
Master Thesis
for the degree

Master of Arts (M.A.)

THE USE OF MACHINE LEARNING
ALGORITHMS IN THE PROCESS OF GAME

DEVELOPMENT TO FIND BUGS AND
UNWANTED GAME DESIGN FLAWS

21st June, 2021

Julius Hartmann
HAW Hamburg

Faculty of Design, Media and Information (DMI)
Department of Media Technology
Matriculation number: 2425905

julius.hartmann@haw-hamburg.de

under the guidance of

Prof. Dr. Sabine Schumann
and

Prof. Dr. Stephan Pareigis

I

Title
The use of machine learning algorithms in the process of game development to find bugs and
unwanted game design flaws

Keywords
Artificial Intelligence, Machine Learning, Deep Reinforcement Learning, Proximal Policy Opti-
mization (PPO), Behavioral Cloning (BC), Generative Adversarial Imitation Learning (GAIL),
Curiosity, Game Development, Game Design, Quality Assurance

Abstract
The game development process involves many different disciplines, ranging from visual arts, sound
design, game design, product management, frontend- and backend development and many more.
All of which are contributing to a single project to create the best possible player experience. The
player experience can easily be interrupted by bugs or imbalanced game design. For example
if a strategy game has many types of buildings, to which one outperforms all others, it will be
highly likely that players would use this advantage and adopt a strategy that may reduce the
usage of the surrounding buildings. The game would become monotonous instead of diverse and
exciting. This work covers exploratory research whether machine learning can be used during
the process of game development by having an Artificial Intelligence agent testing the game.
Previous studies from other researchers have shown that Reinforcement Learning (RL) agents
are capable to play finished games on super human level. However, none of them are used to
improve the games themselves as they treat the environment as unchangeable, but are still facing
the problem that game environments often are not flawless. To improve the game itself, this work
takes advantage of the reinforcement learning algorithms to unveil the bugs and game design
errors in the environment. Within this work the novelty deep reinforcement learning algorithm
Proximal Policy Optimization [1] will be applied to a complex mobile game in its production cycle.
The machine learning agent is developed in parallel to the game. As a result, the trained agent
shows positive indications that the development process can be supported by machine learning.
For a conclusive evaluation the additional implementation effort needs to be taken into account
right from the beginning.

II

Titel
Die Anwendung von Machine Learning Algorithmen im Entwicklungsprozess von Spielen zum
Finden von Fehlern im Spieldesign oder der Implementierung.

Stichwörter
Künstliche Intelligenz, Maschinelles Lernen, Deep Reinforcement Learning, Proximal Policy
Optimization (PPO), Behavioral Cloning (BC), Generative Adversarial Imitation Learning
(GAIL), Curiosity, Spiele Entwicklung, Game Design, Qualitätssicherung

Zusammenfassung
In den Entwicklungsprozess von Video-Spielen sind viele verschiedene Disziplinen involviert. Dazu
gehören Konzept-Artists, Game Designer, Produktmanager, Frontend- und Backendentwickler und
viele mehr, die alle darauf hinarbeiten dem Spieler eine einzigartige Spielerfahrung zu ermöglichen.
Fehler im Spiel oder eine unverhältnismäßige Spielschwierigkeit kann dabei den Spielfluss des
Spielers schnell unterbrechen. Wenn beispielsweise in einem Strategiespiel mit verschiedenen
Gebäuden eins davon besonders effizient ist, würde dies dazu führen, dass eine Strategie ohne
dieses Gebäude nicht mehr in Betracht gezogen wird. In Folge wird die Diversität der Strategien
auf ein Gebäude reduziert, wodurch das Spiel langweiliger wird. In dieser Arbeit wird erforscht wie
Machine Learning Algorithmen im Entwicklungsprozess unterstütztend eingesetzt werden können,
um Video-Spiele auf die genannten Probleme zu testen. Andere wissenschaftliche Arbeiten im
Bereich Machine Learning zeigen bereits, dass Agenten die mit Reinforcement Leanring trainiert
wurden in der Lage sind Video-Spiele auf übermenschlichem Niveau zu spielen. Trotzdem wurden
die Agenten bisher nur auf fertig entwickelten Spielen getestet mit dem Ziel die Künstliche
Intelligenz zu verbessern und nicht das Spiel selbst, obwohl auch fertige Spiele meist noch Fehler
aufweisen. Diese Arbeit zielt darauf ab die Vorteile der Reinforcment Learning Algorithmen zu
nutzen um Fehler im Spieldesign und der Implementierung aufzudecken. Einer dem heutigen
Standard entsprechender RL Algorithmus ist der Proximal Policy Optimization [1] Algorithmus.
Dieser wird auf ein Handy-Spiel angewendet, welches sich in der Entwicklung befindet. Die
Ergebnisse dieser Arbeit zeigen das mit genügend Implementierungsaufwand der trainierte Agent
in der Lage ist Fehler im Spiel Design zu finden.

Die folgende textliche Ausarbeitung ist in englischer Sprache verfasst.

Contents

Page

List of Figures VI

List of Tables VI

List of Algorithms VII

Listings VII

Glossary IX

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Scope . 4
1.4 Structure . 5

2 Foundations 7
2.1 The Game . 7
2.2 Game Development Processes . 10

2.2.1 Embodiment of Machine Learning in the development process 11
2.2.2 Game Design . 11
2.2.3 Quality Assistance (QA) . 12

2.3 Machine Learning . 13
2.3.1 Artificial Neural Networks . 13
2.3.2 Backpropagation . 14
2.3.3 Supervised Learning . 15
2.3.4 Reinforcement Learning . 15
2.3.5 Curriculum Learning . 19
2.3.6 Curiosity . 20
2.3.7 Behavioral Cloning . 21
2.3.8 Generative Adversarial Imitation Learning 21

2.4 Unity Engine . 21
2.4.1 Unity Work Environment . 22
2.4.2 ML-Agents Toolkit . 22

III

IV CONTENTS

3 Implementation 27
3.1 Application Preparation . 27
3.2 Software Architecture . 28
3.3 Actions . 32
3.4 Action Masking . 34
3.5 Observations . 34
3.6 Rewards . 35
3.7 Demo Actions . 37
3.8 Training Setup . 38

4 Evaluation 41
4.1 Continuous Development . 41
4.2 Training Results . 41

4.2.1 Disabling Curiosity . 42
4.2.2 Curriculum Learning . 42
4.2.3 Stacked Observations . 44
4.2.4 Observed Agent Behavior . 45
4.2.5 Difficulties . 50

5 Conclusion 53
5.1 Game Design Suggestions . 53
5.2 Quality Value . 53
5.3 Generality . 54
5.4 Training Time and Scaling . 55
5.5 Future Work . 55

List of Figures

1.1 Exploiting potential energy to “jump”. Image from J. Lehman et al. [19] 3

2.1 Gathering panel from a player perspective . 8

2.2 Core loop of the game Lost Survivors . 9

2.3 Lost Survivors: Island overview . 10

2.4 Markov decision process - agent-environment interaction. Image from Sutton [35] 15

2.5 Plot of the surrogate function LCLIP with the probability ratio in relation to the
advantage function. Image from Schulman et al. [1] 18

2.6 Diagram of the curiosity module in Unity . 20

2.7 Unity Editor window layout (color theme light) with additional markers (red) . . 23

2.8 Project dependencies between Lost Survivors and the ML-Agents Package . . . 24

2.9 Inspector view of the agent GameObject and its components in the Unity Editor 25

3.1 UML diagram of the implemented agent in Lost Survivors 31

4.1 Trainings with and without curiosity in comparison 42

4.2 All training runs with curriculum lessons . 43

4.3 Reward progress on curriculum training runs . 43

4.4 Curriculum learning with different amounts of stacked observations 44

4.5 Increasing episode length over time . 45

4.6 Curriculum lessons training progress . 46

4.7 Agent at training start . 46

4.8 Trained agent at the beginning of its episode . 47

4.9 Player feedback to expansions . 48

4.10 Player feedback to expansions . 48

4.11 Relative amount of actions used by the training agents 49

4.12 Anomaly on training starts and restarts . 50

4.13 Unknown pauses in training progress . 51

4.14 Cumulative reward by training steps . 51

V

List of Tables

3.1 Agent action combinations . 32
3.2 Agent actions . 33
3.3 Automatic executed agent actions . 33
3.4 Agent observations . 35

4.1 Curiosity hyperparameters . 42

VI

List of Algorithms

1 RL training loop . 16
2 Proximal Policy Optimization (PPO) . 19
3 Clear action values without specifications . 34
4 Curriculum reward function . 36

Listings

3.1 First action check in the DemoActionProvider 37
3.2 Training configuration file . 38

VII

VIII LISTINGS

Glossary

.onnx A generalized file format to represent deep learning models. https://onnx.ai/, Accessed:
06.06.2021. 45

AI Artificial Intelligence. I, 2, 4, 13

API Application Programming Interface. 22, 23, 27, 28

AR Augmented Reality. 21

Atari A well known computer game company, producing video games and consoles since 1972. A
very popular game from Atari is Pong. More info can be found on https://www.atari.com/,
Accessed: 06.06.2021. 2, 22

bad smells Bad smells in code are surface indicators for deeper problems in the software
architecture, which makes the code hard to maintain. A deeper explanation how to detect
bad smells can be found in the work of Fontana et al.[2]. 53

BC Behavioral Cloning. 3, 4, 7, 13, 15, 21, 26, 36, 42, 45, 46, 55

CLI Command Line Interface. 24

CPI Costs Per Install. 11

GAIL Generative Adversarial Imitation Learning. 3, 4, 7, 13, 21, 26, 36, 42, 45, 46, 55

HAW Hamburg Hamburg University of Applied Sciences (ger. Hochschule für Angewandte
Wissenschaften Hamburg). 27, 38

HTTP Hypertext Transfer Protocol. 22, 34

HUD Heads-Up Display. 27

hyperparameter Hyperparameters define the setup of machine learnings training algorithm i.e.
the amount of layers in the neural network. 4, 16, 41, 42, 45

KL Kullback-Leiber divergence. 18

LTV Livetime Value. 11

ML Machine Learning. 1–4, 7, 13, 15, 23, 26, 53

IX

https://onnx.ai/
https://www.atari.com/

X Glossary

model A model is the output of running a machine learning algorithm on training data. It
contains a weighted ruleset to make predictions based on defined rules. 15, 22

namespace In the programming language C# namespaces help to organise classes in bigger
projects. Namespaces are also used to make classes and attributes only accesible in a defined
scope. 28

one-hot Binary representation of a value by a single high bit. Can be used to represent game
items. For example, 001 = coconut, 010 = water, 100 = fish. 34

PPO Proximal Policy Optimization [1]. I, II, 2–4, 7, 13, 16–19, 22, 26, 42, 45, 46, 55

PyTorch An open source machine learning library written in python. It is based on Torch
and provides tensor computation and deep neural networks. More info can be found on
https://github.com/pytorch, Accessed: 06.06.2021. 22

QA Quality Assistance. 3, 4, 7, 55

retention In the context of mobile games retention defines how long players stay enganged with
the game. This is often measured in consecutive login days. 11

RL Reinforcement Learning. I, II, VII, 2–5, 7, 13, 15, 16, 19–22, 26, 34, 56

RND Random Network Distillation. 26

SAC Soft Actor-Critic [3]. 22, 26, 42

SDK Software Development Kit. 23

technical debt Code written in a bad style, with the potential to slow down production in
a later stage. Technical debt is often specific to the programming language. A common
example is nesting of multiple if clauses instead of early returns. 12

TRPO Trust Region Policy Optimization. 18

UI User Interface. 21

UML Unified Modeling Language. 23, 28, 31

VR Virtual Reality. 21

xp experience points. 2, 7, 8, 19, 26, 32, 33, 35, 37, 43–47, 49, 53

YAML Yet Another Multicolumn Layout. https://github.com/yamlcss/yaml, Accessed:
06.06.2021. 24, 26

https://github.com/pytorch
https://github.com/yamlcss/yaml

Chapter 1

Introduction

1.1 Motivation

In the development process of video games the synergy between many complex systems is crucial
to form the final product. These are not only composed of technical systems, but also the game
design and quality assurance. The goal is to create the best possible gaming experience, which is
reached when players are kept in the so-called flow state [4]. In this state players have a pleasing
gaming experience in such an immersive way that the ideal scenario may distract them from the
reality to which they live in their day to day [5]. This state is often reached by fluctuation between
higher and lower difficulties which are controlled by the game design. Game design is a broad
discipline having effect on different aspects of a game.1 For a detailed game analysis the method
of L. Konzack [7] can be applied, which describes analyzes a game by the following seven aspects:
hardware, program code, functionality, gameplay, meaning, referentiality and socio-culture.

During the game development phase the game designers are responsible for the aspect of
gameplay while programmers are providing the program’s code and thus the functionality. Quality
of the code and functionality is additionally reviewed by the quality assurance [8]. There is no
magic formula to craft the perfect game, but from past releases like Cyberpunk 2077 [9] [10] and
Fallout 76 [11] it can be seen that bugs have a huge impact on the success of a game. In this
work, Machine Learning (ML) will be used to improve the development cycle of a game. The
hypothesis is that a ML agent can detect bugs and other flaws in the game which a developer or
game designer wouldn’t notice. In the best case scenario the ML algorithm will be trained to play
the game on an expert level. Game designers or other developers could then set benchmarks for
the algorithm, like a specific time it should take to reach a defined game state. After or during
training, the agent should then report back to the developer if the state has been reached. The
training process should also keep track of exceptions and other unwanted game states in which
the player might get stuck. Analyzing the results would then show in which time frames the
agent was able to reach its goal state and more importantly, which strategy the agent used to
reach it. Game design can then decide if the observed agent behavior fits the planned game or if
it has to be adjusted. As an example, in a simple race game the benchmark could be a certain
amount of laps to finish. After training the agent, it may discover that it is faster to drive in
reverse gear. This might be a legitimate tactic, but not something players would enjoy.

Another way to utilize ML would be to test different sets of game balancing data against
each other. Game design could then define a common goal for the algorithms to train towards.

1A quick look on table of contents in The Art of Game Design: A book of lenses by Jesse Schell [6] can give an
idea how complex game design is.

1

2 CHAPTER 1. INTRODUCTION

Therefore, after the training process game design can choose the balancing data which produced
the best results. ML has the potential to improve the game development process in multiple
aspects. The training process itself can be used to detect bugs in the form of exceptions, error
messages or other defined conditions. It also produces a lot of random player data which can
be analyzed to find exceptional game states, which can help with game design decisions. Lastly,
the fully trained agent can be used to validate game concepts and to prove that there are no
unforeseen exploits in the game.

1.2 Related Work

Maintaining a high quality standard is crucial to long living projects to keep them flexible
to changes and new game features. To achieve high quality standards, a variety of tools and
procedures are used. For example, unit tests, code reviews, automated frontend-, load-, build-
tests or smoke testing by quality assurance, have become standards in today’s software and game
industry. In the work of Nayrolles et al. [12] Machine Learning has been successfully introduced
to improve the game development process. Their CLEVER algorithm is able to detect risky
commits with a precision of 79% (of all commits which would possibly introduce bugs to the
code base) and to suggests possible fixes. After the code has been introduced into the repository,
there are often no further automated checks before the game is tested manually. This is where
the algorithm of this work comes into play. The machine learning agent can be used to analyze
the game to create efficiencies before the manual testing takes place which is traditionally a high
expenditure of time.

Research in Artificial Intelligence (AI) has already shown that ML algorithms are capable
of playing nearly any computer game on a super human level. For example, OpenAI Five [13]
was able to beat a professional e-sports-team in the highly complex video game Dota2 [14]. In
their work they used Proximal Policy Optimization [1] (PPO), which is a deep Reinforcement
Learning (RL) algorithm. In order to achieve their extraordinary results OpenAI Five’s ML
training runs simulated hundreds of years of gameplay data. Another example is the AlphaStar
[15] algorithm which also used RL with multi-agent learning on the game StarCraft II [16]. Their
agent achieved the highest rank and was able to beat 99.8% of all active players. Remarkably is
that AlphaStar algorithms perception is bound to the camera spectrum. The algorithm itself
has to control the camera movement to observe and interact with the game. Therefore the agent
is initially trained with imitation learning to learn from 971,000 replays of expert players. To
improve the performance this was further combined with RL in respect to reward the agent on
winning the played games.

Most AI agents are run on finished games. Even in these scenarios some agents were able to
find bugs and other exploits to get the best possible scores depending on their reward functions.
In the work of P. Chrabaszcz et al. [17] an unknown bug was found in a long existing Atari
game. The original goal of their work was to show that Evolution Strategies are competitive to
classic RL algorithms. As a benchmark they used a set of eight Atari games, which are part of
the OpenAI Gym [18]. A part of their results showed that their algorithm was able to perform
a specific sequence of movements in the game Q*Bert, which led to a state in which the game
grants the player a huge amount of points. Instead of previous highscores around 25,000 points,
in 22 of 30 runs, their algorithm achieved close to a million points due to exploiting the in-game
bug.

The work from J. Lehman et al. [19] shows that a seemingly simple task like “jump as high as
you can” can lead to surprising results when running the program. The AI agent’s task was to
build its own creatures out of blocks connected by joints. For the training process the AI agent

1.2. RELATED WORK 3

was rewarded for distance between the initial lowest body part and the ground. In this case the
agent decided to build a creature with an identifiably tower-like limb. Instead of jumping the
agent made it actively fall, which also resulted in an airborne state for a short period of time (see
Figure 1.1).

Figure 1.1: Exploiting potential energy to “jump”. Image from J. Lehman et al. [19]
The blocks are connected with joints which can be moved. To achieve a high distance between the

tower-like limb and the ground, the creature leaps itself head-forward to the ground. The creature is a
result of the work from Krcah [20] which was represented in the work of J. Lehman et al. [19].

The problem lies in the abstraction of human understanding of the original goal translated
into a reward function. Here, the reward was defined to just get the highest distance to the
ground. These findings are often seen as mistakes and are fixed by redefining the reward functions.
The AI safety researcher Krakovna at al. [21] shows that the ingenuity of RL algorithms‘ to
solve problems in an unexpected way is a common issue. More than 60 examples can be found
in the associated list [22] to the work of Krakovna. In reverse, this also means that a good RL
algorithm is able to effectively find specification issues in the game environment given that the
reward function reflects the players’ goal by design. Defining the right reward function is crucial,
but in the context of games the goal is already an abstract objective like a highscore or earning
experience points (xp). This can be understood by the ML algorithm in the same way, and no
transformation into an abstract reward function is needed. In this work, the goal is not to create
an agent which can play the game perfectly, but to see which unexpected ways or bugs the agent
utilizes to optimize its defined reward.

Another key player in today’s research field is the Unity engine. In the work from Juliani et al.
[23] Unity shows great results as highly compatible simulator for machine learning. Unity provides
a variety of open source machine learning algorithms which can be easily integrated into the
Unity engine (see section 2.4). This also includes the PPO algorithm which was used by OpenAI
Five. In their own Pyramids[24] environment Unity shows that training results can further
be improved with additional ML algorithms Behavioral Cloning (BC), Generative Adversarial
Imitation Learning (GAIL) and their curiosity module (a detailed introduction on these can be
found in section 2.3). Based on its own tools, Unity also offers the machine learning service
GameTune[25]. GameTune uses machine learning to optimize game design parameters on a player
basis. The goal is to improve the players’ experience to increase retention and monetization by
providing individual game design parameters for each player. As an example, an experienced
player could only get a brief introduction to the controls, while a less experienced player gets a
full tutorial on all game mechanics. To achieve its results, GameTune requires a minimum of
30,000 daily active users to support the training process.

4 CHAPTER 1. INTRODUCTION

For games in development or newly released games it is nearly impossible to acquire this amount
of players. This is why this work is focusing the training process on data which can be acquired
and evaluated already during development. Even though it will not be possible to predict or
create human player behavior, it will be possible to unfold game design flaws and bugs which will
retrospectively enhance the player experience as well.

1.3 Scope

The research goal of this thesis is to find a solution to reduce or mitigate the workload of Quality
Assistance (QA) and game design by implementing a deep RL algorithm to play a game by itself
to reveal and discover game design flaws and bugs. This is especially useful during development,
where a lot of changes are applied to the game. Utilizing machine learning as an additional
resource to assist the game design and the QA department can speed up the development process,
as it would reduce the need for manual gameplay testing. It has to be proven whether the effort
of implementation such algorithms produces a significant additional value.

The approach in this work is to implement a machine learning algorithm to play a complex
strategic city building simulation game. This work will be created with the support of InnoGames
GmbH [26] by providing the complete code base of a city-building game similar to Township [27].
The game is called Lost Survivors [28]. The objective of this work is to answer the following
hypotheses:

H1 The trained agent on Lost Survivors always finds an optimal way to play the game in regard
to its reward function.

H2 Machine learning processes help the game design department to optimize balancing data.

H3 Machine learning processes help the QA department to find bugs.

H4 Machine learning can be generalized and added to any game project.

H5 Once the machine learning is implemented it is easily maintainable and further training can
be performed.

H6 Machine learning helps in the process of game development.

The first two hypotheses will be answered having a trained AI agent playing the game. Ob-
serving the behavior and collecting additional data about the quantity and sequence of the output
actions will help to analyze the strategies the agent has developed in the training process. During
the training process and the implementation of the agent upcoming bugs will answer the question
if the QA can benefit from the training results. In future prospects the reward function can be
adjusted by the game designer to support training for different player types. In complex games
there are often multiple goals a player can achieve to address different motivational drivers of
different player types [29]. It will be evaluated if possible balancing suggestions can be extracted
by either giving the ML algorithm the possibility to take the balancing parameters as input or
by training multiple agents with a range of balancing data. For the hypotheses H4 and H5 each
implementation step of this work will be evaluated. In focus are comparability between different
games and the adjustments which would be needed to get the ML algorithm working on other
games. With the results of the previous evaluation this work will then come to the conclusion if
ML is a useful tool to assist in game development processes.

1.4. STRUCTURE 5

Having AI solving problems or playing various kinds of video games has been accomplished
numerous times in the previous years. One of the biggest difficulties in the field of AI is to have
one training algorithm being able to solve different games without having to be trained again,
however this will not be discussed in this work. Machine Learning is often seen as a black-box
with many different parameters to adjust. In order to accomplish the best possible results in this
work, the deep RL algorithm PPO is used as its implementation aims for ease of use in parameter
tuning [30]. Because the game involves mainly single player actions, this work will focus on
training a single-agent, which will be used in combination with Behavioral Cloning, Generative
Adversarial Imitation Learning and curriculum learning.

The provided game Lost Survivors is in development and has currently the status of a
minimum viable product of a feature complete game. During the current development cycles
the game’s balancing data is constantly changing which makes it a perfect candidate for this
research question. Before starting with a highly complex system, though, this work will first cover
a basic implementation of the RL algorithm on a demo project. Therefore, the Hummingbird
example by Adam Kelly [31] will be used. The Hummingbird example project is implemented
with the Unity engine (see section 2.4) and uses the ML-Agents plugin (see subsection 2.4.2) to
integrate RL algorithms. This makes it great for Lost Survivors, as it is also programmed with
the Unity engine. The working RL implementation will then be transferred into a basic version of
the Lost Survivors game. In the implementation of the ML agent’s interface, special features like
time-based events, decorations, the chat system etc. will be excluded as they are not essential for
the agent to play the game. This phase will also serve as reference in chapter 4 to evaluate the
effort needed to transfer the ML algorithms to different games. To avoid an additional layer of
complexity, the interface between the ML algorithm will send most of the input actions as direct
requests to the game backend. In Lost Survivors most of the logic is implemented and tested in
the game’s backend system which run on external servers. The frontend client only handles visuals
and readability for the player. A visual frontend client will not be needed to train the agent,
but can be added later for easier interpretation of the results. During the transition from the
Hummingbird demo project to the game, the aspect of generalization is always in consideration.
As soon as the first version of the ML algorithm is able to train on the game, the learning
algorithm will be tested with different hyperparameters and examined on its performance. For
further evaluation different reward functions will be compared with each other to gain better
understanding of how the reward function can represent player motivations. Based on the final
results it will be evaluated if the game design proves as correctly implemented or if the agent
found exploits to reach its goal. From that, it will be possible to create proposals for game design
changes which need to be integrated.

1.4 Structure
For a better understanding of the game, the following chapter 2 will first cover the game mechanics
in section 2.1. For the later analysis of how ML can improve the game development process
section 2.2 will illustrate a typical game development cycle with the focus on game design
(subsection 2.2.2) and Quality Assistance (subsection 2.2.3). The concepts of the Machine
Learning and deep Reinforcement Learning algorithms used in this work will be explained in
(section 2.3). These will be applied within the Unity engine, which will be introduced in section 2.4,
followed by the implementation in chapter 3. The results of the algorithm will be presented in
chapter 4 which will be followed by the conclusion and future work in chapter 5.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Foundations

This chapter introduces all the concepts which impact the results of this work. It starts by giving
an overview of the game Lost Survivors which is used as an example for this work’s research
question. The next section 2.2 gives an overview of the game development process to create a
clear picture where the ML algorithms fits in. The game development process gives a general idea
of the industry standards in mobile game development, followed by a more detailed description of
Quality Assistance and game design processes. Further the section Machine Learning explains
deep Reinforcement Learning, specifically with the focus on Proximal Policy Optimization [1].
Expanding concepts which can improve the training results of RL are explained right after. This
includes curriculum learning, curiosity, Behavioral Cloning and Generative Adversarial Imitation
Learning. The final section of this chapter introduces the Unity game engine with its ML-Agents
plugin. This section covers how the ML algorithms from the previous section are integrated into
the Lost Survivors game, which is also implemented with Unity.

2.1 The Game

The game provided by InnoGames is called Lost Survivors. At the time this work was created
the game has been in development, but has the feature set of a minimum viable product. The
game falls into the category of city building simulation games in which resource management
is one of the main mechanics. The theme of the game is a group of survivors waking up on an
abandoned tropical island after a plane crash. From here on the main character Amelia introduces
the player to the main tasks as camp leader. The player sees the game environment from a
top-down perspective and controls it by touch and swipe gestures (the target platform are mobile
devices). The goal is clear and simple: survive as many days as possible. Over the process of
the game players have to build and upgrade their home island, which they do by ordering the
survivors to gather resources (see Figure 2.1), craft product, build buildings, expand the territory,
send survivors on expeditions and many more activities.

Most of these activities are additionally rewarded with experience points (xp). Each experience
point brings the player closer to reach the next level, which is in this game’s setting equivalent to
the next day. There are no activities which can make you loose experience. The game is designed
to be played in multiple short sessions between 10 and 30 minutes. Therefore, most activities,
once started, can take minutes if not hours before the task is completed. The time for the tasks
increases the further the player progresses in the game. Building a level-one building might only
take five minutes but a building on level ten can already take two hours to be completed. To
make the player enjoy coming back to the game, every session should feel rewarding.

7

8 CHAPTER 2. FOUNDATIONS

Figure 2.1: Gathering panel from a player perspective
In the current state four gatherers are idle, while the two gatherers on the right have finished their
production of resin. The productions will add the resin to the storage and grand a small xp reward.

By game design there is always something meaningful the player can do to gain further progress.
As shown in Figure 2.2, an example session could look like this: Collect the resource productions
which have been finished from the last session → Use some collected resources to send out a
parrot at the task board → Send a survivor on an expedition with the resources you collected →
Finish a building construction → Send gatherers to collect more resources → As you now have
to wait again until your survivor comes back from the expedition, you can end the session and
collect the rewards in the next one.

The game is targeted to casual players who according to Bartle [29] fit into the demographic
of the player types achievers and socializers. The player groups are usually not clearly distinct
from each other and a game can include multiple motivational drivers to widen the range of
players. By breaking down the core loop of Lost Survivors it can by analyzed which player
types are supported the most. The main motivation of the achiever is to finish everything the
game has to offer. In the game Lost Survivors this translates to completing every quest, task,
building, upgrades etc. Achievers will find their challenges from early on in the game as most
of the collection and completion tasks get introduced to the game during the first session. In
the second and third session the player gets familiarized to the expeditions. These enable the
player to explore new unseen areas and spark the sense of discovery. Shortly after the player
unlocks the main social feature: the guilds. These are especially designed to enable socializers
to communicate with each other, which is their main motivational driver. In later stages the
guilds enable competition between players and guilds. Important to mention is that the social
motivation is an intrinsic player motivation[32] as it is not directly rewarded by the game itself
(there are very few exceptions, which will be left aside in this work for the sake of simplicity).

2.1. THE GAME 9

Figure 2.2: Core loop of the game Lost Survivors

The loop pictures all main activities the player cycles though while playing the game.

Another example for intrinsic motivation can be seen in Figure 2.3, where the player has
built a lot of decorative objects. Decoration objects can be bought for soft or hard currency1

and only serves the visual purpose. In contrast, achievement driven motivation is an extrinsic
motivation as most of the actions like building buildings, collecting new survivors etc. are directly
rewarded with experience points. From Figure 2.2 it is apparent that most of the game actions in
Lost Survivors are supporting the achievers’ player type and has the common extrinsic reward of
experience points. As this reward is deterministic and measurable, this will later be the basis for
the reward function of the machine learning algorithm (see chapter 3).

1While soft currency can be earned inside the game (see Figure 2.2), hard currency has to be purchased with
real world money.

10 CHAPTER 2. FOUNDATIONS

Figure 2.3: Lost Survivors: Island overview

The screenshot shows the island of a high level player which values decorative objects. In the image
center paths, fences, bushes and sculptures can be seen. All of these objects are optional buildings which
do not have any effect on the gameplay itself. The production buildings in the top right indicate finished
productions with the hovering icons. In the bottom left idling gatherers are waiting to be sent out for

collecting goods.

2.2 Game Development Processes

It takes a lot of time and effort to create great games. While mobile games can be developed
in a few months, most of the publicly known games took three to five years to release and
if successful the development continues in the form of support and extension updates. The
development process can be summarized in the following phases: pre-production, production
and post-production. Each of these phases can be split up in several process steps, in turn, the
focus of this work lies on the production phase. In this phase the setting, concept and often also
a prototype have been approved, and the development team is fully staffed. Typical positions
are Game designer, Quality Assistance, Front- and Backend Developer, UI/UX designer, 2D/3D
Artists and Product Manager.

Game development is an agile development process typically separated by milestones and
sprints. Each sprint is two to four weeks long and filled with tasks to work towards the milestone’s
goal. Sprints allow better planning due to smaller tasks which make the goal more tangible. They
also help to foresee if the development is still on track. The first milestone is to implement the
core loop of the game. As soon the core loop is done, the internal play testing is conducted by
game design and quality assistance. The next step is to evaluate the current state of the game in
which game design may change balancing data. Game design and product management will then
plan which mechanics need readjustment and which features will be implemented in the next
development cycle. This loop continues, and the code base grows quickly as most of the software
architecture still has to be created.

2.2. GAME DEVELOPMENT PROCESSES 11

The goal of the production phase is to release the first playable version on the market. The
development focus then switches to the enhancement of player retention. In Lost Survivors the
goal was defined by a benchmark of players consecutively playing to the third day. The first
version had to include a tutorial to guide the player into the game with three days of addition-
ally playable content. If the app successfully launches the game production continues with the
post-production. In the mobile game industry success is measured by data like, Costs Per Install
(CPI), retention rate and user Livetime Value (LTV). In the post-production the existing game
features will be maintained, and additional content will be produced in the form of in-game events.

2.2.1 Embodiment of Machine Learning in the development process

Game design and Quality Assistance are the main parties benefiting from the machine learning
process presented in this work. Because there are no players yet, the game evaluation from the
above-mentioned process heavily relies on manual play testing. This has the disadvantage of
being time-consuming and dependent on subjective perception. At the end, experience of previous
projects helps Game Designers and Quality Assistance to make the right decisions.

In this work, machine learning is used as an additional process step to create artificial player
data. By evaluating the agent data and the strategies of the finished trained algorithm, design
decisions and balancing changes can be supported. In the best case also unseen balancing problems
will become apparent by the agents’ actions. During the training process itself, the algorithm can
log out bugs and game states in which the player is stuck. During the training, the agent will
encounter a huge variety of game states (if not all), which otherwise would have been covered by
manual smoke testing. This gives Quality Assistance the possibility to focus on other tasks which
are not covered by the training process, for example graphical bugs.

2.2.2 Game Design

A game designer’s job is to come up with the game idea and concept. The game designer defines
the rules, theme, concepts, dialogs and many more game related content, from the attack damage
of a weapon item to the mythology of a mighty hero. There are many disciplines in game design
to master which is why this role is often split up to multiple people. This work will especially
focus on the discipline of game balancing.

Balancing Balancing is the part of game design dealing with all static numbers defining the
algorithmic functions like increase of player experience per defeated monster or loss of health on
falling. The complexity increases with the amount of game mechanics. Each newly introduced
feature can increase the possible outcomes exponentially, depending on how many core game me-
chanics it affects. For example, when introducing an extremely powerful weapon to a first-person
shooter game. This can cause an imbalance that could reduce the variety in considerable play
stiles. This decreases the game’s fun-factor because every player would use the same weapon and
there would be less room for surprise [4]. The goal is to balance the game’s content in a way
that the player keeps a high motivation and has fun playing the game. From another perspective
the balancing data also influences how the player is approaching the game. With balancing it is
possible to enable, disable or add certain requirements to actions. Changing the balancing data
will influence the player’s actions and thus the outcome of the game score. Let’s take a look at the
balancing data to build a building in Lost Survivors. To build a building you have to fulfill a certain
amount of requirements. These requirements include player level, construction space, resources,
other buildings and other survivors. Depending on the unfulfilled requirements, the player will

12 CHAPTER 2. FOUNDATIONS

judge the action to build a building as easy or difficult. This not only depends on the amount of
different requirements, but also on the time and effort it takes the player to complete these. With
a higher difficulty the player will expect also better rewards (in comparison to what the player has
encountered when finishing building previously). If all requirements are met the player is allowed
to place the building on the island. This starts a construction process which, on the highest level
building, can take up to 57 hours. After the construction is finished, its reward (in the form of
experience points) can be collected and the building gets unlocked. The direct reward of experi-
ence points is not decisive if the player will feel motivated to build a certain building. Unlocked
buildings can give the player the ability to produce more goods, finish a quest or might be needed
as a requirement to build or upgrade other buildings. A player might also feel rewarded if the
constructed building has a beautiful outer appearance, especially if the building can be shown off
to other players to gain prestige. Once more it can be seen that different player types (mentioned in
section 2.1) perceive rewards differently, however the direct reward can already be a good indicator.

In the algorithm of this work, the direct reward will also be part of the algorithm’s reward
function. Here the reward is rather used to measure game progress than player motivation. From
the agent’s perspective it is not possible to measure fun or motivation on game variables which is
why the goal of the implemented algorithm is to actively assist game design. The game designer
has to chose which group of players and play-styles should are preferable. Based on that the
reward function needs to be adjusted.

2.2.3 Quality Assistance (QA)
Quality Assistance takes a slightly different approach to ensure the software quality than the
usual Quality Assurance strategy. The following paragraph is the guiding principle which is used
at InnoGames.

The whole team is responsible for the quality of the product. Every team member
who contributes to the product is responsible for the entire feature development life
cycle. QA is responsible for assisting the whole team in providing high quality.

(InnoGames GmbH [26])

The main difference to the usual Quality Assurance approach is that not only QA is responsible
for the quality of the end product but the developers themselves. This means that during feature
development programmers themself have to make sure that the feature meets the quality standards.
Meanwhile, QA assist the developers with automated tests, smoke testing (cross-feature), raise
awareness on feature edge cases, providing an overview of the product quality and other tools to
make the development cycle as efficient as possible.

Quality In game development, quality can be defined as the following. The current state of the
game (when working with a versioning tool this is equal to the master branch) should always be
stable and as bug free as possible. All new implemented features should not break any existing
content. New content behaves exactly the way it was designed. The technical debt of the software
code should not be increased.

Bugs in the code base can immediately destroy the immersion of a game. For example when
the player glitches through a wall and therefore skips big parts of the level by accident. But bugs
must not necessarily be noticed by the user to alternate the gaming experience. As an example,
an enemy which never spawns in the game might not be noticed as a bug, but the player might

2.3. MACHINE LEARNING 13

feel underwhelmed as the game is now too easy. Finding bugs includes a lot of manual game
testing which is a time-consuming process. Even though QA tries to track down as many bugs as
possible, the majority of bugs are much more likely to be found by players who haven’t been part
of the development process. This is often due to the fact that developers are biased to test the
game in the way it was designed. Players on the other hand side come with different previous
gaming experiences and expectations. Using external testers during the development process can
help but is not enough to reflect the amount of thousands of players. This is where the training
process of this works algorithm can be tied into the Quality Assistance. The Machine Learning
algorithm has no previous gaming experience and is able to paralyze its training runs which are
comparable to smoke testing. Therefore, it is expected that a wide range of play tests is covered
during the training process.

2.3 Machine Learning
Machine Learning is part of the scientific field of Artificial Intelligence. Its goal is to find solutions
for problems which are too complex or time-consuming to be solved by heuristic programs.
Machine Learning can be traced back to 1961 when Minsky published his work Steps toward
artificial intelligence [33] in which he developed universal problem solvers for his fundamental
credit assignment problem. General principles of ML include that the algorithm is capable to
improve through experience, while adapting the fundamental theoretical laws of the learning
environment. According to Tom Mitchell ML can be defined as followed:

Each machine learning problem can be precisely defined as the problem of improving
some measure of performance P when executing some task T, through some type of
training experience E.

(Tom Mitchell [34])

In example, for this work the Task T is to learn which input action maps to the best possible
experience points outcome. The Performance metric P is the reward the agent collects during its
training run. The Unity environment itself reflects the experience E as it is feeding the algorithm
with its observation. Until today, various concepts of ML have been applied to many applications
and have become a standard in today’s search engines, image recognition, robotics and many more.

The present work will focus on the deep Reinforcement Learning algorithm PPO which will
be explained in section 2.3.4. To get a better understanding on the underlying concepts this
chapter is further separated in respect of the used RL algorithms. It starts with an explanation
on Artificial Neural Networks (ANNs) (subsection 2.3.1). The next subsection 2.3.2 covers the
Backpropagation optimization process for ANNs via stochastic gradient descent. The use case
of optimizing ANNs is first explained in Supervised Learning (subsection 2.3.3) before getting
into more details on Reinforcement Learning in subsection 2.3.4. Afterwards, further concepts of
curriculum learning, curiosity BC and GAIL will be discussed, which are used in combination
with PPO.

2.3.1 Artificial Neural Networks
In reinforcement learning the acting algorithm called agent is represented by a system of artificial
neurons, in other words a neural network. Similar to real neurons, each neuron can have multiple
weighted inputs which fire signals depending on its activation function. By adjusting the weights
though a learning process, the system is optimized to output the desired actions. A neural

14 CHAPTER 2. FOUNDATIONS

network contains multiple layers of neurons, which includes an input layer which represents the
game state, an output layer which represents the possible actions, and optionally multiple hidden
layers in between. When the reinforcement learning network contains hidden layers it is referred
to as deep reinforcement learning.

The policy network implements the agent and takes the game state as input and predicts an
action with the best possible result as output (the actual representation of actions, game states
and rewards will be further discussed in subsection 2.3.4 and subsection 2.4.2). Hereby the input
i is processed though a defined amount of hidden layers2 to produce a probability (by using a
stochastic policy) for each output action. Each neuron j has a weighted influence on the predicted
output3.

2.3.2 Backpropagation
To optimize a policy network backpropagation is used. The goal is to adjust the neurons weight
wij over the training process, in a way that they predict the correct outcome. Backpropagation
is based on the mean square error and uses gradient descent to minimize it. In practice, the game
state is fed to the policy network, which will produce a vector of logarithmic probabilities for
each agent action. The agent would then choose the action oi by the highest probability which
can then be compared to the optimal outcome ti as seen in Equation 2.1:

E =
1

2

n∑
i=1

(ti − oi)2 (2.1)

The goal is to minimize the error E which is calculated as the sum of network states n and
the deviation between the wanted action ti and the output action oi. 1

2 is used to simplify the
mathematical derivation.

With the known weights and the fact that the activation function ϕ is non-linear and
differentiable, the output oj of each neuron j can be defined as the following Equation 2.2. Where
netj is the neurons j input which is equal to the sum of all neuron outputs from the previous
layers k with its respective weights wjk.

oj = ϕ(netj) = ϕ(

n∑
k=1

wjkok) (2.2)

Retrospectively this allows to calculate the inputs and output for each neuron and enables to
adjust the weights. The gradient of the mean squared error is calculated by the partial derivative
of Equation 2.1 in respect to wjk. By factorizing it with a chosen learn rate −η the following
Equation 2.3 can be used to calculate the weight change ∆wij .

∆wij = −η ∂E

∂netj
(2.3)

To optimize the policy network and minimize the error E the result of ∆wij is added to each
neuron weight wij . By repeating this process over and over again the network will converge to
the next local minimum. To achieve best results it is important to choose the right learning rate.
A too small learning rate can lead to a very slow training process or end up in a local minimum.
A too big learning rate can overshoot the local minimum and end up with a greater error than
before.

2four hidden layers were used in this work’s training
3at the start of a learning process neuron weights usually get initialized with a randomized value between 0

and 1

2.3. MACHINE LEARNING 15

2.3.3 Supervised Learning

Reinforcement Learning algorithms are similar to supervised learning algorithms. For a better
overview on the reinforcement learning algorithms used in this work, this section will give a brief
introduction to supervised learning.

The objective of supervised learning is to train a model to accurately yield the correct output
based on a set of training data. In this case the supervised learning algorithm will also be
represented by a policy network. The policy network is then fed with previously generated
training data. The returned output action would then be compared with the labeled training
data which provides the correct action. The correct action would get a gradient of 1 while the
others will get 0. With the correct action and the output action, the mean squared error can
be calculated with Equation 2.1, and the policy gets updated by backpropagation. A problem
with supervised learning is that a large set of training data has to be created before the agent
can start its training. As the learning process by definition tries to imitate the actions from the
training data, it cannot become a better player as the existing training data. This process can
also be referred as Behavioral Cloning which will be further described in subsection 2.3.7.

2.3.4 Reinforcement Learning

One approach of Machine Learning algorithms is trying to imitate the human learning process
by learning from it’s past experiences. In reinforcement learning, the agent acts within its
environment over time while trying to achieve a goal by performing actions which influence the
state of the environment. The interaction with the environment happens in a defined amount
of steps in which the agent observes, acts and collects rewards for its actions. A visualized
representation of the agent interaction is shown in the agent-environment interface from Sutton
and Barto [35] in Figure 2.4. His Markov decision process displays the cycle of agent actions
alternating the game state to optimize the perceived reward.

Figure 2.4: Markov decision process - agent-environment interaction. Image from Sutton [35]

At any given time t the environment is in a state St ∈ S. With the current state St the agent can take
an action At ∈ A to get to the next state St+1. With the transition from state St to state St+1 an
immediate reward Rt is given. The immediate reward is based on the chosen action: Ra(st, st+1).

(Sutton and Barto [35])

16 CHAPTER 2. FOUNDATIONS

Each action to transitions into the next state St+1 has a stochastic probability to be chosen
by the agent, which is defined in the agents policy π. Formally, the policy can be defined as
Equation 2.4, which returns the probability distribution of actions given a state.

π(a | s) .
= P (At = a | St = s), (2.4)

π : A× S → [0, 1].

The big difference from the above described procedure in supervised learning (see subsec-
tion 2.3.3) is that in Reinforcement Learning no pre-labeled data is given. Instead, the agent
generates its own data during the training process by processing the policy in the environment
(as described above in Figure 2.4). To optimize the policy network, the reward given by the
environment can be used. The procedure works the following:

Algorithm 1 RL training loop
1: loop
2: for batchSize do
3: Run and record the policy network
4: Label the output actions according to the gained rewards (rewards can be negative or

positive)
5: end for
6:
7: Update the policy network by backpropagation
8: end loop

Where batchSize is a fixed amount of steps defined by the hyperparameters.

As the algorithm is optimizing for a reward function, which is not limited to a static data set,
the performance of the RL algorithm is also not limited and able to become better than human
players as well. A downside of the so far described RL algorithms is that the states the agent
encounters during the training are highly dependent on the initialization of the policy network and
hyperparameters like the learning rate or steps. Another factor is that the agent has to experience
positive and negative rewards many times to optimize its policy network accordingly. There are
different variances of RL algorithms which target these issues to improve the learning process for
certain objectives. One of todays state-of-the-art algorithms is Proximal Policy Optimization [1]
(PPO), which is an on-policy RL algorithm.

There are two ways to update the policy network from the collected experiences, which are
on-policy and off-policy RL. In on-policy algorithms the agent collects its experience data by
interacting with the environment. The experiences consists of the previously mentioned states,
actions, following states and rewards. The experiences in on-policy RL are then used to update
the agents behavior policy. After that the previously collected experiences are then deleted
and the updated policy is used to collect the next batch of experiences. In contrast, off-policy
algorithms have a separate policy to chose the action. The experiences collected by the behavior
are stored in a data buffer. With the data buffer, off-policy algorithms are able to learn from
experiences collected by previous policy’s. Because PPO is a on-policy RL the following text will
focus on that. A more detailed explaination on on- and off-policy RL can be found in the book
by Sutton [35].

2.3. MACHINE LEARNING 17

Proximal Policy Optimization

PPO is an on-policy learning algorithm and is optimizing its policy network directly from a batch
of collected experiences. During training the algorithm is alternating between updating the policy
network and collecting a new batch of experiences. The objective function for natural policy
gradient methods, can be defined as the following policy gradient loss in Equation 2.5.

LPG(θ) = Êt[log πθ(at|st)Ât] (2.5)

In this function the logarithmic output of the policy network log πθ(at|st) (which was covered
in subsection 2.3.4) is multiplied with the advantage function Ât (Equation 2.6). The advantage
function itself estimates the relative value of the selected action. The advantage function covers
two terms: The discounted sum of rewards (Equation 2.7) subtracted by the value function
(Equation 2.8).

Ât = Gt − V (st) (2.6)

Return The Return Gt is the sum of all immediate rewards the agent collects during its training
episode: Rt+1, γRt+2, . . . , γRT . Any reward Rt+1 at a given time step t < T , gets multiplied by
a discount factor 0 ≤ γ ≤ 1 to favor direct rewards rather than future rewards. Thus picking
a gamma closer to zero leads to myopic behavior while a gamma close to one can encourage
including distanced rewards as well4.

Gt =

T∑
k=0

γkRt+k+1 (2.7)

Note that the advantage function is evaluated after the policy network, and thus the return
Gt can be exactly calculated.

Value function The value function V (st) is an estimate for the discounted sum of rewards
based on the current environment state s. The value function is represented by another neural
network and is also updated by the experiences the agent collects in the environment.

V (s) = Eπ[Gt | St = s] (2.8)

Where Eπ is the expected value relative to the policy π given the calculated return Gt and
the current state St.

Combining the Return and the Value function, by subtracting the estimated return from the
actual return, results in the Advantage function (Equation 2.6). If the actual return is bigger
than the estimated return value the advantage function will yield a positive value, which means
that the selected action was better than expected. When multiplying the policy network result
log πθ(at|st) with the advantage function Ât, the objective function in Equation 2.5 will yield a
positive gradient. When the selected action performs worse, the result of the advantage function
will become negative and thus the gradient will be negative too. Now the policy network just
has to be optimized by the resulting gradient to increase the rewards and leading to a better
agent behavior. Note that as the value function is represented by a neural network, it is expected
that the estimated value is not always correct and outputs noisy values. This can lead to an

4gamma is usually define between 0.9 and 0.99

18 CHAPTER 2. FOUNDATIONS

irrecoverable state of the policy network, especially when starting the training with initially
randomized weights on the neural networks. Therefore, Schulman et al. [36] makes use of the
Kullback-Leiber divergence (KL) in his Trust Region Policy Optimization (TRPO) algorithm.
This way, it is made sure of that the optimized policy network does not diverge too much from
the previous optimization step. Schulman et al. optimizes the computational heavy KL further
in Proximal Policy Optimization [1] where the KL constraint is included into the optimization
objective:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.9)

Let rt(θ)Ât denote the normal policy gradients objective in the form of rt(θ) = πθ(at|st)
πθold (at|st)

.
Where θold describes the policy parameters before the last update. By dividing the updated policy
with the old policy, this results in the probability rt(θ) which indicates how much more likely a
selected action is in the new policy network. By multiplying it with the advantage function Â we
then know if the policy update will have a positive or negative effect.

Figure 2.5: Plot of the surrogate function LCLIP with the probability ratio in relation to the
advantage function. Image from Schulman et al. [1]
The plot shows a single time step for the optimization objective function LCLIP . On the left side the
behavior of the probability ratio for positive advantages is shown, while on the right side the trend for
negative advantages can be seen. The red circle on each graph indicates the starting point r = 1 for the

optimization. The dotted lines indicate where the clipping of Equation 2.9 takes affect.

As rt(θold) = 1, a value of r > 1 indicates that the selected action has become more likely while
r < 1 makes actions less likely. In Figure 2.5 it can be seen that the policy gradient objective is
clipped between 1− ε and 1 + ε 5. This assures that the policy update is happening conservatively.
For example, the selected action has a higher probability in the new policy, and it performs better
than expected, the advantage function then yields a positive value Â > 0, for which the objective
functions gradient is limited to 1 + ε. The same goes for negative values, when the selected action
has a higher probability in the new policy but results in a worse than expected outcome. Where
Â < 0 the gradient is limited to 1− ε, so that the policy update makes the selected action less
likely but is not overdoing the update. In the special case a selected action has become more
likely (rt(θ) > 1) but the advantage function indicates that the action performs worse (Â < 0)
the unclipped policy gradient objective will return a lower value which will be favored by the
minimization operator.

5a value of ε = 0.2 was used in this work

2.3. MACHINE LEARNING 19

The pseudocode for PPO by Schulman et al. [1] can be seen in the following algorithm:

Algorithm 2 Proximal Policy Optimization (PPO)

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

Where in each iteration a number of N actors are collecting T timesteps of data in parallel.
The policy πθold is run on all timesteps NT . With the sampled data, several epochs K of stochastic
gradient descent are performed to optimize surrogate L with respect to θ.

2.3.5 Curriculum Learning
One way to further improve the training process of PPO and other machine learning processes
is curriculum learning. This has been first introduced by Elman [37] and Rohde and Plaut
[38], which has been followed up by Bengio et al. [39]. While the work of Rohde and Plaut
was unsuccessful to improve training speed, Bengio et al. work shows that the learning agent
can converge faster to a global minimum, when the presented training task raises in difficulty
over time. The idea behind this is that humans and animals are learning faster when they are
confronted with tasks in a meaningful order. This gives the possibility to learn general concepts
first before optimizing them on more complex training data. Therefore, the training is separated
in lessons, in which each lesson has its own setup. During training the agent then progresses
sequentially though the lessons by archiving the lessons goal. To enable curriculum learning in
combination with RL, the environment is adjusted during the learning process. In order to do
this, the environment needs to be parameterized, so it can then get adjusted with each lesson of
the curriculum learning. There are multiple possibilities to set up the curriculum learning process.
One example is to increase the task complexity by adjusting the environment itself. For example,
if the agent learns to drive a car along a track, it could start with wide angled curves which get
tighter over time. Other ways are to adjust the reward function or the observations’ inputs. Note
that the goal of curriculum learning is not to generalize the agent to be able to solve different
tasks, but rather to guide the agent though the training process to its final assignment.

In the Unity application, the time at which the lesson proceeds to the next one can either be
a fixed timestep or a defined reward which has to be achieved over multiple consecutive lessons.
For the Lost Survivors project over 20 curriculum lessons were used which linearly increase the
amount of xp the agent has to reach to gain a reward.

20 CHAPTER 2. FOUNDATIONS

2.3.6 Curiosity
When observing children in an unknown area it can be observed that they will start expanding
their horizon by constantly pushing themselves out of their comfort zone. With no promise of
reward in return, their curiosity drives their intrinsic motivation to learn and explore the world
[32]. The concept of curiosity can be translated into the RL learning process as well, by rewarding
the agent to explore its environment. One approach has been implemented by Pathak et al.
[40], which is called Curiosity-driven Exploration by Self-supervised Prediction. Its strength lies
especially in spars reward environments. In their work they showed that learning by intrinsic
reward only is also possible. A further study [41] showed that one of the main challenges is to
design the intrinsic reward function in a way that the agent will not be trapped by external factors,
which they called the noisy-TV problem. A TV, which was placed in the agents environment,
falsely stimulated new states when the agent was standing in front of it.

Figure 2.6: Diagram of the curiosity module in Unity

The inputs actions and observations are represented by the white boxes and fed into the two network
models. The output of the models are represented by the blue boxes on the very top which will then be
compared with the corresponding feature linked by the green dotted line. Figure created by Unity[42].

The curiosity module is implemented by two neural networks which are focused on the agent’s
actions and observations. Hereby the goal is to ignore observations which do not have any effect
on the agent and cannot be modified by the agent’s actions. The two networks are set up with an
inverse model and a forward model which can be seen in Figure 2.6. The inverse model tries to
predict the action the agent has taken from the current observation and the next observation. The
current and next observation are encoded into a single feature vector and fed to the input state
for the model. On the opposite side, the forward model takes the current observation and action
and predicts the next encoded observation. The intrinsic reward is then created by comparing
outputs of the two models. A bigger difference represents a higher factor of surprise and thus
results in a higher reward.

2.4. UNITY ENGINE 21

2.3.7 Behavioral Cloning

Behavioral Cloning has proven to be an effective tool to learn a task by imitating demonstrated
actions, and has been successfully applied to flying drones [43], self-driving cars [44] and steering
robots [45]. Training a neural network from scratch can be difficult. Especially having a larger
action space with over 10 output actions can create a huge search space to find the correct output
action for any state. To give the reinforcement learning process a head start, it is possible to
pretrain the neural net with recorded actions from experts. The recorded action- and observation
space have to be equal to the used policy network. With simple supervised learning (which is also
described in subsection 2.3.3) it is then possible to train the policy network with the provided
expert data as it can be used as labeled data. The result will be an agent which learned basic
behavioral patterns based on the repeating observations and actions given by the expert. As the
agent only learned from existing data without necessarily exploring the complete action space,
the agent can at maximum become as good as the expert data. Morales and Sammut [46] have
also showed that using the pretrained policy network as a starting point for deep reinforcement
learning can be beneficial to speed up the overall training process.

2.3.8 Generative Adversarial Imitation Learning

To increase sample efficiency in imitation learning algorithms like BC, Ho and Ermon [47] propose
the Generative Adversarial Imitation Learning (GAIL) algorithm. Similar to BC the agent learns
from expert demonstrations, but instead of mimicking the demonstrations directly GAIL uses a
second neural network as discriminator. This has the benefit that the agent is not limited by
the amount of steps provided in the demonstrations. The discriminator provides the agent a
reward, based on the estimate of how close the performed action and observations are to the
demonstrated actions. It is also possible to combine the agent’s reward with extrinsic rewards
from the environment. While the agent is optimized by the reward, the discriminator is trained
to better separate between demonstrations and agent behavior. As the discriminator is not very
well-trained at the beginning it easy for the agent to get rewards from the discriminator without
precisely imitating the demonstrated actions. As the discriminator gets better over time, the
agent has to become better at mimicking the demonstrated actions to obtain its rewards. To
combine GAIL with RL, GAIL is used prior to RL. GAIL also has to be limited by a fixed amount
of steps to not achieve results which are not completely biased by the demonstrations. Another
pitfall can be the combination of positive extrinsic rewards with the GAIL learning process, as it
introduces a survival bonus [48]. The survival bonus affects environments where the goal has to
be reached as quickly as possible. In those environments, it can happen that the agent will avoid
its goal, as it collects more rewards by executing actions close to the demonstrations without
ending the episode.

2.4 Unity Engine

The Unity engine [49] is a game engine allowing cross-platform development for various fields of
applications. Since the first release in June 2005 Unity established themselves as a professional
development environment for games, automotive, film, architecture, brands, gambling and
educational technologies. They enable publishing for 25 different platforms including windows,
macOS, Linux, game consoles, WebGL, VR, AR and mobile operating systems. Many common
tools and systems which are needed to create a game environment come already shipped within
the Unity Engine. Depending on the needs of the application this includes systems for physics,
animations, rendering, UI and many more. Unity is highly modular and additional functionality

22 CHAPTER 2. FOUNDATIONS

for the engine itself can be added via C# based scripts, which are often combined in packages.
Unity packages can be found in the Unity Asset Store 6 which also provides community created
packages, or in the inherent package manager 7. Packages provided by the package manager are
developed by Unity Technologies which also includes the (open-source) ML-Agents package which
is used to connect the learning environment with the python API of the ML-Agents toolkit which
is explained in subsection 2.4.2. As stated by Juliani et al.[23] the Unity engine is a great fit
for Machine Learning applications. In their work, Unity (in combination with the ML-Agents
Toolkit) is evaluated against other simulators in the field of machine learning. Unity is standing
out as it is providing every aspect which is needed to create a variety of learning environments.
With Unity’s built-in sensors, physics and network components it is possible to recreate simple
2D environments like the Atari games, as well as simulating 3D real world environments or
multiplayer applications.

2.4.1 Unity Work Environment

Developing a Unity application is done with the Unity Editor. The editor consists out of multiple
windows which allow for basic drag and drop functionalities to edit and arrange game assets,
navigate within the virtual three-dimensional space and playing the application in its current
state (see Figure 2.7). Every project file which is supported by Unity is an Asset. Assets are for
example C#-scripts, 3D meshes, audio files, images, scenes or prefabs. One of Unity’s main Assets
are scenes. Scenes are Unity specific data structures which contain a hierarchical arrangement of
GameObject. At the end the application will have a scene as its entry point, but it is possible
to display multiple scenes simultaneously. Similar to C# Unity follows an object orientated
programming approach, with the GameObject as its main component. A GameObject can hold
several components which will give the GameObject its functionality and representation.

The Lost Survivors application is programmed with the Unity engine, which communicates
with a java based server via Hypertext Transfer Protocol (HTTP) requests. The game is developed
for the mobile platforms Android and iOS but thanks to Unity’s cross-platform functionality it is
also possible to build a Linux application of the game.

2.4.2 ML-Agents Toolkit

The ML-Agents Toolkit is an open source project and mainly developed by Unity Technologies.
The goal is to provide a general platform to utilize machine learning in virtual environments.
In comparison to real world training data, virtual environments have the advantage of scalable
training processes by running in parallel or with increased time speed. The output of training the
machine learning algorithms is saved in a neural network model. Models can be integrated in the
Unity application and can operate on any platform without any further dependencies. The toolkit
provides cutting edge machine learning algorithms, which are ready to use without requiring
any additional python programming. It is used in combination with Unity and is built on top
of the PyTorch library. The core of the toolkit are its deep Reinforcement Learning algorithms,
Proximal Policy Optimization [1] and Soft Actor-Critic [3]. It is also possible to attach own
training algorithms using the provided python API and the gym wrapper. The toolkit enables to
transform any Unity project into a learning environment to connect it with machine learning
algorithms. The environment will feed the algorithms with observation data which is generated
from its current state. The algorithms will then output actions which have to be processed within
the environment to alternate its state.

6https://assetstore.unity.com/, Accessed: 06.06.2021
7https://docs.unity3d.com/Manual/upm-ui.html, Accessed: 06.06.2021

https://assetstore.unity.com/
https://docs.unity3d.com/Manual/upm-ui.html

2.4. UNITY ENGINE 23

Figure 2.7: Unity Editor window layout (color theme light) with additional markers (red)

The window with marker 1 shows the hierarchy of the current selected scene. The second window (2) is
for navigating the projects directories and Assets. In this layout the bottom panel (3) contains four

window tabs from which the Console is selected. The console displays all logs, exceptions and warnings.
In the center (4) the currently running simulation is rendered in the Game view. In the right panel (5)
the Inspector tab is selected, which shows the in window 2 selected prefab asset named “MlAgent”.

The toolkit consists of the following five main components. Figure 2.8 shows a UML diagram
of the main components with their dependencies to the Lost Survivors project.

Learning environment Any Unity scene can be transformed into a learning environment by
adding one or more implementations of the so-called agent. The agent can be added as a
GameObject component and defines the behavior within the training environment. There
can be multiple behaviors within one training environment. All agents of one behavior type
are managed by its academy. The academies are connected to the external communicator.
Agent and academy are part of the ML-Agents Unity SDK.

External Communicator This is also part of the ML-Agents Unity SDK. It connects the
learning environment with the python API. This includes the academies but also the
possibility to send customized data from the environment outside of the agent behaviors.

Python Low-Level API This is part of the mlagents_envs Python package and is not part
of the Unity application itself. The python API is the key point between the learning
environment and the machine learning algorithms. It hands all data from the learning
environment to the ML algorithms and controls the academies during the training process.
The API is also the entry point for own implementations of ML algorithms.

24 CHAPTER 2. FOUNDATIONS

Python Trainers Is part of themlagents Python package with dependency on themlagents_envs
package. It contains all the predefined training algorithms linked to the Low-Level API. It
is used to start the training process with its training configuration file 8 and additional CLI
options for the Unity application.

Gym Wrapper Is optional and has its own python package called gym-unity. The gym wrap-
per links to the gym toolkit provided by OpenAI and can be used to compare different
reinforcement learning algorithms.

Figure 2.8: Project dependencies between Lost Survivors and the ML-Agents Package

To run the ML-Agents toolkit the prerequisite of Unity 2018.4 or later and Python 3.6.1 or
higher are needed9. With the requirements in place only two packages need to be installed. One
is the Unity C# SDK which can be installed with the Unity package manager and the mlagents
python package. With the installed SDK, an agent can be created by adding an implementation
of the agent component to a GameObject. The GameObject then needs to be included in the
scene asset which should be used as the training environment. With at least one agent added to
the scene, the training can be started by running the application in the editor or as a standalone
built application. On startup the agent academy will be instantiated which will establish the
connection to the agents and the low-level API. The agent will send its environment observations
to the trainers via the low-level API and executes all actions it receives.

Agent actions

The action space A (see subsection 2.3.4) is transmitted as a vector ~an of floating point numbers
with specified value ranges. Values can be either discrete or continuous. In a continuous action-
space the value ranges between -1 and 1 (∈ R). While discrete action space values are equal
to the naturals numbers (N). On receiving the action vector, the agent translates each value
(also called branch) into an individual action. An example for continuous actions would be to

8A YAML based file which defines the training algorithms and hyperparameters to be used during training
9for this work Unity 2019.4.15f0-2019.20f1 and Python 3.7.9 were used together with the ML-Agents version

1.8.1-preview (Release 14)

2.4. UNITY ENGINE 25

combine three branches into a three-dimensional direction vector ~a1...3 to move a character in an
3D environment. A fourth branch could be used additionally to define the character’s movement
speed. In discrete action space, each value represents an action. Multiple branches are only
needed to enable simultaneous actions or to specify action behavior. In the game Super Mario
[50] for example, only two branches (~a1...2) would be needed to play the game. The first branch
would define the move direction. To be able to jump simultaneously, a second branch needs to be
defined. Another benefit of the discrete action space is that it is possible to filter invalid actions
by masking them. For example, if the character stands beneath a stone and would not be able to
jump, the jump action can be masked for the next step. This way the jump action will not be
taken into account in the next policy update. Unity implementation of action masking is based
on the work of Vinyals et al. [51]. To mask an action the branch and value have to be specified.
Multiple actions of the same branch can be masked, but at least one action per branch has to be
available.

Agent observations

Observations represent the game state for the agent and should include all necessary information
for the agent to choose the best possible action. The best possible action is measured by the
reward the agent gets for its actions. An observation can range from images of the current
environment to simple truth values. Observations are transmitted to the network as a float
vector of observations. The vector has a fixed size which is defined in the behavior parameters
component, which can be seen in Figure 2.9.

Figure 2.9: Inspector view of the agent GameObject and its components in the Unity Editor
On the left side the behavior parameters are defined. The behavior name is matching with the training
configuration of the python trainer. The sizes of the observation and action vectors are also defined here.
The behavior type decides if the agent is training, if it is controlled by an existing model, or heuristic
actions. On the right side the agent component is displayed. The Max Step parameter defines the length
of an episode. The rest of the agent parameters are custom game specific parameters. The Decision
Requester configures the interval in which new action decisions are requested from the academy. The

Demonstration Recorder is used to record the agent actions to be used in future training runs.

26 CHAPTER 2. FOUNDATIONS

Agent rewards
The most important part when designing the agent is its reward function. To successfully train
an agent it is crucial to have a well-defined reward function. Rewards defined in the Unity
environment are counted as extrinsic rewards and are transmitted to the ML algorithm. Reward
signals can be positive or negative. A positive reward to reinforce good behavior and negative
rewards when the agent shows unwanted behavior. For an optimal training, the agent receives
a reward signal after each action step. In environments where it takes multiple steps to reach
the goal, it is not always possible to define a reward after each step. Depending on how sparse
or dense the reward signals in the environment are, it can be favorable to choose a different
RL algorithm. According to the Unity documentation PPO achieves the better results in dense
reward environments, while in sparse reward environments SAC is often more beneficial. For
further information on the PPO algorithm used in this work, see section 2.3.

ML-Agents setup
For the additional training algorithms GAIL and BC a recording of agent actions, observations
and rewards is needed. To generate demo behavior the heuristic method of the Agent has to be
implemented. Instead of the communicator controlling the agent, the heuristic method is then
used to control the agent.10 In this method action vector values can be defined by manual user
input or rule-based, which will later be used to include predefined behavior (see section 3.7).
When controlling the agent with Heuristic behavior the Unity Demonstration Recorder -component
can record all actions, observations and rewards and saves them into a .demo asset.

All hyperparameter settings for the machine learning algorithms are defined in a training
configuration YAML file. The file contains the behavior configurations for all agents in the
environment. The configuration file is not part of the environment itself and needs to be passed to
the python trainers when starting the training. The configurations also include which algorithms
are used for the training (an example can be seen in section 3.8). Unity provides state-of-the-art
deep Reinforcement Learning algorithms PPO and SAC but also methods like BC, GAIL, curiosity,
parameter randomization, curriculum learning and Random Network Distillation to shape the
agent’s behavior. Because multiple agents with different behaviors can exist within the same
environment, different training algorithms can be used in parallel. As Lost Survivors has a very
dense reward environment when using xp as decisive, PPO is used for the training. This algorithm
is combined with BC and GAIL to give the agent a head start and increase the cumulative reward
in the first training steps. More details will be explained in section 2.3.

The training process can be monitored via TensorBoard. TensorBoard is a tool from the open
source library TensorFlow11 and helps to visualize ML training processes. The python trainer is
saving statistical data about the policy, learning loss functions and the environment. This allows
for more detailed analysis on whether the training was successful or what parameters can be
improved. It is also possible to implement custom statistical data in the environment for further
analyses. For Lost Survivors the additional data was recorded for all executed actions and if an
agent was reaching its policy goal or was terminated earlier.

10Is also possible to control the agent with an existing model of a trained neural network, which can be useful
when the trained behavior should be included into the application.

11TensorFlow is a open-source framework optimized for machine learning processes. https://www.tensorflow.
org/, Accessed: 28.065.2021

https://www.tensorflow.org/
https://www.tensorflow.org/

Chapter 3

Implementation

This chapter contains a detailed overview on the implementation of previous explained machine
learning algorithms (see section 2.3) into Lost Survivors. As Lost Survivors is also implemented
with Unity, this part will cover the integration of the ML-Agents package (see subsection 2.4.2).
To transform the game into the agent’s learning environment the existing game architecture needs
to be modified, which will be covered in the first section. The next section pictures the software
architecture before getting into implementation details on the agent actions, observations and
rewards.

3.1 Application Preparation

Usually the Lost Survivors game is run on Android and iOS mobile devices, but training an agent
requires a lot more computational power than a mobile device could offer. To be able to utilize
the high computational power of the HAW Hamburg server, it was needed to prepare the Lost
Survivors game for a Linux operating system. To create a Linux version only a few mobile specific
code library’s like the Apple Store payment connection, notification services and Google Play
Store API had to be removed from the code base. Because the ML-Agents package came with its
own dependency to the Googles protocol buffers, the already existing one was replaced by it. To
decrease the application loading time, additional aesthetic content was removed. This included
mainly assets for the Heads-Up Display (HUD), popups and other user interfaces, which were not
needed for the agent to interact with its environment. All removed code was not affecting any
gameplay modules. This enables running the Lost Survivors application on external servers. The
technical specifications of the server can be found in section 3.8. As the game usually runs as a
single instance per operating system there had to be made one adjustment to an external code
package which was responsible for storing player data. To avoid using the same player data for
all agent instances, the stored data was instanced with a random ID, which made the stored data
unique.

The game Lost Survivors is separated in a frontend and backend part. The backend is
responsible to calculate and maintain the complete game logic, while the frontend is responsible to
display the game state and capturing players actions. For this work an additional backend server
was set up which is located at InnoGames and holds all player data. To improve the training
speed, the balancing data on the backend was speed up with a multiplier of 2000 to avoid long
waiting times between the actions. The player state is loaded from a preset which can be setup
and configured by game design or QA. The preset data is stored in the backend and cointains
information like player level, items, soft currency, etc. For the training of this work the preset

27

28 CHAPTER 3. IMPLEMENTATION

was set up to start right after the tutorial. The tutorial is an introduction to the game with a
linear sequence of actions. During the tutorial the player is very limited in its choices, so that it
is less useful to train the agent in this state.

Another part which had to be adjusted in the frontend was an included prediction system. For
some requests the frontend predicts the backend response instead of waiting for the actual backend
response message. Because both systems are running with an up-scaled speed, the prediction
system was turned off to avoid desynchronization between backend and frontend. It still can
happen that the frontend is not synchronized with the backend when for example the resources
have been spent on an action, but have not been removed from the inventory due to network
delay. If the agent then tries to spend the resources twice, the backend will throw an error. To
stabilize the training process, backend errors are ignored in the frontend to avoid reloading the
game during the training. The downside of this is that for some actions the returned reward
might not be transmitted from the backend in the same agent step which could lead to the agent
optimizing for the wrong action.

3.2 Software Architecture
This part will cover the C# side of the implementation. To create the training environment, a
new namespace inside the Lost Survivors project has been created. Figure 3.1 shows an Unified
Modeling Language (UML) diagram to picture the class dependencies and how they are integrated
into the project. The following sections will describe the functionalities of the classes seen in the
UML diagram. They are sorted by the execution time of the associated class when starting the
application.

SceneSetup To enable the ML-Agents package in Lost Survivors an additional setup scene is
interposed. The scene is used as the entry point for the Unity application and contains
the SceneSetup class. The SceneSetup has three main responsibilities. It will load the
game, instantiate the training, and it will reset the environment when an agent episode has
ended. On the first scene startup a DummyAgent GameObject is instantiated before loading
the game. Creating the agent first is necessary to avoid running into timeouts with the
communicator during long loading times. After the agent is created, the application starts
loading the game assets and connects itself to the backend server to load the player state.
The connection is establishes by authenticating with a token.

MainContextInstaller The main context installer is loaded together with the game assets.
By loading the game, the MainContextInstaller will be executed, which will also in-
stall all bindings for the agent and its components in the dependency injection con-
tainer (DIContainer). Because agents will be destroyed and re-instantiated multiple
times during the training, the SceneSetup will hold and persist the DIContainer to
inject the agents dependencies during instantiation. When the game is done loading,
the GameAgent is instantiated and the AgentAction, AgentRewards, AgentObservations,
AgentActionMaskBuilder and the AdditiveStatsRecorder get injected.

MLContextInstaller Installs all ML-Agent related dependencies. It is triggered by the
MainContextInstaller.

DummyAgent The DummyAgent component is an empty implementation of the ML-Agents
agent interface. This way the agent academy and the connection to the low-level API is
already established on the application startup before loading the game.

3.2. SOFTWARE ARCHITECTURE 29

GameAgent The GameAgent implements the Agent interface from Unity’s ML-Agents package.
The Game agent is initialized with the parameters from the training configuration file. The
agent can be in different states and either receives actions from the academy or by heuristics.

Agent The Agent interface is part of the ML-Agent package and contains five methods to be
implemented by the inheritor. Initialize() is called at the beginning of the Agents
training and should prepare the agent to act in the environment. Heuristics(float[]
actionsOut) is used to control the agent within the environment instead of the academy.
CollectDiscreteActionMasks(DiscreteActionMasker actionMasker)masks all actions
which cannot be used in the next step. OnActionReceived(float[] vectorAction) is
called to execute an action. The float array is one dimensional and represents the action
as a float value. CollectObservations(VectorSensor sensor) collects the game state S
and sends it back to the python trainers.

Academy The academy is the link between the communicator (not displayed in the diagram)
and the agent. It controls the agent with the actions sent by the python trainers. It also
provides the environment parameters from the training configuration file to set up the
agents behavior and reward function.

DemoActionProvider For the recording of agent actions, the DemoActionProvider is used to
provide the heuristic actions. The DemoActionProvider determines a single action value
which is based on simple rules regarding current game state.

AgentHelper The single action value the GameAgent receives gets translated to the associated
action by the AgentHelper before it is executed by the AgentActions class. It will transform
the action value into a three-dimensional action vector containing the action, the first action
specification S1 and the second action specification S2 (see section 3.3).

AgentActions The AgentActions class holds all game services which are necessary to trigger
a certain action. Services typically construct the server request which triggers the action
execution in the backend. The composite of the agent actions can be found in section 3.3

GameServices and DataProvider On the frontend side the game state is persisted via value
objects which can be accessed via the DataProviders. GameServices allow to manipulate
the game state, which is done mainly through sending server requests. GameServices are
also responsible to handle server responses. An example value object is the BuildingVO
which contains the game definition for a specific building. The IBuildingDataProvider
offers methods like CanSellBuilding(BuildingVO buildingVO) which returns a boolean
value to ask if a building can be sold. Then the IBuildingService can be used to call the
SendSellBuildingRequest(BuildingVO buildingVO) method, which will send a request
to the server to sell the building. Note that the services do not check for themselves if the
request is valid.

AgentRewards After each executed action, the AgentRewards class sets a reward. Depending
on how the reward function is set up via the training configuration file, the AgentRewards
will end the agents’ episode for reaching the curriculum goal or not reaching a reward at all
for a defined amount of agent steps. Because some rewards are based on the game state,
AgentRewards is using AgentObservations to define the rewards.

AgentObservations The main purpose of the AgentObservations class is to extract the
current game state in the form of attributes which get encoded in an observation vector.
Its observations are also used to create the action mask and define the agents rewards. The
observations are created by using existing game services and data providers.

30 CHAPTER 3. IMPLEMENTATION

3.2. SOFTWARE ARCHITECTURE 31

Figure 3.1: UML diagram of the implemented agent in Lost Survivors

The figure shows the conceptional UML class diagram of the agent within the game environment. The
implementation of the agent interface (from the ML-Agents package subsection 2.4.2) lies inside of the

Lost Survivors code-base. When starting the application the MainContextInstaller executes the
MLContextInstaller which sets the DIContainer (dependency injection container) in the SceneSetup.

With the DIContainer the SceneSetup is ready to instantiate the GameAgent with all its required
dependencies to the game services. For better separation of responsibilities the GameAgent uses separate

interfaces for actions, rewards, masking, observations and statistical records.

32 CHAPTER 3. IMPLEMENTATION

AgentActionMaskBuilder Because not all action are available in every state, the AgentAction
MaskBuilder uses the AgentObservations to create an action mask. The GameAgent uses
the action mask to filter for possible actions before executing the next step.

GameAgentTest Unit test class to assure the correct transformation for actions in form of a
single float value into a three-dimensional array and vice versa.

AdditiveStatsRecorder All executed actions get recorded by the AdditiveStatsRecorder for
the statistical evaluation of the GameAgent. The recorded actions will be summed up over
one episode before they get transmitted to the python trainers. At the end of the training
the results can be visualized with the help of TensorBoard.

3.3 Actions
For Lost Survivors no simultaneous actions are required. Even though it would be possible to start
different productions at the same time, it has no significant impact to start actions sequentially.
Most actions in Lost Survivors are time bound in order of minutes, while the agent acts in a time
frame of milliseconds. In order to reduce complexity, this work assumes it is not a big difference
(if any difference at all) to start an action some milliseconds delayed because of the sequential
order. In fact, it might even be beneficial because every action is based on new observations. To
further reduce learning complexity, the agent is running only on a subset of all possible actions in
the game. The selected actions the agent is able to perform are carefully chosen in a way that the
agent is able to complete the full core loop cycle of Figure 2.2. Hereby the actions are separated
in actions which can be controlled by the python API and actions which are executed by the
agent automatically as soon as they become available (with consideration of their requirements,
see Table 3.3). All automated actions create advantages for the agent in items, experience points,
soft currency and unlocking more possibilities. Except for “Send parrot Task” they also have in
common that they do not have any costs on execution (like soft currency or items). Because of
the comparably great advantage to use "Send Parrot Tasks" it was decided to use this action
automatically. Automatic actions are independent of the training algorithm and executed in
parallel to the selected training actions.

The Agent of this work is able to perform the following actions. Table 3.1 and Table 3.2 are
showing actions which the agent can actively choose from based on its observations. Table 3.1
shows actions which include predefined logic based on the current game state. And lastly Table 3.3
includes all actions which are automatically executed as soon as they are possible.

Vector index Action Requirements Specifications Costs Rewards
12 Smart dispose - - - -
13 Smart gathering - - - -
14 Get parrot task resource - - - -

Table 3.1: Agent action combinations

3.3. ACTIONS 33

Vector
index Action Requirements Specifications Costs Rewards

1 Do nothing - - - -

2 Send gatherers Gatherers idle
Scouted locations Gathering location index - -

3 Dispose items Items in storage Item index to pick from storage Items -
4 Scout locations Unlocked by level Index of locations to scout Soft currency Resource location

5 Building production
(Crafting)

Recipe unlocked
Building unlocked
Needed resources

Building index
Recipe index Base goods -

6 Unlock recipes Unlock by experience points Recipe index to learn Soft currency Recipe

7 Animal production Building unlocked
Needed resources

Building index
Recipe index Base goods -

8 Start build buildings Building unlocked Building index Soft currency -

9 Upgrade buildings Building unlocked Building index Soft currency
Goods Experience points

10 Start building island expansion Unlocked by level - Soft currency -

11 Cultivation production Building unlocked
Needed resources Building index Base goods -

Table 3.2: Agent actions

Action Requirements Specifications Costs Rewards

Collect from gatherers Gatherers production ready
Storage space - - Items

Experience points

Collect building production Production finished - - Item
Experience points

Collect from cultivation buildings Production started - - Items
Experience points

Collect From animals
Animal-Survivor unlocked

Habitat build
Animal fed

- - Items

Send parrot task Parrot available
Resources in storage - Goods

Base goods
Soft currency

Experience points
Unlock parrot slot Enough parrots sent - - Parrot task slot

Start quests lines Unlocked by survivors
Game progress - - New quests

Collect quests Quests task fulfilled - - Soft currency
Finish build buildings - - - Experience points
Finish expansions - - - Experience points

Collect chests - - -
Goods

Materials
Experience points

Table 3.3: Automatic executed agent actions

Some listed actions need to be specified to make sense in the game context. For example, if
the agent wants to build a building it has to specify which building to build. For some actions
like the building productions even two specifications are needed to define the production building
and the affiliated recipe. The action specifications S1 and S2 account for all actions. To strike
a good balance between a small action space and to cover most of the game actions (especially
on the lower player levels, where most of the training will happen) the action specifications are
defined as S1 = 9 and S2 = 5. For example, with this setup it is possible to perform 5 different
actions on each of the first 9 production buildings. With 14 actions in total this produces an
action vector of ~a =

(
14 9 5

)
. As it is not needed to execute these actions in parallel, the

vector ~a1...3 can be transformed into the vector ~a′n=1 with the length of one. With Equation 3.1 a
unique value for each specified action can be calculated.

~a′1 = (~a1 ∗ S1 ∗ S2) + (~a2 ∗ S2) + ~a3 (3.1)

34 CHAPTER 3. IMPLEMENTATION

With the defined specification sizes S1 = 9 and S2 = 5, Equation 3.1 results in 680 possible
actions. Because not every action needs both specifiers, the action space can be further reduced
by eliminating all unnecessary action values. With Algorithm 3 all unused action values are
removed which leaves 194 possible actions to choose from for the machine learning algorithm.

Algorithm 3 Clear action values without specifications
1: for action = 0, 1, . . . 13 do
2: if specification of action is 0 then
3: remove S1 ∗ S2− 1 = 44 action values starting at: action ∗ S1 ∗ S2 + 1
4: end if
5: if specification of action is 1 then
6: for s = 0, 1, . . . 9 do
7: remove S2− 1 = 4 action values starting at: action ∗ S1 ∗ S2 + s ∗ S2 + 1
8: end for
9: end if

10: end for
For all 14 actions each action has a default value range of 45 actions, if the action has two specifications.
When there is only one specification (checked in line 5) the range can be reduced to 9 action values in
total. This is done by removing each action value which is associated to the second specification. In the
case that the action has no specification at all (checked in line 2) only one action value is needed. The
other 44 values associated to the action specifications can be removed.

3.4 Action Masking

Every action the agent requests is first checked to meet all requirements before it is translated into
an HTTP request to the backend. If the agent tries to execute an action without the requirements
it will not be executed. To avoid having the agent learn these rules, state dependent action
masking is applied. The masking used in this thesis works similar to the AlphaZero algorithm
published by DeepMind from Silver et al. [52]. In AlphaZero a Reinforcement Learning algorithm
was trained to play the games chess, shogi and go with the specialty that the agent did not know
which game it was playing. The only domain knowledge the algorithm had was based on the game
rules. Illegal moves were masked out from the action representations by setting their probabilities
to zero, and renormalizing the probabilities for remaining moves. The masking in Lost Survivors
is based on the action requirements. For actions with specifications, each action variation is
checked against its requirements. In the most extreme case this could lead to the agent being
able to perform only the “Do nothing” action, which should by game design never happen.

3.5 Observations

As this work does not aim to imitate human player behavior by clicking screen elements, no visual
observations are included. The game state is represented by observations deriving in majority
from Boolean-values. In addition, different states of items, buildings and recipes are transmitted
in the one-hot fashion. The complete list of observations made for the Lost Survivors game can
be found in Table 3.4.

3.6. REWARDS 35

Observation Description Observation vector size
Missing experience points to the next level 1
Current owned soft currency 1
Item storage capacity 1
Gatherers with idle state 1
Gatherers with a production ready to collect 1
Gatherers in production 1
Can any new gather-spot be scouted 1
Can collect from any production building 1
Can collect from any animal building 1
Can collect from any cultivation building 1
Can complete a parrot task 1
Can collect any quest 1
Can start any quest 1
Can build any new building 1
Can finish any building construction 1
Can upgrade any building 1
Can start building any island expansion 1
Can finish any island expansion 1
Can learn any new recipe 1
Production building recipes ready to be produced 9 ∗ 5 = 45
Animal building recipes ready to be produced 9 ∗ 5 = 45
Cultivation building recipes ready to be produced 9 ∗ 5 = 45
Items in storage 350
Items missing for productions 350
Items missing for Parrot tasks 350
Buildings built on the island 237
Buildings without active production 237
Buildings ready to be built 237
Learned recipes 257

Total: 2172

Table 3.4: Agent observations

Because of the fixed observation size, observations for items, buildings or recipes are created
with a list of all possible items, even if the agent only reaches a fraction during its training states.
To enable the agent to take actions based on previous observations, the observation vector can be
stacked multiple times. For example, in the Lost Survivors game it can be useful to know if some
productions were already running in previous steps, so the agent can make sure to have enough
space in its storage. For this work it turned out beneficial for the results to stack the observation
vector five times, creating a total observation vector size of 10860.

3.6 Rewards

In this work the different reward functions were used to evaluate different behavior. The reward
functions focused on different aspects of the game to see if the agent creates different strategies to
accomplish its goal. This as well has the benefit to focus the agents’ behavior on a specific game
aspect. With different reward functions it is possible to reevaluate the game if the game designer
changes parts of the game design data during the development process. It can also be used to
train the agent on a specific play style to mimic different player types. A general component to
measure game progress are experience points (xp). Players’ progress in the game by collecting
xp for their actions. With a certain amount of xp the player reaches the next player level which
unlocks more game features. As shown in Figure 2.2, every main activity is rewarded with xp.
Therefore, xp are used to create a dense reward signal.

36 CHAPTER 3. IMPLEMENTATION

When designing a reward function it can be challenging to balance rewards (or punishments)
against each other. One learning from the Hummingbird example [31] was to keep it rather simple
instead of having a mix of small rewards for different actions. It is also recommended keeping the
total reward in a range from -1 to 1. Another learning from the Hummingbird example is that
too much negative rewards can lead to a paralyzed agent. With too many negative rewards, the
agent will try to do nothing, to not get more punishment. The reward function used in this work
is defined as the following Algorithm 4:

Algorithm 4 Curriculum reward function
1: if no xp gained then
2: reward = −1/steps
3: end if
4:
5: if no xp gained for x steps then
6: reward = −1
7: start a new episode return
8: end if
9:

10: if curriculum goal xp reached then
11: reward = 1
12: start a new episode return
13: end if
14:
15: reward = (gained xp since the last step)2 ∗ totalfactor

When the agent does not gain any xp in the current step, the agent will be punished. The
punishment is separated into two states. As it is not possible to collect xp in each single step the
agent gets just a very small negative reward of 1

steps where in most of the training’s steps = 2000.
However, the agent should always collect at least some xp within the last x steps. If the agent
fails to collect any xp within the defined range x the current training episode will be stopped.
For most trainings’ x = 500. A positive episode end could be reached by the agent if the current
curriculum goal was reached. The goal is defined as a fixed amount of xp which raises in each
lesson. If the goal was not reached, but the agent was still collecting new xp, a few xp will be
granted to nudge the agent into the right direction. The gained xp are counted as squared to value
bigger quantity of xp even more. Higher quantities of xp (∼ 50− 200) are given for completing
complex tasks like buildings and upgrades, while lower xp (∼ 1− 10) are given out for collecting
single productions and base resources. To make sure the reward does not become bigger than 1 it
was factorized by totalfactor = 0.0002.

3.7. DEMO ACTIONS 37

3.7 Demo Actions
As mentioned in section 2.3 it is possible to provide the agent with demo actions to boost the
training speed via BC and GAIL. Therefore, the DemoActionProvider has been implemented. In
combination with the GameAgent the DemoActionProvider acts as a player following a predefined
rule set. For each action the DemoActionProvider checks the action conditions in a sequential
order. The first action becoming available will then be returned and executed by the agent. The
rule set is determent by the order in which the DemoActionProvider checks the action conditions.
An example action check can be seen in Listing 3.1.

1 float [] actionsOut = new float [3];
2

3 // Default: Do nothing
4 actionsOut [0] = (int) ActionsEnum.DoNothing; // Action
5 actionsOut [1] = 0; // Specification 1
6 actionsOut [2] = 0; // Specification 2
7

8 // Scout if possible
9 List <int > countUnlockableGatherSpots =

10 agentObservations.GetUnlockableGatherSpotsByIndex ();
11 if (countUnlockableGatherSpots.Count > 0)
12 {
13 actionsOut [0] = (int) ActionsEnum.Scouting;
14 return actionsOut;
15 }

Listing 3.1: First action check in the DemoActionProvider

In line 1 the action vector ~a is defined as actionsOut. As default the vector is initialized
with the “Do Nothing” action. The first action which is checked in the demo action provider
is if scouting of new gatherer spots is possible. The condition for this action to be available is
that gatherer spots are unlocked by player level and that the player has the required amount
of soft currency. Both of which is checked in line 9 - 10 via the AgentObservations. If a
new gatherer spot is available, the action ~a1 is adjusted and returned to the GameAgent. In
this case the demo action will always scout the first possible gather spot. In the later train-
ing the GameAgent will be able to specify in ~a2 which of the unlockable gathers spots will
be scouted. For scouting ~a3 is not needed. The strategy used for the training depends on the
used reward function. For xp depended rewards the conditions were checked in the following order:

Scouting → BuildingBuilding → UnlockingRecipe → CollectingChest → CollectingQuest →
FinishingExpansions → FinishingBuilding → StartingQuest → StartExpansionConstruction →
StartingBuildingUpgrade → SmartGathering → SendingParrot → SmartDispose (if no storage
space left) → GetTaskResource → StartingBuildingProduction → StartingAnimalProduction →
StartCultivationProduction → CollectCultivationProduction → CollectingAnimalProduction →
CollectingBuildingProduction → Collecting → DoNothing

The sequence is complementary to the designed gameplay. It is not guaranteed to be the
optimal way but gives a good direction for the later training. The sequence above follows two
main incentives. First, use up as many resources and prepare for further productions. If no
further spending of resources is possible, check if there is enough storage space to collect goods
and finished productions. Note that all above automated actions listed in Table 3.3 have no effect
on the agent training and are just listed for completion.

38 CHAPTER 3. IMPLEMENTATION

3.8 Training Setup

Machine learning requires a lot of computational power to come to results in a timely manner.
For the training process of this work the hardware was split up on two servers. One server
was running the games’ backend and was located at InnoGames. Because of legal and security
reasons, the game logic and balancing data was not allowed to leave the InnoGames network.
The training process itself was running on the university servers of the HAW Hamburg. The
university server runs with 18 CPUs and 256 GB RAM. The server is managed via docker and is
running the operating system is Linux. Since the application runs the training in batch mode
without graphics, no significant GPU power is needed.

The Lost Survivors game has a single entry point for one player per application. Additionally,
all game internal services and data providers are designed to persist data of one player. Because
of this it is impossible to log in with multiple players within one application. This takes away one
of the main training optimization possibilities. In contrast, in the Hummingbird project and other
examples from the Unity ML-Agents package, the training scene contains multiple environments
(often 20 or more). To still train multiple agents simultaneously, the server has to launch multiple
application instances, which connect to the same python trainer. As each application allocates
memory, this creates unusable memory space. The server was able to conveniently run up to 18
simultaneous applications.

The python trainer also runs on the university server and is initialized with the hyperparameters
from the training configuration file. The configuration file which achieved one of the best results
is displayed in Listing 3.2.

1 behaviors:
2 Behavior_LostSurvivors:
3 trainer_type: ppo
4 hyperparameters:
5 batch_size: 128
6 buffer_size: 500000
7 learning_rate: 0.0003
8 learning_rate_schedule: constant
9 beta: 0.001

10 epsilon: 0.2
11 lambd: 0.99
12 num_epoch: 10
13 network_settings:
14 vis_encoder_type: simple
15 normalize: true
16 hidden_units: 128 # higher = relation between observations and actions is

more complex. Typical range: 32 - 512
17 num_layers: 4
18 memory:
19 sequence_length: 64
20 memory_size: 256
21 max_steps: 5.0e7
22 time_horizon: 2000
23 summary_freq: 5000
24 keep_checkpoints: 5
25 checkpoint_interval: 50000
26 threaded: true
27 init_path: null
28 reward_signals: # Environment rewards
29 extrinsic:
30 strength: 1.0
31 gamma: 0.99
32 gail:
33 strength: 0.05

3.8. TRAINING SETUP 39

34 gamma: 0.99
35 encoding_size: 128
36 demo_path: VM26_xp.demo
37 learning_rate: 0.0005
38 use_actions: true
39 use_vail: false
40 behavioral_cloning:
41 demo_path: VM26_xp.demo
42 strength: 0.5
43 steps: 150000
44 environment_parameters:
45 min_steps_to_reach_reward: 500 # Restart is forced when the agent is not getting

a reward for the amount of steps defined.
46 reward_update_steps: 1 # Defines how many steps the agent does before checking

his rewards. Can be used to fake sparse rewards.
47 reward_default: 0
48 reward_factor: 0.0002
49 reward_function_specification: 1 # Defines the reward function used by the agent
50 reward_to_reach:
51 curriculum:
52 - name: Lesson0
53 completion_criteria:
54 measure: reward
55 behavior: BehaviorTRO
56 signal_smoothing: true
57 min_lesson_length: 100 # Average reward on XX episodes
58 threshold: 0.8 # Reward to reach
59 value: 300 # Xp goal value for environemnt
60 - name: Lesson1
61 completion_criteria:
62 measure: reward
63 behavior: BehaviorTRO
64 signal_smoothing: true
65 min_lesson_length: 100
66 threshold: 0.8
67 require_reset: true
68 value: 400
69 - name: Lesson2
70 #Lesson2 , Lesson3 , ...

Listing 3.2: Training configuration file

40 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

Before getting into the results of the agent training, a short review of developing the agent
in parallel to a running production is given. The following section then covers the training
results which are structured in chronological order to the development. Hereby, all significant
intermediate steps and results are evaluated in detail. The last section includes which difficulties
occurred during implementation and also during the training of the agent.

4.1 Continuous Development

To prove that ML is also working in a continuous development process, in the implementation
of this work, the game was continuously updated with the master branch. Over this time
more than 10,000 commits have been added by 25 team members. The merges into this work’s
implementation were done at the end of the sprints or milestone goals. Not all merges were conflict
free. Most of the conflicts accrued in the services or data providers which had been previously
modified to enable the agent to train (see section 3.1). Some conflicts would have been evitable
with this work being included into the master branch. For example renamed getter methods in
the services which were also accessed by the game agent. However, as this work was exploratory
research, it was not planned to be included into the project. Speeding up the durations via the
balancing data also led to conflicts when merging changes in balancing. Unfortunately, the game
architecture at this point was not able to decrease productions times differently, although time
boosters were already planned into future production cycles.

4.2 Training Results

In total, over 30 training runs with different sets of hyperparameters and reward functions have
been conducted. Similar to the game, the training runs were also executed continuously with the
implementation of the GameAgent. The training runs had between 0.3 and 11.5 million training
steps with a training time between two hours up to eight days. Noticeable, the run with the
longest duration is not equals to the run with the most training steps. This partially relates to
the fact that the complexity of the game agent increased during the implementation process. Not
all actions and observations were available in the first training runs. With each change in the
agents observation or action space the parameters were reevaluated and eventually changed for
future runs. Resulting from that, the one training run which achieved the best performance as

41

42 CHAPTER 4. EVALUATION

an agent will be compared on different aspects. In the following text the main findings will be
marked down with corresponding explanations.

With the knowledge of previous research the first training runs started with the combination of
BC, GAIL and PPO. Due to the dens reward environment, PPO was chosen over the SAC as deep
reinforcement learning algorithm. Another reason for taking PPO was the better compatibility
with GAIL.

4.2.1 Disabling Curiosity

The first big change in the training setup was the removal of the curiosity module for future
training runs. With the curiosity module enabled, the reward showed too high fluctuations, which
can be seen in Figure 4.1. The red line indicates the reward with the settings from the final
training run, while the others are executed with curiosity enabled. Even though the strength of
the curiosity module was only 0.08 while the extrinsic reward was set to 1 it had a strong effect
on the training. Limiting the learning rate had no significant effect. It was also tested to limit
the rewards in the total value, which led to the same strong fluctuations however in a smaller
scale. Therefore, the curiosity module was considered to be of no avail. The curiosity module has
been tested with the hyperparameters shown in Table 4.1.

gamma γ strength encoding size learning rate η
0.99 0.08 64 3.0e-03
0.99 0.08 64 3.0e-05
0.99 0.08 128 3.0e-04

Table 4.1: Curiosity hyperparameters
The different training configuration sets with which the curiosity module was tested.

Figure 4.1: Trainings with and without curiosity in comparison

The graphs colored in gray, orange, magenta and green have the curiosity module enabled. All of these
graphs show a high fluctuation in rewards. The red graph has not used the curiosity module which lead

to a much more stable reward.

4.2.2 Curriculum Learning

Introducing curriculum learning to the training process has quickly shown to be helpful. An
overview of all successful curriculum training runs can be seen in Figure 4.2. Before curriculum

4.2. TRAINING RESULTS 43

learning was introduced, the agent would receive its rewards solely based on the gained xp.
Previously the reward function was equal to Algorithm 4 without lines 10 - 13 and a different
total factor. The idea to introduce curriculum learning was to create a clear goal for the agent
instead of an endless episode of rewards. With the curriculum reward function, episodes are
terminated with the maximum reward of one as soon as the curriculum goal is reached. This way
the optimization goal is clearly defined. Low amounts of xp collection is avoided as the goal is
to achieve a high amount of xp with the least amount of steps. By increasing the goal in each
lesson it is still possible to optimize for a maximum of possible experience points. The reward is
expected to be roughly maintained at the same level, however, with drops at the beginning of
new lessons, due to the agent which has not yet learned to achieved its next goal. The respective
training runs can be seen in Figure 4.2 (lessons) and Figure 4.3 (rewards). It is important to note
that the agent might use different strategies in its lessons. As an example: the agent might pass
a lesson with lower xp goals by just collecting water, but when the lessons increase, collecting
only water will not bring enough reward to reach the goal. As a result, the agent will override its
weights in favor to the next goal and collecting water will become less important. Therefore, the
agent will adapt its learnings to strive only for the highest possible amount of xp. The lessons in
between only serves the agent as guidance and gives the agent a better initial state for the next
lesson. If the optimal strategy is far apart from the initially strategies chosen by the agent, the
risk remains that the initial lessons may influence the training in a wrong direction and could
result in a local minimum.

Figure 4.2: All training runs with curriculum lessons

Figure 4.3: Reward progress on curriculum training runs
The shown graphs’ colors are matching with the associated graphs’ in Figure 4.2.

44 CHAPTER 4. EVALUATION

4.2.3 Stacked Observations

The next significant improvement was found when stacked observation vectors were introduced.
This change was made on the agent implementation. Hence, the input for the neural networks
increased, which makes previous trained models incompatible. Compatible versions can become
important if a continuous training in future versions is planned, as they need to have the same
observation and action space. In Figure 4.4 the red graph with 5x stacked observations significantly
outperforms the other two training runs with 1x and 20x stacked observations. As explained in
section 3.5 it is beneficial for the agent to know previous states to plan its next actions accordingly.
As an example, gatherers are always cycling though the same three states. At first, they are
idle, when being sent out they change to in production, and after that they are in production
ready. All of these states are preserved in the observations. On the other hand side the training
run with 20x stacked observations performed significantly worse. This shows that far distanced
observations do not have a decisive impact on the game. The additional computational power
needed to optimize the policy network for 20x stacked observations seems to outweigh the benefit
of past observations. The reason that all three training runs managed to overcome the third
lesson, was due the BC and the satisfactory performance of the random actions obtaining the
needed amount of xp.

Figure 4.4: Curriculum learning with different amounts of stacked observations

The blue graph shows the training with a single observation space, the red graph has 5x stacked
observations and the agent, indicated by the orange graph, was trained with 20x stacked observations.

In correlation to the higher lessons reached by the agent, the episode length increases (see
Figure 4.5). The increasing episode length indicates that the agent starts to learn that not
collecting xp leads to negative rewards and termination. It also shows that lessons with higher
xp goals require the agent to do more training steps due to complex action sequences to receive
more xp. With the training setup (see Listing 3.2) the agent can do 500 steps without reward
before the training episode gets terminated with a negative reward. The lesson is terminated
with a positive reward of one when the goal is reached.

4.2. TRAINING RESULTS 45

Figure 4.5: Increasing episode length over time

Each data point shows the mean episode length of 10,000 training steps. The training has a total of
amount of 6.14 million steps.

4.2.4 Observed Agent Behavior
The most successful training progress was achieved with a combination of curriculum learning,
Behavioral Cloning, Generative Adversarial Imitation Learning and Proximal Policy Optimization
[1]. The hyperparameters for this training are shown in Listing 3.2. Including the curiosity
module, has shown itself as less reliably to improve the overall reward. With the curiosity module
in place the results showed a big variance in the cumulative reward, performing worse than
without. Over all training steps the agents reward was defined by the current curriculum lesson
which started at a value of 300 xp which the agent had to reach. The curriculum lesson would
advance if the agent managed to continuously achieve a mean reward of 0.8 with at least 100
episodes. Each episode is equal to 2000 steps. The results of the curriculum learning progress can
be seen in Figure 4.6. The behavioral cloning was limited to the first 150,000 steps, in which the
agent tried to imitate the 2000 steps which were provided by the DemoActionProvider. From
there on the training was continued with GAIL in combination with PPO.

After the agent finished its training, the python trainer exports the neural network model into
a .onnx file. It is also possible to save checkpoints of the model during the training to compare
how the agent evolves over time. Inside the Unity Editor, the agent can then be set up to use
the trained model for its actions. By enabling the graphics again and setting the game speed
back to one, it is then possible to analyze the agents’ behavior. As expected due to the random
instancing of the neural network, the agent starts with random actions at the beginning of the
training. As most of the actions lead to receiving xp the agent is able to complete the first
curriculum lessons quickly. At this point the agent is still in its BC training steps. Watching the
agent, it can be observed that the majority of its soft currency is spent on scouting locations
and construct new buildings, which can be seen in Figure 4.7. Another peculiarity is that the
agent quickly stockpiles items in its storage. As soon as the storage is filled the agent has only a
limited set of actions because it cannot collect any goods or other productions from its gatherers.
The untrained agent stagnates from here on as it only disposes items occasionally, and directly
fills the free space again with random goods. To improve, the agent should collect goods which
can be spent on task or productions. After completing the training, the filled up storage is less of
a concern. Most of the time, the agent is capable of keeping the storage space at roughly 50%.
The agent achieves this by disposing items earlier and completing tasks.

46 CHAPTER 4. EVALUATION

Figure 4.6: Curriculum lessons training progress
The graph shows that the curriculum goal of 400 xp is reached within the first 150 thousand steps of BC.
As a reference further curriculum goals are marked for lesson 14 and 22. The intrinsic rewards of GAIL
and the extrinsic reward of PPO had the same weight factor of 0.99. The highest curriculum lesson

reached was 22 after 4.61 million steps. The next lessons goal would have been 1150 xp.

Figure 4.7: Agent at training start

At the beginning of the training the agent spends its soft currency randomly, which results in a mix of
scouted gathering locations, buildings and expansions. In this image most buildings are still under

construction marked with a progress bar. The buildings with yellow flags are ready to be unveiled. In
the center of the image the loot feedback for fish productions is shown. The blue stars are indicating the

xp received for the productions.

4.2. TRAINING RESULTS 47

Figure 4.8: Trained agent at the beginning of its episode

Screenshot from a training agent. Expansions constructions are marked by red arrows and circles. The
storage is filled with 36 out of 70 item slots. The agent also completed a task (top center) from which it

received 25 xp, one hard currency and 25 soft currency (center).

Figure 4.8 shows an agent after 6 million training steps. The screenshot was taken after
the first few steps of a training episode. A noticeable difference to the previous screenshot in
Figure 4.7 is that the agent is building fewer buildings, but instead a lot of island expansions.
Unlike buildings, island expansions do not unlock any further recipes or productions. Their
designed purpose is to create more space on the island to enable the construction of more buildings
and or decorations. The expansions are paid with soft currency and are rewarded with some xp
in return. As the agent is continuously following the strategy of building expansions, this gives
the hint that their return in xp could be too high. Game design confirms this hypothesis because
expansions are not designed to be a primary xp source. In addition to the result of the agent, two
internal game testers also reported that they feel that the expansion are too cheap (see Figure 4.9
and Figure 4.10). The manual tests were running over three days before coming to their results.
The statement from Figure 4.10 also shows why too cheap expansions are disadvantageous for
the playing experience. In conclusion, the balancing for expansions was adjusted in the following
sprint. Although, soft currency costs for building expansions were reduced by 25% the xp share
was reduced even more by 33%.

Although a retraining on the new balancing data has been executed, the agent was not
developing a new strategy. With the reduced cost and xp reward, it still built as many expansions
as possible. This could be due to the fact of the agent’s starting preset, in which the expansions
were still comparably cheap due to the low level. The price for each expansion is raising with
each build, and a second resource is needed on higher levels. However, in the current training
scenario the agent would not get to that point, as the episodes are restarted earlier. Besides this,
the starting game state had a clear focus on the island activities which matched the action space
of the agent very well. With this, the suggestion to increase the expansion cost still remains.

48 CHAPTER 4. EVALUATION

Figure 4.9: Player feedback to expansions

Along other balancing related feedback, a tester noticed that the expansions are comparably cheap. The
green “+”-emoji at the bottom indicates that other testers agree with his feedback. The check mark

indicates that changes regarding the feedback will be made.

Figure 4.10: Player feedback to expansions

Another tester mentioning the cheap expansions together with a screenshot of his current game state. On
the screenshot a lot of expansions are currently in the building process despite only a few buildings have

been built on the island.

4.2. TRAINING RESULTS 49

The executed actions were recorded by the AdditiveStatsRecorder which accumulated all
actions during an episode. The results can be seen in Figure 4.11, but have to be observed with
care as the graphs are showing the mean amount per episode. In general, the graphs should be
analyzed in relation to each other and not in absolute values.

Figure 4.11: Relative amount of actions used by the training agents

Because the episode length is increasing (see Figure 4.5), it is expected that the total amount
of actions is increasing as well. Still, it can be seen that the actions scouting and learn recipes are
decreasing. Both actions cost soft currency and had no direct xp reward in return, but instead
unlocked productions of new materials which were needed to upgrade buildings. In this particular
run upgrade buildings had never been used because the resource conditions were never met. It
shows that this agent did not advance enough to include this long term goal in its strategy as in

50 CHAPTER 4. EVALUATION

most cases other actions returned enough rewards. It is insured that this was not due to a bug as
other training runs successfully upgraded buildings.

4.2.5 Difficulties
The GameAgent and its AgentObservations helper class relies heavily on preexisting data
providers. During implementation, it became an issue that incorrect observation data led
to wrongly masked actions. This often became visible through error messages by the backend
responses or by the AdditiveStatsRecorder not receiving action recordings. As the goal was
to find bugs with the help of ML this is partially a success, with the disadvantage to be forced
to fix it. Another time issue expense during the implementation of this work was continuous
crashes during the training run. With the agent restarting multiple times and exploring millions
of possible states, it happened that the backend responses sometimes came later than expected.
This presumably led to the agent not being able to complete the scene loading within time,
which resulted in the communicator stopping the agent. Unfortunately the ML-Agents python
trainers are not restarting a stopped agent and the complete training run will be terminated.
The terminated training run is stopped gracefully and the so far trained policy network and the
logs are saved. For these cases, a workaround was implemented which automatically starts the
training via the –resume bash command. However, the restart of runs resulted in some cases in a
reward anomaly at the beginning of the episodes (see Figure 4.12).

Figure 4.12: Anomaly on training starts and restarts

The training run was resumed multiple times. On each restart the reward spikes noticeably.

An additional time expense with unknown origin is that the training process has time gaps
between the training steps. In Figure 4.13 gaps of multiple hours can be seen in between the
agent steps evaluation. The gaps are also visible on the backend server which does not receive any
requests in that time. The time gaps seem to be related to the Lost Survivors environment, as the
Hummingbird example which was trained on a different machine, but with the same ML-Agents
package version did not show these time gaps. By analyzing the timestamps, it is also ruled out
that the pauses are related to the previously mentioned restarts. However, the time gaps seem
not to affect the training results, as there is no missing data when analyzing on a step scale, as it
can be seen in Figure 4.14. It is reasonable to presume that the network buffer of 500,000 steps
is reached in that time, and the network optimization is calculated, even though the amount of
pauses (16) does not entirely fit to the amount of trained steps (6,000,000500,000 = 12).

4.2. TRAINING RESULTS 51

Figure 4.13: Unknown pauses in training progress

Cumulative reward in relation to training time in hours. The horizontal sections of the graph indicate
pauses in which the training agents’ did not execute any training steps. With 16 pauses in total most of

them had a duration of approximately one hour. The graph was smoothed by a factor of 0.9. The
original data points are displayed transparently in the background.

Figure 4.14: Cumulative reward by training steps

Analyzing the cumulative reward by training steps show no indication for training interruptions. The
graph was smoothed by a factor of 0.9. The original data points are displayed transparently in the

background.

52 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

In this chapter concludes which values the use of machine learning algorithms brings to the
development process. The hypothesis formulated in chapter 1, are discussed in their own sections.
The sections are separated into the topics: Game Design Suggestions, Quality Value, Generality
and Training Time and Scaling. All sections together answer the overall question how ML
algorithms help to find bugs and unwanted game design flaws. Possible improvements and tools
which can arise from this work are discussed in the very last section 5.5.

5.1 Game Design Suggestions

H1 The trained agent on Lost Survivors always finds an optimal way to play the game in regard
to its reward function.

H2 Machine learning processes help the game design department to optimize balancing data.

For this work it is a great achievement that the agent was able to develop a strategy which
aligned with the known flaws in the balancing data. The game designer and the testers, which
reported that the expansions are too expensive, had no previous knowledge about the training
results. With this the reliability on the agent strategies can be partially confirmed. On the other
side, with the above discussed results it is fair to say that the agent was not able to find the
most optimal way to play Lost Survivors. Rather then strategizing the collected goods, the agent
gathered them seemingly just to gain some xp to avoid the episode termination. Because of the
sub optimal gameplay of the agent, the strategy of the agent should be verified by a game designer.
Still, it can be profitable to use a machine learning agent to save valuable time in manual testing.

5.2 Quality Value

H3 Machine learning processes help the QA department to find bugs.

As mentioned in chapter 5 the quality of the game code is crucial for the agent to work. The
process of implementing an agent into the game not only uncovered unknown bugs but also
showed a lot of bad smells, which could lead to technical difficulties in future development. One
example is the current impossibility of displaying other players cities, which is based on the same
issue to not being able to instantiate multiple playing agents in one application.

53

54 CHAPTER 5. CONCLUSION

Once the agent is implemented, it produces a lot of player data which can be analyzed on
multiple layers. To find the optimal policy, the agent is experiencing many different game states
while training. This can be especially useful for migrating new game versions. Once a game is
live, it is regularly updated. As the game logic is separated in front- and backend, the backend
gets updated first to enable the migration from old game clients to the new ones. Even with
automated tests it is nearly impossible to cover all game states. This is where the agents training
process can help to test old and new clients against the backend migration. One way is to scan
the agents’ player logs for exceptions and other anomalies. Because the agent is usually training
for more than a day, the log level has to be chosen carefully to not create multiple gigabyte of log
files, which are tedious to check.

Another positive side effect was the DemoActionProvider. The player presets which are used
to cheat a player to a certain game state are created by hand, and do not represent real player
actions. As the checks can be easily modified, it is an additional tool to create or setup new test
cases. It can also be used to try out strategies or use it as a benchmark for the agent.

Lastly, the custom designed statistic like the agent actions can also indicate if something
is not working as expected. But not all bugs can be detected within the agents created data.
One of the most important parts of the player experience are visuals and sounds. As this agent
implementation was using the game internal services, sound and rendering were disabled to
increase training speed.

5.3 Generality

H4 Machine learning can be generalized and added to any game project.

H5 Once the machine learning is implemented it is easily maintainable and further training can
be performed.

The Hummingbird example and Lost Survivors had two things in common. Both games have
a well-defined set of rules and a clear goal to strive for. Additionally, they have a limited
simulated space with digital inputs. Both of these facts are in favor of deep reinforcement learning
algorithms, as the environment is already given though the game itself and the reward function
can be defined by the goal of the game. With both games developed with the Unity engine, the
ML-Agents plugin was the ideal to transform the game into the learning environment. The setup
is easy to implement and the same for any game. Even the training parameters have a default
setup ready to go. Most of the implementation efforts need to be done within the environment
to enable the agent actions, observations and the action masking. Still, there are some factors
which are not feasible for every gaming environment and should be considered before starting the
implementation of the agent. The models inputs and outputs are defined by the observations and
agent actions. When training a model, the inputs and outputs have fixed connections in the neural
network. It is possible to use a trained neural network as the initial state for deep reinforcement
learning, but it is not possible to subsequently add or remove nodes. As an example in Lost
Survivors the production actions were specific to a certain building. If during development a new
building would be introduced, the model would not be compatible anymore and learned behavior
would have to be retrained to introduce a new output action for the new building. With the
drawback of longer training times, placeholders actions and observations can be introduced. The
placeholder action would then be masked until they are introduced to the game. This however
can be hard to predict as the complexity of a game in development constantly grows.

5.4. TRAINING TIME AND SCALING 55

5.4 Training Time and Scaling
H6 Machine learning helps in the process of game development.

It is hard to say if the presented agent will find an optimal way with longer training times without
changing the reward function or other training parameter. Even if the agent would eventually
find an optimal policy in further training steps, it would not be feasible for a typical development
process. As mentioned in section 2.2 the development cycle is separated into sprints which at
Lost Survivors are two weeks long. For the results presented in this work the training took
around eight hours to complete two million training steps. In comparison to the Hummingbird
example runs with twenty agents in one scene, which reaches four million steps in only two hours.
Assuming the agent is training overnight, together with the training setup and evaluation of the
results, it takes two working days to complete the training. In practice this would limit the game
designers to apply their balancing changes within the first sprint week to still be able to evaluate
the results before the end of the sprint. On QA side it is not necessary to have an optimized
agent as the training process itself can be monitored.

Latency is not only a problem during loading the game, but has also an effect on the training
itself. With the latency between the backend server and the training agent, it is not possible to
reward the agent for its actions immediately. Instead, the agent has to guess which of the previous
chained commands led to its current result. However, as the value function (see section 2.3.4)
is also a neural network and gets better over time, the agent should still be able to correlate
the actions. Optimizing or a complete removal of the latency could still have significant effect
on the training speed. One possible way would be to run the backend locally on the training
machine. This was not possible for this work due to code confidential reasons. Another solution
could be to fake all backend responses. This would be similar to the prediction system, which
was removed to stabilize the training, but without the backend trying to re-sync the game state
afterwards. An even faster possibility would be to train the agent on the backend itself using its
request endpoints only. The downside of this approach is that it would require a lot of additional
game state checks beforehand to assure the selected action is available. It would also isolate the
agent further from the current development process. In the current state most of these checks are
evaluated by the frontend services in the first place.

5.5 Future Work
Within the scope of this work a fully functional machine learning agent was implemented and
trained with PPO, BC, GAIL and curriculum learning. Without being feature complete, the agent
was able to detect basic playing strategies. With this result it can be said that machine learning
can be a helpful tool when the infrastructure of the game allows for ease of implementation and
convenient scaling. The agent was able to perform 194 possible actions based on its current game
state represented by 10860 observations. One of this works’ strengths is the amount of player
data which is created by the agents training. With the huge amount of different game states, the
testing process can be strengthened. The next steps from QA perspective would be to make the
agent feature complete to explore even more states. This will be especially useful for cooperative
game features where the agent can be influenced by other players. Here multiple agents could be
trained using self-play, where the agent plays against its previous versions or with the currently
developed MA-POCA (Multi-Agent POsthumous Credit Assignment) algorithm1.

1MA-POCA was released at the end of the implementation for this work. While this work was written, a research
paper has not yet been published, but more information can be found on https://blog.unity.com/technology/
ml-agents-v20-release-now-supports-training-complex-cooperative-behaviors, Accessed: 06.06.2021.

https://blog.unity.com/technology/ml-agents-v20-release-now-supports-training-complex-cooperative-behaviors
https://blog.unity.com/technology/ml-agents-v20-release-now-supports-training-complex-cooperative-behaviors

56 CHAPTER 5. CONCLUSION

From a game design perspective it is of interest to focus future training on simpler and more
specific tasks to gain more knowledge about specific game features. The goal is to get closer to the
optimal playing agent. Depending on the examined feature, some agent actions and observations
could be removed to optimize training times. As most features rely on other actions, the agent
would need to be combined with a cheat system or simple rule based actions, similar to the
DemoActionProvider.

To further build on this work, a second neural network could be used to train with different
balancing data. The game designer then just has to define a game state to achieve with certain
conditions on the way. In terms of Reinforcement Learning, the conditions and the goal state
then have to be translated into a reward function which will reward the agent for reaching the
correct state or punish and reset the agent if it disregards the conditions. This would allow for
better comparability between the agents.

Article References

[1] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[2] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. “Automatic detection of bad
smells in code: An experimental assessment.” In: J. Object Technol. 11.2 (2012), pp. 5–1.

[3] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor”. In: International Conference on Machine Learning. PMLR.
2018, pp. 1861–1870.

[4] Noah Falstein. “The Flow Channel”. In: Game Developer Magazine: https : / / ubm -
twvideo01. s3. amazonaws. com/ o1/ vault/ GD_ Mag_ Archives/ Game. Developer.
2004. 05. pdf (2004).

[5] Mihaly Csikszentmihalyi. “Play and intrinsic rewards”. In: Flow and the foundations of
positive psychology. Springer, 2014, pp. 135–153.

[6] Jesse Schell. The Art of Game Design: A book of lenses. CRC press, 2008.
[7] Lars Konzack. “Computer Game Criticism: A Method for Computer Game Analysis.” In:

CGDC Conf. 2002.
[8] Daniel Galin. Software quality assurance: from theory to implementation. Pearson education,

2004.
[10] Mark Ehren. Sony stoppt Videospiel Cyberpunk 2077. https://www.tagesschau.de/

wirtschaft/sony-cyberpunk-2077-101.html. Accessed: 06.06.2021. 2020.
[12] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. “CLEVER: combining code metrics with

clone detection for just-in-time fault prevention and resolution in large industrial projects”.
In: Proceedings of the 15th International Conference on Mining Software Repositories. 2018,
pp. 153–164.

[13] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. Accessed: 06.06.2021.
2018.

[15] The AlphaStar team. AlphaStar: Grandmaster level in StarCraft II using multi-agent
reinforcement learning. https://deepmind.com/blog/article/AlphaStar-Grandmaster-
level-in-StarCraft-II-using-multi-agent-reinforcement-learning. Accessed:
06.06.2021. 2019.

[17] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. “Back to basics: Benchmarking
canonical evolution strategies for playing atari”. In: arXiv preprint arXiv:1802.08842 (2018).

[18] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[19] Joel Lehman et al. “The surprising creativity of digital evolution: A collection of anecdotes

from the evolutionary computation and artificial life research communities”. In: Artificial
Life 26.2 (2020), pp. 274–306.

57

https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/Game.Developer.2004.05.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/Game.Developer.2004.05.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/Game.Developer.2004.05.pdf
https://www.tagesschau.de/wirtschaft/sony-cyberpunk-2077-101.html
https://www.tagesschau.de/wirtschaft/sony-cyberpunk-2077-101.html
https://blog.openai.com/openai-five/
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

58 ARTICLE REFERENCES

[20] Peter Krčah. “Towards efficient evolutionary design of autonomous robots”. In: International
Conference on Evolvable Systems. Springer. 2008, pp. 153–164.

[21] Victoria Krakovna et al. “Specification gaming: the flip side of AI ingenuity”. In: DeepMind
Blog (2020).

[22] unknown. Specification gaming examples in AI - master list : Sheet1. https://docs.
google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-
32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml. Accessed: 06.06.2021. 2020.

[23] Arthur Juliani et al. “Unity: A general platform for intelligent agents”. In: arXiv preprint
arXiv:1809.02627 (2018).

[24] Unity Technologies. Example Learning Environments, Pyramids. https://github.com/
Unity- Technologies/ml- agents/blob/release_1/docs/Learning- Environment-
Examples.md#pyramids. Accessed: 06.06.2021. 2020.

[25] Unity Technologies. GameTune. https://unity.com/products/gametune. Accessed:
06.06.2021. 2020.

[26] InnoGames GmbH. InnoGames. https://www.innogames.com/de/. Accessed: 06.06.2021.
2003.

[29] RA Bartle, Clubs Hearts, and Spades Diamonds. “Players who suit MUDs, 1996”. In:
Saatavissa: http: // mud. co. uk/ richard/ hcds. htm (1996).

[30] John Schulman et al. Proximal Policy Optimization. https://openai.com/blog/openai-
baselines-ppo/. Accessed: 06.06.2021. 2017.

[31] Adam Kelly. ML-Agents: Hummingbirds. https://learn.unity.com/course/ml-agents-
hummingbirds. Accessed: 06.06.2021. 2020.

[32] Richard M Ryan and Edward L Deci. “Intrinsic and extrinsic motivations: Classic definitions
and new directions”. In: Contemporary educational psychology 25.1 (2000), pp. 54–67.

[33] Marvin Minsky. “Steps toward artificial intelligence”. In: Proceedings of the IRE 49.1 (1961),
pp. 8–30.

[34] Tom M Mitchell et al. “Machine learning”. In: (1997).

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[36] John Schulman et al. “Trust region policy optimization”. In: International conference on
machine learning. PMLR. 2015, pp. 1889–1897.

[37] Jeffrey L Elman. “Learning and development in neural networks: The importance of starting
small”. In: Cognition 48.1 (1993), pp. 71–99.

[38] Douglas LT Rohde and David C Plaut. “Language acquisition in the absence of explicit
negative evidence: How important is starting small?” In: Cognition 72.1 (1999), pp. 67–109.

[39] Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th annual international
conference on machine learning. 2009, pp. 41–48.

[40] Deepak Pathak et al. “Curiosity-driven exploration by self-supervised prediction”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 2778–2787.

[41] Yuri Burda et al. “Large-Scale Study of Curiosity-Driven Learning”. In: ICLR. 2019.

[42] Arthur Juliani. Solving sparse-reward tasks with Curiosity. https://blogs.unity3d.com/
2018/06/26/solving-sparse-reward-tasks-with-curiosity/. Accessed: 06.06.2021.
2020.

https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Learning-Environment-Examples.md#pyramids
https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Learning-Environment-Examples.md#pyramids
https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Learning-Environment-Examples.md#pyramids
https://unity.com/products/gametune
https://www.innogames.com/de/
http://mud.co.uk/richard/hcds.htm
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://learn.unity.com/course/ml-agents-hummingbirds
https://learn.unity.com/course/ml-agents-hummingbirds
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/

[43] Alessandro Giusti et al. “A machine learning approach to visual perception of forest trails
for mobile robots”. In: IEEE Robotics and Automation Letters 1.2 (2015), pp. 661–667.

[44] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint
arXiv:1604.07316 (2016).

[45] Scott Niekum et al. “Learning grounded finite-state representations from unstructured
demonstrations”. In: The International Journal of Robotics Research 34.2 (2015), pp. 131–
157.

[46] Eduardo Morales and Claude Sammut. “Learning to fly by combining reinforcement learning
with behavioural cloning”. In: Jan. 2004. doi: 10.1145/1015330.1015384.

[47] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In: arXiv
preprint arXiv:1606.03476 (2016).

[48] Ilya Kostrikov et al. “Discriminator-actor-critic: Addressing sample inefficiency and reward
bias in adversarial imitation learning”. In: arXiv preprint arXiv:1809.02925 (2018).

[49] Unity Technologies. Unity Real-Time Development Platform. Microsoft Windows, Mac OS,
Linux, https://unity.com/. Accessed: 06.06.2021. 2020.

[51] Oriol Vinyals et al. “Starcraft ii: A new challenge for reinforcement learning”. In: arXiv
preprint arXiv:1708.04782 (2017).

[52] David Silver et al. “Mastering chess and shogi by self-play with a general reinforcement
learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

Game References

[9] CD Projekt RED. Cyberpunk 2077. Microsoft Windows, PlayStation 4, Xbox One, GeForce
Now, Google Stadia. 2020.

[11] Bethesda Game Studios. Fallout 76. Microsoft Windows, PlayStation 4, Xbox One. 2018.

[14] Valve Corporation. Dota 2. Windows, macOS, Linux. 2013.

[16] Blizzard Entertainment. StarCraft II. Windows, macOS. 2010.

[27] Playrix. Township. iOS, Android. 2012.

[28] InnoGames GmbH. Lost Survivors. iOS, Android. 2021.

[50] Nintendo. Super Mario Bros. Famicom, Nintendo Entertainment System. 1985.

59

https://doi.org/10.1145/1015330.1015384
https://unity.com/

Erklärung zur selbstständigen Bearbeitung der Arbeit
Hiermit versichere ich,
Name: Hartmann
Vorname: Julius Malte
dass ich die vorliegende Masterarbeit mit dem Thema:

The use of machine learning algorithms in the process of game development to find bugs and
unwanted game design flaws

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter
Angabe der Quellen kenntlich gemacht.

Hamburg, 21.06.2021

Ort, Datum Unterschrift

60

	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Glossary
	Introduction
	Motivation
	Related Work
	Scope
	Structure

	Foundations
	The Game
	Game Development Processes
	Embodiment of Machine Learning in the development process
	Game Design
	Quality Assistance (QA)

	Machine Learning
	Artificial Neural Networks
	Backpropagation
	Supervised Learning
	Reinforcement Learning
	Curriculum Learning
	Curiosity
	Behavioral Cloning
	Generative Adversarial Imitation Learning

	Unity Engine
	Unity Work Environment
	ML-Agents Toolkit

	Implementation
	Application Preparation
	Software Architecture
	Actions
	Action Masking
	Observations
	Rewards
	Demo Actions
	Training Setup

	Evaluation
	Continuous Development
	Training Results
	Disabling Curiosity
	Curriculum Learning
	Stacked Observations
	Observed Agent Behavior
	Difficulties

	Conclusion
	Game Design Suggestions
	Quality Value
	Generality
	Training Time and Scaling
	Future Work

