContextData→ Bool,
+time : Timestamp× Timestamp→ Timestamp,
−time : Timestamp× Timestamp→ Timestamp,
≤time: Timestamp× Timestamp→ Bool,
=time: Timestamp× Timestamp→ Bool,
<time : Timestamp× Timestamp→ Bool,
removeAsleepps : PersonState→ PersonState,
removeUnwashedps : PersonState→ PersonState,
removeHungryps : PersonState→ PersonState,
removeUndressedps : PersonState→ PersonState,
removeUnwashedc : ContextData→ ContextData,
removeHungryc : ContextData→ ContextData,
removeUndressedc : ContextData→ ContextData,
isReadyStates : PersonState→ Bool,
alarm :→ Topic,
traffic :→ Topic,
weather :→ Topic,
ubiTV :→ Topic,
calendar :→ Topic,
context :→ Topic,
bed :→ Topic,
onTV :→ TV State,
offTV :→ TV State,
activeTV :→ TV State,
inactiveTV :→ TV State,

242 CHAPTER 11. APPENDIX

dimmedl :→ LightState,
brightl :→ LightState,
offl :→ LightState,
unknownc :→ ContextDatasingle,
undefinedc :→ 5W1HContext,
loungeAreac :→ 5W1HContext,
sleepingAreac :→ 5W1HContext,
kitchenc :→ 5W1HContext,
bathroomc :→ 5W1HContext,
userc :→ 5W1HContext,
relaxingc :→ 5W1HContext,
eatingc :→ 5W1HContext,
washingc :→ 5W1HContext,
sleepingc :→ 5W1HContext,
dressingc :→ 5W1HContext,
0c :→ ConnectionID,
0t :→ Timestamp,
north :→ Data,
south :→ Data,
middle :→ Data,
bathroom :→ Data,
nothing :→ Data,
awake :→ BedData,
lightSleep :→ BedData,
deepSleep :→ BedData,
notInBed :→ BedData,
unknown :→ BedData,
undefinedp :→ PersonStatesingle,
ona :→ Data,
fP : PressureDataOLD → PressureData,
tP : PressureData→ PressureDataOLD,
firstt : Data→ Timestamp,
secondt : Data→ Data,
fdisplay : DisplayData→ Data,
tdisplay : Data→ DisplayData,
fbed : BedData→ Data,
tbed : Data→ BedData,
tdisplay : Data→ DisplayData,
persontasks :→ PersonState,
askOnline :→ DeviceStatus,
askOffline :→ DeviceStatus,
online :→ DeviceStatus,
offline :→ DeviceStatus,
sync :→ Sync,
remove :→ Action,
store :→ Action,
succ : ConnectionID → ConnectionID,
tgdata : RequestData→ GlobalDataTmp,
topic : GlobalData→ Topic,
tgldata : OutputData→ GlobalData,
tindata : GlobalData→ InputData

vars : t : Topic,
tsub : Topicsubscribed,
ttrq : TopictoRequest,
dsend : DataToSend,
dout : OutputData,
din : InputData,
dr : DataReceived,

11.2. ΣOL-ALGEBRA AOL 243

id, i : ConnectionID,
s : Sync,
x, y, z : SensorReal,
sensordata : SensorDataTuple,
r1, r2, r3, r4 : TV State,
l1, l2 : LightState,
w : WeatherData,
tr : TrafficData,
b : Bool,
p, p′′ : PressureData, p′ : PressureDataOLD
p1, p2 : PressureInfo,
d : Data,
ddisplay : DisplayData,
cal, cal′ : CalendarData,
time, time′, time1, currenttime, ts1, ts

′
1, ts2 : Timestamp,

bed, bed′ : Data,
c, c′ : ContextData,
alarm1, alarm2 : Data,
ps, ps′ : PersonState,
g : GlobalData,
dreq : RequestData

Table 11.1: Signature ΣOL

11.2 ΣOL-Algebra AOL

This section defines the ΣOL-Algebra AOL which is included in each AHLI net of the object level, i.e.
each AHLI object net that is contained by the superordinated AHOIAHLI net of the system level as
illustrated in figure 7.26 as a token.

Therefore, the in the following defined algebra is included in each model of the internal system
behaviour of a communicating device of the object level as introduced in chapter 7.

The ΣOL-Algebra AOL is defined as follows:

ΣOL-Algebra AOL =
sorts : AOLData

= {w∗|w ∈ {a, .., z, A, ..., z, 0, ..., 9, <,>} ∪ {, }},
AOLTopic

= {w∗|w ∈ {a, .., z, A, ..., z, 0, ..., 9}},
AOLTopictoSubscribe

= AOLTopic
,

AOLTopictoUnsubscribe
= AOLTopic

,

AOLTopicsubscribed
= AOLTopic

,

AOLTopictoRequest
= AOLTopic

,

AOLDeviceStatus
= {online, offline, askOnline, askOffline},

AOLDataReceived
= AOLData

×AOLTopic
×AOLConnectionID

,
AOLDataToSend

= AOLData
×AOLTopic

,
AOLInputData

= AOLData
×AOLTopic

×AOLConnectionID
,

AOLOutputData
= AOLData

×AOLTopic
×AOLConnectionID

,
AOLRequestData

= AOLTopic
×AOLConnectionID

,
AOLDataForPersistenceLayer

= AOLData
×AOLTopic

×AOLConnectionID
×AOLAction

,
AOLConnectionID

= N,
AOLConnectionIDmessageBroker

= AOLConnectionID
,

AOLSync
= {sync},

AOLGlobalData
= AOLData

×AOLTopic
×AOLConnectionID

,
AOLGlobalDataTmp

= AOLRequestData
,

AOLSensorReal
= {x|x ∈ R ∧ x ∈ [0.0, ..., 15.8]},

AOLSensorData
= AOLSensorReal

×AOLSensorReal
×AOLSensorReal

,
AOLSensorDataTuple

= AOLSensorData
×AOLSensorData

×AOLSensorData
×

AOLSensorData
×AOLSensorData

×AOLSensorData
,

244 CHAPTER 11. APPENDIX

AOLBool
= {true, false},

AOLTV State
= {on, off, active, inactive},

AOLLightState
= {bright, dimmed, offA},

AOLWeather
= {sun, rain, storm, snow,wind, hail},

AOLTraffic
= {jam, accident, free, roadwork},

AOLWeatherData
= AOLWeather

×AOLTimestamp
,

AOLTrafficData
= AOLTraffic

×AOLTimestamp
,

AOLPressureData
= {(x1, x2, x3, x4, x5, x6)|xi ∈ R ∧ xi ∈ [0.0, ..., 10.0], i ∈ {1, 2, 3, 4, 5, 6}},

AOLPressureInfo
= AOLBool

×AOLPressureData
,

AOLCalendarData
= AOLTimestamp

×AOLData
,

AOLTimestamp
= N,

AOLPersonStatesingle
= {asleep, hungry, unwashed, undressed, undefined},

AOLPersonState
= AOLPersonStatesingle

×AOLPersonStatesingle
×

AOLPersonStatesingle
×AOLPersonStatesingle

,

AOLLocalData
= AOLData

×AOLTopic
×AOLTimestamp

,
AOLDisplayData

= AOLData
,

AOLBedData
= {deepSleep, lightSleep, awake, notInBed, unknown},

AOLPressureDataOLD
= AOLPressureData

,

AOLContextDatasingle
= {unknown,washing, eating, dressing},

AOLContextData
= AOLContextDatasingle

×AOLContextDatasingle
×AOLContextDatasingle

,

AOLAction
= {store, remove},

AOL5W1HContext
= {undefined, user, relaxing, eating, washing, sleeping, dressing,
loungeArea, sleepingArea, kitchen, bathroom, outsideApartment}

opns : ttAOL
:→ AOLBool

with
ttAOL

: true,
ffAOL

:→ AOLBool
with

ffAOL
: false,

onlineAOL
:→ AOLDeviceStatus

with
onlineAOL

= online,
offlineAOL

:→ AOLDeviceStatus
with

offlineAOL
= offline,

askOnlineAOL
:→ AOLDeviceStatus

with
askOnlineAOL

= askOnline,
askOfflineAOL

:→ AOLDeviceStatus
with

askOfflineAOL
= askOffline,

ttoSAOL
: AOLTopic

→ AOLTopictoSubscribe
with

ttoSAOL
(x) = x,

ttoUAOL
: AOLTopicsubscribed

→ AOLTopictoUnsubscribe
with

ttoUAOL
(x) = x,

tupleAOL
: AOLData

×AOLTopic
→ AOLDataToSend

with
tupleAOL

(x, y) = (x, y),
tupleAOL

: AOLTopic
×AOLConnectionID

→ AOLRequestData
with

tupleAOL
(x, y) = (x, y),

tripleAOL
: AOLData

×AOLTopic
×AOLConnectionID

→
AOLOutputData

with
tripleAOL

(x, y, z) = (x, y, z),
tripleAOL

: AOLData
×AOLTopic

×AOLConnectionID
→ AOLGlobalData

with
tripleAOL

(x, y, z) = (x, y, z),
tripleAOL

: AOLData
×AOLTopic

×AOLTimestamp
→ AOLLocalData

with
tripleAOL

(x, y, z) = (x, y, z),
tripleAOL

: AOLContextDatasingle
×AOLContextDatasingle

×AOLContextDatasingle
→

AOLContextData
with

tripleAOL
(x, y, z) = (x, y, z),

4tupleAOL
: AOLData

×AOLTopic
×AOLConnectionID

×AOLAction
→

AOLDataForPersistanceLayer
with

4tupleAOL
(x1, x2, x3, x4) = (x1, x2, x3, x4),

6tupleAOL
: AOL5W1HContext

×AOL5W1HContext
×AOL5W1HContext

×AOL5W1HContext
×

11.2. ΣOL-ALGEBRA AOL 245

AOL5W1HContext
×AOL5W1HContext

→ AOLData
with

6tupleAOL
(x1, x2, x3, x4, x5, x6) =< x1, x2, x3, x4, x5, x6 >,

drcvAOL
: AOLInputData

→ AOLDataReceived
with

drcvAOL
(x) = x,

transformToUbiTVAOL
: AOLSensorDataTuple

→ AOLDataToSend
with

transformToUbiTVAOL
((x1, x2, x3, x4, x5, x6) =

(south, UbiTV) if (0.0 ≤ secondrealAOL
(x1) < 5.5)

∨(0.0 ≤ secondrealAOL
(x2) < 5.5)

(north, UbiTV) if (10.0 ≤ secondrealAOL
(x5) ≤ 15.8)

∨(10.0 ≤ secondrealAOL
(x6) ≤ 15.8)

(middle, UbiTV) if ((5.5 ≤ secondrealAOL
(x3) < 10.0)

∧(firstrealAOL
(x3) ≤ 8.0))

∨((5.5 ≤ secondrealAOL
(x4) < 10.0)

∧(firstrealAOL
(x4) ≤ 8.0))

(bathroom,UbiTV) if ((5.5 ≤ secondrealAOL
(x3) < 10.0)

∧(firstrealAOL
(x3) > 8.0))

∨((5.5 ≤ secondrealAOL
(x4) < 10.0)

∧(firstrealAOL
(x4) > 8.0))

(nothing, UbiTV) else

,

analyseUbiTV dataAOL
: AOLData

→ AOLTV State
with

analyseUbiTV dataAOL
(x) =

(active, inactive) if x = north
(inactive, active) if x = south
(inactive, inactive) if x = middle
(inactive, inactive) else

,

analyseLightDataAOL
: AOLDataReceived

→ AOLLightState
with

analyseLightDataAOL
(x) =

dimmed if seconddataReceivedAOL

(x) =

Alarm
firstdataReceivedAOL

(x) else
,

isActiveTokenAOL
: AOLTV State

→ AOLBool
with

isActiveTokenAOL
(x) =

{
ttAOL

if x = active ∧ x = inactive
ffAOL

else
,

weatherToDataAOL
: AOLWeatherData

×AOLTimestamp
→ AOLData

with
weatherToDataAOL

(x, y) =< x, y >,
trafficToDataAOL

: AOLTrafficData
×AOLTimestamp

→ AOLData
with

trafficToDataAOL
(x, y) =< x, y >,

thresholdExceededAOL
: AOLPressureData

→ AOLPressureData
with

thresholdExceededAOL
((x1, x2, x3, x4, x5, x6)),

=

 (x′1, x
′
2, x
′
3, x
′
4, x
′
5, x
′
6) with x′i = 0 if xi < 8.0

x′i = xi else
with i ∈ {1, 2, 3, 4, 5, 6}

,

hasChangedAOL
: AOLPressureData

×AOLPressureData
→ AOLPressureInfo

hasChangedAOL
(x1, x2) =

{
(ffAOL

, x2) if x1 = x2

(ttAOL
, x2) else

,

checkPressureChangeAOL
: AOLPressureInfo

→ AOLBedData
with

checkPressureChangeAOL
((b, (x1, x2, x3, x4, x5, x6)))

=

awake if x1 6= 0 ∨ x2 6= 0
deepSleep if x3 6= 0 ∧ b = ff)

∧x5 6= 0 ∧ b = ff)
deepSleep if x4 6= 0 ∧ b = ff)

∧x6 6= 0 ∧ b = ff)
lightSleep if x3 6= 0 ∧ b = tt)

∧x5 6= 0 ∧ b = tt)
lightSleep if x4 6= 0 ∧ b = tt)

∧x6 6= 0 ∧ b = tt)
notInBed if x1 = 0 ∧ x2 = 0

if x3 = 0 ∧ x4 = 0
if x5 = 0 ∧ x6 = 0

,

246 CHAPTER 11. APPENDIX

transformToBedAOL
: AOLBedData

→ AOLDataToSend
with

transformToBedAOL
(x) = (x,Bed),

transformToCalendarAOL
: AOLCalendarData

→ AOLDataToSend
with

transformToCalendarAOL
(x, y) = (< x, y >,Calendar),

firstrealAOL
: AOLSensorData

→ AOLSensorReal
with

firstrealAOL
((x, y, z)) = x,

secondrealAOL
: AOLSensorData

→ AOLSensorReal
with

secondrealAOL
((x, y, z)) = y,

thirdrealAOL
: AOLSensorData

→ AOLSensorReal
with

thirdrealAOL
((x, y, z)) = z,

firstdataReceivedAOL
: AOLDataReceived

→ AOLData
with

firstdataReceivedAOL
((x, y, z)) = x,

seconddataReceivedAOL
: AOLDataReceived

→ AOLTopic
with

seconddataReceivedAOL
((x, y, z)) = y,

thirddataReceivedAOL
: AOLDataReceived

→ AOLConnectionID
with

thirddataReceivedAOL
((x, y, z)) = z,

isTrafficDataAOL
: AOLData

→ AOLBool
with

isTrafficDataAOL
(x) =

{
ttAOL

if x = Traffic
ffAOL

else
,

isWeatherDataAOL
: AOLData

→ AOLBool
with

isWeatherDataAOL
(x) =

{
ttAOL

if x = Weather
ffAOL

else
,

isCalendarDataAOL
: AOLData

→ AOLBool
with

isCalendarDataAOL
(x) =

{
ttAOL

if x = Calendar
ffAOL

else
,

isBedDataAOL
: AOLData

→ AOLBool
with

isBedDataAOL
(x) =

{
ttAOL

if x = Bed
ffAOL

else
,

isContextDataAOL
: AOLData

→ AOLBool
with

isContextDataAOL
(x) =

{
ttAOL

if x = Context
ffAOL

else
,

isUbiTV DataAOL
: AOLData

→ AOLBool
with

isUbiTV DataAOL
(x) =

{
ttAOL

if x = UbiTV
ffAOL

else
,

isAlarmDataAOL
: AOLData

→ AOLBool
with

isAlarmDataAOL
(x) =

{
ttAOL

if x = Alarm
ffAOL

else
,

calcAddT imeTrafficAOL
: AOLData

→ AOLTime
with

calcAddT imeTrafficAOL
(x, y, z) =

y + 30 if secondt(x) = jam∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y + 30 if secondt(x) = accident∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y + 15 if secondt(x) = roadwork∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y else

,

calcAddT imeWeatherAOL
: AOLData

→ AOLTime
with

11.2. ΣOL-ALGEBRA AOL 247

calcAddT imeWeatherAOL
(x, y, z) =

y + 10 if x = rain∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y + 15 if x = storm∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y + 30 if x = snow∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y + 15 if x = hail∧
(getT imestampCalendarAOL

(z)

−(30 + y) ≤ firstt(x)
∧firstt(x) ≤
getT imestampCalendarAOL

(z))

y else

,

toCalendarAOL
: AOLData

→ AOLCalendarData
with

toCalendarAOL
(x) = x,

getT imestampCalendarAOL
: AOLCalendarData

→ AOLTimestamp
with

getT imestampCalendarAOL
((x, y)) = x,

getInfoCalendarAOL
: AOLCalendarData

→ AOLData
with

getInfoCalendarAOL
((x, y)) = y,

isSoonAOL
: AOLData

×AOLTimestamp
→ ABool with

isSoonAOL
(x) =
ttAOL

if getT imestampCalendarDataAOL
(toCalendar(x))

≤ +time(getT imestampTimestampAOL
(y), 240)

ffAOL
else

,

calcWakeUpT imeAOL
: AOLCalendarData

×AOLTimestamp
→ AOLTimestamp

with
calcWakeUpT imeAOL

(x, y) = getT imestampCalendarAOL
(x)− (120 + y),

toContextAOL
: AOLData

×AOLContextData
→ AOLContextData

with
toContextAOL

(x, (c1, c2, c3)) =

(washing, c2, c3)
if firstdataReceivedAOL

(x) =< user, bathroom, undefined,

washing, undefined, undefined >
(c1, eating, c3)

if firstdataReceivedAOL
(x) =< user, kitchen, undefined,

eating, undefined, undefined >
(c1, c2, dressing)

if firstdataReceivedAOL
(x) =< user, sleepingArea, undefined,

dressing, undefined, undefined >
(c1, c2, c3)

else

,

isdeepSleepAOL
: AOLData

→ AOLBool
with

isdeepSleepAOL
(x) =

{
ttAOL

if x = deepSleep
ffAOL

else
,

isLightSleepAOL
: AOLData

→ AOLBool
with

isLightSleepAOL
(x) =

{
ttAOL

if x = lightSleep
ffAOL

else
,

is15MinutesLaterAOL
: AOLTimestamp

×AOLTimestamp
→ AOLBool

with

is15MinutesLaterAOL
(x, y) =

{
ttAOL

if x ≤time y
ffAOL

else
,

isBeforeNextAppointmentAOL
: AOLCalendarData

×AOLTimestamp
→ AOLBool

with

248 CHAPTER 11. APPENDIX

isBeforeNextAppointmentAOL
(x, y) =

ttAOL

if y ≤time
getT imestampCalendarAOL

(x)

ffAOL
else

,

isWashingInBathroomAOL
: AOLContextData

→ AOLBool
with

isWashingInBathroomAOL
((c1, c2, c3)) ={

ttAOL
if c1 = washing

ffAOL
else

,

isEatingInKitchenAOL
: AOLContextData

→ AOLBool
with

isEatingInKitchenAOL
((c1, c2, c3)){

ttAOL
if c2 = eating

ffAOL
else

,

isDressingInSleepingAreaAOL
: AOLContextData

→ AOLBool
with

isDressingInSleepingAreaAOL
((c1, c2, c3)){

ttAOL
if c3 = dressing

ffAOL
else

,

hasPersonLeftHomeAOL
: AOLContextData

→ AOLBool
with

hasPersonLeftHomeAOL
(x) ttAOL

if x =< user, outsideApartment, undefined,
undefined, undefined, undefined >

ffAOL
else

,

+timeAOL
: AOLTimestamp

×AOLTimestamp
→ AOLTimestamp

with

+timeAOL
(x, y) = x+ y,

−timeAOL
: AOLTimestamp

×AOLTimestamp
→ AOLTimestamp

with

−timeAOL
(x, y) = x− y,

≤timeAOL
: AOLTimestamp

×AOLTimestamp
→ AOLBool

with

≤timeAOL
(x, y) =

{
ttAOL

if x ≤ y
ffAOL

else
<timeAOL

: AOLTimestamp
×AOLTimestamp

→ AOLBool
with

<timeAOL
(x, y) =

{
ttAOL

if x<y
ffAOL

else
=timeAOL

: AOLTimestamp
×AOLTimestamp

→ AOLBool
with

=timeAOL
(x, y) =

{
ttAOL

if x = y
ffAOL

else
,

alarmAOL
:→ AOLTopic

with
alarmAOL

= Alarm,
trafficAOL

:→ AOLTopic
with

trafficAOL
= Traffic,

weatherAOL
:→ AOLTopic

with
weatherAOL

= Weather,
ubiTVAOL

:→ AOLTopic
with

ubiTVAOL
= UbiTV ,

calendarAOL
:→ AOLTopic

with
calendarAOL

= Calendar,
contextAOL

:→ AOLTopic
with

contextAOL
= Context,

bedAOL
:→ AOLTopic

with
bedAOL

= Bed,
onTVAOL

:→ AOLTV State
with

onTVAOL
= on,

offTVAOL
:→ AOLTV State

with

offTVAOL
= off ,

activeTVAOL
:→ AOLTV State

with

activeTVAOL
= active,

inactiveTVAOL
:→ AOLTV State

with

inactiveTVAOL
= inactive,

dimmedlAOL
:→ AOLLightState

with

dimmedlAOL
= dimmed,

11.2. ΣOL-ALGEBRA AOL 249

brightlAOL
:→ AOLLightState

with

brightlAOL
= bright,

offlAOL
:→ AOLLightState

with

offlAOL
= off ,

unknowncAOL
:→ AOLContextDatasingle

with

unknowncAOL
= unknown,

undefinedcAOL
:→ AOL5W1HContext

with

undefinedcAOL
= undefined,

loungeAreacAOL
:→ AOL5W1HContext

with

loungeAreacAOL
= loungeArea,

sleepingAreacAOL
:→ AOL5W1HContext

with

sleepingAreacAOL
= sleepingArea,

kitchencAOL
:→ AOL5W1HContext

with

kitchencAOL
= kitchen,

bathroomcAOL
:→ AOL5W1HContext

with

bathroomcAOL
= bathroom,

usercAOL
:→ AOL5W1HContext

with

usercAOL
= user,

relaxingcAOL
:→ AOL5W1HContext

with

relaxingcAOL
= relaxing,

eatingcAOL
:→ AOL5W1HContext

with

eatingcAOL
= eating,

washingcAOL
:→ AOL5W1HContext

with

washingcAOL
= washing,

sleepingcAOL
:→ AOL5W1HContext

with

sleepingcAOL
= sleeping,

dressingcAOL
:→ AOL5W1HContext

with

dressingcAOL
= dressing,

0cAOL
:→ AOLConnectionID

with

0cAOL
= 0,

0tAOL
:→ AOLTimestamp

with

0tAOL
= 0,

northAOL
:→ AOLData

with
northAOL

= north,
southAOL

:→ AOLData
with

southAOL
= south,

middleAOL
:→ AOLData

with
middleAOL

= middle,
bathroomAOL

:→ AOLData
with

bathroomAOL
= bathroom,

nothingAOL
:→ AOLData

with
nothingAOL

= nothing,
awakeAOL

:→ AOLBedData
with

awakeAOL
= awake,

lightSleepAOL
:→ AOLBedData

with
lightSleepAOL

= lightSleep,
deepSleepAOL

:→ AOLBedData
with

deepSleepAOL
= deepSleep,

notInBedAOL
:→ AOLBedData

with
notInBedAOL

= notInBed,
unknownAOL

:→ AOLBedData
with

unknownAOL
= unknown,

undefinedpAOL
:→ AOLPersonStatesingle

with

undefinedpAOL
= undefined,

onaAOL
:→ AOLData

with

onaAOL
= on,

250 CHAPTER 11. APPENDIX

fPAOL
: AOLPressureDataOLD

→ AOLPressureData
with

fPAOL
(x) = x,

tPAOL
: AOLPressureData

→ AOLPressureDataOLD
with

tPAOL
(x) = x,

firsttAOL
: AOLData

→ AOLTimestamp
with

firsttAOL
(< a, b >) = b,

secondtAOL
: AOLData

→ AOLData
with

secondtAOL
(< a, b >) = a,

fdisplayAOL
: AOLDisplayData

→ AOLData
with

fdisplayAOL
(x) = x,

tdisplayAOL
: AOLData

→ AOLDisplayData
with

tdisplayAOL
(x) = x,

fbedAOL
: AOLBedData

→ AOLData
with

fbedAOL
(x) = x,

tbedAOL
: AOLData

→ AOLBedData
with

tbedAOL
(x) = x,

tdisplayAOL
: AOLData

→ AOLDisplayData
with

tdisplayAOL
(x) = x,

persontasksAOL
:→ AOLPersonState

with
persontasksAOL

= (asleep, unwashed, undressed, hungry),
removeAsleeppsAOL

: AOLPersonState
→ AOLPersonState

with

removeAsleeppsAOL
((p1, p2, p3, p4)) = (undefined, p2, p3, p4),

removeUnwashedpsAOL
: AOLPersonState

→ AOLPersonState
with

removeUnwashedpsAOL
((p1, p2, p3, p4)) = (p1, undefined, p3, p4),

removeUndressedpsAOL
: AOLPersonState

→ AOLPersonState
with

removeUndressedpsAOL
((p1, p2, p3, p4)) = (p1, p2, undefined, p4),

removeHungrypsAOL
: AOLPersonState

→ AOLPersonState
with

removeHungrypsAOL
((p1, p2, p3, p4)) = (p1, p2, p3, undefined),

removeUnwashedcAOL
: AOLContextData

→ AOLContextData
with

removeUnwashedcAOL
((c1, c2, c3)) = (unknown, c2, c3),

removeHungrycAOL
: AOLContextData

→ AOLContextData
with

removeHungrycAOL
((c1, c2, c3)) = (c1, unknown, c3),

removeUndressedcAOL
: AOLContextData

→ AOLContextData
with

removeUndressedcAOL
((c1, c2, c3)) = (c1, c2, unknown),

isReadyStatesAOL
: AOLPersonState

→ AOLBool
with

isReadyStatesAOL
(p) =

{
ttAOL

if p = (undefined, undefined, undefined, undefined)
ffAOL

else
,

askOnlineAOL
:→ AOLDeviceStatus

with
askOnlineAOL

= askOnline,
askOfflineAOL

:→ AOLDeviceStatus
with

askOfflineAOL
= askOffline,

onlineAOL
:→ AOLDeviceStatus

with
onlineAOL

= online,
offlineAOL

:→ AOL with
offlineAOL

= offline,
syncAOL

:→ AOLSync
with

syncAOL
= sync,

removeAOL
:→ AOLAction

with
removeAOL

= remove,
storeAOL

:→ AOLAction
with

storeAOL
= store,

succAOL
: AOLConnectionID

→ AOLConnectionID
with

succAOL
(i) = i+ 1,

tgdataAOL
: AOLRequestData

→ AOLGlobalDataTmp
with

tgdataAOL
(r) = r,

topicAOL
: AOLGlobalData

→ AOLTopic
with

topicAOL
((x, y, z)) = y,,

11.3. SIGNATURE ΣSL 251

tgldataAOL
: AOLOutputData

→ AOLGlobalData
with

tgldataAOL
(d) = d,

tindataAOL
: AOLGlobalData

→ AOLInputData
with

tindataAOL
(d) = d

Table 11.2: ΣOL-Algebra AOL

11.3 Signature ΣSL

This section defines signature ΣSL and the following section 11.4 defines the corresponding ΣSL-Algebra
ASL that enables an AHLI net equipped with this so defined signature and algebra to include AHLI nets,
rules over AHLI nets as well as interaction schemes over AHLI nets as tokens.1 In comparison to the
definition of section 6.3 within this work, AHLI nets of this form are so called AHOIAHLI nets.

The in the following defined signature is included in the overall AHOIAHLI net that represents
the model of the internal system behaviour of the Message Oriented Middleware of the system level as
introduced in chapter 7 and as illustrated in figure 7.26.

Signature ΣSL is defined as follows:

ΣSL =
sorts : Transitions, P laces,Bool, AHLINets,AHLINetsOND, AHLINetsOFFD,

AHLINetsQ, AHLINetsPer, AHLINetsRq,Mor,Rules,RulesR, ISchemes
opns : tt, ff :→ Bool,

enabled : AHLINets× Transitions→ Bool,
fire : AHLINets× Transitions→ AHLINets,
applicable : Rules×Mor → Bool,
transform : Rules×Mor → AHLINets,
.
∪S : AHLINets×AHLINets→ AHLINets,
cod : Mor → AHLINets,
isomorphicPTNET : AHLINets×AHLINets→ Bool,
createRule : ISchemes×AHLINets→ Rules,
receiveData :→ RulesR,
emptyDataset :→ AHLINetsPer,
tOND : AHLINets→ AHLINetsOND,
fOND : AHLINetsOND → AHLINets,
tOFFD : AHLINets→ AHLINetsOFFD,
fOFFD : AHLINetsOFFD → AHLINets,
tQ : AHLINets→ AHLINetsQ,
fQ : AHLINetsQ → AHLINets,
tPer : AHLINets→ AHLINetsPer,
fPer : AHLINetsPer → AHLINets,
tRq : AHLINets→ AHLINetsRq,
fRq : AHLINetsRq → AHLINets,
tR : Rules→ RulesR,
fR : RulesR → Rules

vars : n, n1, n2, n3 : AHLINets,
nOND : AHLINetsOND,
nOFFD : AHLINetsOFFD,
nPer : AHLINetsPer,
nRq : AHLINetsRq,
nQ : AHLINetsQ,
r : Rules,
rR : RulesR,
m : Mor,
t : Transitions,
s : ISchemes

1Compare to [HEM05] for signature and algebra definition.

252 CHAPTER 11. APPENDIX

Table 11.3: Signature ΣSL

11.4 ΣSL-Algebra ASL

This section defines the corresponding ΣSL-Algebra ASL to section 11.3 that enables an AHLI net
equipped with this so defined signature and algebra to include AHLI nets, rules over AHLI nets as well
as interaction schemes over AHLI nets as tokens.2 In comparison to the definition of section 6.3 within
this work, AHLI nets of this form are so called AHOIAHLI nets.

The in the following defined algebra is included in the overall AHOIAHLI net that represents the model
of the internal system behaviour of the Message Oriented Middleware of the system level as introduced
in chapter 7 and as illustrated in figure 7.26.

Given vocabularies T0 = P0 = I0 = N, where T0 is the set of possible transitions an AHLI net can
contain, P0 is the set of possible places an AHLI net can contain and I0 is the set of possible individual
tokens an AHLI net can contain, i.e. nets with an inifinite set of places, transitions and individual tokens
occurs, the ΣSL-Algebra ASL is defined as follows. Consider, that sets for T0, P0, I0 with such an extent
are not necessary for the model presented in this work, since within this work only AHLI nets with finite
sets of places, transitions and individual tokens are considered, however they are defined so due to better
readability.

ΣSL-Algebra ASL =
sorts : ASLTransitions

= T0,
ASLPlaces

= P0,
ASLBool

= {true, false},
ASLAHLINets

= the set of all AHLI nets over T0, P0 and I0
with the signature ΣOL, i.e.
ASLAHLINets

= {ANI|ANI = (ΣOL, P, T, pre, post, cond, type,A, I,m)
∈ Ob3AHLINets(ΣOL), P ⊆ P0, T ⊆ T0, I ⊆ I0} ∪ {undef},

ASLAHLINetsOND
= ASLAHLINets

,

ASLAHLINetsOFFD
= ASLAHLINets

,

ASLAHLINetsQ
= ASLAHLINets

,

ASLAHLINetsPer
= ASLAHLINets

,

ASLAHLINetsRq
= ASLAHLINets

,

ASLMor
= the set of all AHLI net morphisms for ASLAHLINets

with identities on the signature, i.e.
ASLMor

= {f |f : ANI1 → ANI2 ∈MorAHLINets(ΣOL)

with ANI1, ANI2 ∈ ASLAHLINets
, fΣ = idΣOL

and fP , fT , fI injective},
ASLRules

= the set of all AHLI transformation rules over ASLAHLINets

with possibly a negative application condition4, i.e.

ASLRules
= {%|% = (L

l←− K r−→ R) AHLI transformation rule
with L,K,R ∈ ASLAHLINets

and injective AHLINets morphisms l, r5}∪
{r|r = (X

x←− L l←− K r−→ R) AHLI transformation rule with a negative
application condition NAC(x) with L,K,R,X ∈ ASLAHLINets

and
injective AHLINets morphisms l, r, x},
ASLRulesR

= ASLRules
,

ASLISchemes
= the set of all interaction schemes over ASLAHLINets

, i.e

2Compare to [HEM05] for signature and algebra definition.
3See section 6.1.4 for the definition of category AHLINets(Σ).
4See section 6.2.2 for the definition of AHLI transformation rules and negative application conditions.
5Note that the injective AHLINets morphisms l, r of the rules not have to be strict on the tokens.
6See section 6.1.2.1, 6.1.2.2 and 6.1.2.3 for the definition of enabled consistent transition assignments and token selections.
7See section 6.1.2.3 for the definition of firing of AHLI nets.
8See section 6.2.5 and 6.2.6 for the definition of the applicability of AHLI transformation rules with and without negative

application conditions.
9See section 6.2.3 for the definition of direct AHLI net transformations.

10See section 6.2.1 for the definition of pushout constructions.
11See section 6.7.2 and 6.7.1.2.1 for the definition of functor VPTNET and P/T net isomorphisms.
12See section 6.6 for the definition of interaction schemes and amalgamated rules over maximal weakly disjoint matchings.

11.4. ΣSL-ALGEBRA ASL 253

ASLISchemes
= {is|∀si ∈ is : si : p0 → pi with p0, pi ∈ ASLRules

} (Compare to section 6.6)
opns : ttASL

:→ ASLBool
with

ttASL
= true,

ffASL
:→ ASLBool

with
ffASL

= false,
enabledASL

: ASLAHLINets
×ASLTransitions

→ ASLBool
for

ANI = (ΣOL, P, T, pre, post, cond, type,A, I,m) with

enabledASL
(ANI, t) =

true if t ∈ T, ∃(t, asg) ∈ CT and

token selection S = (M,m,N, n) regarding to
ANI so that (t, asg) is enabled under S6

false else

,

fireASL
: ASLAHLINets

×ASLTransitions
→ ASLAHLINets

for
ANI = (ΣOL, P, T, pre, post, cond, type,A, I,m) with

fireASL
(ANI, t) =

(ΣOL, P, T, if t ∈ T, ∃(t, asg) ∈ CT and
pre, post, cond, token selection S = (M,m,N, n)
type,A, regarding to ANI so that (t, asg)
I ′ = (I \M) ∪ N, is enabled under S,
m′ : I ′ → A⊗ P) i.e. enabledASL

(ANI, t) = true
with m′ as defined
in section 6.1.2.37

undef else

,

applicableASL
: ASLRules

×ASLMor
→ ASLBool

with

applicableASL
(r,m) =

{
true if r is applicable at match m8

false else
,

transformASL
: ASLRules

×ASLMor
→ ASLAHLINets

with

transformASL
(r,m) =

{
ANI ′ if applicableASL

(r,m) = true
undef else

where for AHLI transformation rule r : L
l←− K r−→ R,

match morphism L
m−→ ANI and applicableASL

(r,m) = true

we have a direct AHLI net transformation 9ANI
r,m
=⇒ ANI ′,

.
∪SASL

: ASLAHLINets
×ASLAHLINets

→ ASLAHLINets
defines the structural disjoint union of

two given AHLI nets with
.
∪SASL

(ANI1, ANI2) = if (ANI1 = undef ∨ANI2 = undef∨
A1 6= AOL ∨A2 6= AOL) then undef
else ANI ′, where ANI ′ = ANI1 +ANI0 ANI

10
2 is the pushout object

resp. the gluing of ANI1 and ANI2 via (ANI0, f : ANI0 → ANI1,
g : ANI0 → ANI2) with ANI0 = (ΣOL, ∅, ∅, ∅, ∅, ∅, ∅, AOL)
and f, g being AHLINets morphisms with fΣ = idΣOL

and fA = idAOL
,

codASL
: ASLMor

→ ASLAHLINets
with

codASL
(f : ANI1 → ANI2) = ANI2,

isomorphicPTNETASL
: ASLAHLINets

×ASLAHLINets
→ ASLBool

with

isomorphicPTNETASL
(ANI1, ANI2) =

true if VPTNET (ANI1) ∼=

VPTNET (ANI2)11 where VPTNET
is the forgetful functor
as defined in section 6.7.2.

false else

,

createRuleASL
: ASLISchemes

×ASLAHLINets
→ ASLRules

with
createRuleASL

(is, ANI) = p̃, where p̃ is the amalgamated rule over
maximal weakly disjoint matchings on AHLI net ANI by using interaction scheme is12,
receiveDataASL

:→ ASLRulesR
with

receiveDataASL
= receiveData as defined in figure 7.33,

emptyDatasetASL
:→ ASLAHLINetsPer

with

emptyDatasetASL
= database as defined in figure 7.49,

tONDASL
: ASLAHLINets

→ ASLAHLINetsOND
with

tONDASL
(x) = x,

fONDASL
: ASLAHLINetsOND

→ ASLAHLINets
with

254 CHAPTER 11. APPENDIX

fONDASL
(x) = x,

tOFFDASL
: ASLAHLINets

→ ASLAHLINetsOFFD
with

tOFFDASL
(x) = x,

fOFFDASL
: ASLAHLINetsOFFD

→ ASLAHLINets
with

fOFFDA
(x) = x,

tQASL
: ASLAHLINets

→ ASLAHLINetsQ
with

tQASL
(x) = x,

fQASL
: ASLAHLINetsQ

→ ASLAHLINets
with

fQA
(x) = x,

tPerASL
: ASLAHLINets

→ ASLAHLINetsPer
with

tPerASL
(x) = x,

fPerASL
: ASLAHLINetsPer

→ ASLAHLINets
with

fPerA(x) = x,
tRqASL

: ASLAHLINets
→ ASLAHLINetsRq

with

tRqASL
(x) = x,

fRqASL
: ASLAHLINetsRq

→ ASLAHLINets
with

fRqA(x) = x,
tRASL

: ASLRules
→ ASLRulesR

with

tRASL
(x) = x,

fRASL
: ASLRulesR

→ ASLRules
with

fRA
(x) = x,

Table 11.4: ΣSL-Algebra ASL

11.5 Exemplary Formal Notation of an AHLI net

In the following AHLI net deviceofflinesender of figure 7.6 is exemplary formally defined as a representative
for the formal notation of all other defined AHLI nets within this work, since chapter 7 only delivers the
visual form of the introduced AHLI nets of the presented model.

The formal notation follows definition 6.1.1 of AHLI nets.

deviceofflinesender = (Σ13
OL, P, T, pre, post, cond, type,A

14
OL, I,m) with:

P = {Status,DatatoSend, sync1, sync2}
T = {ask device online, ask device offline}
pre, post : T → (TOP (X)⊗ P)⊕

pre(ask device online) = (offline, Status)⊕ (s, sync1)
pre(ask device offline) = (online, Status)⊕ (online, Status)⊕ (s, sync2)
post(ask device online) = (askOnline, Status)
post(ask device offline) = (askOffline, Status)

cond : T → Pfin(Eqns(s,OP,X)) = ∅
type : P → S

type(Status) = DeviceStatus
type(DatatoSend) = DataToSend
type(sync1) = Sync
type(sync2) = Sync

I = {s1, s2}
m : I → A⊗ P

m(s1) = (offline, Status)
m(s2) = (sync, sync1)

13See section 11.1 for definition of signature ΣOL.
14See section 11.2 for definition of algebra AOL.

List of Figures

2.1 Ground plan of the Living Place ([OV10, p. 4]) . 11
2.2 Allocation of the Living Place ([RV09, p. 7]) . 11
2.3 Architecture of the Living Place system - a First Overview 15
2.4 Architecture of the Living Place system - a Detailed Overview 19
2.5 Communication in publish/subscribe model (acc. to [Haa02]) 22
2.6 Possible configuration of a system based on Message Oriented Middlware - components

and their connections . 26
2.7 Alarm Clock 2.0 - an Overview . 27
2.8 Display - an Overview . 29
2.9 Daily Planner - an Overview . 30
2.10 Intelligent Bed - an Overview . 31
2.11 Implementation of sensors in bed, from [Har10a, p. 1] . 32
2.12 Indoor-Positioning-System - an Overview . 33
2.13 Position of indoor positioning system sensors in the Living Place flat, from [OV11a, p. 16] 33
2.14 Weather- and Traffic Information Service - an Overview 35
2.15 Location-Based Screen - an Overview . 36
2.16 Relationship Between Indoor-Positioning-System and Location-Based Screen 36
2.17 Ambient Light - an Overview . 37

3.1 Levels of Modelling - an Overview . 39

4.1 Numbering of the sensors in the Intelligent Bed (original image from [Har10a, p. 1]) . . . 50

6.1 AHLI Net Morphism . 61
6.2 Construction of Pushouts in AHLINets . 61
6.3 Direct AHLI Net Transformation . 62
6.4 Gluing Condition in AHLINets . 63
6.5 Gluing Condition for AHLI transformation . 63
6.6 Negative Application Condition . 63
6.7 Kernel Morphism . 65
6.8 P/T Net Morphism . 66

7.1 Submodels of the Overall Model of the Living Place System - an Overview 69
7.2 Net deviceofflinereceiver . 72

7.3 Net deviceofflinesender . 72

7.4 Net deviceofflinetransceiver . 73
7.5 Net deviceonlinereceiver . 75
7.6 Net deviceonlinesender . 76
7.7 Net deviceonlinetransceiver . 78
7.8 Net of the Alarm Clock 2.0 alarmClock2.0offline . 85
7.9 Net of the Alarm Clock 2.0 alarmClock2.0online . 86
7.10 Net displayoffline . 87
7.11 Net displayonline . 88
7.12 Net dailyP lanneroffline . 90

255

256 LIST OF FIGURES

7.13 Net dailyP lanneronline . 90
7.14 Net intelligentBedoffline . 93
7.15 Net intelligentBedonline . 93
7.16 Net indoorPositioningSystemoffline . 95
7.17 Net indoorPositioningSystemonline . 96
7.18 Net locationBasedScreenoffline . 97
7.19 Net locationBasedScreenonline . 98
7.20 Net lightoffline . 102
7.21 Net lightonline . 102
7.22 Net weatherinformationystemoffline . 104
7.23 Net weatherinformationystemonline . 104
7.24 Net trafficServiceoffline . 105
7.25 Net trafficServiceonline . 105
7.26 Overall Model of the System Level in Initial Mode as AHOIAHLI Net 107
7.27 Fire Transitions in System Level . 108
7.28 Fire Transition Enabling a Parallel Firing of Two Transitions in an Object Net 108
7.29 Subnet setDeviceOnlinemessageBroker . 109
7.30 Rule SetSenderOnline . 110
7.31 Rule SetTransceiverOnline . 111
7.32 Rule SetReceiverOnline . 112
7.33 Subnet receiveDataFromDevicemessageBroker . 113
7.34 Example for a net on the place Queues . 113
7.35 Subnet copyDataToQueuesAndToContextInterpretermessageBroker 114
7.36 Subnet SendDataToDevicemessageBroker . 115
7.37 Example for the Object Net nConnectionIDid With id = 123 115
7.38 Subnet AskDeviceToGoOfflinemessageBroker . 116
7.39 Rule AskGoOfflinex . 116
7.40 Subnet SubscribeTopicmessageBroker . 117
7.41 Subnet UnSubscribeTopicmessageBroker . 118
7.42 Subnet ClearInputDatamessageBroker with interaction scheme ClearInputData 119
7.43 Subnet setDeviceOfflinemessageBroker . 119
7.44 Rule SetTransceiverOffline . 120
7.45 Rule SetReceiverOffline . 121
7.46 Rule SetSenderOffline . 121
7.47 Subnet exceptionRespCrashmessageBroker . 122
7.48 Subnet EnterDataIntoOnlineDevicemessageBroker . 126
7.49 Subnet storeDataInPersistenceLayerpersistenceLayer . 127
7.50 Rule removeData . 128
7.51 Subnet receiveRequestFromDevicemessageBroker . 128
7.52 Subnet createAnswerToRequestmessageBroker . 129
7.53 Subnet contextInterpretermessageBroker . 132
7.54 Rule ruleEating . 133
7.55 Rule ruleRelaxing1 . 133
7.56 Rule ruleRelaxing2 . 134
7.57 Rule ruleWashing . 134
7.58 Rule ruleSleeping1 . 135
7.59 Rule ruleSleeping2 . 135
7.60 Rule ruleDressing . 135
7.61 Rule ruleOutside . 136
7.62 Rule ruleTransform . 136
7.63 User interaction rule ruleDeleteNextAppointments . 138
7.64 User interaction rule ruleDeleteBedData . 138
7.65 User interaction rule ruleDeleteContextData . 139
7.66 User interaction rule ruleDeleteWakeUpT ime1 . 139
7.67 Rule ruleDeleteWakeUpT ime2 . 139
7.68 User interaction rule ruleDeletePersonState . 140
7.69 Rule ruleResetT imestamp . 140
7.70 Rule ruleResetSync . 140

LIST OF FIGURES 257

7.71 Rule ruleClearDisplayd . 141
7.72 Rule ruleAddDataplanner,t,d . 141
7.73 Rule ruleRemoveDatasystem,d,t,id . 142
7.74 Rule ruleMeasurePressurebed,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

. 143
7.75 Rule ruleMeasurePositionindoor,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

. 143
7.76 Rule ruleSwitchOnTV . 144
7.77 Rule ruleSwitchOffTV . 144
7.78 Rule ruleSwitchOnLight . 145
7.79 Rule ruleSwitchOffLight,bright . 145
7.80 Rule ruleSwitchOffLight,dimmed . 145
7.81 Use Case for the Administration of the Living Place System 146
7.82 AHOI rule SetDeviceOfflineuser,nConnectionID . 146
7.83 AHOI rule PluginDeviceuser,y . 147
7.84 AHOI rule UnplugDeviceuser,y . 147
7.85 Use Case for Emergency Off of the Living Place System 147
7.86 User interaction scheme EmergencyOffonlineuser . 148
7.87 User interaction scheme EmergencyOffofflineuser . 148
7.88 Use Case for the Administration of the Living Place System 149
7.89 AHOI rule DeleteQueueuser . 149
7.90 User interaction scheme DeleteReceiveDataRulesuser . 150
7.91 AHOI rule DeleteRequestsuser . 150
7.92 AHOI rule DeletePersistentDatauser . 151
7.93 Use Case for the Interaction with the Alarm Clock 2.0 . 152
7.94 AHOI rule StopAlarmClockuser . 153
7.95 Use Case for the Interaction with the Display in the Multitouch Kitchen Counter 154
7.96 AHOI rule ClearDisplayuser,d . 155
7.97 Use Case for the Interaction with the Daily Planner in the Multitouch Kitchen Counter . 156
7.98 AHOI rule EnterDataIntoDailyP lanneruser,t,d . 156
7.99 AHOI rule RemoveDataFromDailyP lanneruser,t,d . 157
7.100Use Case for the User Operation with the Pressure Sensors in the Intelligent Bed 158
7.101AHOI rule MeasurePressureInBeduser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

. 158
7.102Use Case for the Operation regarding the Input of Current User Position 159
7.103AHOI rule MeasurePositionuser,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6

. 159
7.104Use Case Switching Location-Based Screen on or off . 160
7.105AHOI rule SwitchOnTVuser . 160
7.106AHOI rule SwitchOffTVuser . 161
7.107Use Case Switching Location-Based Screen on or off . 162
7.108AHOI rule SwitchOnLightuser . 162
7.109AHOI rule SwitchOffLightuser,bright . 163
7.110AHOI rule SwitchOffLightuser,dimmed . 163

8.1 Attach a Device . 167
8.2 Attach a Device . 167
8.3 Attach a Device . 168
8.4 Attach a Device . 168
8.5 Attach a Device . 168
8.6 Attach a Device . 168
8.7 Attach a Device . 169
8.8 Attach a Device . 169
8.9 Attach a Device . 170
8.10 Attach a Device . 170
8.11 Attach a Device . 170
8.12 Attach a Device, Subscribe Topic . 171
8.13 Attach a Device, Subscribe Topic . 171
8.14 Attach a Device, Subscribe Topic . 172
8.15 Attach a Device, Subscribe Topic . 172
8.16 Attach a Device, Subscribe Topic . 172
8.17 Attach a Device, Subscribe Topic . 173

258 LIST OF FIGURES

8.18 Attach a Device, Subscribe Topic . 173
8.19 Attach a Device, Subscribe Topic . 173
8.20 Attach a Device, Subscribe Topic . 174
8.21 Attach a Device, Subscribe Topic . 174
8.22 Enter Appointment . 175
8.23 Enter Appointment . 175
8.24 Enter Appointment . 175
8.25 Enter Appointment . 176
8.26 Enter Appointment . 176
8.27 Enter Appointment . 176
8.28 Enter Appointment . 176
8.29 Enter Appointment . 177
8.30 Enter Appointment . 177
8.31 Enter Appointment . 177
8.32 Enter Appointment . 177
8.33 Enter Appointment, Store Data . 178
8.34 Enter Appointment, Store Data . 178
8.35 Enter Appointment, Store Data . 178
8.36 Enter Appointment, Store Data . 179
8.37 Enter Appointment, Store Data . 179
8.38 Enter Appointment, Store Data . 179
8.39 Enter Appointment, Receive Data . 180
8.40 Enter Appointment, Receive Data . 180
8.41 Enter Appointment, Receive Data . 180
8.42 Enter Appointment, Receive Data . 180
8.43 Enter Appointment, Receive Data . 180
8.44 Enter Appointment, Distribute Data . 181
8.45 Enter Appointment, Distribute Data . 181
8.46 Enter Appointment, Distribute Data . 182
8.47 Attach a Alarm Clock 2.0 and Display . 183
8.48 Attach a Alarm Clock 2.0 and Display . 183
8.49 Request Data From Persistence Layer . 184
8.50 Request Data From Persistence Layer . 184
8.51 Request Data From Persistence Layer . 184
8.52 Request Data From Persistence Layer . 184
8.53 Request Data From Persistence Layer . 185
8.54 Request Data From Persistence Layer . 185
8.55 Request Data From Persistence Layer . 185
8.56 Request Data From Persistence Layer, Create Answer . 186
8.57 Request Data From Persistence Layer, Create Answer . 186
8.58 Request Data From Persistence Layer, Create Answer . 187
8.59 Request Data From Persistence Layer, Create Answer . 187
8.60 Enter Appointment, Distribute Data . 187
8.61 Request Data From Persistence Layer, Send Answer . 188
8.62 Request Data From Persistence Layer, Send Answer . 188
8.63 Request Data From Persistence Layer, Send Answer . 188
8.64 Request Data From Persistence Layer, Send Answer . 188
8.65 Request Data From Persistence Layer, Send Answer . 189
8.66 Request Data From Persistence Layer, Send Answer . 189
8.67 Request Data From Persistence Layer . 189
8.68 Request Data From Persistence Layer . 190
8.69 Traffic Service Sends (free, 12340) . 191
8.70 Traffic Service Sends (free, 12340) . 191
8.71 Traffic Service Sends (free, 12340) . 191
8.72 Traffic Service Sends (free, 12340) . 191
8.73 Traffic Service Sends (free, 12340) . 191
8.74 Traffic Service Sends (free, 12340) . 192
8.75 Traffic Service Sends (free, 12340) . 192

LIST OF FIGURES 259

8.76 Traffic Service Sends (free, 12340) . 192
8.77 Traffic Service Sends (free, 12340) . 193
8.78 Traffic Service Sends (free, 12340) . 193
8.79 Weather Information System sends (rain, 12320) . 194
8.80 Intelligent Bed sends data . 194
8.81 Intelligent Bed sends data . 195
8.82 Intelligent Bed sends data . 195
8.83 Intelligent Bed sends data . 195
8.84 Intelligent Bed sends data . 196
8.85 Intelligent Bed sends data . 196
8.86 Intelligent Bed sends data . 197
8.87 Intelligent Bed sends data . 197
8.88 Intelligent Bed sends data . 197
8.89 Intelligent Bed sends data . 198
8.90 Intelligent Bed sends data . 198
8.91 Intelligent Bed sends data . 198
8.92 Intelligent Bed sends data . 198
8.93 Calculate Wake Up Time . 199
8.94 Calculate Wake Up Time . 199
8.95 Calculate Wake Up Time . 199
8.96 Calculate Wake Up Time . 200
8.97 Calculate Wake Up Time . 201
8.98 Calculate Wake Up Time . 202
8.99 Calculate Wake Up Time . 203
8.100Attach a Device . 204
8.101Attach a Device . 204
8.102Calculate Wake Up Time . 204
8.103Calculate Wake Up Time . 205
8.104Signal Waking Up, With Light . 206
8.105Signal Waking Up, With Light . 206
8.106Signal Waking Up, With Light . 207
8.107Signal Waking Up, With TVs . 207
8.108Signal Waking Up, With TVs . 208
8.109Signal Waking Up, With TVs . 208
8.110Signal Waking Up, With TVs . 208
8.111Signal Waking Up, With TVs . 209
8.112Send Position bathroom . 210
8.113Send Position bathroom . 210
8.114Send position bathroom . 210
8.115Send Data bathroom . 211
8.116Send Data bathroom . 211
8.117Send Data bathroom, Context Interpreter . 212
8.118Send Data bathroom, Context Interpreter . 212
8.119Send Data bathroom, Context Interpreter . 212
8.120Send Data bathroom, Context Interpreter . 213
8.121Send Data bathroom, Context Interpreter . 213
8.122Send Data bathroom, Context Interpreter . 213
8.123Send Data bathroom, Context Interpreter . 213
8.124Send Data bathroom, Context Interpreter . 213
8.125Alarm Clock 2.0 Processes Data bathroom . 214
8.126Alarm Clock 2.0 Processes Data bathroom . 215
8.127Alarm Clock 2.0 Processes Data bathroom . 216
8.128Alarm Clock 2.0 Sends Alarm . 217
8.129Alarm Clock 2.0 Sends Alarm . 218
8.130Send Data south . 219
8.131Send Data notInBed . 219
8.132Location-Based Screen receives south . 220
8.133Location-Based Screen receives south . 220

260 LIST OF FIGURES

8.134Location-Based Screen receives south . 220
8.135Context Interpreter gets south and notInBed . 221
8.136Context Interpreter gets south and notInBed . 221
8.137Context Interpreter gets south and notInBed . 221
8.138Context Interpreter gets south and notInBed . 221
8.139Context Interpreter gets south and notInBed . 222
8.140Context Interpreter gets south and notInBed . 222
8.141Context Interpreter gets south and notInBed . 222
8.142Context Interpreter gets south and notInBed . 222
8.143Context Interpreter gets south and notInBed . 223
8.144Context Interpreter gets south and notInBed . 223
8.145Context Interpreter gets south and notInBed . 223
8.146Context Interpreter gets south and notInBed . 223
8.147Context Interpreter gets south and notInBed . 223
8.148Alarm Clock 2.0 processes information . 224
8.149Alarm Clock 2.0 processed information . 225
8.150Use Case: Switch Off in Emergency . 226
8.151Use Case: Initialise the Whole System . 226
8.152Emergency Off . 226
8.153Emergency Off . 226
8.154Emergency Off . 226
8.155Emergency Off . 226
8.156Initialise: Delete Queues . 227
8.157Initialise: Delete All Rules receiveData . 227
8.158Initialise: Delete All Rules receiveData . 227
8.159Initialise: Delete All Rules receiveData . 227
8.160Initialise: Delete Requests . 228
8.161Initialise: Reset Persistent Database . 228
8.162Initialise: Reset Persistent Database . 228
8.163Initialise: Reset Persistent Database . 228

9.1 Revisiting Requirement rmomuser6
. 232

9.2 Revisiting Requirement ruser . 233
9.3 Revisiting Requirement rmombroker8(a)

. 234

9.4 Revisiting Requirement rmombroker8(b)
. 235

List of Tables

2.1 Tasks to Fulfil by the User During the Preparation Time in the Alarm Clock 2.0 28
2.2 Partition of the Living Place flat according to the y-coordinate of a location-based sensor 34
2.3 Partition of the Living Place flat according to the x-coordinate of a location-based sensor 34

4.1 Additional Times for Different Weather Conditions . 48
4.2 Additional Times for Different Traffic Conditions . 48

7.1 Possible states of a television set in the model of the Location-Based Screen 97
7.2 AHLI rules for Access to an Online Device and Their Corresponding AHOI rules 126

11.1 Signature ΣOL . 243
11.2 ΣOL-Algebra AOL . 251
11.3 Signature ΣSL . 252
11.4 ΣSL-Algebra ASL . 254

261

Bibliography

[Bar09] Barnkow, Lorenz: Eine Multitouch-fähige Küchentheke: Im Kontext des Living Place Ham-
burg. Hamburg University of Applied Sciences. http://users.informatik.haw-hamburg.

de/~ubicomp/projekte/master09-10-aw1/vortraege.html. Version: 2009

[Bar10] Barnkow, Lorenz: Ausarbeitung zur Veranstaltung Projekt 1 im Masterstudiengang Infor-
matik SoSe 2010, Eine Multitouch-fähige Küchentheke: Vorbereitende Arbeiten für den Tages-
planer. Hamburg University of Applied Sciences. http://users.informatik.haw-hamburg.
de/~ubicomp/projekte/master09-10-proj1/berichte.html. Version: 2010

[CK04] Christopoulou, Eleni ; Kameas, Achilles: Using Ontologies to Address Key Issues in
Ubiquitous Computing Systems / Research Academic Computer Technology Institute. 2004.
– Forschungsbericht

[DAS99] Dey, Anind K. ; Abowd, Gregory D. ; Salber, Daniel: A Context-Based Infrastructure for
Smart Environments. In: MANSE’99 Conference (1999)

[DAS01] Dey, Anind K. ; Abowd, Gregory D. ; Sabler, Daniel: A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. (2001)

[EBE+09] Ermel, Claudia ; Biermann, Enrico ; Ehrig, Hartmut ; Hoffmann, Kathrin ; Modica,
Tony: Modeling Multicasting in Communication Spaces by Reconfigurable High-level Petri
Nets / Technical University Berlin. 2009. – Forschungsbericht

[EEPT06] Ehrig, H. ; Ehrig, K. ; Prange, U. ; Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag Berlin Heidelberg 2006, 2006

[Ell09] Ellenberg, Jens: Wecker 2.0 - Ein Wecker in einem ubicom Haus. Hamburg University
of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master09-10-aw1/vortraege.html. Version: 2009

[Ell10a] Ellenberg, Jens: Ausarbeitung Masterprojekt 1, Vorarbeiten für den Wecker 2.0. Hamburg
University of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/

projekte/master09-10-proj1/berichte.html. Version: 2010

[Ell10b] Ellenberg, Jens: Seminarausarbeitung AW2, Ein Wecker in einem ubicom Haus. Hamburg
University of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/

projekte/master09-10-aw2/vortraege.html. Version: 2010

[Ell11a] Ellenberg, Jens: Ausarbeitung Masterprojekt 2, Entwicklung des Wecker 2.0. Hamburg
University of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/

projekte/master10-11-proj2/ellenberg.pdf. Version: 2011

[Ell11b] Ellenberg, Jens: Seminar Ringvorlesung im Masterstudiengang, Klassifizierung von
Kontext in einer intelligenten Wohnung. Hamburg University of Applied Sciences. http:

//users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/

ellenberg/bericht.pdf. Version: 2011

[EMC+01] Ehrig, H. ; Mahr, B. ; Cornelius, F. ; Große-Rhode, M. ; Zeitz, P.: Mathematisch-
strukturelle Grundlagen der Informatik. Bd. 2. Springer-Verlag Berlin Heidelberg 2001, 2001

262

http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/ellenberg.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/ellenberg.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/ellenberg/bericht.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/ellenberg/bericht.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/ellenberg/bericht.pdf

BIBLIOGRAPHY 263

[Fis10] Fischer, Winzent: Entwicklung einer Werkzeugumgebung für Algebraische High-Level Netze
mit Anwendung auf ein Szenario zur Einsatzsteuerung bei der Berliner Feuerwehr, Technical
University Berlin, Diplomarbeit, 2010

[GBEE10] Golas, Ulrike ; Biermann, Enrico ; Ehrig, Hartmut ; Ermel, Claudia: A Visual Inter-
preter Semantics for Statecharts Based on Amalgamated Graph Transformation / Technical
University Berlin. 2010. – Forschungsbericht

[Gol10] Golas, Ulrike: Multi-Amalgamation in M-Adhesive Categories / Technical University Berlin.
2010. – Forschungsbericht

[Gre01] Greenberg, Saul: Context as a Dynamic Construct. In: HUMAN-COMPUTER INTER-
ACTION, 2001, Volume 16, pp. 257–268, Lawrence Erlbaum Associates, Inc. (2001)

[Haa02] Haase, Kim: Java Message Service API Tutorial. http://download.oracle.com/javaee/

1.3/jms/tutorial/. Version: 2002

[Har09] Hardenack, Frank: Das intelligente Bett -Interpretation von Schlafphasen als
Beispiel für Bodymonitoring im Living Place Hamburg. Hamburg University of
Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master09-10-aw1/vortraege.html. Version: 2009

[Har10a] Hardenack, Frank: Bodymonitoring in Smart Homes. Hamburg University
of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master2010-proj1/berichte.html. Version: 2010

[Har10b] Hardenack, Frank: Seminarausarbeitung AW2, - Das intelligente Bett -, Se-
mantische Interpretation von Bodymonitoring-Rohdaten. Hamburg University of
Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master09-10-aw2/vortraege.html. Version: 2010

[Har11] Hardenack, Frank: Seminarausarbeitung Ringvorlesung (WS 2010/2011), - Das intelli-
gente Bett - Semantische Interpretation auf Basis kapazitiver Sensoren. Hamburg University
of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master10-11-seminar/hardenack/bericht.pdf. Version: 2011

[HBS+02] Hapner, Mark ; Burridge, Rich ; Sharma, Rahul ; Fialli, Joseph ; Stout, Kate: Java
Message Service - Specification Version 1.1. April 2002

[HEM05] Hoffmann, Kathrin ; Ehrig, Hartmut ; Mossakowski, Till: High-Level Nets with Nets
and Rules as Tokens / Technical University Berlin,University of Bremen. 2005. – Forschungs-
bericht

[Hil05] Hilty, L. et a.: The Precautionary Principle in the Information Society: Effects of Perva-
sive Computing on Health and Environment. / Report of TA-SWISS, Centre for Technology
Assessment, Berne. 2005. – Forschungsbericht

[HK04] Hellenschmidt, Michael ; Kirste, Thomas: A Generic Topology for Ambient Intelligence
/ Fraunhofer Institute for Computer Graphics. 2004. – Forschungsbericht

[HM03] Hoffmann, Kathrin ; Mossakowski, Till: Algebraic Higher-Order Nets: Graphs and Petri
Nets as Tokens. (2003)

[INK06] Ikonen, Veikko ; Niemelä, Marketta ; Kaasinen, Eija: Scenario-Based Design of Ambient
Intelligence. In: Ubiquitous Computing Systems Lecture Notes in Computer Science, LNCS
4239, S. 58 (2006)

[JW05] Jang, Seiie ; Woo, Woontack: 5W1H: Unified User-Centric Context. In: Proceedings of the
7th International Conference on Ubiquitous Computing (2005)

[Liv10] Living Place Hamburg Blog. http://livingplace.informatik.haw-hamburg.de/blog/.
Version: 2010

[Mah04] Mahmoud, Qusay H.: Middleware for Communications. John Wiley & Sons, Ltd, 2004

http://download.oracle.com/javaee/1.3/jms/tutorial/
http://download.oracle.com/javaee/1.3/jms/tutorial/
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2010-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2010-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/hardenack/bericht.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-seminar/hardenack/bericht.pdf
http://livingplace.informatik.haw-hamburg.de/blog/

264 BIBLIOGRAPHY

[MGE+10] Modica, Tony ; Gabriel, Karsten ; Ehrig, Hartmut ; Hoffmann, Kathrin ; Shareef,
Sarkaft ; Ermel, Claudia ; Golas, Ulrike ; Hermann, Frank ; Biermann, Enrico: Low-
and High-Level Petri Nets with Individual Tokens / Technical University Berlin. 2010. –
Forschungsbericht

[Mil06] Milner, Robin: Ubiquitous Computing: Shall we Understand It? In: The Computer Journal
Lecture (2006), March

[OV10] Otto, Kjell ; Voskuhl, Sören: Projektbericht Sommersemester 2010, En-
twicklung einer Architektur für den Living Place Hamburg. Hamburg University
of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master09-10-proj1/berichte.html. Version: 2010

[OV11a] Otto, Kjell ; Voskuhl, Sören: Projektbericht Wintersemester 10/11, Weit-
erentwicklung der Architektur des Living Place Hamburg. Hamburg University of
Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master10-11-proj2/otto-voskuhl.pdf. Version: 2011

[OV11b] Otto, Kjell ; Voskuhl, Sören: Weiterentwicklung der Architektur des Living Place Ham-
burg. Hamburg University of Applied Sciences. http://users.informatik.haw-hamburg.

de/~ubicomp/projekte/master10-11-proj2/otto-voskuhl.pdf. Version: 2011

[PPE+05] Padberg, J. ; Prange, U. ; Ehrig, H. ; Ermel, C. ; Hoffmann, K.: Petrinetze -
Modellierung, Strukturierung und Kompositionalität. October 2005

[RON] An editor for Reconfigurable Object Nets. http://tfs.cs.tu-berlin.de/roneditor/

[RV09] Rahimi, Mohammadali ; Vogt, Matthias: Aufbau des Living Place Hamburg. Hamburg
University of Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/

projekte/master09-10-proj/berichte.html. Version: 2009

[SDA99] Salber, Daniel ; Dey, Anind K. ; Abowd, Gregory D.: The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In: Proceedings of CHI’99, Pittsburgh, PA,
May 15-20, 1999 (1999)

[Tec] Technical University Berlin, AGG T.: AGG. Technical University Berlin: Technical
University Berlin, http://user.cs.tu-berlin.de/~gragra/agg/

[Vos09] Voskuhl, Sören: Bereitstellung einer Sensorwolke. Hamburg University of
Applied Sciences. http://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master09-10-aw1/vortraege.html. Version: 2009

[Vos10] Voskuhl, Sören: Ausarbeitung Anwendungen 2, Architekturen für Context-Aware Sys-
teme. Hamburg University of Applied Sciences. http://users.informatik.haw-hamburg.

de/~ubicomp/projekte/master09-10-aw2/vortraege.html. Version: 2010

[Wan07] Wang, Jiacun: Timed Petri Nets Timed Petri Nets Theory and Application. Springer-Verlag
GmbH, 2007

[Wei91] Weiser, Mark: The Computer for the 21st Century. In: Scientific Am., reprinted in IEEE
Pervasive Computing, 2002, pp. 19-25 (1991)

[YK10] Yuriyama, Madoka ; Kushida, Takayuki: Sensor-Cloud Infrastructure - Physical Sensor
Management with Virtualized Sensors on Cloud Computing. In: IBM (2010)

http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj1/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/otto-voskuhl.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/otto-voskuhl.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/otto-voskuhl.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-proj2/otto-voskuhl.pdf
http://tfs.cs.tu-berlin.de/roneditor/
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj/berichte.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-proj/berichte.html
http://user.cs.tu-berlin.de/~gragra/agg/
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw1/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master09-10-aw2/vortraege.html

	1 Introduction
	1.1 Assignments of the Chapters

	2 Living Place Project, Living Place and the System of the Living Place
	2.1 The System of the Living Place as a System of Ubiquitous Computing and Ambient Intelligence
	2.1.1 Ubiquitous Computing
	2.1.2 Ambient Intelligence

	2.2 Architecture of the System of the Living Place
	2.2.1 Message Oriented Middleware
	2.2.2 Communicating Devices

	2.3 Summary

	3 Modelling the System of the Living Place: Levels of Modelling - Data Level, Object Level, System Level, User Level
	3.1 Data Level
	3.2 Object Level
	3.3 System Level
	3.4 User Level
	3.5 Summary

	4 Modelling the System of the Living Place: Requirements Towards the Model
	4.1 Requirements Resulting From the Characteristics of Ubiquitous Computing resp. Ambient Intelligence Systems
	4.1.1 Data Level
	4.1.2 Object Level
	4.1.3 System Level
	4.1.4 User Level

	4.2 Requirements Resulting From the Description of the System
	4.2.1 Data Level
	4.2.2 Object Level
	4.2.3 System Level
	4.2.4 User Level

	4.3 Summary

	5 Modelling the System of the Living Place: Requirements Towards the Modelling Techniques
	5.1 Data Level
	5.2 Object Level
	5.3 System Level
	5.4 User Level
	5.5 Summary

	6 Modelling the System of the Living Place: Modelling Techniques
	6.1 Algebraic High-Level Nets with Individual Tokens (AHLI Nets)
	6.1.1 Definition
	6.1.2 Firing Behaviour
	6.1.3 AHLI Net Morphisms
	6.1.4 Category AHLINets and AHLINets()

	6.2 Transformation of AHLI Nets
	6.2.1 Construction of Pushouts in AHLINets
	6.2.2 AHLI Transformation Rules
	6.2.3 AHLI Transformation
	6.2.4 Gluing Condition in AHLINets
	6.2.5 Applicability of AHLI Transformation Rules
	6.2.6 Applicability of AHLI Transformation Rules with Negative Application Conditions

	6.3 Algebraic Higher-Order Nets with Individual Tokens (AHOI Nets) as a Special Type of AHLI Nets
	6.4 Transformation of AHOI Nets
	6.5 Reconfigurable AHLI/AHOI Systems
	6.6 Amalgamated Rules, Transformations & Interaction Schemes
	6.6.1 Kernel Morphism
	6.6.2 Amalgamated Rule
	6.6.3 Amalgamated Transformation
	6.6.4 Interaction Scheme
	6.6.5 Amalgamated Rules Over Maximal Weakly Disjoint Matchings

	6.7 The Functor VPTNet:AHLINets PTNet
	6.7.1 Category PTNet
	6.7.2 VPTNet:AHLINets PTNet

	6.8 Revisiting the Requirements Towards the Modelling Techniques
	6.8.1 Data Level
	6.8.2 Object Level
	6.8.3 System Level
	6.8.4 User Level

	6.9 Summary

	7 Modelling the System of the Living Place: Model of the System of the Living Place
	7.1 Model in a Visual Description
	7.1.1 Data Level
	7.1.2 Object Level
	7.1.3 System Level
	7.1.4 User Level

	7.2 Model in a Formal Description
	7.2.1 Data Level
	7.2.2 Object Level
	7.2.3 System Level
	7.2.4 User Level

	7.3 Summary

	8 Simulation of a Test Scenario
	8.1 Initial Mode of the Living Place System
	8.2 Attach Devices to the Message Oriented Middleware of the Living Place System
	8.3 The User Enters a new Appointment to the Daily Planner
	8.4 Attach Alarm Clock 2.0 and Display to the Message Oriented Middleware and Send Request
	8.5 Wake up the Inhabitant
	8.6 Preparation Phase For an Appointment: User is in Bathroom
	8.7 Preparation Phase For an Appointment: User is Dressing in Sleeping Area
	8.8 Switch off the whole Living Place system
	8.9 Summary

	9 Analysis
	9.1 Formal Analysis Techniques
	9.1.1 Parallel Independence of two Direct Transformations
	9.1.2 AHLI Transition Rules & Canonical Transformations of AHLI Nets

	9.2 Revisiting Some Requirements Towards the Model
	9.2.1 Parallel Independence of two Direct Transformations
	9.2.2 Parallel Independence of a Firing Step and a Direct Transformation
	9.2.3 Parallel Independence of two Firing Steps

	9.3 Summary

	10 Summary
	10.1 Conclusion
	10.2 Future Work
	10.2.1 Tool Support
	10.2.2 E'-M'-Pair Factorization
	10.2.3 Negative Application Conditions
	10.2.4 Distribution of Algebras
	10.2.5 Modelling of Time
	10.2.6 On Restricting the Matches
	10.2.7 Instantiation of Transformation Rules
	10.2.8 Rule Amalgamation

	11 Appendix
	11.1 Signature OL
	11.2 OL-Algebra AOL
	11.3 Signature SL
	11.4 SL-Algebra ASL
	11.5 Exemplary Formal Notation of an AHLI net

