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Abstract

The use of deep learning for automated chest radiograph interpretation has been largely

hindered by the absence of an annotated dataset with an appropriate size. This problem

seems to be solved by the CheXpert [21] dataset, which has been released publicly as a

competition task. Multiple entries [30, 51] have also shown that it is possible to train

a deep learning model successfully on their dataset by comparing the detection rate

of their model to the detection rate of 3 radiologists on a test set of 500 studies on 5

pathologies, where the models outperformed the radiologists in most tasks. The authors

used downscaled versions (320 × 320 or below) of the chest screenings as input to their

model. This work empirically examines the impact of 5 di�erent image resolutions on

the detection rate Area Under Receiver Operating Characteristic Curve (AUROC) on

the 5 evaluation tasks using various ImageNet pretrained models. The results hint at the

potential of higher detection rates mainly caused by higher image input resolutions. The

bene�ts are task dependent. In 3 of 5 cases, the models trained on an input resolution

above 320×320 show greater detection rates, while the remaining two cases show declining

detection rates past this point.
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Kurzzusammenfassung

Der e�ektiven Nutzung Deep Learning basierter Verfahren für die automatisierte

Röntgen-Thorax Interpretation fehlte es an einem annotierten Datensatz mit

entsprechender Gröÿe. Dieses Problem scheint durch den CheXpert Datensatz [21],

welcher als Wettbewerbsaufgabe verö�entlicht wurde, gelöst zu sein. Mehrere Teil-

nehmer [30, 51] konnten bereits zeigen, dass man erfolgreich ein Deep Learning Mod-

ell auf diesem Datensatz trainieren kann, indem sie die Detektionsrate ihres Modells

mit der Detektionsrate von 3 Radiologen auf 500 Studien bestehend aus 5 verschiede-

nen Pathologien verglichen. Die Modelle übertrafen die Detektionsrate der Radiologen

im Groÿteil der Pathologien. Die Autoren nutzten die Röntgenbilder in runterskalierten

Varianten (320×320 oder kleiner) als direkte Eingabe zu den Modellen. Diese Arbeit un-

tersucht empirisch die Auswirkung von 5 verschiedenen Bildau�ösungen, gemessen in der

Metrik Area Under Receiver Operating Characteristic Curve (AUROC), an den gleichen

5 Pathologien mit verschiedenen auf ImageNet vor trainierten Modellen. Die Resultate

deuten auf potenziell höhere Detektionsraten, hauptsächlich verursacht durch höhere

Bildau�ösungen. Dieses Verhalten ist allerdings abhängig von der Pathologie. In 3 von

5 Fällen pro�tierten die Detektionsraten der Modelle, die auf einer Bildau�ösung über

320 × 320 trainiert wurden, während die verbleibenden zwei Pathologien abnehmende

Detektionsraten aufzeigen.
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1 Introduction

Due to technological advancements in the �eld of computer vision, such as image classi�-

cation [14, 16] and semantic image segmentation [27, 34], increased usage of deep learning

could be observed in many domains, including medical image interpretation systems. De-

tecting pathologies such as diabetic retinopathy [10], skin cancer [7], arrhythmia [11] or

hemorrhages [9] at the level of clinical professionals using medical images as inputs was

suddenly made possible by these systems.

Chest radiography is the most common imaging examination globally, critical for screen-

ing, diagnosis and management of many life threatening diseases. Automated chest

radiograph interpretation at the level of practicing radiologists could provide substantial

bene�t in many medical settings, from improved work�ow prioritization and clinical deci-

sion support to large-scale screening and global population health initiatives. [21] These

systems should not replace a medical professional. They should rather accelerate the

process by providing a representation of the �ndings, which can be used by the medical

expert as a second opinion.

The use of deep learning for this domain has been largely hindered by the absence

of an annotated dataset with an appropriate size. This problem seems to be solved

by the CheXpert [21] and MIMIC-CXR [23] datasets. Both use the same automated

labeling approach to extract observations from freetext radiology reports for their training

dataset.

The CheXpert Dataset [21] is freely available and was released as a competition task. Be-

sides the commonly used metric AUROC, a custom expert human performance metric is

provided. The annotations of three board-certi�ed radiologists are used as benchmark on

the test dataset on �ve clinically relevant pathologies. The top entries of the leaderboard

consist of models that have higher detection rates than the majority of the radiologists.

The Top 3 leaderboard approaches leveraged optimizations in the pretraining of the mod-

els [30] and usage of novel loss functions [51] beating almost all benchmarked radiologists`
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1 Introduction

performance in all tasks. The radiographs were used in an image resolution of 320× 320

pixels or even below and the authors provided no reason, besides the lack of resources

[51] for their choice.

Filling the lack of an ablation study regarding this dataset, this work tries to answer

the question of what the optimal image resolution for training a deep learning based

automated chest radiograph interpretation is and how it impacts the detection rate of

pathologies. Additionally, the role of model scaling in accordance to the image resolution

is investigated.

1.1 Outline

The thesis is split into 4 chapters. In chapter 2, the �eld and problem of automated

chest radiograph interpretation is introduced and relevant related work is presented.

The chapter ends with the �nal formulation of the research question.

Chapter 3 then discusses the design and implementation of the experiments to investigate

the research question. This includes the dataset class distribution, data preprocessing,

model architectures and training procedure.

The experiments are evaluated in chapter 4. A quantitative evaluation of the general

impact of image resolution on the detection rate and the role of model scaling are both

investigated. Additionally, a brief qualitative evaluation is provided by visualizing certain

model outputs and comparing them to bounding box ground truths provided by a board-

certi�ed radiologist.

The �nal chapter 5 concludes the results and summarizes the outcome. A brief outlook

for the future of the �eld is discussed and ideas and concerns that have emerged while

producing this work are presented.
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2 Problem Analysis

In this chapter, the problem of automated chest radiograph interpretation is introduced

by providing brief descriptions of digital medical imaging and x-rays, characterization of

anomalies in chest radiographs and approaches to automating the detection of patholo-

gies in section 2.1. Furthermore, related work is presented in the form of introductions

to the AUROC metric in section 2.2.1 and the landscape of publicly available labeled

chest radiograph datasets in section 2.2.2. Additionally, the CheXpert dataset is pre-

sented more thoroughly in section 2.2.3, while ImageNet pretraining in medical imaging

problems and model scaling are discussed in section 2.2.4 and section 2.2.5 respectively.

A related paper is presented, which also examined variations of performance for multiple

image resolutions using another dataset in section 2.2.6 to �nally conclude in the research

question this work tries to answer in section 2.3.

2.1 Problem Introduction

According to [17], medical imaging is the study of human functions and anatomy through

pictorial information. In order to generate this pictorial information, multidisciplinary

knowledge ranging from biology to computer science is required. Two of the methods and

procedures studied in this �eld, are the convertibility of a conventional medical image to

a digital image and analysis of this digital image according to a speci�c application or

clinical need. Medical image representations come in many forms but for this study only

conventional 2 dimensional X-rays are relevant. A digital image P (x, y) is de�ned as an

integer function of two variables x, y such that

0 ≤ P (x, y) ≤ N where x ≤ m, y ≤ n and x, y,m, n,N ∈ N∗ (2.1)

P (x, y) is the gray-level value of a picture element, or pixel at (x, y). m,n describe the

amount of pixels that are available in a digital image. This is referred to as image reso-

3



2 Problem Analysis

Figure 2.1: Eight common diseases detected in chest radiographs according to [32] (e.g.
In�ltration, Atelectasis, Cardiomegaly, E�usion, Mass, Nodule, Pneumonia,
Pneumothorax). Most chest radiograph datasets only provide global labels,
mapping all of the pixels of a radiographic chest image to one or multiple
labels. The red bounding boxes are not provided, and were only highlighted
in this example.

lution. These parameters are responsible for the level of detail available and perceivable

in an image. Digital images can also be represented as matrices or tables, where m could

describe the amount of columns and n the number of rows. A conventional chest x-ray

can have up to 4000 × 4000 pixels and each pixel can have a value ranging from 0 to

255.

[32] categorizes three main types of anomalies in chest radiographs: texture abnormali-

ties, which are characterized by di�use changes in the appearance and structure of the

area, such as interstitial lesions; focal abnormalities, which are manifested as isolated

changes in density, for instance pulmonary nodules; and abnormal shape, in which dis-

ease processes change the outline of the normal anatomy, namely cardiomegaly. This can

be seen in image 2.1. Sometimes, the texture and shape of the chest changes at the same

time as a certain disease, such as tuberculosis.

At the end of the 1990s, supervised techniques, where training data is used to develop

a system, were becoming increasingly popular in medical image analysis. The concept

of feature extraction and use of statistical classi�ers (for computer-aided detection and

diagnosis) was popularized. This pattern recognition or machine learning approach is still

4



2 Problem Analysis

very popular and forms the basis of many successful commercially available medical image

analysis systems. Thus, we have seen a shift from systems that are completely designed by

humans to systems that are trained by computers using example data from which feature

vectors are extracted. Computer algorithms determine the optimal decision boundary in

the high-dimensional feature space. A crucial step in the design of such systems is the

extraction of discriminant features from the images. This process is still done by human

researchers and, as such, one speaks of systems with handcrafted features.

The next logical step was to extract discriminant features that optimally represent the

data for the problem at hand autonomously. This concept lies at the basis of many deep

learning algorithms: models (networks) composed of many layers that transform input

data (e.g. images) to outputs (e.g. disease present/absent) while learning increasingly

higher level features. The most successful type of model for image analysis to date is the

CNN.

In order to autonomously extract features by these powerful architectures, moderate

to high amounts of labeled data is required. The output to each data point must be

provided and this has proven itself as a problem in the �eld of medical imaging. The

labeling can only be performed by radiologists. Each study must be labeled with the

presence or absence of a pathology in order to successfully implement an automated

medical interpretation system with supervised learning methods.

Most publicly available datasets only provide global labels, mapping all of the pixels of a

radiographic chest image to one single label (e.g. disease present/absent). These types of

labels only allow the development of a classifcation system. Localization of the �ndings

is not possible directly by these systems. This would require segmentation information,

where the a�ected area in the image would be annotated additionally. Segmentation in-

formation to accompany the assigned labels is more di�cult to attain as this information

is not captured in historic reports, and adds a great deal of expense in manual labeling

approaches as manually drawing segmentations is typically a time intensive endeavor.

[49]
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2 Problem Analysis

2.2 Related Work

2.2.1 Performance measures for classi�cation

In supervised learning, access to the data labels during the models training and validation

stages is permitted and necessary. According to [42] classi�cation falls into one of the

following tasks, when data entries have to be assigned into prede�ned classes. First there

is binary classi�cation, where the input is to be classi�ed into one, and only one, of two

non-overlapping classes. Secondly there is multi-class classi�cation where the input is

to be classi�ed into one, and only one, of l non over-lapping classes. In multi-labelled

classi�cation the input is to be classi�ed into several of l non-overlapping classes. Lastly

there is hierarchical classifcation, where the input is to be classi�ed into one, and only

one class which are themselves divided into subclasses or grouped into superclasses. The

hierarchy is prede�ned and cannot be changed during classi�cation.

The correctness of a classi�cation can be evaluated by computing the number of correctly

recognized class examples (true positives), the number of correctly recognized examples

that do not belong to the class (true negatives), and examples that either were incorrectly

assigned to the class (false positives) or that were not recognized as class examples (false

negatives). These four counts constitute a confusion matrix shown in �gure 2.2 for the

case of binary classi�cation.

Figure 2.2: Confusion matrix in binary classi�cation tasks. [48]

From the resulting confusion matrix, di�erent performance measures or metrics can be

derived. Among commonly used metrics are Sensitivity and Speci�ty. They are de�ned

6



2 Problem Analysis

as:

Sensitivity =
tp

tp+ fn
Specifity =

tn

tn+ fp
(2.2)

These two performance measures are often combined and represented in the Area Under

the Curve (AUC), which captures a single point on the Reception Operating Characteristic

(ROC) curve. AUC is de�ned as:

AUC =
1

2
(

tn

tn+ fp
+

tp

tp+ fn
) (2.3)

When a classi�cation model outputs probabilites between 0 and 1, the result can be

controlled by a decision threshold dividing the outputs into the classes. Changing the

threshold results in new confusion matrices and therefore new sensitivity and speci�ty

values. This is leveraged in order to achieve the full ROC curve, which can be seen in

�gure 2.3.

Figure 2.3: ROC curve for di�erent cases. According to [6] AUROC serves as a well-
established index of diagnostic accuracy. ROC following diagonal line results
in AUC = 0.5 (chance diagonal), whereas the maximum value of 1.0 corre-
sponds to perfect assignment (unity sensitivity for all values of speci�city)

7
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According to [6] the ROC curve is a graphical presentation of sensitivity versus 1-

speci�city (or false positive rate) as the threshold is varying. Each point on the graph

is generated by using a di�erent threshold value. The AUROC gives a global measure

of the classi�er performance over a range of test thresholds. For example, as shown in

�gure 2.3 a test with an AUROC of 1.0 is perfectly accurate as the sensitivity is 1.0

when the speci�city is 1.0 (perfect test). In contrast, a test with an AUROC of 0.0

is perfectly inaccurate. The line segment from (0,0) to (1,1) has an area of 0.5 and is

called the chance diagonal. Tests with an AUC value larger than 0.5 have at least some

discrimination ability. The closer the AUC reaches 1.0, the better the diagnostic test.

According to [29] ROC analysis was invented to counter the limitations of the accuracy

performance measure, which is de�ned as:

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
(2.4)

Firstly, it does not consider class imbalance that often occurs in medical settings and

applies equal cost to false positives and false negatives. Secondly, it is too generic and

two diagnostic modalities can yield equal accuracies but perform di�erently with respect

to the types of correct and incorrect decisions they provide; the incorrect diagnoses from

one might be almost all false negative decisions (misses), while those from the other

might be nearly all false positive decisions (false alarms).

2.2.2 Quantity & Quality of Labeled Chest Radiograph Datasets

Currently, publicly available chest radiograph datasets are plagued with a trade o� be-

tween quality of labels and quantity of data. The choice is between large, multi-labeled

datasets with risk of faulty labels [47, 21, 23] or a smaller dataset with less noisy labels

where mostly, only one pathology is annotated [40, 22].

According to [49] the labels for datasets in this domain either rely on applying Natural

Language Processing (NLP) techniques on historic medical reports or the use of networks

of medical experts to prospectively read and annotate studies. Both approaches o�er

bene�ts and disadvantages. The usage of automated label extraction techniques on

historic reports results in a overall larger dataset, but might introduce occasional noise

and faulty labels. [47, 21, 23] Manual labeling by medical experts ensures correctness, but

is economically expensive and therefore results in a smaller dataset size. [40, 22] These

manual approaches often only cover one pathology, while the automated approaches

8



2 Problem Analysis

cover multiple pathologies. An overview of common publicly available chest radiograph

datasets is given in table 2.1.

Name Labeling Method # Pathologies # X-Rays

MC Dataset [22] Manual Labeling 1 138

JSRT Dataset [40] Manual Labeling 1 247

Shenzhen Dataset [22] Manual Labeling 1 662

Indiana Dataset [5] Manual Label Extraction 10 8.121

NIH Chest X-Ray14 Dataset [47] Automated Label Extraction 14 108.948

CheXpert Dataset [21] Automated Label Extraction 14 224.316

MIMIC-CXR Dataset [23] Automated Label Extraction 14 371.920

Table 2.1: Overview of publicly available labeled chest radiograph datasets. Label ex-
traction methods are based on historic radiology reports.

2.2.3 CheXpert Dataset

Figure 2.4: Sources for the training, validation, and test sets, highlighting the participa-
tion of the board-certi�ed radiologists according to [8]

The CheXpert Dataset [21] consists of 224,316 chest radiographs taken of 65,240 patients.

The radiographic examinations were collected from the Stanford Hospital and were per-

formed between the time period of October 2002 and July 2017 in both inpatient and

outpatient centers, along with their associated radiology reports.

9



2 Problem Analysis

Each report was labeled for the presence of 14 observations as positive, negative, or

uncertain. In the training set, [21] decided on the 14 observations based on the prevalence

in the reports and clinical relevance, conforming to the Fleischner Society's recommended

glossary [12] whenever applicable. An automated rule-based labeler was developed to

extract observations from the free text radiology reports to be used as structured labels

for the images.

The labeler is set up in three distinct stages: mention extraction, mention classi�cation,

and mention aggregation. In the mention extraction stage, the labeler extracts mentions

from a list of observations from the Impression section of radiology reports, which sum-

marizes the key �ndings in the radiographic study. In the mention classi�cation stage,

mentions of observations are classi�ed as negative, uncertain, or positive. In the mention

aggregation stage, the classi�cation for each mention of observations is used to arrive

at a �nal label for the 14 observations (blank for unmentioned, 0 for negative, -1 for

uncertain, and 1 for positive). This can be seen in �gure 2.5.

Figure 2.5: [21] automated rule-based labeler applied to extract observations from a free
text radiology report

In the test and validation set however, [21] focuses on the evaluation of 5 observations

which are called the competition tasks. These are selected based on clinical importance

and prevalence: (a) Atelectasis, (b) Cardiomegaly, (c) Consolidation, (d) Edema, and

(e) Pleural E�usion. The validation set consists of 200 studies on which the consensus

of three radiologist annotations serves as ground truth.

10



2 Problem Analysis

The training and validation sets are comprised of 187,841 studies combined. 187,641 can

be found in the training set. Each imaging study can pertain to one or more images.

These can include multiple radiographs from a frontal or lateral view. The highest

amount of concurrent images provided in a study is 3. Almost 82% of all studies consist

of a single frontal x-ray image, followed by 16% which additionally provide a lateral

image. Further information on the studies can be found in [3].

Figure 2.6: Left: frontal chest radiograph. Right: lateral chest radiograph

2.2.4 ImageNet Pretraining in Medical Image Interpretation

Modeling

Most chest radiograph datasets presented in 2.2.2 are too small to train a CNN su�-

ciently. An e�ective technique to mitigate scarce data is transfer learning.

When initializing a neural network, there are two popular ways of setting up the learn-

able parameters. First there is random initialization, where the parameters are set up

semi randomly with respect to some mathematical properties regarding the activation

functions used. [13] Secondly there is transfer learning. In transfer learning, according

to [50], a base network is trained on a base dataset and task, and afterwards the learned

features are repurposed or transferred to a second target network to be trained on a

target dataset and task.

The usual transfer learning approach is to train a base network and then copy its �rst

n layers to the �rst n layers of a target network. The remaining layers of the target

network are then randomly initialized and trained toward the target task. One can

choose to backpropagate the errors from the new task into the base (copied) features
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to �ne-tune them to the new task, or the transferred feature layers can be left frozen,

meaning that they do not change during training on the new task. The choice of whether

or not to �ne-tune the �rst n layers of the target network depends on the size of the

target dataset and the number of parameters in the �rst n layers. If the target dataset

is small and the number of parameters is large, �ne-tuning may result in over�tting, so

the features are often left frozen. On the other hand, if the target dataset is large or the

number of parameters is small, so that over�tting is not a problem, the base features can

be �ne-tuned to the new task to improve performance. Of course, if the target dataset

is very large, there would be little need to transfer because the lower level �lters could

just be learned from scratch on the target dataset.

Most base networks are trained on natural image datasets, usually ImageNet [35]. The

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been running annu-

ally (since 2010) and is the standard benchmark for large-scale object recognition. It

consists of two components: (1) a publicly available dataset, and (2) an annual com-

petition and corresponding workshop. The publicly released dataset contains a set of

manually annotated training images. ILSVRC annotations fall into one of two cate-

gories: (1) image-level annotation of a binary label for the presence or absence of an

object class in the image, e.g.,�there are cars in this image� but �there are no tigers,�

and (2) object-level annotation of a tight bounding box and class label around an ob-

ject instance in the image, e.g., �there is a screwdriver centered at position (20,25) with

width of 50 pixels and height of 30 pixels�. The dataset comprises over 14 million natural

images of more than 20.000 classes. These classes range from fruits to animals.

The base task therefore consists of classifying these natural objects in the image. Because

of the domain gap between these natural images and medical images, the transferability

of parameters of such base network for use in a medical imaging interpretation model

remains an open research question.

[50] examines and quanti�es the transferability of features from each layer of a neural net-

work trained on ImageNet. The transferability is negatively a�ected by the specialization

of higher layer features to the original task at the expense of performance on the target

task. The transferability gap grows as the distance between tasks increases, particularly

when transferring higher layers, but found that even features transferred from distant

tasks are better than random weights. They also found that initializing with transferred

features can improve generalization performance even after substantial �ne-tuning on a
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new task, which could be a generally useful technique for improving deep neural network

performance.

[25] investigate the transferability of ImageNet performance to other computer vision

tasks. They compare the performance of 16 classi�cation networks on 12 image classi�-

cation datasets. They �nd that, when networks are used as �xed feature extractors or

�ne-tuned, there is a strong correlation between ImageNet accuracy and transfer accu-

racy. On two small �ne-grained image classi�cation datasets, pretraining on ImageNet

provides minimal bene�ts, indicating the learned features from ImageNet do not transfer

well to �ne-grained tasks. Their results show that ImageNet architectures generalize well

across datasets, but ImageNet features are less general than previously suggested.

Figure 2.7: According to [25], transfer learning performance is highly correlated with Im-
ageNet top-1 accuracy for �xed ImageNet features (left) and �ne-tuning from
ImageNet initialization (right). The 16 points in each plot represent trans-
fer accuracy for 16 distinct CNN architectures, averaged across 12 datasets.
Error bars measure variation in transfer accuracy across datasets.

[33] on the other hand, speci�cally investigated the use of ImageNet pre-training for med-

ical imaging. They claim a performance evaluation on two large scale medical imaging

tasks shows that surprisingly, transfer o�ers little bene�t to performance, and simple,

lightweight models can perform comparably to ImageNet architectures. Investigating the

learned representations and features, they �nd that some of the di�erences from transfer

learning are due to the over-parametrization of standard models rather than sophisti-

cated feature reuse. Similar to the �ndings of [50], they also �nd that meaningful feature

reuse is concentrated at the lowest layers.
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Figure 2.8: Convergence speed on the CheXpert consolidation pathology data and
Resnet50 model architecture while using di�erent parameter initialization
methods. The �gure compares ImageNet transfer learning and the Mean Var
initialization scheme to random initialization. [50]

Among one other medical imaging dataset, they speci�cally examined the e�ectiveness of

transfer learning for the CheXpert dataset. As can be seen in �gure 2.8, they measured

the convergence speed on three di�erent initialization schemes. Among transfer learning

and random initialization, the Mean Var initialization is used. This scheme initializes

the parameters by using only the mean and variance of the pretrained weights, without

using the pretrained parameters directly.

Contrary to their claims, using ImageNet pretraining o�ers faster model convergence

than the other schemes. This can be seen in 2.8. Faster model convergence with transfer

learning was also mentioned in [25]. Model convergence is achieved when the loss function

has reached a minima and additional training will not improve the model. Most modern

deep learning frameworks (e.g. PyTorch) o�er ImageNet pretrained parameters for a

wide variety of model architectures [1]. Usage of these parameters is therefore e�ortless

and can be utilized easily.

2.2.5 Model Scaling in Deep Learning

As can be seen in image 2.1, chest pathologies can be very �ne grained and nuanced.

Scaling down the pixels of the image might blur or convolute the region of interest,

decreasing the detection rate of a model. In order to process higher input dimensions, it

might be necessary to scale other components of a CNN as well.
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Figure 2.9: Model Scaling according to [46] (a) is a baseline network example; (b)-(d)
are conventional scaling that only increases one dimension of network width,
depth, or resolution. (e) proposed compound scaling method that uniformly
scales all three dimensions with a �xed ratio.

According to [46] there are three scaling dimensions in a CNN: depth, width and resolu-

tion. Depth describes the amount of layers, width the number of neurons/channels per

layer and resolution the amount of input pixels. The authors directly a�liate input res-

olution as being part of model scaling and therefore the model. We see them as separate

components.

Scaling network depth is the most common way, used by many CNN architectures. [14,

16]. The intuition is that deeper networks can capture richer and more complex features,

and generalize well on new tasks. However, these networks are also more di�cult to

train due to the vanishing gradient problem. [52] Although several techniques, such as

skip connections [14] and batch normalization [20] alleviate the training problem, the

accuracy gain of very deep network diminishes.

Scaling network width is commonly used for small size models. [15, 37, 45] Wider net-

works tend to be able to capture more �ne-grained features and are easier to train.

However, extremely wide but shallow networks tend to have di�culties in capturing

higher level features.

With higher resolution input images, CNNs can potentially capture more �ne-grained

patterns. Starting from 224× 224 pixels in early architectures, modern networks tend to

use 299 × 299 [44] or 331 × 331 [53] for better accuracy. Recently, GPipe [18] achieved

state-of-the-art ImageNet accuracy with 480× 480 resolution.
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[46] claim it is critical to balance all dimensions of network width/depth/resolution, and

such balance can be achieved by simply scaling each of them with constant ratio. Based

on this observation, they propose a compound scaling method. This can be seen in image

4.2. Based on a coe�cient, a baseline network called E�cientNet, is scaled in all three

dimensions.

2.2.6 E�ect of Image Resolution on Automated Chest Radiograph

Interpretation

Figure 2.10: Validation set AUROC for six di�erent diagnostic labels shows improved
performance with increased image resolution and a plateau e�ect on perfor-
mance improvement for resolutions higher than 224× 224 pixels According
to [36]. Models were trained with ResNet34 architecture. Resolutions shown
are as follows: 32× 32, 64× 64, 128× 128, 224× 224, 256× 256, 320× 320,
448 × 448, 512 × 512, and 600 × 600 pixels. Error bars represent standard
deviation of the AUROC calculated via the DeLong method.

[36] also examined variations of CNN performance for multiple chest radiograph di-

agnosis and image resolutions. They used the publicly available National Institute of

Health (NIH) chest radiograph dataset (ChestX-ray14) [47] comprising 112.120 chest ra-
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diographic images from 30.805 patients. The network architectures examined included

ResNet34 [14] and DenseNet121 [16]. Image resolutions ranging from 32×32 to 600×600

pixels were investigated.

For this dataset and the chosen architectures, maximum AUROCs were achieved at

image resolutions between 256 × 256 and 448 × 448 pixels for binary decision networks

targeting di�erent pathologies. Di�erent diagnosis or image labels can have di�erent

model performance changes relative to increased image resolution (eg, pulmonary nodule

detection bene�ts more from increased image resolution than thoracic mass detection).

One major shortcoming of their work is the usage of di�erent batch sizes in their ex-

periment con�gurations. Because of hardware limitations, they were forced to reduce

the batch size when increasing the image resolution. The results of the experiments are

therefore not comparable, because the di�erences in the detection rate could be a result

of the di�ering batch size, not image resolution.

2.3 Research Question

The research questions revolve around one variable that was mostly overlooked in research

regarding automated medical image interpretation, namely image resolution. Although

not the focus of this work, researching this factor might reveal insights that push the

current state-of-the-art in this �eld even further. This work therefore tries to answer the

following questions:

1. What is the optimal image resolution to train a chest radiograph interpretation

model in regards to the detection rate?

2. Is it necessary to scale other dimensions in a chest radiograph interpretation model

in accordance to the input image resolution?

Presumably, as already mentioned in [36], optimal detection of individual pathologies

will occur on di�erent image resolutions. The detection rate of some disease classes will

bene�t more from higher input resolutions than others.

The methodology to examine these claims is by constructing empirical studies. An ex-

perimental setup with varying con�gurations is leveraged. ImageNet pretrained CNNs,

namely ResNet [14], DenseNet [16] and E�cientNet [46] of varying scale are trained on

�ve di�erent downscaled image resolutions of the CheXpert dataset [21]. Two variants of

17



2 Problem Analysis

ResNet (ResNet-50, ResNet-152) and DenseNet (Densenet121, Densenet169) with vary-

ing scaling in depth and width will be used, while the suitable E�cientNet model based

on the image resolution will be leveraged.
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This section investigates the methodology and design of the experiments to investigate

the research question from section 2.3. The CheXpert dataset will be leveraged. Al-

though the training set of this dataset contains more classes, the validation set consists

of only �ve classes, which are called the evaluation tasks. These are namely Atelectasis,

Cardiomegaly, Consolidation, Edema and Pleural E�usion. The experiments therefore

will only concentrate on training models on these �ve classes.

Firstly, the class distribution of the evaluation tasks is investigated in section 3.1. For

each class, multiple binary classi�cation models in di�erent con�gurations will be trained

and evaluated. Image resolution and the preprocessing steps are discussed in section 3.2.

The design of the model architectures is explained in section 3.3. Lastly, the training

procedure and hyperparameters are discussed in 3.4.

3.1 Dataset Class Distribution & Uncertainty Approach

The uncertainty mapping approaches of [21] are leveraged. All of the uncertain labels of

the classes Atelectasis, Edema and Pleural E�usion were mapped to positive examples,

while labels of the Cardiomegaly class were mapped to the negative examples. The

uncertain labels of the Consolidation class were ignored. This approach showed the best

results on the validation set in [21]. Studies where a pathology is unmentioned are ignored

and not mapped to negative cases.

This results in the class distribution in table 3.1. The number of training samples rep-

resents the number of studies meant for training the neural networks and optimizing

the parameters. Each study consists of at least one x-ray image, but can have up to 3

concurrent images. The number of training samples range from 31,933 to almost 110,000

samples. The former represents the number of samples for the Consolidation class and

the latter for Pleural E�usion. The validation sample size is 200 for every class.
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Pathology Training Samples Training Positive (%) Training Negative (%) Validation Positive (%) Validation Negative (%)

Atelectasis 59717 58710 (98.31) 1007 (1.69) 75 (37.5) 125 (62.5)

Cardiomegaly 37311 23002 (61.65) 14309 (38.35) 66 (33.0) 134 (67.0)

Consolidation 31933 12730 (39.86) 19203 (60.14) 32 (16.0) 168 (84.0)

Edema 76143 60476 (79.42) 15667 (20.58) 42 (21.0) 158 (79.0)

Pleural E�usion 109947 85115 (77.41) 24832 (22.59) 64 (32.0) 136 (68.0)

Table 3.1: Class distribution after mapping uncertainty labels with the strategy of [21].
Studies where a pathology is unmentioned are ignored.

The class distribution for the training set are mostly biased towards positive examples

with the consolidation set being the only exception, where the negative examples out-

weigh the positive. The opposite applies to the class distribution of the validation set,

where the distribution of all classes is outweighed by the negative examples.

The Atelectasis class lacks negative examples and is extremely biased towards positive

examples. This could result in inferior model performance.

3.2 Image Resolution & Preprocessing

(a) 160× 160 (b) 320× 320 (c) 480× 480

Figure 3.1: Frontal radiographic image from the validation set of CheXpert [21] in three
of �ve resized versions used for the experiments. X-ray taken of a 45 year
old male patient with the atelectasis observation classi�ed as positive by the
consensus of three radiologists.

The x-ray images are provided in a resolution of up to 4000x4000 pixels. Each pixel is 8

bit encoded in a single channel. This means these images are grayscale and o�er no color

information. In a preprocessing step, all images are resized to the 5 image sizes 160×160,
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240× 240, 320× 320, 400× 400 and 480× 480 using Lanczos algorithm implementation

of the Python Image Library (PIL). The result can be seen in �gure 3.1.

To optimally leverage transfer learning, further preprocessing of the images is necessary.

The reason for this lies in the ImageNet dataset, which the pretrained models are trained

with. Firstly, because the ImageNet data consists of colored RGB images, the pretrained

model therefore expects three color dimensions as input. One way of mapping grayscale

images for use in these pretrained models, is to simply duplicate the single color channel

to three channels. This is leveraged in these experiments. Secondly, normalization of the

pixel values can help boost model convergence. This is done with the standard and mean

deviation of the ImageNet dataset, because the pretrained models were trained with this

value distribution. The pixel values of the x-ray images are therefore divided by these

values to achieve normalization.

Lastly, a suite of image augmentation is applied for regularization purposes. These consist

of random rotations of up to 30◦, random brightness/contrast �uctuations, black pixel

padding and minimal perspective warping.

3.3 Model Architectures

Figure 3.2: A CNN is composed of two basic parts of feature extraction and classi�cation.
Feature extraction includes several convolution layers followed by a pooling
layer. The classi�er usually consists of fully connected layers. [31]
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All of the models used consist of two components. First, there is the body or feature

extractor of the neural network. This part of the model is responsible for generating

features by processing the pixel values of the preprocessed radiographic images. These

features are then further processed in the second component of the network, referred to

as the head or classi�er. Based on the generated features of the model's body, this part of

the neural network generates the �nal output. The general concept is visualized in �gure

3.2. Because this is a binary classi�cation problem, the output consists of a single value,

which can be interpreted as the probability that the observation occurs in the study.

When more than one view is available, the model outputs the maximum probability of

the observation across the views.

The ResNet, DenseNet and E�cientNet architectures will be used as feature extractors of

the neural networks. For each of the former two architectures, two ImageNet pretrained

versions, namely ResNet50, ResNet152, DenseNet121 and DenseNet161 are leveraged.

The di�erent versions of the ResNet architecture only di�er in the number of layers

(depth) present in the model. In addition to the number of layers, the DenseNet121 and

DenseNet161 di�er in the growth factor k, which corresponds to the number of channel-

s/feature maps (width) produced per dense-block. This also results in di�erent amounts

of output features. These pretrained models were trained on the image resolution of

224 × 224. For the E�cientNet models, the implementation of [28] was used. Each

scaled E�cientNet model o�ers an ImageNet pretrained version which was trained on

scaled versions of the dataset. While each ResNet and DenseNet model was trained on

all 5 image resolutions for the experiments, each appropriate E�cientNet model was only

trained on the next biggest (or equal) scaled image resolution version. This can be seen

in Table 3.2.
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Name # Parameters # Features ImageNet Top-1 Acc. Pretraining Resolution Experiment Resolutions

ResNet50 23,508,032 2048 76.1 224× 224 All

ResNet152 58,143,808 2048 78.3 224× 224 All

DenseNet121 6,953,856 1024 74.4 224× 224 All

DenseNet161 26,472,000 2208 77.1 224× 224 All

E�cientNet-B0 4,007,548 1280 76.3 224× 224 160× 160

E�cientNet-B1 6,513,184 1280 78.8 240× 240 240× 240

E�cientNet-B3 10,696,232 1536 81.1 300× 300 320× 320

E�cientNet-B4 17,548,616 1792 82.6 380× 380 400× 400

E�cientNet-B5 28,340,784 2048 83.3 456× 456 480× 480

Table 3.2: Overview of ImageNet pretrained models used for feature extraction. Number
of parameters only refers to the number of learnable parameters. Number of
features refers to the number of output features.

The features produced by the body are then aggregated in a pooling layer and further pro-

cessed in the head of the network. Other than the number of features taken as input into

this pooling layer, the architecture of the head for each neural network is identical. The

pooling layer consists of both averaging and using the maximum as aggregation strate-

gies for the features. The results of these operations are concatenated, which doubles

the number of features available. These features are further processed in two subsequent

linear layers to produce a �nal output. The last layer is a sigmoid activation function

which produces the probability (�oat value between 0 and 1) of a class occurring in the

input image. Because these latter layers of the pretrained model are specialized for the

base task, the weights can not be used. The parameters of these layers are initialized

semi randomly, using the Kaiming initialization scheme [13].

The custom head combined with a ResNet50 feature extractor is visualized as a graph

in �gure 3.3. Outgoing channel dimensions of each layer are represented as a 4 dimen-

sional tensor batchsize×channels×height×width. The same model is represented with

an input resolution of 240× 240 and 480× 480. The e�ect of using di�erent input reso-

lutions can be seen here. While the channel dimensions are equal, the height and width

dimensions di�er up to the interfacing point of the network between feature extractor

and classi�er, which is the pooling layer. While the smaller input resolution produces

2048× 8× 8 features, the larger input resolution produces 2048× 15× 15. This should

result in more �ne grained features. In order to further process the features without

increasing the complexity/parameters of the network, the kernel sizes of both the max
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pooling and average pooling layers are adapted to the height and width of the incoming

features, resulting in identical output shapes. The number of trainable parameters of

the head of the network is therefore only dependent on the number of output features

from the feature extractor. The fully connected layers need to scale accordingly, in order

to process the incoming features. The number of parameters for the classi�er increases

proportionately with the number of output features. This can be seen in table 3.3.

The ResNet50 and ResNet152 model variants with an identical input resolution of 480×
480 are also visualized in �gure 3.3. They output the same number of output features

to the head of the network. This is achieved by only scaling the depth of the ResNet152

variant. This enables more computation on the input signal, which should have a positive

e�ect on the detection rate. On the contrary, there is also a risk of overparametrization

and therefore over�tting on the training data.

The di�erent variants of the DenseNet model architecture, DenseNet121 and DenseNet161

are visualized in �gure 3.4. Both graphs visualized use an input image resolution of

480 × 480. The variants di�er in both width and depth. The prior can be seen by the

number of Dense Layers. The latter is apparent by the outgoing channel dimensions,

which is a result of di�ering growth factors k. The DenseNet121 variant uses a k value of

32, while the DenseNet161 variant uses a k value of 48. The channel growth is controlled

by setting the output number of feature maps per Dense Layer to k and the usage of

pooling in the transition layers.

The models, which use the E�cientNet model architecture as feature extractors, are

visualized in �gure 3.5. Because this architecture uses compound scaling it results in

a unique model per image resolution. Both depth and width are scaled based on the

number of input pixels. Each model variant expects a certain image resolution as input

and the closest matching variant to our image resolution was chosen. This can be seen

in table 3.2. For each model, the ImageNet pretrained variant was leveraged. One

shortcoming of the models which use this model architecture as a feature extractor, is

the usage of pooling in the interfacing part of the network between body and head. In the

implementation, the model ends with an average pooling layer, which was overlooked by

us. The custom head also starts with max and average pooling, which is now obsolete.

The choice of this set of models enables the examination of the di�erent dimensions

of model scaling described in section 2.2.5, namely depth, width and image resolution.

Measuring the performance di�erence between ResNet50 and ResNet152 on scaled image

resolutions enables the assessment of the dimensions depth and image resolution, while
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Name # Body Parameters # Features # Head Parameters Sum Parameters

ResNet50 23,508,032 2048 2,106,880 25,614,912

ResNet152 58,143,808 2048 2,106,880 60,250,688

DenseNet121 6,953,856 1024 1,054,208 8,008,064

DenseNet161 26,472,000 2208 2,271,360 28,743,360

E�cientNet-B0 4,007,548 1280 1,317,376 5,324,924

E�cientNet-B1 6,513,184 1280 1,317,376 7,830,560

E�cientNet-B3 10,696,232 1536 1,580,544 12,276,776

E�cientNet-B4 17,548,616 1792 1,843,712 19,392,328

E�cientNet-B5 28,340,784 2048 2,106,880 30,447,664

Table 3.3: Parameter counts of the ImageNet pretrained models and the resulting custom
head. These two components were combined and used for the experiments.
Number of head parameters scales according to the number of output features.
Number of parameters only refers to the number of learnable parameters.
Number of features refers to the output of the feature extractor.

DenseNet121 and DenseNet161 and the compound scaling of the E�cientNet models

enables the examination for all three dimensions.

3.4 Training Procedure & Hyperparameters

Each pretrained model is initialized with the custom head formerly described and trained

on each of the �ve image resolutions. A �ne-tuning approach is leveraged. Therefore, the

training procedure consists of two steps. Firstly, the ImageNet pretrained body of the

model is frozen and only the head of the network is trained for one epoch. Secondly, the

body of the model is unfrozen and both the head and body of the network are trained

for 5 additional epochs. This is important because the head of the network is initialized

semi randomly. The loss caused by the head of the network needs to be minimized before

propagating the loss further into the body of the network and upgrading the weights.

Binary cross entropy loss and a batch size of 40 was used for all experiments. One element

of a batch contains one study, which can consist of up to 3 x-ray images. Adam [24],

in conjunction with the 1-cycle learning rate [41] schedule were used as the optimizer

with default parameters β1 = 0.9, β2 = 0.99. The maximum learning rate was set to

5 × 10−3 for the �rst epoch. Discriminative learning rates were used afterwards. The
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body of the network was trained with a maximum learning rate of 2.5 × 10−5 and the

head with a maximum learning rate of 2.5×10−3. Further regularization was introduced

with Dropout [43] at a p-value of 0.6 in the linear layer of the head and Weight Decay,

which was set to 1× 10−1. A checkpoint is saved after every epoch, if a higher AUC or

lower loss value was achieved on the validation set in comparison to the earlier epochs.

These are fairly standard practically used hyperparameters with default parameters,

which ensure good but not optimal results for most datasets. The focus of this work

is not to train a new state of the art model for this dataset, which would probably

require hyperparameter tuning among other optimizations. The more important aspect

is to ensure that the changes in the detection rate (AUC) are caused by the di�ering

image resolution. This is guaranteed by the usage of identical hyperparameters for each

run and mitigation of randomness. Because the parameter initialization of the head is

dependent on random factors, each experiment is repeated 5 times with di�ering seeds.

Batch shu�ing is disabled.

For each image resolution, the 5 models mentioned in section 3.3 are trained 5 times with

di�ering seeds. This results in 125 experiments per image resolution. For the remainder

of this work, one combination of image resolution, model architecture and seed will be

referred to as one run. The choice in the extensive number of 6 epochs per run and

training with �ve di�erent model architecture ensures that the constellation of model

and image resolution can reach its maximum potential and not under�t.

All experiments were performed in parallel on di�erent virtual machines with varying

amounts of NVIDIA Quadro P6000 24GB GPUs, kindly provisioned by [4]. Experi-

ments were implemented using the Fastai library in conjunction with Pytorch. Further

information on the infrastructure and software used can be found in my previous work

[2].
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Figure 3.3: Graph visualization of ResNet50 and ResNet152 used as feature extractors
with the custom classi�er head for the experiments with di�erent input res-
olutions. Outgoing channel dimensions of each layer represented as a 4 di-
mensional tensor (batchsize)× (channels)× (height)× (width).
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Figure 3.4: Graph visualization of DenseNet121 and DenseNet161 feature extractors with
the custom classi�er head used for the experiments with identical input image
resolutions. Feature extractor produces di�erent number of features because
of di�ering channel growth factors k.
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with input
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b4 with input
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with input
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480× 480

Figure 3.5: Graph visualization of compound scaled ImageNet pretrained E�cientNet
architectures used as feature extractors with the custom classi�er head for the
experiments with di�erent input resolutions. Outgoing channel dimensions of
each layer represented as a 4 dimensional tensor (batchsize)× (channels)×
(height)× (width).
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In this section an evaluation of the results is presented. As a means to measure the

detection rate of the models, the AUROC metric is used. For this, the scikit-learn's

implementation [38] of calculating the AUROC score from the prediction scores of each

model on the validation set is leveraged. No test time augmentation was used. The

evaluation consists of both quantitative and qualitative approaches.

For each of the 550 runs, the best performing epoch is chosen based on its validation

AUROC score. In order to examine the experiments empirically, the results are grouped

and aggregated in di�erent ways and the resulting maximum and mean AUROC is eval-

uated. Firstly, the general relationship between image resolution and detection rate is

examined in section 4.1.1. Secondly, the importance of model scaling in accordance to

the image resolution is investigated in section 2.2.5.

For the qualitative evaluation, an explainable approach to certain model predictions is

presented. Using the Grad-CAM method, visual explanations via gradient-based local-

ization of the predictions are presented per image resolution from the best performing

models based on the AUROC score and are compared to bounding box annotations made

by a board-certi�ed radiologist in section 4.2.

4.1 Quantitative Evaluation

4.1.1 Image Resolution Scaling

This section will focus on the relationship between general image resolution and detection

rate, in this case measured in the metric AUROC score. The �rst hypothesis of this work

will be investigated by analyzing and interpreting the results of 550 experiments.

Of each of the 550 runs, the best performing epoch is considered based on the AUROC

score. Grouping the resulting scores on the image resolution and reporting the mean,
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mean standard deviation and maximum AUROC score per image size results in �gure

4.1. The performance of the di�erent model architectures will be discussed in the next

section.

As can be seen in �gure 4.1, three of the �ve competition tasks scale well with increasing

image resolution. The Edema class signals a high correlation between the variables, with

both the mean of all runs and maximum scores increasing proportionately with the image

resolution. Maximum scores also scale well for both the Atelectasis and Consolidation

class, although the mean starts to settle or even worsen above an image size of 400× 400

pixels. This could be the result of suboptimal hyperparameters or model architectures.

The biggest AUROC score di�erence can be measured with the Atelectasis class, where

a di�erence of up to 0.04 score points can be observed in the maximum. For all three

classes the best performing model was achieved by using the x-rays in the maximum

image resolution of 480× 480 pixels used in the experiments.

Two of the �ve competition tasks do not bene�t from increased image resolution above

320× 320 pixels. Pleural E�usion is best detected by the models at an image resolution

of 320 × 320 with the mean and maximum reaching the highest AUROC score values.

The standard deviation is also smallest at this image resolution. This also applies to

the Cardiomegaly class, where the best performing model was trained with an input

image resolution of 320× 320. For this class, no signi�cant changes of performance can

be measured with up scaling of input image resolutions up to 320 × 320 pixels, only a

decline in performance afterwards.

4.1.2 Model Scaling

In order to investigate the role of model scaling in the performance gains shown in section

4.1.1, the highest AUROC score of each run is grouped by image resolution and model

architecture. For each architecture type we will be de�ning ∆ as

∆max(model_type) = max(larger_model)−max(smaller_model) (4.1)

∆mean(model_type) = mean(larger_model)−mean(smaller_model) (4.2)
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Figure 4.1: AUROC scores are grouped by image resolution and the mean, standard
deviation and maximum per image resolution are reported. Three of the �ve
competition tasks AUROC scores scale well with increasing image resolution.
Performance di�erences of up to 0.04 could be measured. Two of the �ve
competition tasks AUROC scores do not bene�t from an image resolution
above 320× 320.

32



4 Evaluation

This results in the following equations for the ResNet and DenseNet model types

∆max(ResNet) = max(ResNet152)−max(ResNet50) (4.3)

∆mean(ResNet) = mean(ResNet152)−mean(ResNet50) (4.4)

∆max(DenseNet) = max(DenseNet161)−max(DenseNet121) (4.5)

∆mean(DenseNet) = mean(DenseNet161)−mean(DenseNet121) (4.6)

These metrics are visualized for each competition task per image resolution in �gure

4.2. Blue marks show the score di�erences for the ResNet model type, while red marks

symbolize the DenseNet model type. The circle symbol shows the mean, while the

triangle symbolizes the max score di�erences. The green triangle shows the best overall

performing model for each competition task. The 0 mark is visualized by a dashed line.

Marks drawn above the dashed line therefore show that the bigger variant of a model

type outperformed the smaller one and vice versa.

Firstly, the results of the best performing model, symbolized with a green triangle will be

investigated. In only two cases, the larger model variant outperforms the smaller for the

best performing models, namely Cardiomegaly and Atelectasis. In the former case, the

performance di�erence is marginal. The best performing Cardiomegaly detection model

was trained with the ResNet152 model variant and an input resolution of 320 × 320,

outperforming its smaller ResNet50 variant with ∆ = 0.0067. But for the latter case, the

performance di�erence is signi�cant. For the Atelectasis class, the DenseNet161 model

trained and evaluated with an input resolution of 480×480 outperformed all other models

and its smaller DenseNet121 counterpart with a di�erence of ∆ = 0.06. For the detection

of this class, this is an indication for the necessity of both scaling image resolution, model

depth and width.

For the remaining three of the �ve competition tasks Edema, Consolidation and Pleural

E�usion the smaller ResNet model variants were performing best. For the Edema class

the best performing model was achieved with an image resolution of 480 × 480 with a

marginal performance di�erence of ∆ = −0.006. For the Consolidation task, the same

applies with a bigger performance di�erence of ∆ = −0.016, bene�ting the most from

the more shallow ResNet model variant. The Pleural E�usion class was best detected at

an image resolution of 320× 320 with a performance di�erence of ∆ = −0.0095.

Secondly, no clear trend can be observed between image resolution and scaling model

depth and width for all of the competition tasks or model variants when looking at
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Figure 4.2: AUROC scores are grouped by image resolution and model architecture. The
di�erence of mean and maximum between the two model types per image
resolution is reported. Dot and triangle show the di�erence in mean and max
of each architecture. Green triangle represents the best performing model for
each evaluation task.
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the mean and max marks. Even for classes like Edema and Atelectasis, which signaled

greater detection rates in increased image resolution. No clear correlation between image

resolution and model depth and width can be noticed. The prior task scales better with

smaller model variants, while the latter does with larger models. The necessity for model

scaling is therefore task dependent. Besides for the Atelectasis task, score di�erences in

the model variants are generally marginal.

The impact of compound scaling via the E�cientNet architecture used as feature ex-

tractors can be seen in �gure 4.3. These models generally performed worse than the

overall average that can be seen in �gure 4.1. The trends are similar. While the Edema

and Atelectasis tasks show dependence on model and resolution scaling, tasks like Con-

solidation, Pleural E�usion decline sharply at an input resolution of 400 × 400 pixels.

The Cardiomegaly class shows inverse scaling, where smaller image resolution and more

shallow and narrow models outperform their bigger counterparts marginally.

4.2 Qualitative Evaluation

Gradient-weighted Class Activation Mapping (Grad-CAM) [39], uses the gradients of

any classi�cation prediction �owing into the �nal convolutional layer to produce a coarse

localization map highlighting the important regions in the image responsible for the

prediction. Convolutional layers naturally retain spatial information which is lost in

fully-connected layers, so it is expected that the last convolutional layers have the best

compromise between high-level semantics and detailed spatial information. The neurons

in these layers look for semantic class-speci�c information in the image (say object parts).

Grad-CAM uses the gradient information �owing into the last convolutional layer of the

CNN to assign importance values to each neuron for a particular decision of interest.

Highlighting the important regions in a chest radiograph in order to assess model perfor-

mance requires domain knowledge. In order to interpret the explanations generated by

this method, knowledge of the way each pathology constitutes in a radiographic image

is necessary. Optimally, this would be jointly assessed with a radiologist. Unfortunately,

this is out of scope for this particular study.

This could be mitigated by leveraging bounding box annotations, which are not provided

in the CheXpert dataset. The NIH Chest X-Ray14 [47] dataset however, o�ers a small

number of images where hand labeled bounding boxes in addition to the pathology are

35



4 Evaluation

160 240 320 400 480
Image Resolution

0.88

0.89

0.90

0.91

0.92

0.93

AU
RO

C 
Sc

or
e

Edema
EfficientNet_mean
EfficientNet_max

160 240 320 400 480
Image Resolution

0.72

0.74

0.76

0.78

0.80

0.82

AU
RO

C 
Sc

or
e

Atelectasis
EfficientNet_mean
EfficientNet_max

160 240 320 400 480
Image Resolution

0.88

0.89

0.90

0.91

0.92

AU
RO

C 
Sc

or
e

Consolidation
EfficientNet_mean
EfficientNet_max

160 240 320 400 480
Image Resolution

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
RO

C 
Sc

or
e

Pleural Effusion
EfficientNet_mean
EfficientNet_max

160 240 320 400 480
Image Resolution

0.80

0.81

0.82

0.83

0.84

0.85

AU
RO

C 
Sc

or
e

Cardiomegaly
EfficientNet_mean
EfficientNet_max

Figure 4.3: E�cientNet AUROC scores grouped by image resolution. The e�ects of com-
pound scaling on the detection rate.

36



4 Evaluation

provided. These can be used as the ground truth to evaluate the disease localization per-

formance. Given an image and a disease keyword, a board-certi�ed radiologist identi�ed

only the corresponding disease instance in the image and annotated it with a bounding

box.

The class labels of the NIH Chest X-Ray14 and the CheXpert dataset di�er and there is

only overlap in 3 of the 5 competition tasks that occur in the CheXpert dataset. These are

namely Atelectasis, Cardiomegaly and Pleural E�usion, which is referred to as E�usion

in the ChestX-ray8 dataset. Furthermore cross-dataset model performance can su�er

from modality di�erence, caused by di�erent X-ray equipment, various nationalities etc.

[19]

This section therefore investigates the impact of image resolution on the localization per-

formance of the globally labeled CheXpert trained models. This is enabled by comparing

the bounding box annotated radiographs from the ChestX-ray8 to the coarse localiza-

tion maps produced via the Grad-CAM method by inputting the same radiographs to

the models. From each of the three overlapping classes, one image is chosen and used as

input to the models. The images used can be seen in �gure 4.4. The best performing

models per task and image resolution based on the AUROC score are used.

(a) Pleural E�usion (b) Cardiomegaly (c) Atelectasis

Figure 4.4: Three radiographic images from the ChestX-ray8 dataset labeled by a board
certi�ed radiologist. Di�erent pathologies localized with bounding boxes.
Images used for localization performance evaluation of the former trained
models.

The granularity of the localization maps produced by the Grad-CAM method are based

on the height and width of the output shape of the last convolutional layer for each model.

The resolution of the maps therefore scale according to the input image resolution. These
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range from 5×5 to 15×15. In order to retrieve a mask, which can be overlapped with the

input image, an interpolation function is required. The bilinear function of the matplotlib

library was leveraged.

The results can be seen in �gure 4.5. Each column of the �gure corresponds to a dif-

ferent pathology, while each row corresponds to the input image resolution. For each

combination of input resolution and pathology, the best performing model based on the

CheXpert validation AUROC was leveraged. The description box for each cell o�ers

additional information such as output prediction probability from 0 to 1, the size of the

feature maps of the �nal convolutional layer, the model architecture and the CheXpert

validation AUROC.

The activated regions of the heatmap generally are more coarse for smaller input reso-

lutions and more granular for higher input resolutions. The reason for this is the size

of the feature maps, which are bound to the input image resolution. For smaller image

resolutions 160 × 160 and 240 × 240 the highlighted regions seem to overlap with the

bounding box ground truth, but are mostly larger and go beyond. Model outputs are

close to 1 which signal high con�dence in their correct predictions. For the 320 × 320

input resolutions, the highlighted regions mostly miss the bounding box for the Atelec-

tasis and Pleural E�usion class, but outputs high values close to 1 which also signal high

con�dence. This could be the result of bias in the training dataset, where co-occurrences

of a pathology and other visual indicators such as visual lines, tubes or wires are corre-

lated. Another reason could be cross-dataset modality di�erences, such as di�erent X-ray

equipment, varying subject nationalities etc. For the Cardiomegaly class the highlighted

area overlaps with most of the bounding box, but the output score is lower than with the

former smaller input images. The best result for the Pleural E�usion class was achieved

at an input resolution of 400×400, where the bounding box and highlighted area overlap

almost perfectly and output score is also close to 1. For the Cardiomegaly and Atelec-

tasis class, highlighted areas of the heatmap are inside the bounding box as well. For

the Atelectasis class, the neck and head of the subject is also highlighted. Lastly, models

trained with an input resolution of 480× 480 start highlighting regions inside, but also a

large region outside of the bounding box with a high con�dence for the Pleural E�usion

study. The smallest region of all input resolutions is highlighted inside the bounding box

for the Cardiomegaly class. The model also outputted the smallest probability of pathol-

ogy occurrence. For the Atelectasis class, the best overlap of heatmap and bounding box

was achieved at this resolution.
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(a) Pleural E�usion (b) Cardiomegaly (c) Atelectasis

Figure 4.5: Bilinear Interpolated Grad-CAM localization heatmaps overlapped with the
input image. Bounding Box represents the ground truth of the pathology.
Columns correspond to class and rows to resolution. Legend displays addi-
tional model information. output probability, feature-map size, model type
and AUROC score on CheXpert validation set.
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In this thesis a broad overview of the current state of deep learning based automated chest

radiograph interpretation was provided. Common datasets and their trade-o� between

quantity and quality were brie�y introduced. A more thorough introduction to the

CheXpert dataset [21] and the problem of ImageNet pre-training for medical applications

was given to �nally result in the research question of the importance of image resolution

and model scaling in the detection rate of automated chest radiograph interpretation.

Extensive empirical studies were constructed. Three model architectures were leveraged

in di�erent variations, namely ResNet50, ResNet152 [14], DenseNet121, DenseNet161

[16] and �ve di�erent E�cientNet [46] variations. The �ve competition tasks Edema,

Atelectasis, Pleural E�usion, Cardiomegaly and Consolidation of the CheXpert dataset

were used as input to the models. These were down-scaled from up to 4000×4000 pixels

to 160× 160, 240× 240, 320× 320, 400× 400 and 480× 480 respectively.

As a means to measure the detection rate of the models, the AUROC metric on the

validation set was leveraged. Firstly, the general relationship between image resolu-

tion and detection rate was examined. It could be observed that the impact of image

resolution on the detection rate is task dependent. The detection rate of Edema, Atelec-

tasis and Consolidation scaled up with increased image resolution, while Pleural E�usion

and Cardiomegaly reach the highest detection rate at 320 × 320 pixels. Lower input

image resolutions than 320 × 320 seem to o�er suboptimal results for all tasks except

Cardiomegaly. Secondly, the role of model scaling in the detection rate gains was inves-

tigated. No clear trend could be observed between image resolution and scaling model

depth and width across all competition tasks, when comparing larger model variants

to their smaller counterparts. The detection rate of Edema was higher in the smaller

model variants, while the contrary applies to the Atelectasis class. The detection rate

of the Atelectasis class bene�ted the most from upscaling the DenseNet architecture

with an AUROC score di�erence of ∆ = 0.06 on the best performing image resolution

of 480 × 480. The necessity of model scaling is therefore also task dependent. Besides
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for the Atelectasis task, score di�erences in the model variants for the remaining tasks

were generally marginal. Additionally, no correlation between ImageNet accuracy and

transfer accuracy could be observed. The AUROC scores did not scale according to the

pretrained models ImageNet accuracy. ImageNet pre-training might not transfer well to

this �ne-grained task, as already mentioned in [25].

Additionally a brief qualitative evaluation was provided. By visualizing the gradients

of predictions �owing into the �nal convolutional layer, coarse localization maps were

produced via the Grad-CAM method. These saliency maps were compared to bound-

ing box annotations from a board-certi�ed radiologist to assess the model performance

qualitatively on three studies in the aforementioned �ve image resolutions from the NIH

Chest X-Ray14 [47] dataset. This dataset o�ers bounding box annotations, but only

three of the �ve competition tasks overlap, namely Pleural E�usion, Cardiomegaly and

Atelectasis. For each image resolution the best performing model based on the CheXpert

validation set was evaluated. The activated regions of the heatmap generally are more

coarse for smaller input resolutions and more granular for higher input resolutions. The

highlighted regions in the smaller image resolutions of 160 × 160 and 240 × 240 have

some overlap with the ground truth annotation, but are mostly larger and too coarse.

Nonetheless, the representations seem to o�er enough information for the model to cor-

rectly output high probabilities of pathology occurrence. The best alignment of ground

truth and highlighted region for the Pleural E�usion study was achieved at an input

resolution of 400× 400. The same applies to the Atelectasis class at the highest investi-

gated image resolution of 480 × 480. For the Cardiomegaly class, the very large size of

the bounding box annotation causes even the coarser saliency maps of the lower image

resolutions to align well.

In the following, we'd like to discuss the outlook for this �eld, in the form of ideas and

concerns that have emerged while producing this work.

In hindsight, the quality and size of the CheXpert dataset is still questionable. In partic-

ular the size of the validation set consisting of 200 studies might not su�ce to evaluate

the quality of a model, even with the addition of the test set. The class distribution of

the training set is also highly unbalanced, which is discussed in section 3.1. This is taken

to the extreme for the Atelectasis class. One way of mitigating the issue would be to

merge the MIMIC-CXR [23] and CheXpert dataset. Both use the same automated la-

beling approach on di�erent databases, resulting in similar dataset structures and labels.
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Unfortunately this was out of scope for this work, because access to the MIMIC-CXR

dataset is restricted to credentialed and certi�ed users of the physionet platform.

Another concern is the usage of ImageNet pretraining and transfer learning in medical

imaging applications. Because of the domain gap between natural images and medical

images, the bene�ts of using ImageNet pretraining for such applications are still uncer-

tain. While it can accelerate model convergence, the end result might not be optimal.

The creation of a general purpose medical imaging dataset like ImageNet for the medical

domain could be bene�cial. Transfer learning on models trained on this general purpose

medical imaging dataset might o�er accelerated model convergence, more con�dence in

an optimal end result and the option to train on even smaller, high quality medical

datasets. The problem of producing high quality labeled datasets is still one major issue

in this domain that could be further mitigated by this.

Working jointly with a medical professional could have brought more insight as to why

certain pathologies seemed to be more detectable from the models trained on higher image

resolutions than others. We assume the reason lies in the di�erent ways the anomalies

present themselves in chest radiographic images. Some pathologies might only manifest

as very subtle anomalies that are convoluted by down-scaling the pixels of an image.
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