
Masterarbeit

Matthias Nitsche

Towards German Abstractive Text Summarization using
Deep Learning

Fakultät Technik und Informatik
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

Mastertarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Kai von Luck
Zweitgutachter: Prof. Dr.-Ing. Marina Tropmann-Frick

Eingereicht am: 29. August 2019

Matthias Nitsche

Towards German Abstractive Text Summarization
using Deep Learning

Matthias Nitsche

Title of Thesis

Towards German Abstractive Text Summarization using Deep Learning

Keywords

Neural Networks, NLP, Summarization, Transformers, Language Modelling, ELMo,
BERT, Transfer Learning

Abstract
Text summarization is an established sequence learning problem divided into extrac-
tive and abstractive models. While extractive models learn to only rank words and
sentences, abstractive models learn to generate language as well. The great success of
deep learning algorithms on sequence learning tasks led to an increase in sequence to se-
quence learning algorithms with an attention mechanism. At the same time, the research
area around transfer learning, transferring knowledge different domains, languages and
tasks, increased over the past years. Word embeddings like GloVe or Word2Vec, are
still useful for practical purposes, but were overtaken by a new generation of language
models. In this thesis we explore two of the most prominent language models named
ELMo and BERT, applying them to the extractive summarization task. We contribute
a new ensemble model between abstractive and extractive summarization achieving, a
new state-of-the-art on the English CNN/DM dataset. Instead of only working with an
academic English dataset, we introduce a new dataset in German from the Deutsche
Presse Agentur (DPA). This poses a challenge since real world datasets in German have
less available resources through pretrained language models and inhibit more noise. We
establish several abstractive and extractive summarization baselines.

iii

Matthias Nitsche

Thema der Arbeit

Ansätze zu Deutscher, Abstrahierender Textzusammenfassung mit Deep Learning

Stichworte
Neural Networks, NLP, Summarization, Transformers, Language Modelling, ELMo,
BERT, Transfer Learning

Kurzzusammenfassung

Textzusammenfassung ist ein etabliertes Sequenzproblem, unterschieden durch extrak-
tive und abstrahierende Modelle. Extraktive Modelle lernen, Wörter und Sätze zu ord-
nen, wobei irrelevante Informationen eliminiert werden. Bei abstrahierenden Modellen
kommt zusätzlich die Aufgabe der Sprachgenerierung hinzu. Durch den großen Erfolg
von Deep Learning Methoden nahmen sequence-to-sequence Algorithmen zu, insbeson-
dere mit dem sogenannten "Attention"-Mechanismus. Hinzu kommt ein größerer Fokus
auf Wissenstransfer zwischen verschiedenen Domänen, Sprachen und unterschiedlichen
Aufgaben. Word Embeddings wie GloVe oder Word2Vec sind nach wie vor nützlich,
wurden aber durch eine neue Generation von Sprachmodellen abgelöst. In dieser Arbeit
untersuchen wir zwei der bekanntesten Sprachmodelle namens ELMo und BERT und
wenden sie auf die extraktive Zusammenfassung an. Wir bringen ein neues Ensemble-
Modell zwischen abstrahierender und extraktiver Zusammenfassung ein, das einen neuen
Stand der Technik auf dem englischen CNN/DM-Datensatz erreicht. Anstatt nur mit
einem akademischen englischen Datensatz zu arbeiten, führen wir zusätzlich einen neuar-
tigen Datensatz in deutscher Sprache ein, bereitgestellt von der Deutschen Presse Agentur
(DPA). Dies stellt eine Herausforderung dar, da reale Datensätze in deutscher Sprache
über weniger verfügbare Ressourcen durch vortrainierte Sprachmodelle verfügen und
mehr Rauschen beinhaltet.

iv

Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Research Question and Contributions . 2
1.2 Chapter Overview . 3

2 Neural Networks 5
2.1 Sequence-to-sequence Models . 5
2.2 Attention . 8
2.3 Recurrent Neural Networks . 10
2.4 Self Attention Networks . 12
2.5 Discussion . 16

3 Language Modelling and Embeddings 18
3.1 Evaluation . 20
3.2 Transfer Learning . 21
3.3 Word Embeddings . 22
3.4 Deep Language Representations . 25

3.4.1 Embeddings from Language Models 27
3.4.2 Bidirectional Encoder Representations from Transformers 28

3.5 Discussion . 30

4 Neural Text Summarization 32
4.1 DPA Dataset . 34
4.2 Evaluation . 35

4.2.1 ROUGE . 36
4.2.2 BERT Score . 37

4.3 Abstractive Summarization . 38

v

Contents

4.4 Bottom-Up Summarization . 40
4.4.1 Copying and Coverage . 41
4.4.2 Beam Search . 43

4.5 BertSum for Extractive Summarization . 44
4.6 Bottom-Up BERT . 45
4.7 Discussion . 46

5 Experiments 48
5.1 Bottom-Up BERT on CNN/Daily Mail Corpus 49
5.2 DPA Corpus Preprocessing . 51
5.3 Description Summarization . 52

5.3.1 Summarization Results . 53
5.3.2 Model Overview and Training . 56

5.4 Headlines Summarization . 58
5.4.1 Summarization Results . 58
5.4.2 Model Overview and Training . 61

5.5 Discussion . 63

6 Conclusion 65

7 Outlook 67
7.1 Transfer Learning . 67
7.2 Reinforcement Learning . 68
7.3 Multi-document Summarization and Dossiers 68

Selbstständigkeitserklärung 76

vi

List of Figures

2.1 Attention as depicted in Bahdanau et al. (2014) 8
2.2 Attention activations as depicted in Cheng et al. (2016) 10
2.3 LSTM visualization by Olah (2015) . 11
2.4 Transformer architecture in Vaswani et al. (2017) 13
2.5 Transformer from Vaswani et al. (2017) 13
2.6 Noam learning rate during training . 15

3.1 Pre-training architectures adapted from Devlin et al. (2018) 18
3.2 Skip-gram and CBOW Mikolov et al. (2013) 23
3.3 Bert input representation Devlin et al. (2018) 29
3.4 Bert for fine-tuning Devlin et al. (2018) 30

4.1 BERT score Zhang et al. (2019b) . 37
4.2 DCA by Celikyilmaz et al. (2018) . 39
4.3 Bottom-Up summarization adapted from Gehrmann et al. (2018) 40
4.4 Many to many Sequence tagging . 41
4.5 Pointer generator and coverage See et al. (2017) 42
4.6 BertSum by Liu (2019) . 45

vii

List of Tables

4.1 News ML dataset . 35
4.2 Weblines dataset . 35

5.1 Results of CNN/DM on Several Models. 49
5.2 General statistics for DPA description. 53
5.3 Results on DPA Description source length of 80 53
5.4 Results on DPA Description source length of 400 54
5.5 General statistics for DPA headlines. 58
5.6 Results on DPA Headlines source length of 80 59
5.7 Results on DPA Headlines source length of 400 59
5.8 Number of model parameters . 64

viii

1 Introduction

Learning to generate fluent language is an interesting problem with a lot of different use
cases. Generating document summaries from hundreds of articles, generating fake stories
to influence voters, interactive dialogue agents for support or simply building a form of
art that fascinates and potentially writes short stories. Natural language processing
(NLP) had some high points in the last few years. The rise of neural language models
and ever more complex neural network architectures covered a lot of ground, especially
for language generation. Since the arrival of GPT-2, a transformer model by Radford
et al. (2019) with 1.5 billion parameters, there is hope for neural models to write entire
non trivial texts in the near future. See for instance the following generated summary:

The original site in Vallon-Pont-D’arc in Southern France is a Unesco
World Heritage site and is the oldest known and the best preserved cave dec-
orated by man. The replica cave was built a few miles from the original site
in Vallon-Pont-D’Arc in Southern France. The cave contains images of 14
different species of animals including woolly rhinoceros, mammoths, and big
cats.

The summary is concise, grammatically correct, contains almost no repetitions and is
factually correct. While impressive, the model itself is closed source and not re-trainable
without computational power of a large GPU cluster. Models like these certainly pose
some challenges and dangers. In the wrong hands, these models can easily generate en-
tire campaigns of fake news or tweets in a matter of minutes. For automated journalism,
however, this could mean condensing a collection of articles into one which could be pub-
lished with minimal editorial effort. While not on the same level as works of professional
journalists, it can also be helpful for automatically generated dossiers. Another German
based summarization by our BertSum model based on Liu (2019):

Pompeo und kim yong chol wollen einen möglichen gipfel zwischen us-
präsident donald trump und dem nordkoreanischen machthaber kim jong un

1

1 Introduction

vorbereiten. Nach einem abendessen am mittwoch soll es heute weitere gespräche
geben.

The above summary is extractive in nature, ranking the source sentences and rearrange
the best ones that describe the text perfectly. Since most academic endeavors in NLP
are primarily concerned with English language, we try to transfer the used models to a
German language corpus. The goal is to have a single document summarization system
that can generate summaries from a range of news topics.

1.1 Research Question and Contributions

The research question and contributions revolve around an ensemble model of two state-
of-the-art summarization algorithms and introducing a German dataset provided by the
Deutsche Presse Agentur (DPA). The primary goal for this thesis is to answer ques-
tions around the task of summarizing documents with a German non-academic language
corpus. The three questions this thesis tries to answer are:

1. How to establish a summarization baseline with a new German dataset using deep
learning algorithms?

2. Do fine-tuning and feature extraction techniques improve performance for summa-
rization?

3. Given that the non-academic dataset contains comparatively more linguistic noise,
are we able to generate fluent summaries?

In NLP, fine-tuning and feature extraction are the most prominent two routes to go, since
they focus on transferring highly performing systems trained on out of domain data.
The leading discussion of this thesis is concerned with algorithms, focusing on language
modelling and transfer learning in combination with sequence-to-sequence learning. The
major contributions of this master thesis are as follows:

1. Introducing two new datasets, DPA Descriptions (116.603 text description pairs)
with longer target texts and the DPA Headlines (199.328 text headline pairs) with
shorter target texts.

2

1 Introduction

2. Establishing a baseline for German document summarization using the
ROUGE metric. The baseline includes extractive and abstractive state-of-the-art
models by Peters et al. (2018); Gehrmann et al. (2018); Wu et al. (2019) and Liu
(2019).

3. Introducing an ensemble model based on the copy transformer by Gehrmann et al.
(2018), combining it with the fine-tuned BERT extractor introduced by Liu (2019),
scoring ROUGE R1 score of 41.75 on the CNN/DM corpus beating current
state-of-the-art models.

First, the ensemble model is a proof of concept that given complex established ideas, we
can easily push the ROUGE evaluation metric by a few decimals. Second, introducing
a new real world dataset that is not extractive in nature in a different language poses a
real challenge.

1.2 Chapter Overview

The thesis is split into six chapters. Neural document summarization is mostly based
on sequence-to-sequence learning with attention. Thus the first chapter deals with
the theory of advanced neural network architectures, focusing on sequence-to-sequence
models, attention, recurrent neural networks and new self attention networks.

The second chapter focuses on language modelling, a rising field in NLP since 2018.
It will cover transfer learning, word embeddings and deep language representations, con-
centrating on the rise of models like ELMo by Peters et al. (2018) and BERT by Devlin
et al. (2018). Most of the currently used models for text summarization are based on
ELMo and BERT.

In the third chapter our area of attention will be text summarization, covering top-
ics like the ROUGE evaluation, followed by a discussion of abstractive and extractive
summarization. In order to establish our ensemble model we will present two models,
namely Bottom-Up summarization by Gehrmann et al. (2018) and fine-tuning BERT for
extractive summarization by Liu (2019). The goal is to derive a simple ensemble called
Bottom-Up BERT using both ideas.

The fourth chapter focuses on the results of Bottom-Up BERT on the CNN/DM corpus,
comparing them to current state-of-the-art models. In order to run experiments on the

3

1 Introduction

DPA dataset preprocessing and filtering must be transparent. At last we will present
the results of several state-of-the-art algorithms on the DPA Descriptions and Headlines
dataset.

The fifth chapter is a discusson on what we achieved, what we could not answer and
critically reflect upon the limits and weaknesses of our approach.

The last chapter is a presentation of topics and ideas that will be relevant in the
upcoming years. Specific topics include transfer learning, reinforcement learning and
multi-document summarization.

4

2 Neural Networks

The basic building blocks for modern NLP models are neural networks. Their power lies
in capturing a lot of subtleties classical approaches cannot. Most baselines use long-short
term memory networks (LSTMs) Hochreiter and Schmidhuber (1997) while advanced
architectures include the transformer Vaswani et al. (2017) and convolutional neural net-
works Ott et al. (2019) with positional embeddings to capture time dependencies. In this
section we will give an overview of recurrent neural networks (RNNs), the transformer,
convolutions and the general sequence-to-sequence framework. Vital to understanding all
the modern architectures is the attention mechanism that was first coined in the context
of neural machine translation systems.

2.1 Sequence-to-sequence Models

Sequence-to-sequence modelling is a general framework first established by Sutskever
et al. (2014) in the area of neural machine translations (NMTs). Soon after Luong et al.
(2015) created a working version of recurrent nets with attention. Since then sequence-
to-sequence models are a standard architecture in the realm of translation, reconstruction
and compression. One of the big differences between NMTs and document summarization
is that NMTs need to attend to all the content and translate it in full. Summarization is
a compression problem aligning long with short sequences. Most encoder decoder archi-
tectures in summarization build on the break through of Li et al. (2015); Chopra et al.
(2015) and Nallapati et al. (2016) created what is now to be known as the encoder de-
coder with attention architecture for sequence-to-sequence models. sequence-to-sequence
modelling is a general framework that consists of an encoder consuming a source sequence
x consisting of tokens and a decoder consuming a target sequence y

x = [x1, x2, . . . , xn] (2.1)

y = [y1, y2, . . . , ym] (2.2)

5

2 Neural Networks

where n and m are arbitrary lengths. In summarization n > m typically holds, since
compressing information is the main goal. The goal of the encoder-decoder is to model
the probability p(Y |X), meaning how likely is the sequence y given sequence x. Both
sequences x and y are embedded into fixed length context vectors per token. Prior
initialization of embeddings is an active research area, the assumption for now is that
all vectors are initially drawn randomly from a uniform distribution. Given a set of
sequences X and Y forming a unique vocabulary index V : Symbol → N that embeds
each token

∀x ∈ X : V (x)
1×n

→ Rn×k (2.3)

∀y ∈ Y : V (y)
1×m

→ Rm×k (2.4)

where k is some dimension and V a generalized mapping for a vector of symbols. Em-
beddings can be jointly trained in the model or held fixed using pre-trained embeddings.
Learning a general mapping between two sequences and translating or aligning them can
be expressed as

henc = encoder(X) (2.5)

align = f(henc) (2.6)

hdec = decoder(Y, align) (2.7)

Note that the encoder and decoder can be arbitrary differential functions, for the general
notation we will sometimes fall back to LSTMs for illustration purposes. The concrete
case for the a bidirectional LSTM forward pass

hi = [~hTi ;
~hTi]

T , i = 1, . . . , n (2.8)

ct =

n∑
i=1

align(yt, xi)hi (2.9)

st = f(st−1, yt−1, ct), t = 1, . . . ,m (2.10)

Where hi are the hidden states of the encoder and ct an alignment function, commonly
today attention, connected to a decoder st at time step t and the target label sequence
y. The decoder needs to consume an aligned form that fits the dimensionality of an
arbitrary target length, learning the probability of a given target token yt. The objective

6

2 Neural Networks

cost functions in neural language models are based on next word probabilities for each
timestep. This is commonly with a softmax over all words V

ŷ = softmax(W · st + b) (2.11)

Where W is a weight matrix and b a bias vector to be learned and st is the decoder
at timestep t. To train this function end to end the most common loss function for a
softmax classification problem with |V | classes is the cross-entropy loss

CE(ŷ, g) = −g · log(ŷ)− (1− g) · log(1− ŷ) (2.12)

Where ŷ is the expected per token probability and g the actual probability, e.g. a one
hot vector of the word in the current sequence. The total error is then propagated back
through the network with respect to all the gradients for each parameter and updated
using gradient descent, also known as back-propagation. Some notes on the complexity
of computing the softmax when vocabulary sizes grow very large. Using the Markov
assumption that the current token is only dependant on the last c before going tokens
which then yields the conditional probability

P (yt|yt−1, . . . , yt−c+1) =
n∏
t=1

P (yt | y1, . . . , yc−1) (2.13)

Which can be computed with feed-forward neural network and a softmax, a function
summing to 1 providing probabilities of the current token with respect to all other to-
kens.

P (yt | yhist) =
exp(yThist · wt)∑|V |
i=1 exp(y

T
hist · wi)

(2.14)

Where yt is the current word embedding and yhist the history vector so far of the whole
vocabulary V (denominator) of the corpus and the embedding weight matrix W . When
the vocabulary grows large the normalization term in the denominator even with windows
is intractable to compute. Optimizations of the softmax include the hierarchical softmax
or negative sampling.

A fully trained network is only a proxy for sequence generation. Since neural networks
provide probabilities of possible next words, algorithms like greedy selection, viterbi

7

2 Neural Networks

and beam search exists to generate sequences of words. In practice all the selection
algorithms work in combination with the attention mechanism. In the subsequent section
is a detailed presentation of the core ideas surrounding attention.

2.2 Attention

The motivation behind attention is to some extent inspired by how humans visualize
images or text. Instead of focusing on one word at a time, humans pay attention to
salient information of a sentence and whole paragraphs at once. Humans often view
certain information as more relevant and highlight them immediately. When considering
certain words like “playing” the expectation is that phrases like “the guitar” or “a video
game” follow. It is a combination of what makes sense and what humans expect to
happen next. In figure 2.1 is the first depiction of attention in RNNs introduced by
Bahdanau et al. (2014).

Figure 2.1: Attention as depicted in Bahdanau et al. (2014)

Similarly attention in deep learning is nothing but a vector of probabilities assigned to
each word at the current stage. Attention is needed when sequences are longer than just
a few words, since the last state of an encoder quickly forgets what it has processed in
the beginning due to the vanishing gradient problem. Attention helps with keeping the
salient focal points of tokens across longer sequences and helps the decoder to attend to

8

2 Neural Networks

important tokens. Formally this means learning a probability for each source token

ct =

n∑
i=1

αt,ihi (2.15)

αt,i = align(yt, xi) (2.16)

Where the alignment function is a softmax connected with a feed forward network and
a tanh non-linear function which can be an arbitrary alignment function, which in the
simplest case is just the last encoder state

αt,i =
exp(score(st−1, hi))∑n
j=1 exp(score(st−1, hj))

(2.17)

With the scoring function

score(st, hi) = vTα tanh(Wα[st;hi]) (2.18)

In this case vα and Wα are learned through end to end training of the entire network.
Since then there has been wide research Xu et al. (2015); Luong et al. (2015); Cheng
et al. (2016) distinguishing attention mechanisms with attributes such as local/global,
soft/hard as well as self attention or intra-attention. Before going into detail into these
distinctions let us give a brief overview of different attention scoring functions in order
of year

score(st, hi) = cosine([st;hi]) Content based Graves et al. (2014) (2.19)

score(st, hi) = vTα tanh(Wα[st;hi]) Additive Bahdanau et al. (2014) (2.20)

αt,i = softmax(Wαst) Location based Luong et al. (2015) (2.21)

score(st, hi) = sTt Wαhi General Luong et al. (2015) (2.22)

score(st, hi) = sTt hi Dot product Luong et al. (2015) (2.23)

score(st, hi) =
sTt hi√
n

Scaled dot product Vaswani et al. (2017) (2.24)

The first attention mechanism by Graves et al. (2014) aligned each decoder step with an
encoder by a simple cosine measure. Afterwards the scaling got a little more complicated
with a linear layer and more free learnable parameters.

9

2 Neural Networks

Self attention means that instead of relating important parts of the encoder to the
decoder, each word in a sentence or document is attended to its own sub sequences. The
original idea comes from Xu et al. (2015) doing this on images by first running a CNN
over images and generating sequences as descriptions with a RNN. In 2.2 we can see how
self attention learns correlations of the current head token and previous tokens.

Figure 2.2: Attention activations as depicted in Cheng et al. (2016)

Soft/global and hard/local attention is distinguished by the simple fact that soft
attention attends to all outputs of the encoder, while hard attention focuses on smaller
patches, e.g. windows. Both have their place but hard attention is not fully differentiable
with lesser computation overhead. Soft attention, proposed by Bahdanau et al. (2014),
can get increasingly expensive the longer the sequences actually are sinc all tokens are
considered at each time step. Global attention is somewhat similar to the soft attention.
However local attention refers to the possibility to do hard attention with local patches
keeping the model fully differentiable. Here, local patches mean, learning a position of
the target word by sliding a context windows over the source.

Nowadays it is standard practice using attention and thus sequence-to-sequence learning
evolved around the idea of attentional encoder-decoders. While LSTMS and CNNs use
self attention to enhance their feasibility, the transformer model is entirely based on self
attention with a so called multi head attention mechanism.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are unrolled feed-forward networks over discrete
timesteps. They are most useful when dealing with sequential information such as text

10

2 Neural Networks

and have shown great success in language modelling, question answering and text sum-
marization. In practice there are two feasible variants, long-short term memory networks
(LSTMs) Hochreiter and Schmidhuber (1997) and gated recurrent units (GRUs) Chung
et al. (2014). The problems with vanilla RNNs is that they suffer from the vanishing
gradient problem, where for each timestep the gradient get vanishingly small and forgets
what it learned. In figure 2.3 each LSTM cell at each timestep is a very complicated
differential equation containing multiple ideas on how to deal with old and new knowl-
edge

Figure 2.3: LSTM visualization by Olah (2015)

Formally LSTMs consist of a gating system filtering information by usefulness of the
incoming memory and the current input word.

i(t) = σ(W (i) · x(t) + U (i) · h(t−1)) (2.25)

f (t) = σ(W (f) · x(t) + U (f) · h(t−1)) (2.26)

o(t) = σ(W (o) · x(t) + U (o) · h(t−1)) (2.27)

c̃(t) = tanh(W (c) · x(t) + U (c) · h(t−1)) (2.28)

c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t) (2.29)

h(t) = o(t) ◦ tanh(c(t)) (2.30)

The hidden layer of the step before h(t−1) in combination with the current word xt

generates a new memory c̃(t) which is the function of the input gate i(t). The forget gate
f (t) is there to asses whether the memory is useful and what parts can be dropped from
it. The next step calculates what can be forgotten and what parts of the current input is
used for the new memory c(t). The final hidden gate is there to filter out the unnecessary
parts of c(t) making a final judgment resulting in the output for the next hidden layer.
GRUs on the other hand are simpler versions of LSTMs by only keeping the importance

11

2 Neural Networks

and forget gate

zt = σ(W zxt + U zht−1 + bz) (2.31)

rt = σ(W rxt + U rht−1 + br) (2.32)

h̃t = tanh(W hxt + Uhht−1 ◦ rt + bh) (2.33)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (2.34)

In practice they have been proven to show strong results in sequence-to-sequence learning
and neural machine translations in particular.

2.4 Self Attention Networks

The transformer introduced by Vaswani et al. (2017) is a new architecture and has become
one of the standards in NLP. Since then there have been a lot of variations. Firstly,
this section covers the original architecture and then highlights some improvements.
Secondly it is explained how bidirectional encoder representations from transformers
(BERT) by Devlin et al. (2018) are used for fine-tuning and pre-training. The novelty
about transformer networks, as depicted in figure 2.4, is that it uses a new multi head
attention mechanism in combination with positional embeddings and simple feed forward
networks.

As explained before, each input sequence is embedded. Since the transformer attends
to all information at once, it has no positional reasoning unlike LSTMs. The au-
thors introduced positional embeddings and concatenate it with the source embeddings
inpemb ∈ Rn × dmodel and initialize the transformer

pe(pos)even = sin(pos /100002i / dmodel) (2.35)

pe(pos)odd = cos(pos /100002i+1 / dmodel) (2.36)

posenc = [peeven, peodd] ∈ Rn × dmodel (2.37)

inp = [inpemb; posenc] (2.38)

Where pe(pos)even is a sine wave for each dimension with dmodel when the position is
even and pe(pos)odd is a cosine wave for each dimension with dmodel when the position
is odd, resulting in posenc. The result is the concatenation of the input embedding and

12

2 Neural Networks

Figure 2.4: Transformer architecture in Vaswani et al. (2017)

the positional embedding. The input is then split into key, query and value and feed
into a multi head attention function. Each of a total of N so called heads processes all
the different parts of the sequence and feeds it into the decoder. As depicted in figure
2.5, multi head attention is a linearized self attentive function using scaled dot product
attention, which is one of the before mentioned attention mechanisms.

(a) Multi head attention
(b) Scaled dot product

Figure 2.5: Transformer from Vaswani et al. (2017)

13

2 Neural Networks

The interesting part is actually how multi head attention works. Formally

MultiHead(Q,K, V) = [head1; . . . ; headh]WO (2.39)

headi = softmax(
(QWQ

i)(KWK
i)T√

dk
)(VW V

i) (2.40)

where learnable parameters are WQ
i ∈ Rdmodel × dk , WK

i ∈ Rdmodel × dk and W V
i ∈

Rdmodel × dv . Each head is the result of a split of the whole sequence. Since the base
model has a dimension of 512 and 8 heads, the resulting base dimensions dk, dv etc. have
dimensionality 512/8 = 64. Each head attends to different parts of the sequence and
concatenated into the original dimension of 512. This concatenated scaled dot product
attention is fed to a 2 layer feed forward network and resembles the linear combination
of all heads. The heads basically act as a contextual window function.

ffn(x) = ReLU(xW1 + b1)W2 + b2 (2.41)

The ffn recombines all the head mechanisms projecting them to a final softmax layer over
the whole vocabulary. For a language modelling task the standard cross-entropy loss is
used to back propagate the error. The attention mechanism aligns a transformer encoder
with a transformer decoder even in cases where there are unequal lengths source and
target dimensions. Note that transformers are not sequential models, instead building
up a whole context and recombining the whole sequence at once. Ideas by Radford and
Salimans (2018) combined recurrent neural networks with transformers, eliminating the
vanishing gradient problem and improving performance. They are however c onstrained
to sequence sizes that are as long as the model dimension, in the standard case 512.
Models like the GPT-2 by Radford et al. (2019), use a 4096 model size with much more
and larger heads. This leads to improved performance on much larger sequences.

Transformer models are very sensitive to datasets and hyperparameters. We used Popel
and Bojar (2018) as a reference when tuning specific parameters. Special care must be
taken when choosing the following parameters

1. Learning rate + warm-up steps (Noam scheme)

2. Number of layers

3. Number of attention heads

14

2 Neural Networks

4. Feed-forward connections

5. Parameter priors - Xavier uniform

6. Residual Dropout and Label smoothing

7. Batch size

In the original paper the transformer adheres to the Noam training scheme, choosing
a small learning rate at the beginning and then increase it linearly for a few thousand
warm up steps. When hitting the warm up steps limit the learning rate slowly starts to
linearly decrease until training finishes as depicted in figure 2.6.

Figure 2.6: Noam learning rate during training

The motivation behind this is that very large updates at the beginning helps the model
to learn more quickly. After a while the learning rate is too large and needs to slowly
decrease to not overshoot the goal. This can lead to zero gradients or a sudden increase
of the cross-entropy loss.

Another recent idea stemming from the self attentive transformer model is using CNNs.
Gehring et al. (2017) introduced CNNs to sequence-to-sequence modelling. Based on the
idea of sequence-to-sequence CNNs stems the idea of dynamic self attentive convolutions

15

2 Neural Networks

by Wu et al. (2019). Instead of recombining three linear queries, only one linear query
with a convolutional kernel in the center is used. There are two key concepts, the light
convolution and dynamic convolutions with an additional set of dynamic weights. The
formulation is as follows

LightConv(X,W[cH
d

], i, c) = DepthwiseConv(X, softmax(W[cH
d

]), i, c) (2.42)

DepthwiseConv(X,Wc, i, c) =
k∑
j=1

Wc,j ·X(i+j−[k+1]),c (2.43)

Where the light convolutions is a parameter tied, by a factor of cH
d , depth-wise con-

volution that reduces the number of parameters by several orders of magnitude. Light
convolutions unlike the scaled dot product self attention do reuse the same parameter
context. The problem of reusing the same context is that it is not updated per timestep.
This problem however is addressed with dynamic convolutions that tie an additional
linear layer to the light convolution. This linear layer is essentially a time dependant
function that acts on the before going learned convolution. It still does not require to
take the whole context of the sequence into account. We will use dynamic convolutions
using the sequence-to-sequence toolkit by Ott et al. (2019) to establish a baseline.

2.5 Discussion

In this chapter we gave a detailed overview of the seq2seq framework aligning a source
and target sequence via attention using a wide variety of models with a particular focus
on self attention networks. For neural text summarization, language generation is the
hardest part. Classical approaches via symbolic execution work well however neural
approaches spark a little more randomness and surprise into the equation. This often
leads to much more fluent language.

Summarization in essence is a sequence alignment task with a language generator on top.
Learning a compression from long to short documents by elimination of source words
and minimize the cross-entropy loss for next word prediction is at the center of these
algorithms. Self attention networks are especially relevant since they have shown superior
results to comparable models. The transformer is not a sequential network, relying on
positional embeddings to model range dependencies. Moreover the transformer is very
prone to hyperparameter tuning which makes them difficult to train correctly. Radford

16

2 Neural Networks

et al. (2019) have shown that transformer models are mostly never at full capacity,
either because the datasets are too small and therefore over-parameterized. The copy
transformer by Gehrmann et al. (2018) is the primary model in the experiment section.
The model is based on a sequence-to-sequence transformer with a few additional perks,
like copying, reducing repetition and length constraints.

A special focus on attention is important since all of the following models will use different
forms of it. It first appeared in 2014 introduced by Bahdanau et al. (2014) and was
gradually improved over time. Attention can be used to focus on salient words in the
documents, tackling the vanishing gradient problem by not forgetting any of the inputs,
while aligning to sequences of unequal lengths. The downside is that attention greatly
improves runtimes since for each query vector there is an additional linear layer added.

17

3 Language Modelling and Embeddings

Language modelling is a long standing NLP problem and has recently gotten a lot of
attention due to its success in downstream applications. Neural text summarization is
no exception to that. Liu (2019); Gehrmann et al. (2018); Edunov et al. (2019) have
established several models beating state-of-the-art systems using relatively simple tech-
niques based on fine-tuning and pre-training to language models such as BERT or ELMo.
The main idea was first introduced by Bengio et al. (2001) contributing a mathematical
formulation for a neural language model that is end to end trainable. In this chapter we
will discuss general language modelling objectives and recent developments on state-of-
the-art language models such as ELMo by Peters et al. (2018) or BERT by Devlin et al.
(2018).

Figure 3.1: Pre-training architectures adapted from Devlin et al. (2018)

In language modelling there are two principal distinctions, language model fine-tuning
and language modelling as feature extraction (embeddings). For fine-tuning the first
step is pre-training a general language model. Using this pre-ptrained language model to
then fine-tune to a specific target task. The tasks at hand range from question answering
to text summarization and are often pluggable given the correct objective. The pre-
trained model must learn general feature spaces about language such as part-of-speech
and its relations between words, word hierarchies, groups of similar words and next
token or sentence probabilities. In feature extraction, often synonymous for embed-
dings, word/characters/sentences or entire document representations are extracted as

18

3 Language Modelling and Embeddings

fixed length context vectors with dimensionality Rn × k where k is a hyperparameter.
Each dimension in an embedding of a word is said to be a specific context of that word
given all the other words. Levy and Goldberg (2014) call it an optimal point-wise mutual
information (PMI) matrix. Formally the language modelling objective is defined in terms
of the most likely probability of the before going words [x1, . . . , xi−1] given the current
word xi. By the chain rule of factoring a probability by their conditional probabilities it
follows

p(x1, . . . , xn) =
n∏
i=1

p(xi | x1, . . . , xi−1) (3.1)

For practical reasons it was shown that it is better to do a forward language model and
backwards language model

p(x1, . . . , xn) =

n∏
i=1

p(xi | xi+1, . . . , xn) (3.2)

concatenating both to have a sense of contextualization. The objective in language
modelling is to calulate the conditional joint probability of a given token, followed or
following a sequence. The common language model with LSTMs minimizes the negative
log likelihood loss of next and previous token probabilities

L = −
n∑
i=1

log p(xi | x1, . . . , xi−1) + log p(xi | xi+1, . . . , xn) (3.3)

L is the negative log likelihood of a forward and backward language model. Using log
probabilities makes the procedure numerically more stable. The biLSTM for language
modelling was introduced in several instances such as the AWD-LSTM by Merity et al.
(2017) or ELMo by Peters et al. (2018) both achieving state-of-the-art results. The
AWD-LSTM builds an ensemble of two language models, since a next word probability
cannot be learned when the next coming word is already defined.

In the following sections we will discuss transfer learning, when to use feature extraction
and when to use fine-tuning. This entails to draw out a rough theoretical foundation
about pre-training, fine-tuning and feature extraction, using examples from recent lan-
guage models like ELMo and BERT. First let us quickly review the most occurring cost
functions and evaluation metrics for language models and embeddings.

19

3 Language Modelling and Embeddings

3.1 Evaluation

The most common metrics for measuring a language models prediction capacities is the
cross-entropy and perplexity. Most language models objectives require a function that
measures the next word probability given the current word, based on a context the word
is in. Recall that the softmax is

pθ(x | c) =
exp(hTc wx)∑|V |
i=1 exp(h

T
c wi))

(3.4)

where c is the context of x, hc and wi are functions of c and x parameterized by θ and
hTc wx is the unnormalized logit. The softmax yields a probability distribution summing
to 1. The softmax is an expensive function when the vocabulary size grows. In language
modelling, keeping as many vocabulary words V as possible is important which entails
using approximations of the softmax like hierarchical softmax or negative sampling.

Cross-entropy over words is defined over two distributions p, the true distribution as
observed in the training data and q the learned distribution. Expanding this idea to
language modelling this measures the true probability of the current word x and the
context c as described above

H(p, q) = −
∑
x

p(x) log q(x) (3.5)

Lθ = −
|V |∑
i=1

yi log p(xi|ci) (3.6)

= −log exp(hTc wx)∑|V |
i=1 exp(h

T
c wi))

(3.7)

Since xi is the current word it is at the same time the label as a one hot encoded vector
and ci is our prediction. The cross-entropy can be defined in terms of the negative log-
likelihood of the softmax probabilities. Minimizing the cross-entropy loss results in high
probabilities for correct next words.

Perplexity is defined over a discrete probability distribution p and is a measurement of
how well it learns the context of the dataset. The perplexity is defined in terms of the

20

3 Language Modelling and Embeddings

exponentiation of the entropy H(p).

2H(p) = 2 −
∑

x p(x) log2 p(x) (3.8)

where x are the words and p the probability distribution. In the case of a text looping
over all words and measuring the probability of each word results in

2H(p) =

N∑
i=1

p(wi)
− 1

N (3.9)

In general, the lower the perplexity the higher the individual probability of each word.
A good language model predicts high probabilities for a word when it actually occurs.

3.2 Transfer Learning

The following section is heavily based on the thesis of Ruder (2019). Transfer learning
deals with the task of aligning a source domain Ds and a task Ts to a target domain Dt

and task Tt. D consists of a feature space X = [x1, x2, . . . xn], a marginal probability
distribution P (X) over the feature space and a prior distribution P (Y) called label space.
Both domains have a conditional probability distribution P (Y |X) that maps sequences
of X to labels of Y . The main objective then becomes to learn the target domain Dt by
learning Pt(Yt|Xt) given the information from Ds and Tt. Two cases are relevant for this
thesis, namely sequential transfer learning and domain adaptation.

Sequential transfer learning occurs when the label spaces Ys 6= Yt e.g. when the
target task has different labels than the source task. For instance training a source
Wikipedia language model with the next word prediction task, while the target tasks
learn text summarization from the same corpus. Sequential transfer learning has a pre-
training and adaptation phase, learning the source task and then adapt the target to it.
Typically pre-training should lead to generalized/universal representations of language
that is adaptable to specific corporas that are not in the trained domain. However there
is no free lunch and obtaining an universal representation that is useful on all NLP tasks
is not possible. When the source domain contains more data than the target domain,
it is best to use sequential transfer learning. There is also active research to make one
language model as adaptable as possible to as many tasks as possible.

21

3 Language Modelling and Embeddings

Domain adaption is when the probability distributions Ps(Xs) 6= Pt(Xt) which means
that both corpora discuss different topics. For instance when pre-training a Wikipedia
language model as the source and using a news corpus for fine-tuning on the same task.
The words and the way the content is described will differ. For instance trainining a
Wikipedia language model as the source task and learning a text summarization model
as the target task on a news domain would make use of sequential transfer learning
and domain adaptation at the same time. In the following we will discuss primarily
pre-training and two adaptation methods, namely feature extraction and fine-tuning.

3.3 Word Embeddings

The goal with pre-training is to train universal models that can be used successfully in
as many different NLP tasks as possible. There are three distinct categories, unsuper-
vised, distantly supervised and supervised pre-training. Since most text datasets are not
annotated, unsupervised pre-training learning directly from unstructured text is more
viable. In theory word embeddings help to learn general features before they are plugged
into a specific architecture. Thus word embeddings are learned prior distributions over
words. First, this speeds up the training process leaving room for the actual task. Sec-
ond, with more data in a source domain there is a chance of better word representations
leading to an improved quality in downstream applications. The methodologies behind
pre-training fall into two categories, e.g. language modelling and matrix factorization.
Matrix factorization methods include

1. Latent Semantic Analysis (LSA) by Deerwester et al. (1990)

2. Brown Clustering by Brown et al. (1992)

3. Latent Dirichlet Allocation (LDA) by Blei et al. (2003)

4. Pretrained Hidden Markov Models (HMM) by Huang and Yates (2009)

As explained before the primary focus is on neural language modelling and embeddings.
Since we already introduced language modelling above let us contrast the factorization
based methods with word based contextual embedding models like Word2Vec, GloVe or
FastText.

22

3 Language Modelling and Embeddings

Word2Vec by Mikolov et al. (2013) was the first popular word embedding that was widely
available and distributed and simply worked in most downstream applications, pushing
accuracy scores by a few percents. Word embedding methods rely on the definition of
a context and a loss function that is able to capture this context. The most prominent
word embedding objectives are skip-gram and continuous bag-of-words (CBOW).

Figure 3.2: Skip-gram and CBOW Mikolov et al. (2013)

Skip-gram, as depicted in figure 3.2, predicts the context of a center word wi over a
window c and [wi−c, . . . , wi, . . . wi+c] are context labels

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (3.10)

Computing the probability p over all words is intractable, instead using skip-gram with
negative sampling (SGNS)

logσ(v’TwO
vwI) +

k∑
t=1

Ewi ∼ Pn(w)[logσ(−v’TwO
vwI)] (3.11)

This results in 2Ċ context words and a few more negative words constrained by k samples
to discriminate. Here, σ is the sigmoid function, drawing k samples from the negative
or noise distribution Pn(w), to distinguish the negative draws Ewi from the target word
wO drawn from the context of wI . The idea behind this is, that the current word is

23

3 Language Modelling and Embeddings

defined via its contextual window and not via all the words that are not. However the
negative samples are needed so that the model learns what should not be considered as
a contextual word. Often it is very useful to transform words into segments of symbols
rather than the word itself. A good example would be stemming. A trend from the
neural machine translation architecture is to use byte-pair encoding.

Byte-pair encoding (BPE) introduced by Sennrich et al. (2015), is a data compression
algorithm and was quickly adopted for language tasks. The basic idea is to encode each
word of the input sequence into word segmentation’s such that rare and unknown words
can be resolved. Often rare words provide useful meaning. Slight variations in the stem
of a word and it will not be recognized. More dire is the situation on test dataset
where there are potentially many out-of vocabulary words. Instead decomposing words
into their optimal sub pieces, trying to find the parts of words with similar character
segments. The use of BPE results in fewer words overall therefore greatly reduces oov
words and therefore reducing the model size.

Global Vectors for Word Representation (GloVe) by Pennington et al. (2014) is an
extension to the original skip-gram with negative sampling approach used in Word2Vec.
GloVe incorporates global co-occurrence counts during training. Instead of using the
raw probabilities like Word2Vec, it is possible to consider the ratios of vectors given the
global co-occurrence of two words. The authors derived several enhancements including
changing the loss function to a mean squared error (MSE) loss.

Lθ =
|V |∑
i,j=1

f(Cij)(x
T
i x̃j + bi + b̃j − log Cij)2 (3.12)

xi is a word and x̃j its context word with their corresponding biases. Cij is the count
where wi occurs with the context x̃j . f is a weighting function that assigns higher scores
to words that occur in between rare and frequent words. Since Word2Vec and GloVe
there are several new approaches to create embeddings: BPEmb Heinzerling and Strube
(2017) that train BPE embeddings and provide them in 275 languages or FastText Joulin
et al. (2016) a non neural approach using n-grams also providing a dozen multi lingual
models.

24

3 Language Modelling and Embeddings

3.4 Deep Language Representations

In recent years due to the success on downstream applications, the trend for ever larger
and more complex neural networks replacing smaller shallow networks and bag-of-word
models. The quality of results went high especially in areas where matrix factorization
methods do a very poor job, such as language generation. This however comes at great
costs such as computational complexity with training regimes of a few weeks and often
unreproducible results. The size of a lot of models also means that only a few actors
can actually train them from scratch. Since Howard and Ruder (2018) kicked off the
idea of fine-tuning generalized language models with great success, multiple new ideas
popped up in a very short amount of time. All with increasing model sizes and ever more
complex ideas and architectures for pre-training. In chronological order

1. Universal language model fine-tuning (ULMFit) by Howard and Ruder (2018), used
the AWD-LSTM introduced by Merity et al. (2017). They used new techniques
like discriminative fine-tuning, slanted triangular learning rates and gradual un-
freezing of layers successfully fine-tuning a generalized language model to a specific
classification task.

2. Embeddings from language models (ELMo) by Peters et al. (2018) tackled some
of the issues of ULMFit by making it simpler to fine-tune to new tasks using a
biLSTM.

3. Transformer decoder (GPT-1 / GPT-2) by Radford and Salimans (2018); Radford
et al. (2019) trained a state of the art language model that could be easily fine-tuned
to multiple NLP tasks. GPT-1 is a smaller version of GPT-2. GPT-2s training
dataset as well as the model was never published.

4. Bidirectional encoder representations from transformers (BERT) by Devlin et al.
(2018) is a huge bidirectional transformer that was trained on a cloze task and is
almost universal to some degree.

For this work we will take a closer look on ELMo and BERT. GPT-1 and GPT-2 are
too big to retrain and were never published for multiple languages. A few notes on the
above models. A recent study by Emma Strubell and McCallum (2019) argue that the
recent trend in NLP tend to focus on ever larger models, costing a lot of electricity and
money. Relevant for this thesis

25

3 Language Modelling and Embeddings

1. ELMo was trained on 3 NVIDIA GTX 1080 GPUs for 2 weeks (336 hours) and
costs $433 - $1472

2. NVIDIA reports that they can train a BERT model in 3.3 days (79.2 hours) using
4 DGX-2H servers, totaling 64 Tesla V100 GPUs and costing $3751 - $12,571

3. GPT-2 has 1542M parameters and is reported to require 1 week (168 hours) of
training on 32 TPUv3 chips costing $12,902 - $43,008

For real world applications and different languages all of the above models would need
to be specifically retrained on different data and languages. Replicating one of these
is a time and power consuming task, requiring a lot of money. While not disturbingly
high, these values should at least provide food for thought. Deep representations are
different from word embeddings since it is not possible so simply extract features for a
single word. A word is always seen in the context of its full sequence and consequently
needs access to the sequence when encoding the representation. After the encoding it is
possible to use single word embeddings. According to Ruder (2019) feature extraction
and fine-tuning differ as follows: Feature extraction sets the learning rate η for all layers
of the embedding to zero, meaning only the source task is trained

η
(l)
t = 0, ∀l ∈ [1, LS]∀t (3.13)

By contrast fine-tuning sets the learning rate during training for all layers to some
value.

η
(l)
t > 0, ∃l ∈ [1, LS]∃t (3.14)

Here it is possible to use techniques such as gradual unfreezing of layers Howard and
Ruder (2018). This opens up many possibilities to shift parameters trained on a do-
main with a lot of knowledge and transfer that knowledge while gradually moving the
parameter space to the target domain. Often this can be done by a sharp increase of the
learning rate, with a linear decay after some time and only training layers gradually, e.g.
unfreezing them.

26

3 Language Modelling and Embeddings

3.4.1 Embeddings from Language Models

Embeddings from Language Models (ELMo) by Peters et al. (2018) is a large biLSTM
designed for solving syntactical language tasks. ELMo is a multi-layer bidirectional
LSTM that can be used as a feature extractor in any downstream NLP task. The
cost function ELMo maximizes is the negative log-likelihood of a forward and backward
language model parameterized by an LSTM

~L = p(xi | x1, . . . , xi−1; θe, ~θLSTM , θs) (3.15)
~L = p(xi | xi+1, . . . , xn; θe, ~θLSTM , θs) (3.16)

L = −
n∑
i=1

(log ~L+ log ~L) (3.17)

The biLSTM is a pretty common architecture, what differentiates ELMo from the rest
is how it is used. ELMo stacks the hidden states of each layer l into 2L + 1 vectors
for each word xi. Note each layer is present in forward and backward direction e.g.
hi,l = [~hi,l; ~hi,l]. The vectors are then squashed into a single vector

hi,0:l = [hi,0 ;hi,1 ; . . . ;hi,l] (3.18)

The original ELMO architecture has 3 layers, 2 biLM layers and one embedding layer
each with dimensionality 1024 resulting in a 3072 sized vector. In contrast to standard
embeddings that assign a fixed length vector based on a word, ELMo needs the whole
sequence. The usage of a forward and backward LSTM makes it possible to capture
previous and next word information. Recall that an LSTM gradually builds up its hidden
state based on the before going hidden state, which means that the feature extraction of
a single token needs the whole sentence or document. By example with two sentences

senta = [sitting, on, a, bank]

sentb = [keeping,money, in, a, bank]

27

3 Language Modelling and Embeddings

and extract the features for the word bank

ELMo(senta, bank) = ~bank1 ∈ R3072

ELMo(sentb, bank) = ~bank2 ∈ R3072

where ~bank1 6= ~bank2

The word is the same, the result are two different real valued vectors based entirely on the
passed context. The second important contribution is the way ELMo can be fine-tuned
to a target task. By just extracting the features E(Ri, θe) from ELMo and inserting it
in a downstream task with parameters θtask there can be a considerable domain drift.
Hence Peters et al. (2018) provided a way to fine-tune ELMo to a specific target task

ELMotaski = E(Rk, θ
task) = γtask

L∑
l=0

staskl hi,0:l (3.19)

Where γ is an optimization parameter and staskl a specific linear combination adjustable
for the specific task. This makes ELMo suitable for fine-tuning as well. In the simplest
case the linear combination can just be another language model on a new domain corpus.
The downside is that ELMotask needs to be fine-tuned to each new task and to each new
dataset. A part from this, what does ELMo actually learn? Given that it solves question
answering, textual entailment, co-reference resolution or named entity extraction with
scores yielding state-of-the-art-results.

3.4.2 Bidirectional Encoder Representations from Transformers

After Radford and Salimans (2018) published their transformer decoder language model,
the open question was how to create a bidirectional transformer architecture.Devlin et al.
(2018) took the opportunity and created a bidirectional encoder representations from
transformers or short BERT. The problem with bidirectional transformers is that they
are not time step dependant like LSTMs. Transformers consume the input at once.
The problem is that the next word probability is already known from the backward
language model. It follows that BERT cannot directly learn the next word probability
task. Instead the authors coined the term masked-lm where randomly selecting a token
and trying to predict it is possible. In the literature this is also known as a cloze task
e.g.

28

3 Language Modelling and Embeddings

Mary sat on a ? eating her ?

where some possible combinations would be chair and lunch. Consecutively BERT needs
a way to mask its input representation. Additionally to learning the masking for single
words, BERT also learns a next sentence prediction expecting two sequences divided by
a delimiter. In figure 3.3, BERT expects sentence and sequence delimited input

Figure 3.3: Bert input representation Devlin et al. (2018)

It consists of a token embedding for individual words, a segment embedding for sen-
tences and a position embedding (since transformers have no sense of position). The
input always starts with a [CLS] token at the beginning and a [SEP] token to delimit
two sequences and mark the end of the pairs. The segment embedding marks the sen-
tences such that the first and second sequence divided by the [SEP] token have two
marking. The masking works like this: with 15% chance randomly select a token in
the sequence and replace it 80% of the time with the [MASK] token, 10% at random
from the vocabulary and 10% leave the token unchanged. The motivation by not choos-
ing anything comes from the problem that the [MASK] token will create a mismatch
between pre-training and fine-tuning. As depicted in figure 3.4 fine-tuning with BERT
becomes surprisingly simple

After pre-training a BERT model on a large corpus in a specific language, the input
representation can be chosen given the task. One nice thing is, the authors published
several versions of the model, including a multilingual version where BERT understands
multiple languages to some degree. They used BPE to encode the tokens, reducing
vocabulary and extracting meaningful word segmentation’s. For BERT, fine-tuning is
superior to feature extraction. However you can extract different representations from
BERT and still have very good results in downstream applications. The concatenation
of the last four hidden states, by ablation, was the most successful feature extraction
method. In the end, what does BERT actually learn? Goldberg (2019) found out that

29

3 Language Modelling and Embeddings

Figure 3.4: Bert for fine-tuning Devlin et al. (2018)

BERT actually learns hierarchical representations and long term dependencies. They
also found that bigger is not necessarily better by comparing the large and base version
finding that syntactical word level tasks are better in the base version. Jawahar et al.
(2019) looked a bit deeper and found that each of the 12 BERT layers learned to perform
different tasks on semantic and syntactic evaluation datasets.

3.5 Discussion

Since 2018 a new generation of language models and embeddings have appeared. For
NLP this meant that the transfer learning moment finally arrived. Language modelling
is a very general task with which it is possible to learn many morphological features
of text. A single language model can capture hyponymy, synonymy, part-of-speech and
structural dependence between words and sentences, e.g. context. Important models in
this area include ELMo by Peters et al. (2018) and BERT by Devlin et al. (2018) pushing
all NLP task to new state-of-the-art results while providing open source versions ready to
use for researchers. While ELMo contextualizes words given the entire sentence, BERT
uses the cloze prediction task.

With the rise of pre-training and fine-tuning, first proven to effectively work in NLP with
ULMFit by Howard and Ruder (2018), a vital question arises: Do we extract the features
or fine-tune language models? Peters et al. (2019) answered this question regarding the
language models BERT and ELMo and found that BERT should be fine-tuned for a
specific task and ELMo should be used with feature extraction.

30

3 Language Modelling and Embeddings

The most prominent metric of language modelling is the perplexity metric which is con-
nected to the cross-entropy. The overall task is to assign high next word probabilities
to correct words, in case of word embeddings with a window k. While this makes sense
in the domain of language modelling, it becomes clear later that the primary evaluation
metric of summarization differs from the next word prediction task. In the context of
sequence-to-sequence learning, sequential transfer learning by extracting features is most
prominent. Recent ideas by Edunov et al. (2019); Zhang et al. (2019a) have shown that
this can be learned jointly in and end to end fashion.

Later we compare how ELMo is used for extractive summarization via feature extraction
by Gehrmann et al. (2018) and how to use BERT via fine-tuning to train a sentence
extractor by Liu (2019). This makes ELMo and BERT directly comparable on extractive
summarization. The probability masks for the next word or sentence prediction are
directly applicable in hybrid extractive-abstractive summarization systems.

31

4 Neural Text Summarization

In this section we will lay out the basic building blocks of neural abstractive text summa-
rization. The thesis works on English and German language, from two different datasets.
The English dataset is the CNN/DM corpus with news articles from CNN and daily mail.
Much more interesting is the transfer to German language, based on the DPA dataset.
Before diving into specific topics and the presentation of the dataset let us develop a
definition of summarization. Automatic summarization shortens texts while keeping the
main points and ideas intact. Relevant points include:

1. Length - The summary should be short and concise

2. Coverage - All relevant information should be covered

3. Repetition - Words and information should not repeat

4. Factual correctness - Information should be correct

5. Syntax - Language should be grammatically correct

6. Fluency - Language should be fluent and in full sentences

Summarization is classified as extractive and abstractive summarization. The objective
of summarization is to consume a source sequence X of words (x1, x2, .., x|X|) and align it
with a - usually shorter - target sequence Y of words (y1, y2, .., y|Y |) sharing a vocabulary
V . The objective goal is then to create a function f that finds a mapping f : X × Y →
T ∈ Rm where T is essentially any permutation of possible sentences constrained to
length m.

f(x, Y) = argmax
y∈Y

f(x, y) (4.1)

For extractive summarization, there is an additional constraint, instead of generating
words from the whole vocbulary, the objective is to rank sentences or words from the

32

4 Neural Text Summarization

sourceX = X[1,..m] that have the highest overlap with the target Y . The following section
discusses the evaluation of summarization using the ROUGE score and cover extractive
summarization.

Traditionally summarization methods are based on extractive summarization. Abstrac-
tive summarization is the primary goal, however sentence rewriting and language gen-
eration are long standing unsolved problems. Recently, neural approaches showed some
promising results in that area. Extractive summarization commonly was tackled with
sophisticated metrics such as cue words, title or location based methods where the most
salient sentences are picked. Often extractive summarization is a preprocessing step to
abstractive summarization, for it is easier to generate language from a few predefined
sentences than from larger unstructured texts. The language representation has many
forms such as graphs, cooccurence frequencies and latent vector space models. All of
them have the goal to represent text in a way that it is possible to rank words and
sentences by some metric, keeping repetition as low as possible. For a good overview of
extractive summarization please refer to Allahyari et al. (2017); Dong (2018).

Let us quickly establish three extractive summarization baselines. The ROUGE score
can be easily used to find the optimal extractive baseline that is able to maximize the
score. This can only be applied on the training dataset and is not available during test
time. This kind of solution is roughly speaking, the cheating solution to show what the
maximum possible ROUGE could be. With extractive summarization our primary goal
is to rank words, phrases or sentences in the source text given a target summary, copying
the most salient information from the source.

Lead-n extracts the first n sentences, normally the first, second and third as extractive
summarization. Since most summarization datasets deal with news items the assumption
is that the first three sentences provide a good summary of the whole text. It is important
when introducing new datasets to test this method since it provides a way to quantify how
hard it will be to extract the content for a target summary. Moreover it gives a notion
of how the information is spread across the whole source text. Low scores indicate that
information is spread across the whole source text, very high scores indicate that most
of the information is present in the first three sentences.

Oracle-n extracts n sentences for any source where n is strictly smaller than the max-
imum number of sentences. The ranking is as follows, from all the sentences pick the
sentence with the highest ROUGE 1 to L score. Repeat until threshold was reached. On
the way ideas like coverage, e.g. highly overlapping content to eliminate sentences that

33

4 Neural Text Summarization

are too close to an already added one, are used to minimize repetition. This procedure
is very helpful since it gives you the maximum ROUGE score you could possibly achieve
using extractive summarization. This in turn also sets the absolute value you can pos-
sibly achieve. Low scores indicate that the source and target are lexically disconnected
from each other, while high scores indicate that both share a lot of words.

TextRank, Radim and Sojka (2010), is an unsupervised graph based algorithm where
sentences or phrases are picked based on their relation. The weighting can have many
different forms. Commonly sentences are mapped to a numeric representation making
them comparable with distances like the cosine distance. The result is a dense matrix
or low rank approximation of the a highly sparse matrix. The dense matrix is a ranking
of sentences and phrases. Note it is also possible to initialize a sentence with a word
embedding procedure and then create a cosine similarity matrix based on that.

The above procedures are not based on neural algorithms. The Oracle-n score is most
informative in terms of performance. TextRank and Lead-n are simply heuristics re-
sembling classically symbolic systems. Neural architectures on the other hand learn a
compression, by either deleting words from the source until it is most similar to the tar-
get, or by picking the most probable words from the source that could possibly generate
the target. Later in this chapter we will describe two state-of-the-art neural extractive
summarization models by Gehrmann et al. (2018); Liu (2019) using ELMo and BERT.

4.1 DPA Dataset

The Deutsche Presse Agentur (DPA) provided us with roughly 1.2 million texts with
various degrees of metadata. The datasets involved for summarization however are much
smaller. There are roughly 100.000 texts that contain a description and 380.000 texts
that have a headline long enough to work with. We received two DPA datasets, the news
ml g2 dataset containing 214.504 articles as XML and the weblines dataset containing
1.001.719 as JSON articles. In total both contain 22 relevant metadata fields of which
we use 7. Both contain the same information though with different value proportions.

The news ml dataset only contains 165.000 valid headlines and 35.697 descriptions, the
latter amounting to 18.46% of the data. The categories and genres are important for
preprocessing.

34

4 Neural Text Summarization

No. Field Unique Not Nulls Perc. not null

1 guid 213965 213965 100.00%
2 category_qcode 6 214725 100.00%
3 genre_qcode 30 214725 100.00%
4 text 186387 214504 99.90%
5 headlines 165107 214725 100.00%
6 description 35697 39635 18.46%

Table 4.1: News ML dataset

No. Field Unique Not Nulls Perc. not null

1 guid 1001719 1001719 100.00%
2 category_qcode 13 1001719 100.00%
3 genre_qcode 35 998318 99.66%
4 text 985551 1001719 100.00%
5 headlines 906274 1001719 100.00%
6 description 103786 110034 10.98%

Table 4.2: Weblines dataset

The weblines dataset on the other hand contains 906.274 valid headlines and 103.786

descriptions amounting in the latter case to 10.98% of the data. The dataset was con-
catenated into one large corpus.

4.2 Evaluation

Evaluating a summarization system is very delicate and ambiguous. On the one hand
there are standardized scores like the ROUGE metric that measures for precision and
recall of overlapping words from the hypothesis and the gold summary. On the other
hand there is intrinsically testing a system by asking experts or doing blind comparisons.
Both systems have problems, namely the standardized scores do not necessarily test for
a good summarization and experts are mostly not available. Mechanical turks are biased
and do not know what to look out for. Therefore it is necessary to briefly introduce the
quantitative metrics, explaining the ROUGE score and BERT score.

35

4 Neural Text Summarization

4.2.1 ROUGE

The ROUGE metric, introduced by Lin (2004), is a recall based metric that measures the
overlap of n-grams between the gold G (G′ for unique n-grams) and hypothesis summary
H (H ′ for unique n-grams). It is standard practice to compare n-grams of one, two and
longest, namely, ROUGE-1, ROUGE-2 and ROUGE-L for longest overlapping sequence.
The ROUGE-1 score, which can be generilized to any kind of n-gram overlap, can be
defined as follows

P1(H ′, G′) =
1

|G′|

|H′|∑
i=0

f(H ′i, G
′) (4.2)

f(h,G′) =

1, if h ∈ G′

0, otherwise
(4.3)

In other words, count the number of unique words that are in the hypothesis and in
the gold summary at the same time and divide it by the total unique word count of G′.
Recall is defined exactly the other way around. The F-score is defined as

2× P ×R
P +R

(4.4)

the harmonic mean of precision and recall. To consider a summarization system good it
needs to have high scores on all three F-measures, R-1, R-2 and R-L, resulting in a high
R-Avg. Simply put, the system with the most overlaps in both directions and with the
longest common sub-sequences. Obviously this metric has several flaws in reality. Some
of them are listed in this list.

1. It is questionable whether a good summary is measurable by counting overlapping
n-grams. Fluency, correctness, coverage are all metrics that are not tested but very
important in summaries.

2. The length of the hypothesis summary is really important. The longer the hypoth-
esis is the more words can overlap with the reference. This can lead to very bad
results if the summaries are very short. In reality the summaries are always chosen
in a way that it needs to be fixed at a certain k or it is hard to compare. For this
it would be good to have a length constrained penalty in the ROUGE score.

36

4 Neural Text Summarization

3. Different words can have the same meaning and the same words can have a different
meaning. The ROUGE score does not account for contextual information nor for
two different words with almost the same meaning.

4. ROUGE favours highly extractive datasets. That means if the overlap (single
words, n-grams, entire sentences) between the original text and its reference is
high, algorithms will simply learn to copy relevant passages. It becomes much
easier to achieve good scores. What about very abstract references that describe
the text on a different level?

To this end, there are a few considerations. The length constraint is easily solved since
automatic summarizations have a fixed length of 100 words. This assumption obviously
breaks down if the texts are much longer or much shorter. Secondly, making use of
language models like BERT for dealing with word-sense disambiguation has proven to
be fruitful, effectively dealing with different word combinations and extractive datasets.
Extractive datasets are favoured since testing for n-grams, happens on a symbolic level.
The English ROUGE score relies on WordNet to find overlapping lemmatization of a
word, which eliminates some of the conceptual problems. However WordNet is an English
database. Fluency and correctness can only be attested by experts, for there is no
quantitative measure if a summarization is fluent.

4.2.2 BERT Score

The BERT score is a rather new invention. In a nutshell: embed the reference and
candidate summary with BERT and do a cosine distance metric over the resulting word
representations.

Figure 4.1: BERT score Zhang et al. (2019b)

37

4 Neural Text Summarization

This system deals with several things at once. First, long candidate sequences are pe-
nalized since the cosine similarity will be penalized for each additional word that is not
part of the reference. Second, it deals with word-sense disambiguation: freezing today
and the weather is cold today are pretty close in meaning, but would normally only have
one overlapping word, resulting in a very bad ROUGE score. It could be problematic
to use BERT in a downstream model since it is biased towards BERT. This idea is not
restricted to BERT but to all kind of embeddings and language models to disambiguate
words.

4.3 Abstractive Summarization

In abstractive summarization the question is on how to compress the original text and
instead of copying the relevant parts generating new language. Language generation in
and of itself is an almost impossible task to achieve. Above all, syntactical and factual
correctness are very hard to generate. In addition to learning to generate coherent
sentences, the system needs to learn the compression of a longer into a shorter sequence.

Neural text summarization is greatly inspired by neural machine translation systems and
had its kick off with the first neural summarization system introduced by Rush et al.
(2015). They managed to align two sentences where the source is longer than the target
producing fluent summaries. Quick iterations followed by Chopra et al. (2016) extend-
ing the LSTM architecture by providing a new CNN attention mechanism. Nallapati
et al. (2016) were able to generate longer sequences, via a pointer mechanism and dif-
ferent input representations that focus on morphological and co-occurrence statistics of
language. Wiseman and Rush (2016) introduced beam search optimization during train-
ing and inference to bridge the disconnect between the actual task of sequence aligning
and summarization. The introduction of beam search during training constraints the
model to learn global sequence scores instead of many local ones. The pointer generator
model by See et al. (2017) is nowadays considered the baseline model for abstractive
summarization. They introduced an end to end trainable pointer mechanism with a cov-
erage penalty, achieving a new state-of-the-art. In the same year Gehring et al. (2017)
established the first sequence-to-sequence architecture fully trained with CNNs.

After this the progress was redirected to models with greatly increasing complexity based
on reinforcement learning objectives. Paulus et al. (2018) created a model that enhances
the coverage penalty by an intra-decoder attention mechanism allowing to penalizes words

38

4 Neural Text Summarization

already in the decoder sequence. Additionally, Paulus et al. (2018) used a mixed training
objective function consisting of a non-differentiable reward function with a self-critical
policy gradient algorithm maximizing the ROUGE metric directly. Zhou (2018) proposed
an extractive model that jointly learns to score and infer the best sentences by building
up a hierarchical representation of text. Celikyilmaz et al. (2018) proposed their deep
communicating agents model, which is a multi-agent decoder-encoder where each agent
learns to summarize paragraphs of the source.

Figure 4.2: DCA by Celikyilmaz et al. (2018)

As depicted in 4.2 the word level attention probabilities of each paragraph are com-
bined with an agent attention mechanism. The importance of locality is in strong focus,
since every paragraph is important and treated locally. They add an additional seman-
tic cohesion loss to reduce repetition and directly learn to learn the ROUGE metric
with a reinforcement learning policy gradient method. This model is the state-of-the-art
model.

Since reinforcement learning objectives are extremely hard to train correctly and the rise
of ELMo and BERT created new possibilities, Gehrmann et al. (2018) introduced an
abstractive summarization system based on a copy transformer and an ELMo extractor
used during inference time, achieving a strong baseline comparable to Celikyilmaz et al.
(2018). Since fine-tuning language models to specific tasks is now in reach, Liu (2019)
used the BERT model to create a state-of-the-art extractive summarization system by

39

4 Neural Text Summarization

fine-tuning a linear classifier for sentence selection.

Our work will directly combine Bottom-Up summarization by Gehrmann et al. (2018)
and the extractive summarization by Liu (2019) using BERT. As a side note, two new
unpublished models came about in the last months. The focus is to extensively use
ELMo or BERT in combination with pre-training and fine-tuning. Zhang et al. (2019a)
successfully trained BERT with a reinforcement learning objective as a abstractive sum-
marizer and Edunov et al. (2019) successfully fine-tuned ELMo, resulting in a strong
new abstractive summarizer. While the models are not yet officially published they are
included in the list.

4.4 Bottom-Up Summarization

Bottom-Up summarization by Gehrmann et al. (2018) is an ensemble algorithm with
three different results.

As depicted in figure 4.3 the three results are, first, establishing an abstractive summarizer
using a copy transformer, second, estbalishing an extractive summarizer using ELMo and
third combining the extraction mask during test time in the copy transformer.

Figure 4.3: Bottom-Up summarization adapted from Gehrmann et al. (2018)

Two models are at work here, the abstractive copy transformer and the extractive ELMo
model. The transformer architecture was introduced in chapter 2 the ELMo model in
chapter 3. To make clear what components are involved and how they are applied for the
summarization task there is a small overview of the relevant mechanisms like copying,
coverage and length normalization.

40

4 Neural Text Summarization

The ELMo Extractor is a content selector, tagging parts of the source with words from
the target. That is, each word in the source receives a 1 if it is in the target and a 0 if
not. This is illustrated well in this figure:

Figure 4.4: Many to many Sequence tagging

The ELMo extractor follows several ideas introduced by Collobert et al. (2011); Kim
et al. (2015); Peters et al. (2017), namely a bidirectional character LSTM in a sequence-
to-sequence learning setting with a conditional random field for label prediction using
the viterbi algorithm for best sequence retrieval. Furthermore, the weights of the model
are initialized using GloVe as a word embedder by Pennington et al. (2014) and ELMo
as a character/word embedder. Both extractions are concatenated, resulting in a word
dimensionality of Rdglove+delmo . Peters et al. (2017) found it beneficial to use a pre-trained
language model in a named entity recognition task.

TheCopy Transformer is a transformer encoder-decoder model based on Vaswani et al.
(2017) with some enhancements like copying, length normalization, coverage and trig-
ram blocking. Apart from it being a transformer model and thus not being a sequential
model, it behaves exactly the same as the LSTM.

4.4.1 Copying and Coverage

Before See et al. (2017) established a benchmark with the pointer generator network
for abstractive summarization, sequence-to-sequence models could not align long sources
with target sequences. Additionally, summaries lacked coverage of the source and were
prone to repetition. The source and target sequences could not be longer than a single
sentence. See et al. (2017) changed this by introducing a one layer encoder-decoder LSTM
network with two attention mechanisms and a coverage penalty. The first attention
mechanism was the standard global attention by Bahdanau et al. (2014) aligning the
encoder with the decoder. The second attention mechanism learns to distinguish between

41

4 Neural Text Summarization

when to copy a word directly from the source and when to generate one as depicted in
figure 4.5.

Figure 4.5: Pointer generator and coverage See et al. (2017)

Below there is a description of the core ideas presented in the pointer generator. The nov-
elty about their approach was using two attention mechanisms for the standard sequence-
to-sequence attention and an additional copy attention mechanism. It is possible to
combine both attention mechanisms into one.

Copying is defined via a pointer attention mechanism that jointly learns when to copy
and when to generate based on the source word attention distribution. The pointer
attention is defined as

pgen(xt) = σ(wTh ht + wTs st + wTx xt + bptr) (4.5)

pcopy(xt, yt) = pgen(xt)p(yt) + (1− pgen(xt))
∑
i:yi=yt

ati (4.6)

where ht is the context vector and st the decoder state with the encoder input xt and
decoder input yt at timestep t. All w are learnable parameters. This is essentially a
latent switch 1 − pgen which learns to either generate the next word according to the
softmax probabilities p(yt) or copy a word given the weighted sum of the input word xt
attention probabilities ati.

42

4 Neural Text Summarization

Coverage on the other hand is enforced with a additional coverage vector ct

ct =

t−1∑
i

ai (4.7)

that is the sum of all the attention distributions of the decoder until timestep t − 1. It
gives a magnitude for each source word. The higher the magnitude, the less likely the
word will be selected. Besides, a step-wise penalty is needed to apply it every time a
decoding step happens:

covloss =
∑
i

min(ati, c
t
i) (4.8)

The context vector ct is used during the global attention from Bahdanau et al. (2014) at
each timestep.

4.4.2 Beam Search

Beam search is a best-first search based on heuristics keeping the best n paths based
on a parameter β and thus is a greedy algorithm. Beam search in sequence-to-sequence
learning problems essentially uses the model decoder output log probabilities for the
next word and adds it to a so called beam (candidate list). Sequence-to-sequence models
involve decoding at each time-step t. Evaluating the next possible words, keeping only
the best words given a threshold β. Every time the end-of-sequence symbol is selected,
the beam is reduced by one until it is zero. When it reaches zero it picks the highest
scoring sequence given the highest log probability of individual words.

Wiseman and Rush (2016) suggested that it is possible to enhance the standard encoder-
decoder loss to incorporate beam search during training. It becomes then possible to
apply length constraints and coverage during inference time. Let us derive some formal-
ism’s about beam search and then quickly connect its ideas to the sequence-to-sequence
learning domain. The general normalization penalty can be formulated like this

s(Y,X) =
log P (Y |X)

lp(Y)
+ cp(X,Y) (4.9)

43

4 Neural Text Summarization

where lp is the length penalty, cp the coverage penalty. The length penalty can be defined
as

lp(Y) =
(5 + |Y |)α

(5 + 1)α
(4.10)

where α is some threshold parameter. It penalizes the model to learn longer sequences
the higher α goes. The coverage constraint can be seen as a minimization problem of the
next word probabilities of every word in the source X to the target sequence Y

cp(X,Y) = β

|X|∑
i=1

log(min(
|Y |∑
j=1

pi,j , 1.0)) (4.11)

where β is a hyperparameter that when increased forces to cover more of the source X.
Moreover, to this it is suggested in Paulus et al. (2018) that one of the core problems are
repeated trigrams. That is three consecutive words are repeated endlessly. By simply
constraining the beam search to refuse trigrams that are already present in the current
path helps in reducing repetition. In cases where words are out of vocabulary, rendering
an <unk> token, copying the best next word from the sourceX is a successful strategy.

4.5 BertSum for Extractive Summarization

Fine-tuning BERT for extractive summarization by Liu (2019) is a new extractive state-
of-the-art algorithm using BERT to select the most salient sentences by learning the
oracle selection. This is basically done in two steps. First, pre-train the masked BERT
language model and second, fine-tune the domain dataset on BERT with a linear sentence
classifier at the end. Liu (2019) enhanced the sentence tagging to be able to distinguish
an entire document from a sentence. As explained before, BERT cannot traditionally
predict next word probabilities, instead it can predict the next sentence given sentence
pairs. Sentence pairs, however, can be entire documents. Recall from figure 4.6 that
BERT is a combination of an input document delimited by special tokens embeded into
a token, segment and positional embedding.

In order to distinguish between sentences within a document, Liu (2019) labels each
sentence based on the sentence number with A when it is even and B when it is odd.
The Oracle selection picks the most salient three sentences given the ROUGE score and

44

4 Neural Text Summarization

Figure 4.6: BertSum by Liu (2019)

labels each sentence with 0 or 1. Additionally, each sentence is separated by a [CLS]

token to mark a sentence having a definite ending. Recall that BERT cannot provide
word probabilities, due to the cloze task. To go around this a linear classifier is stacked
on top to get unnormalized sentence scores. Liu (2019) used two additional transformer
layers for extracting sentence representations.

ĥl = LN(hl−1 +MHAtt(hl−1) (4.12)

hl = LN(ĥl +W · ĥl · b)) (4.13)

where LN is layer normalization and MHAtt a multi head attention mechanism, followed
by a simple feed forward network. On top of the intermediate representation and layer
normalization a linear layer is stacked to get a per sentence score

Ŷi = σ(Woh
L
i + bo) (4.14)

where L is the amount of additional transformer layers. Surprisingly, this beats all
extractive summarization systems by up to 1.5 ROUGE points.

4.6 Bottom-Up BERT

Bottom-Up BERT is an esemble between Bottom-Up summarization Gehrmann et al.
(2018) and a BERT extractor by Liu (2019). Recall that Gehrmann et al. (2018) used

45

4 Neural Text Summarization

ELMo as a feature extractor by providing word probabilities. The feature extractor is
trained with sequence tagging, where the labels are the target text’s words that are
present in the source text. Via beam search the most probable path is selected through
the sentence probabilities. Using BERT as a sentence ranker instead of ELMo, we push
the performance of the Bottom-Up model. In the first phase the DPA data is fine-tuned
to the BERT language model with a linear sentence predictor on top. The resulting
selected sentence IDs, given by a single index are used to mask the source document
with 1 when the word occurs in that sentence and 0 if not. The following formulation
makes this clear

X ∈ Ndsource (4.15)

Xsent ∈ Ndsents (4.16)

Xselected = BertSum(k,X,Xsent) (4.17)

maskdsource = ∀x ∈ X

1 if Xsent(x) ∈ Xselected

0 else
(4.18)

where X again is the source sequence and Xsent is a mapping or function that maps each
word of X to its sentence index. Selecting the top k IDs with BertSum and creating the
mask by setting all words to 1, when they are part of a selected sentence and 0 if not.
This mask has the same dimensionality as the source text since during the beam search
inference, it needs to align with the attention weights of the copy transformer. We also
tried a soft variant, where instead we set each value to a probability relative to the score
with a softmax and boosting factor, which did not improve the results.

4.7 Discussion

In this section we have learned that text summarization is split into extractive summa-
rization - based on ranking words and sentences - and abstractive summarization - based
on language generation methods with sequence-to-sequence models. Transfer learning
greatly helps in improving extractive summarization methods and in turn can be used
as a sentence selector for abstractive models. The ROUGE evaluation metric measures
the quality of a summary given a gold summary. Recall from earlier chapters that this is
a problem since the sequence-to-sequence framework models sequence alignment with a
next word prediction task. With beam search during inference time there are possibilities

46

4 Neural Text Summarization

to use the copy weights, reduce repetition and constrain the summary to have a certain
length. Using the next word prediction probabilities during beam search, helps in select-
ing additional salient information. However, the models are not end-to-end differentiable
which doubles training time.

The ideas of BertSum by Liu (2019) and Bottom-Up summarization by Gehrmann et al.
(2018) can be combined using the same masking scheme. This implicitly compares an
extractive ELMo model with a fine-tuned BERT as suggested by Peters et al. (2019).
Besides this, Edunov et al. (2019) have shown that it is possible to successfully use
ELMo with fine-tuning for abstractive summarization. Zhang et al. (2019a) on the other
hand have shown that BERT is too large to be fine-tuned effectively for abstractive
summarization. Instead, they introduced reinforcement learning and also created an
extractive ranking along the way. In the future we will see more models using language
models of all kinds and achieving better results on the way.

We introduced the DPA dataset and the relevant statistics involved for summarization.
The descriptions are longer with two to three sentences, while the headlines are relatively
short with one to two sentences. Later The upcoming experiment section reveals that
both datasets are not extractive since the overlaps of words from source text are low
compared to the words appearing in the target text. It is therefore difficult to use copy
mechanisms and extractive techniques on this dataset.

47

5 Experiments

In this section we will provide a detailed description of the summarization experiments,
results and the required analysis to interpret them. In order, we will first compare
Bottom-up BERT to other state-of-the-art models on the English CNN/DM corpus.
Then we will proceed to describe all the results on the description and headlines dataset.
Instead of a single model we use several different architectures like transformers, LSTMs,
CNNs in an extractive as well as abstractive setting. Since there has been no prior
work on the German DPA dataset, we added a section on the preprocessing. Since the
length of the source text is important for summarization we tested shortening to 80 and
400 tokens. The description benefits from longer sources and the headlines benefit from
shorter sources. As introduced in the last chapter we will use the ROUGE evaluation
metric and the BertScore. Our model achieves a new state-of-the-art on the ROUGE-1
score, while the rest of the scores align with other top scores. Bottom-Up summarization
and BertSum are both models building on two popular language models, ELMo and
BERT. The comparison on various tasks between these too is especially interesting.
They are however not directly comparable, since BERT is not able to do a next word
prediction task. Instead both models are compared using proxy tasks like summarization.
The experiments were conducted earlier this year and since then two new models by
Edunov et al. (2019); Zhang et al. (2019a) appeared, using ELMo and BERT in a fine-
tuning setting. Both models are strong contestants for new baselines. Kim et al. (2018)
introduced a new reddit posts dataset along with a model that handles abstractive texts
much better. Hoang et al. (2019) also studied fine-tuning on pretrained transformers in
context of summarization and found that the length of the summary played an important
role for the ROUGE metric and achieved better results on abstractive datasets.

48

5 Experiments

5.1 Bottom-Up BERT on CNN/Daily Mail Corpus

The CNN/Daily Mail dataset contains roughly 290.000 documents with a test and valida-
tion set of 11.500 articles. The summaries are bullet point lists with sentences describing
the salient information of the source text. In table 5.1 we see baselines and extractive
metrics. The Oracle score with the best three selected sentences achieve extraordinary
high results. On average 10 points higher than any learned baseline. This indicates that
the CNN/DM dataset is highly extractive. The first three sentences alone without any
learned ranking achieve very good results.

Model R-1 R-2 R-L R-Avg

Baselines Lead-3 (First three sentences) 40.24 17.70 36.45 31.46
Oracle (Sentences chosen with ROUGE) 52.59 31.24 48.87 44.23

Extractive TextRank (Radim and Sojka (2010)) 40.20 17.56 36.44 31.40
NeuSum (Zhou (2018)) 41.59 19.01 37.98 32.86
ELMo (Peters et al. (2018)) 42.00 15.90 37.30 31.73
BertSum (Liu (2019)) 43.23 20.22 39.60 34.35

Abstractive Pointer Generator (See et al. (2017)) 39.53 17.28 36.38 31.06
Copy Transformer (Gehrmann et al. (2018)) 40.96 18.38 38.16 32.50
RL, intra-attention (Paulus et al. (2018)) 41.16 15.75 39.08 32.00
DCA (Celikyilmaz et al. (2018)) 41.69 19.47 37.92 33.03
Bottom-Up (Gehrmann et al. (2018)) 41.22 18.68 38.34 32.75
Dynamic Convolutions (Wu et al. (2019)) 39.84 16.25 36.73 30.94
BERT + RL (Zhang et al. (2019a)) 41.71 19.49 38.79 33.33
Fine-tuned ELMo (Edunov et al. (2019)) 41.56 18.94 38.47 32.99
Bottom-Up BERT (Ours) 41.75 18.95 38.35 33.02

Table 5.1: Results of CNN/DM on Several Models.

Our Bottom-Up BERT ensemble model uses the abstractive copy transformer by Gehrmann
et al. (2018), using the masking of BertSum Liu (2019), achieving a new state-of-the-art
on 41.75 R1 ROUGE score. All three ROUGE scores improve by a margin compared
to the Bottom-Up model. However, the overall winner in summarization on the R-Avg
is still the DCA model by Celikyilmaz et al. (2018) using reinforcement learning. Our
Bottom-Up BERT model however is ranked second compared to DCA by Celikyilmaz
et al. (2018) and third when we also consider the BERT + RL model by Zhang et al.
(2019a) which was introduced after the experimentation phase.

49

5 Experiments

BertSum was trained with 2 inter transformer layers, 8 transformer heads, a feed forward
size of 2048, with the Noam scheme and 10000 warm-up steps, dropout of 0.1 and total
train steps of 50000. The maximum number of sentences are summary must have was
three, with a maximum limit of 100 and a minimum of 5 tokens, clipped at 400 tokens.

Copy Transformer by Gehrmann et al. (2018) was replicated by following the training
options for the original transformer by Vaswani et al. (2017). The embedding and model
size has a dimension of 512, using the Adam optimizer with beta2 of 0.998 and label
smoothing by 0.1. Warm-up steps of 8000, the Noam decay scheme, 8 transformer heads
a learning rate of 2. Additionally copy attention is enabled. The original results as
explained earlier also make use of extensive options during inference time with beam
search. Subsequently a few examples comparing different summaries by different models
from the table

Summary - gary locke has been interim manager since start of february. locke has
won two and drawn four of his seven games in charge. the 37-year-old took over when
allan johnston quit.

BertSum - the 39-year-old - who will speak at a press conference on friday morning -
has lost just once in seven games since taking over at rugby park. kilmarnock interim
manager gary locke has been given the role on a permanent basis after signing a three-
year deal. the former hearts boss joined the club as assistant boss to allan johnston
last summer but took control of the team when his ex-tynecastle team-mate quit at the
start of february.

Copy Transformer - locke has been given the job at kilmarnock on a permanent
basis. the former hearts boss joined the club as assistant boss last summer. locke has
lost just once in seven games since taking over at rugby park.

Bottom-Up - gary locke has been given the role on a permanent basis. the former
hearts boss joined the club as assistant boss to allan johnston last summer but took
control of the team when his team-mate quit at the start of february. locke has lost
just once in seven games at rugby park.

Bottom-Up BERT - gary locke has lost just once in seven games since taking over
at rugby park. the former hearts boss took control of the team when his team-mate
quit at the start of february. the 39-year-old will speak at a press conference on friday
morning.

As we can see there is a lot of copying going on. Analysing Bottom-Up BERT more
carefully per sentence

1. Directly from the copy transformer but adding the full name

2. First part is a direct copy in all summaries of the trig-ram "former hearts boss",
second part of sentence is equal to Bottom-Up

50

5 Experiments

3. Last sentence is a direct copy of the source (BertSum)

It is obvious that Bottom-Up BERT is a combination of the copy transformer and Bert-
Sum, mixing up the order of sentences. Bottom-Up BERT is constrained to three sen-
tences, we could have shortened the summaries. It is questionable whether the last
sentence is important or not. In this setting it makes sense that Bottom-Up BERT beats
the ELMo version, since BertSum already achieves much higher results. The expectation
therefore is that the average ROUGE score will increase compared to the ELMo mask-
ing. However only the ROUGE-1 score improved by a good margin, while the rest of the
scores are only minimally better.

5.2 DPA Corpus Preprocessing

We did a variety of preprocessing steps for the DPA dataset. Since we dealt with unnor-
malized data but curated text it was vital to filter out bad examples. For this iteration
of the dataset we did excessive filtering on categories, lengths of source and target texts
and symbolic word filtering.

1. Keep the categories mixed (dpacat:vm), art (dpacat:ku), sports (dpacat:sp), poli-
tics (dpacat:pl)

2. Drop the dpatextgenre:32 (internal infos)

3. Sanitize text keeping words, numbers and sentence delimiters

4. Removing duplicated texts, headlines and descriptions

5. Mininum text length must be 60 words

6. Minimum description length is 12 words and minimum headline length is 6 words

7. Maximum source words limited to 80 and 400

8. Droping all nan values, lowercasing all words

9. Keeping the top 50000 words as vocabulary, replacing the rest with <unk>

51

5 Experiments

It was vital to drop certain categories like economics since they only contain tables. This
is an interesting additional task but does not really fit into a sequence to sequence learning
objective. The category dpacat:rs only contains duplicates and inner communication of
the DPA. Effectively non helpful and mostly without descriptions. The minimum length
constraints are very important since we need to try generating real sequences. Too short
and we do not really test the capabilities of the involved models. In this step we lost
roughly 70% of the original data, since there are a lot of headlines with fewer than
6 words. It was also helpful to drop text containing repeating phrases that are not
relevant to the task. Mostly these are texts in the dpacat:rs category. Other than this
we constrained the source text to 80 tokens and 400 tokens which the default in most
summarization models. Moreover the transformer models involved could not handle more
than sequences of 512 words, since we could not train much larger versions. The vocab is
capped at 50.000 tokens , since sequence to sequence models with attention have a large
number of trainable weights. The zipf distribution of words immediately makes clear
that more than 50.000 tokens results in words with a single occurence.

For the tokenization we used spaCy with its German state-of-the-art CNN parser, to
chunk text into delimited sentences and white-space separated words. We wrapped <t>
and </t> around each sentence to easily join and split sentences for efficient transfor-
mations later on.

5.3 Description Summarization

The DPA description dataset consists of a source and target text of a total of 104.942
pairs in the train and 11.661 in the validation dataset. The source is the original text
and the target the description with a mean sentence length of 2.75.

There are some anomalies to be noted. The maximum sentence count for descriptions
is 28, with a maximum word count of 75. This is likely an issue with the tokenization.
On average however the mean description length of 32 and sentence count of 2.75 makes
more sense. The maximum number of words in a single text also drastically vary between
train and validation set, however only noise in comparison. The standard deviations on
the other hand have expected magnitudes when compared to the mean. Also note that
the minimum word length is exactly 12, as constrained by our preprocessing.

52

5 Experiments

Split Kind Dataset Mean Median Min Max Std

Train Sents Text 22.92 21.00 2.00 241.00 15.07
104.942 Description 2.75 3.00 1.00 28.00 1.30

Words Text 380.64 365.00 62.00 4012.00 233.27
Description 31.98 32.00 12.00 75.00 7.78

Validation Sents Text 22.80 21.00 2.00 181.00 15.03
11.661 Description 2.75 3.00 1.00 26.00 1.37

Words Text 379.75 363.00 64.00 2400.00 233.49
Description 31.95 32.00 13.00 65.00 7.83

Table 5.2: General statistics for DPA description.

5.3.1 Summarization Results

The results on the DPA description dataset are somewhat mixed. Compared to other
academic datasets it seems much harder to summarize the descriptions. The descriptions
benefit from longer source texts. When the source is capped at 80 tokens, as depicted in
table 5.3, the results are worse than when we cap it on 400 source tokens, as depicted in
table 5.4.

Model R-1 R-2 R-L R-Avg

Baselines Lead-1 (First sentence) 21.17 7.05 18.00 15.41
Lead-2 (First and second sentence) 24.17 7.50 20.96 17.54
Lead-3 (First three sentences) 24.19 7.38 21.18 17.58
Oracle (Sentences chosen with ROUGE) 29.85 10.75 25.86 22.15

Extractive TextRank (Radim and Sojka (2010)) 16.73 4.59 14.81 12.04
ELMo (Peters et al. (2018)) 23.57 8.21 20.24 17.34
BertSum (Liu (2019)) 24.36 7.51 21.16 17.67

Abstractive Pointer Generator (See et al. (2017)) 20.74 5.02 17.78 14.51
Copy Transformer (Gehrmann et al. (2018)) 22.16 7.50 20.31 16.65
Bottom-Up (Gehrmann et al. (2018)) 21.96 6.93 19.98 16.29
Bottom-Up BERT (Ours) 15.78 3.49 13.73 11.0

Table 5.3: Results on DPA Description source length of 80

The baseline section for 80 tokens indicates that extractive techniques cannot be that
successful. The highest Oracle ROUGE average is 22.15. Again since there is no compar-

53

5 Experiments

ison, we now have introduced an extractive baseline. In the extractive section, BertSum
by Liu (2019) is the winner, followed by ELMo. In the abstractive section the copy trans-
former by Gehrmann et al. (2018) is the winner. However no model is really prominent
here. Bottom-Up BERT cannot reproduce the numbers on the CNN/DM dataset. This
is expected since the extractive baseline is also much lower. Moving on to the 400 token
version, as depicted in table 5.4, there is a drastic increase in results.

Model R-1 R-2 R-L R-Avg BERT-F1

Baselines Lead-1 (First sentence) 20.30 6.61 17.37 14.76 0.596
Lead-2 (First and second sentence) 24.03 7.37 20.83 17.41 0.609
Lead-3 (First three sentences) 24.02 7.17 21.06 17.42 0.608
Oracle (Sentences chosen with ROUGE) 35.68 14.19 31.25 27.04 0.645

Extractive TextRank (Radim and Sojka (2010)) 20.80 5.07 18.00 14.62 -
ELMo (Peters et al. (2018)) 22.77 6.66 19.94 16.46 0.602
BertSum (Liu (2019)) 24.34 7.39 21.38 17.70 0.610

Abstractive Pointer Generator (See et al. (2017)) 21.35 6.26 19.15 15.59 0.597
Copy Transformer (Gehrmann et al. (2018)) 27.34 12.27 25.35 21.65 0.624
Dynamic Convolutions (Wu et al. (2019)) 23.43 7.75 17.32 16.20 0.611
Bottom-Up (Gehrmann et al. (2018)) 25.37 9.75 23.24 19.45 0.616
Bottom-Up BERT (Ours) 22.56 7.53 20.46 16.85 0.605

Table 5.4: Results on DPA Description source length of 400

For the full versions we provide the BertScore as well. The BertScore follows roughly
the ROUGE average score, however the magnitude seems to be different. The copy
transformer again is the clear winner, the BertScore however is not that much higher.
The relative magnitude between all the methods seem to be capped at roughly 0.6 to 0.65
while the ROUGE scores are much more scattered. Bottom-Up BERT greatly improves
upon the first version and is on par with the other models. Still, it seems to be hard to
generate abstractive sequences for the description dataset, since no score really took off.
This is definitely an indication for further research into highly abstractive non copy-able
summaries. Below we present a few examples. The description summaries contain very
good examples and very bad examples. First we show a selected list of summaries where
the language generation sounds fluent and the text makes sense.

54

5 Experiments

BertSum - der kampf gegen rechts muss aus der mitte der gesellschaft geführt werden,
sagte sachsens regierungschef michael kretschmer cdu auf dem friedensfest im ostsäch-
sischen ostritz. zu dem neonazi-festival auf einem privatgelände werden bis zu 1000
rechtsextreme aus ganz deutschland und dem ausland erwartet. dort versammeln sich
am wochenende neonazis zu dem festival schild schwert.

ELMo extractor - die eu verschärft zum 1. juli ihr handelsverbot für elfenbein , um
den weltweiten kampf gegen wilderer und schmuggler zu stärken. das beschloss die eu
- kommission am dienstag.

Copy Transformer - überschwemmungen , flugausfälle , haushalte ohne strom - der
hurrikan maria hat erneut schäden angerichtet. naturschützer warnen vor den katas-
trophalen folgen des hurrikans.

Bottom-Up - us-präsident trump hat einen harten kurs in vietnam gemacht. doch
chinas präsident lässt sich nicht beirren.

Dynamic convolutions - nach dem verlust ihrer absoluten mehrheit im bayerischen
landtag will die csu koalitionsverhandlungen mit den freien wählern aufnehmen.

The summaries a precise, contain a lot of information, sound fluent and seem grammat-
ically correct. In contrast to this there are a lot of bad examples. This is a comparison
of one specific text from a selection of models

Original - die katalonien-krise spitzt sich weiter zu. im regionalparlament sorgt ein
neuer antrag für aufregung.

BertSum - das katalanische regierungsbündnis jxsí und die linksradikale cup haben
einen antrag auf konstituierung einer katalanischen republik als unabhängiger staat im
parlament vorgelegt. das katalanische parlament soll nun zusammentreten und über
den antrag abstimmen. der text spricht nicht von einer erklärung der unabhängigkeit
, weil dies bereits der wähler bei dem umstrittenen referendum am 1. oktober getan
habe.

Copy Transformer - die katalonien-krise spitzt sich zu. jetzt sitzen ehemalige kata-
lanische ex-minister in untersuchungshaft. die spanische justiz nimmt eine neue phase.

Bottom-Up - die katalonien-krise spitzt sich zu. jetzt sitzen ehemalige katalanische
ex-minister in katalonien vor gericht. die spanische justiz nimmt eine neue runde fest.

Bottom-Up BERT - die linksradikale cup wollte im parlament einen antrag auf kon-
stituierung begrenzen. das katalanische regierungsbündnis wurde unabhängiger staat
vorgelegt.

For a German reader it becomes immediately clear that there is repetition, imprecise
wording, wrong facts through false structure.

55

5 Experiments

5.3.2 Model Overview and Training

In total we ran two complex extractive models with ELMo and BertSum and three
distinct abstractive models with the pointer generator, copy transformer and dynamic
convolutions model. Bottom-Up and Bottom-Up BERT are combinations of the extrac-
tors and abstractors. We will glance over the training schemes of the copy transformer
and dynamic convolutions, as well as the BertSum model. It follows that Bottom-Up
BERT is the combination of these two training schemes. Dynamic convolutions on the
other hand is a new model entirely build on convolutions and self attention.

Copy Transformer trained with OpenNMT Klein et al. (2017), an open source platform
for neural machine translations based on sequence to sequence models. The training
regime followed a typical Noam learning rate decay scheme with warm-up steps around
8000. The training steps are in reality training batches. Translating 1 step to 50 batches,
resulting in 35000 at step 70. The most important two metrics are the cross-entropy and
perplexity score

Cross-entropy Perplexity

The validation cross-entropy diverges quickly during training. While the training’s cross-
entropy gets lower with each step. The validation dataset quickly stales after the warm-up
steps which implies overfitting to the training data. However recall that the ROUGE
metric we are trying to optimize is not directly optimized during training since it is
non-differentiable. During training we simply learn a next word prediction task. As the
model trains further the ROUGE score actually improves. A model at step 10.000 is less
capable than one at step 35.000. The language gets more fluent with each training step,
although the validation set is not improving. After a while we can see effects of label

56

5 Experiments

smoothing, e.g. the model gets more unsure about the choice which results in a little
worse results. We could try to use a cosine scheduling scheme to increase the validation
accuracy as well. The perplexity on the other hand seems to be much closer with the
same effects as the cross-entropy. Since the scale is different and non-scaled the gap
seems much closer when in fact it is not.

ELMo Extractor was trained with AllenNLP by Gardner et al. (2017). The ELMo
model introduced by Peters et al. (2018) was in cooperation with the Allen Institute of
AI. We used a German version of Wikipedia trained with ELMo. Since it costs too much
time and resources to train it from scratch we had to rely on existing models. We use
GloVe and ELMo as token embedders and thus do not fine-tune on it. We concatenate
both vectors, resulting in 1024 dimensions from ELMo and 300 from GloVe with a total
of 1324 features per word. We train on a simple sequence tagger where words of the
summary are used as tags on the source dataset. For training we use the ELMo model
with a two layer LSTM with 256 dimensions and highway layers. Gradient clipping in
combination with the adagrad optimizer. The final training accuracy was 0.89 with a
loss of 0.25 and a validation accuracy of 0.87 and a loss of 0.34.

BertSum was trained with the code provided by Liu (2019). We did not change much
of the hyperparameters. For BERT we used the multi-language and German huggingface
implementation since the training would take weeks on a vast amount of resources. The
model has a vocab size of 30000 with a 12 attention heads and 12 hidden layers. Each
hidden layer with a size of 768 and an intermediate layer size of 3072. The hidden
activation function is the gelu. We train for 30000 steps, using the Noam decay with
10000 warm-up steps achieving a cross-entropy of 1.45 on the training set and 3.96 on
the validation set.

Dynamic Convolutions was trained with Fairseq by Ott et al. (2019) a sequence-to-
sequence learning framework. We first apply BPE with 40.000 subword units. Train-
ing with a cosine learning rate and the Adam optimizer. The loss of label smoothed
cross-entropy. The warm-up steps are set to 10000. We use 8 attention heads with an
embedding dimensionality of 512. We apply the dynamic self attentional convolutions.
During generation we use a beam size of 8, with a length penalty of 0.9 with trig-ram
blocking. The final training loss was 7.5 with a validation loss of 8.1.

57

5 Experiments

5.4 Headlines Summarization

The DPA headlines dataset consists of a source and target text of a total of 187.884 pairs
in the train and 11.444 in the validation dataset. The source is the original text and the
target the headline with a mean sentence length of 2.34.

Split Kind Dataset Mean Median Min Max Std

Train Sents Text 15.17 10.00 1.00 351.00 15.51
187.884 Headlines 2.34 2.00 1.00 19.00 1.07

Words Text 236.02 160.00 62.00 6012.00 224.81
Headlines 13.13 12.00 7.00 59.00 3.87

Validation Sents Text 15.18 10.00 2.00 225.00 14.81
11.444 Headlines 2.27 2.00 1.00 12.00 1.08

Words Text 238.66 163.00 63.00 2982.00 217.67
Headlines 12.98 12.00 7.00 36.00 3.83

Table 5.5: General statistics for DPA headlines.

There are some anomalies to be noted. The maximum sentence count for headlines is 19,
with a maximum word count of 59. This is likely an issue with the tokenization again.
On average however the mean headlines length of 13 and sentence count of 1 makes
more sense. The standard deviations on the other hand have expected magnitudes when
compared to the mean. Also note that the minimum word length is 7, as constrained to
6 by our preprocessing.

5.4.1 Summarization Results

The results on the DPA headlines dataset are much more promising compared to the de-
scription dataset. Compared to other academic datasets it seems to be easier to generate
summary sentences with high ROUGE scores. Multi sentence summaries are probably
much harder to generate. The headlines do not benefit from longer source texts. The
opposite is the case, when the source text is constrained to 80, the ROUGE scores dras-
tically improves. Compressing 400 tokens to a single sentence, seems to be a harder
problem than compressing 80 tokens to a single sentence. In table 5.6 are the results of
the headline summarization.

58

5 Experiments

Model R-1 R-2 R-L R-Avg

Baselines Lead-1 (First sentence) 31.59 12.50 27.17 23.75
Lead-2 (First and second sentence) 22.24 8.15 19.47 16.62
Lead-3 (First three sentences) 18.67 6.66 16.52 13.95
Oracle (Sentences chosen with ROUGE) 34.43 14.10 29.81 26.11

Extractive TextRank (Radim and Sojka (2010)) 12.49 3.85 10.80 9.05
ELMo (Peters et al. (2018)) 29.93 11.70 25.91 22.51
BertSum (Liu (2019)) 32.19 13.2 27.89 24.43

Abstractive Pointer Generator (See et al. (2017)) 35.02 17.49 32.93 28.48
Copy Transformer (Gehrmann et al. (2018)) 51.34 35.22 49.40 45.32
Bottom-Up (Gehrmann et al. (2018)) 39.49 22.71 37.48 33.23
Bottom-Up BERT (Ours) 43.53 26.54 40.69 36.91

Table 5.6: Results on DPA Headlines source length of 80

The clear winner on the 80 dataset is the abstractive copy transformer model with an
average ROUGE score of 45.32. BertSum on the other hand is the winner in the extractive
model section with a ROUGE score of 24.43. ELMo is second with 22.51. This also shows
in the abstractive category where Bottom-Up BERT achieves on average 3.68 higher
ROUGE scores compared to the Bottom-Up model. It is quite interesting to see that
BertSum could almost perfectly learn the Oracle procedure with 26.11 to 24.43.

Model R-1 R-2 R-L R-Avg BERT-F1

Baselines Lead-1 (First sentence) 20.69 8.49 18.39 15.86 0.577
Lead-2 (First and second sentence) 20.15 8.37 18.12 15.55 0.581
Lead-3 (First three sentences) 17.62 7.02 15.97 13.54 0.572
Oracle (Sentences chosen with ROUGE) 32.69 16.01 29.47 26.06 0.620

Extractive TextRank (Radim and Sojka (2010)) 13.63 4.06 12.01 9.90 -
ELMo (Peters et al. (2018)) 18.01 6.98 16.04 13.68 0.574
BertSum (Liu (2019)) 16.13 5.69 14.51 12.11 0.567

Abstractive Pointer Generator (See et al. (2017)) 40.37 24.87 39.02 34.75 0.673
Copy Transformer (Gehrmann et al. (2018)) 42.42 26.81 40.79 36.67 0.686
Dynamic Convolutions (Wu et al. (2019)) 45.56 30.00 43.84 39.80 0.706
Bottom-Up (Gehrmann et al. (2018)) 40.81 25.08 39.25 35.05 0.678
Bottom-Up BERT (Ours) 39.36 23.36 37.79 33.50 0.667

Table 5.7: Results on DPA Headlines source length of 400

The clear winner on the 400 dataset is the abstractive Dynamic Convolutions model with

59

5 Experiments

an average of 39.80 ROUGE and a BertScore of 0.706. In the extractive section the ELMo
model outperforms with 13.68 ROUGE on average. Compared to the 80 dataset, the
ROUGE score drastically decreases for extractive methods whereas the Oracle score stays
about the same. This is a rather surprising result and needs some additional attention.
It seems to be harder to map the 400 token source dataset to a shorter representation.
Recall that the description increases in all ROUGE scores with the longer version, which
makes sense, since the description has longer target sequences. Unsurprisingly, in this
instance the Bottom-Up model, with 35.05 ROUGE, beats the Bottom-Up BERT model,
with 33.50 ROUGE. Bottom-Up builds on the assumption that an extractive masking
helps improving abstractive transformers. Since ELMo achieved a higher ROUGE score
than BERT it makes perfectly sense that Bottom-Up beats Bottom-Up BERT. Note
however this section is not directly comparable to the headlines 80 dataset, since we used
a different BERT language model that was specifically trained on German. The results
could potentially be better with the multi language version of BERT. Also note, while
some results drastically decrease, e.g. the copy transformer from 45.32 to 36.67, models
like the pointer generator improve from 28.48 to 34.75 ROUGE. A few examples of the
same summary

Original - protest in katalonien - separatisten rufen zu sturm auf banken auf.

BertSum - im konflikt um die unabhängigkeitsbestrebungen in katalonien haben sep-
aratistische organisationen die bürger der spanischen region zu einem sturm auf die
banken aufgerufen.

ELMo - im konflikt um die unabhängigkeitsbestrebungen in katalonien haben sep-
aratistische organisationen die bürger der spanischen region zu einem sturm auf die
banken aufgerufen.

Copy Transformer - katalonien ruft bürger zum kampf um banken auf sturm.

Dynamic Convolutions - katalonien ruft zu sturm auf katalonien an katalonien ruft
an x.

Bottom-Up BERT - konflikt um katalonien - bürger der region zu sturm auf banken.

Generating summaries using headlines is a good idea when using extractive systems.
Extractive algorithms focus on the major points and sentences that highly correlate with
the headline. Abstractive systems on the other hand are lacking fluency, correctness,
repetitions and non-sense.

60

5 Experiments

Some cherry-picked examples that do not lack fluency, contain repetition and correct in
its content.

BertSum - die vereinten nationen haben angriffe der syrischen regierung scharf
verurteilt, die zum abbruch einer dringend benötigten hilfslieferung im syrischen ost-
ghuta führten. die gewalt offenbare einen mangel an respekt für die waffenruhe und
die missachtung von sicherheitsgarantien für den konvoi, hieß es am dienstag in einer
mitteilung des un-nothilfebüros ocha. der syrische verbündete russland versprach den
rebellen unterdessen freies geleit.

ELMo - weltweit haben 815 millionen menschen im vergangenen jahr hunger gelit-
ten. damit waren 38 millionen menschen mehr von hunger betroffen als 2015, wie die
landwirtschaftsorganisation der vereinten nationen fao am freitag in rom mitteilte.

Copy Transformer (400) - zwei angriffe mit stichwaffen auf sicherheitskräfte in brüs-
sel und london.

Copy Transformer (80) - 125.000 euro für integrationsprojekte im landkreis bautzen.

Dynamic Convolutions - un-sicherheitsrat über die lage in gaza. tote bei gaza-
grenze.

Bottom-Up - mindestens zwölf tote bei explosion von autobombe in damaskus getötet.

Bottom-Up BERT - fritteuse verursacht brand mit drei toten in echzell.

5.4.2 Model Overview and Training

For an underpay description of the different training schemes, we refer to the description
section. We mostly provide the same statistics and models with different values to the
specific dataset.

Copy Transformer trained with OpenNMT Klein et al. (2017). The training regime
followed a typical Noam learning rate decay scheme with warm-up steps around 8000.
The training steps are in batches of 50. The most important two metrics are the cross-
entropy and perplexity score

The validation cross-entropy diverges quickly during training. While the training’s cross-
entropy gets lower with each step. The validation dataset quickly stales after the warm-up
steps which we also described happening on the descriptions. As long as the training
accuracy improves the model receives improved ROUGE scores. A model at step 10.000

is less capable than one at step 50.000. The language gets more fluent with each training
step, although the validation set is not improving. After a while we can see effects of
label smoothing, e.g. the model gets more unsure about the choice which results in a
little worse results.

61

5 Experiments

Cross-entropy Perplexity

ELMo Extractor was trained with AllenNLP by Gardner et al. (2017). We again, used
a German version of Wikipedia trained with ELMo. We use GloVe and ELMo as token
embedders and thus do not fine-tune on it. We concatenate both vectors, resulting in
1024 dimensions from ELMo and 300 from GloVe with a total of 1324 features per word.
We train on a simple sequence tagger where words of the summary are used as tags on
the source dataset. For training we use the ELMo model with a two layer LSTM with
256 dimensions and highway layers. Gradient clipping in combination with the adagrad
optimizer. The final training accuracy was 0.94 with a loss of 0.15 and a validation
accuracy of 0.93 and a loss of 0.19.

BertSum was trained with the code provided by Liu (2019). We did not change much
of the hyperparameters. For BERT we used the multi-language and German huggingface
implementation since the training would take weeks on a vast amount of resources. The
model has a vocab size of 30.000 with a 12 attention heads and 12 hidden layers. Each
hidden layer with a size of 768 and an intermediate layer size of 3.072. The hidden
activation function is the gelu. We train for 30.000 steps, using the Noam decay with
10000 warm-up steps achieving a cross-entropy of 0.89 on the training set and 2.29 on
the validation set.

Dynamic Convolutions was trained with Fairseq by Ott et al. (2019) a sequence-to-
sequence learning framework. We first apply BPE with 40.000 subword units. Train-
ing with a cosine learning rate and the Adam optimizer. The loss of label smoothed
cross-entropy. The warm-up steps are set to 10.000. We use 8 attention heads with an
embedding dimensionality of 512. We apply the dynamic self attentional convolutions.
During generation we use a beam size of 8, with a length penalty of 0.9 with trig-ram

62

5 Experiments

blocking. The final training loss was 5.6 with a validation loss of 6.8.

5.5 Discussion

In this chapter we have presented three different results. We benchmarked our Bottom-
Up BERT ensemble on the English CNN/DM dataset. We proceeded and established
several state-of-the-art baselines on the description and headlines dataset. We also found
out that Bottom-Up BERT did not perform as well on the German dataset as we hoped
too. There are multiple reasons for this. Firstly the DPA dataset is not extractive
dataset. We have seen with the CNN/DM dataset that BertSum greatly outperforms the
abstractive baselines. There was reason to believe that the prior probabilities would aid
in abstractive summarization inference. Secondly, In the case of headlines the extractive
summaries were too long. Headlines are not really summaries and thus the headline
generation is more of a proof of concept that generating longer and shorter sequences
should be possible. Lastly, the hyperparameter tuning for state-of-the-art models like
the copy transformer to a new dataset with different requirements from the academic
datasets is cumbersome. We could possibly greatly improve our results here if we further
explored this alley.

Technically there are some open questions, as of now the source code is spread across
multiple projects and repositories. A lot of glue code holds all the models together.
Adjustments are necessary for different datasets. We also did not follow up on all the
different models and hyperparameter tuning. We compared summary generation with
shorter source sequences (80) and longer source sequences (400). We tried to find better
parameter sets for the transformer and pointer generator. For this automl would have
been beneficiary. However we decided to use binary decision trees, paper recommenda-
tions and intuition vs automatic hyperparameter tuning. Hyperparameter optimization
is very specialized and we decided to go into more breadth instead of depth. Also putting
a lot of time into preprocessing the dataset than fiddling with over 30 parameters per
model. Nonetheless, learning rates, warm-up steps, layer and hidden unit sizes should al-
ways be altered to see if differences occur. Therefore we used a test set of a few thousand
examples to quickly iterate over different hyperparameters in a combinatoric way. The
shortcomings are definitely that we did not optimize a single model for potentially even
better results and instead trained multiple models. Keeping track of all the experiments
was possible through very tidy book keeping. We did not implement any of the models

63

5 Experiments

in full but rather relied heavily on frameworks like OpenNMT, Fairseq, AllenNLP and
author specific implementations and results of these specific models. In table 5.8, a small
overview of how many parameters were trained per model

Model Encoder Decoder Total

ELMo (Peters et al. (2018)) - - 137.781.526
BertSum (Liu (2019)) - - 120.111.617

Pointer Generator (See et al. (2017)) 7.322.624 35.467.093 42.789.717
Copy Transformer (Gehrmann et al. (2018)) 22.930.048 24.265.253 47.195.301

Table 5.8: Number of model parameters

A few notes on language models. ELMo is not available in German so we used a recently
trained ELMo model based on Wikipedia which deviates from the originals. Finding un-
trainable models, due to their computational costs, is also a real chore. BERT is available
as a multi-language version and recently got a German version as well, which did not
perform well. Sticking with the multi-language version seems to be the best approach.
It is relatively easy to obtain German Word2Vec, GloVe or FastText embeddings, since
they are officially available and trainable from scratch. Such models are however dated
in comparison to the newer models. GPT-1 and GPT-2 could not be incorporated since
their training time takes weeks on multiple TPU clusters with no pretrained German
alternatives.

The training of the copy transformer reveals the problem space of testing for ROUGE
evaluation vs testing for next word prediction. The gap between training and validation
dataset was carefully tuned over weeks. We could not find a perfect match for the
training data to converge on the validation data. This would also be an interesting topic
for further research.

64

6 Conclusion

In this thesis we broadly gave an overview of neural text summarization and how to
apply it to a German language corpus. We achieved a new high score on the ROUGE R-
1 score on an English summarization dataset by combining two state-of-the-art models.
We applied extensive feature extraction and fine-tuning models like GloVe, ELMo and
BERT. By introducing a new German dataset from the DPA, we could test neural models
on real world examples instead of highly optimized academic datasets. Subsequently we
will glance at limits and generalization of our approach.

Generalization of neural models is a slippery slope. As far as generalization goes, the
sequence-to-sequence framework makes it possible to transfer the models to any kind of
dataset. However there are limits. How to tell whether a model generalizes? Evaluation
would be possible based on performance on different tasks or out of domain datasets.
Generalization in deep learning is a very unspecific topic, since it cannot be proven that
something is able to deal with any kind of input. Instead, we provide intrinsic examples
with idiomatic academic datasets that have some verifiable properties.

As far as the transferability of neural models is concerned, the answer is manifold.
Language models like BERT and ELMo are dependent on the data source they were
trained on. For instance, when building a summarization system in specialized domains
such as medicine, law or engineering we will not be able to achieve the same results
due to different contextualization of words and terminology. Both language models are
based on news corpora and Wikipedia. The resulting model would struggle with a wide
variety of out of vocabulary words. Specifically, the domain drift is too wide. To make
models work with such different probability distributions requires careful fine-tuning and
selection of applicable layers.

The limits of neural models are also well known. Deep learning is shorthand for
creating a very complex differentiable, non-linear function and approximate its optimum
by minimizing the error with respect to the steepest gradient change in high-dimensional

65

6 Conclusion

space. In language each dimension will contain some of the information provided by the
dataset with respect to the statistical nature of text: Polysemy, hyponymy, synonymy,
part-of-speech tagging, long range dependencies or named entities. Newer models like
ELMo also partially encode the hierarchical nature of a word by contextualizing the sen-
tence, paragraph or document it co-occurs with. As a result, all machine learning models
that do not explicitly incorporate structural knowledge practically encode complex cor-
relations on unstructured text. Simply put: it cannot tell causation from correlation. It
does not handle prior knowledge. It is not transparent and explainable, since the solution
space has potentially infinitely many parameter settings. Furthermore, our sequence-to-
sequence models with attention suffer from very large parameter requirements. Our
biggest model had 280 million parameters, with a vocabulary size of 50.000 or a BPE
segmentation of 40.000. Small vocabulary size was partially tackled by copying out of
vocabulary words directly from the source. It is questionable whether 50.000 tokens are
enough to deal with highly specialized domains.

Sequence-to-sequence learning is a great successor to traditional frequency based ap-
proaches for generate fluent language. While most traditional algorithms perform extrac-
tive summarization, neural sequence models make it possible to encode the structural
information required. In turn, fluency improves, repetition decreases and coverage of
salient information increases. Moreover, they are end-to-end trainable, although not out
of the box. Careful hyperparameter tuning for each dataset shifts the workload from
tedious preprocessing towards searching a huge parameter space. With ever more com-
plex models, new tools like automl have to emerge. It is possible to boost performance
of all models with prior knowledge via fine-tuning and feature extraction. How much
we could gain by training said models from scratch with specialized training data is not
known. However, Merity et al. (2017); Radford and Salimans (2018) have shown that
it is possible to learn and train language models from scratch achieving state-of-the-art
results. This area of research will become incredibly relevant in the upcoming years. The
reason being is that universal models can be distributed and thus must not be retrained.
Another reason is increased performance by incorporating concepts that are not part of
a specific dataset or only occur in small numbers.

66

7 Outlook

In this chapter we will provide an overview of some interesting ideas and topics that
will be relevant in the upcoming years. We have decided to focus on transfer learning,
reinforcement learning and multi-document summarization. Transfer learning has the
most potential to achieve higher scores than any method yet. Reinforcement learning
will gain relevance, since most models are not end-to-end differentiable. Thus, we deal
with larger parameter spaces which only RL algorithms are known to optimize well. At
last, we want to peek at a concrete example that is more relevant in industry context,
namely multi-document summarization, where instead of one document at a time we
process hundreds of documents at once.

7.1 Transfer Learning

One of the big upcoming topics in NLP will be transfer learning in all varieties. In this
work we used ELMo via feature extraction and BERT via fine-tuning, showing that they
achieve state-of-the-art results. There are, however, much more use-cases of fine-tuning.
Edunov et al. (2019) showed that you can easily achieve new state-of-the-art results with
pre-training and fine-tuning a language model based on ELMo. Hoang et al. (2019) made
experiments adapting pretrained transformers, specifically GPT-1 by Radford and Sali-
mans (2018) for abstractive summarization, achieving higher performance on abstractive
datasets. This work was not yet published during the experimentation phase of this
thesis and thus might be a good starting point for further research.

For pre-training and fine-tuning language models Merity et al. (2017); Howard and Ruder
(2018); Radford and Salimans (2018) have found that adapting learning rates and apply-
ing regularization techniques increases performance. The primary goal is to generalize
language models to as many datasets as possible by learning to solve problems in con-
nection with polysemy, synonymy, part-of-speech, hierarchies and words within contexts.

67

7 Outlook

We will see some groundbreaking results in the next years and ever more clever models
and ideas on how to fine-tune to specific target tasks. The novelty will probably be not
within the summarization literature but rather on general NLP problems like language
modelling and sequence-to-sequence learning. Summarization is a nice practical task as
a proxy for transfer learning performance.

7.2 Reinforcement Learning

Paulus et al. (2018); Celikyilmaz et al. (2018) and Zhang et al. (2019a) all have shown
that summarization systems based on reinforcement learning lead to the best overall
results. The reason being the inability to directly train the ROUGE evaluation metric
with fully differentiable models. All RL approaches have in common that they globally
optimize the ROUGE metric, directly outperforming current models. RL approaches
are powerful since every model could be used within the agent framework introduced by
Paulus et al. (2018). Future researchers should definitely think about ideas combining
reinforcement learning with transfer learning to improve performance.

7.3 Multi-document Summarization and Dossiers

Multi-document summarization is one of the most interesting use cases. The benefits
of single document summarization is limiting but useful. When the possibility arises
to cluster documents around certain topics or keywords and summarize hundreds of
documents by their most salient sentences, summarization makes more sense. Closely
related is the concept of a dossier. Hälker (2015) defines a dossier as a collection of papers
or other sources, containing detailed information about a particular subject. Key points
are

1. Designed to fit a (topical) narrative / problem definition

2. Chronological / Historical / Hierarchical

3. Transparent and comprehensible

4. Presenting central (non-biased) arguments

5. Shallow at first glance, deep at second look

68

7 Outlook

The requirements are of great variety and entirely out of scope for a single sequence-
to-sequence architecture. A multi-document summarization system requires a multitude
of different models solving different tasks. Such tasks include clustering, classification,
topic modelling, language generation, discourse detection and sentence ranking.

69

Acknowledgements

First, I would like to thank Prof. Dr. Kai von Luck for the guidance and his relentless
efforts to get things done. It would have been impossible to test out my ideas and train
the models without the infrastructure provided through the Creative Space for Technical
Innovations (CSTI).

Second, I would like to thank Prof. Dr. Marina Tropmann-Frick for the guidance and
fruitful discussions on general topics relating to natural language processing.

Third, I would like to thank Tobias Eichler and Henrik Wortmann for their efforts in
resolving all issues concerned with the infrastructure.

Last, I would like to thank the Machine Learning Group (ML-AG) of the HAW Hamburg
for great discussions, especially Tasmin Herrmann and Stephan Halbritter.

70

Bibliography

Allahyari, M., Pouriyeh, S. A., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B.,
and Kochut, K. (2017). Text summarization techniques: A brief survey. CoRR,
abs/1707.02268.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate. pages 1–15.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2001). A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). LDA-blei.pdf. 3:993–1022.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992).
Class-based n-gram models of natural language. Comput. Linguist., 18(4):467–479.

Celikyilmaz, A., Bosselut, A., He, X., and Choi, Y. (2018). Deep Communicating Agents
for Abstractive Summarization.

Cheng, J., Dong, L., and Lapata, M. (2016). Long Short-Term Memory-Networks for
Machine Reading.

Chopra, S., Auli, M., and Rush, A. M. (2015). Abstractive Sentence Summarization with
Attentive Recurrent Neural Networks Sumit.

Chopra, S., Auli, M., and Rush, A. M. (2016). Abstractive Sentence Summarization with
Attentive Recurrent Neural Networks. pages 93–98.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. CoRR, abs/1412.3555.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P.
(2011). Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

71

Bibliography

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY
FOR INFORMATION SCIENCE, 41(6):391–407.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding.

Dong, Y. (2018). A survey on neural network-based summarization methods. CoRR,
abs/1804.04589.

Edunov, S., Baevski, A., and Auli, M. (2019). Pre-trained Language Model Representa-
tions for Language Generation.

Emma Strubell, A. G. and McCallum, A. (2019). Energy and policy considerations for
deep learning in nlp. In the 57th Annual Meeting of the Association for Computational
Linguistics (ACL).

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N. F., Peters, M.,
Schmitz, M., and Zettlemoyer, L. S. (2017). Allennlp: A deep semantic natural lan-
guage processing platform.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional
Sequence to Sequence Learning.

Gehrmann, S., Deng, Y., and Rush, A. M. (2018). Bottom-Up Abstractive Summariza-
tion.

Goldberg, Y. (2019). Assessing bert’s syntactic abilities. CoRR, abs/1901.05287.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing Machines. pages 1–26.

Heinzerling, B. and Strube, M. (2017). Bpemb: Tokenization-free pre-trained subword
embeddings in 275 languages. CoRR, abs/1710.02187.

Hoang, A., Bosselut, A., Celikyilmaz, A., and Choi, Y. (2019). Efficient Adaptation of
Pretrained Transformers for Abstractive Summarization.

Hochreiter, S. and Schmidhuber, J. (1997). Long short term memory. Neural computa-
tion. Neural Computation, 9(8):1735–1780.

Howard, J. and Ruder, S. (2018). Universal Language Model Fine-tuning for Text Clas-
sification.

72

Bibliography

Huang, F. and Yates, A. (2009). Distributional representations for handling sparsity
in supervised sequence-labeling. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 495–503, Suntec, Singapore. Association
for Computational Linguistics.

Hälker, N. (2015). Teilautomatisierte Erstellung von Dossiers auf der Basis von
Textmining-Verfahren.

Jawahar, G., Sagot, B., and Seddah, D. (2019). What does BERT learn about the
structure of language? In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of Tricks for Efficient
Text Classification.

Kim, B., Kim, H., and Kim, G. (2018). Abstractive Summarization of Reddit Posts with
Multi-level Memory Networks.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2015). Character-aware neural
language models. CoRR, abs/1508.06615.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). OpenNMT: Open-
Source Toolkit for Neural Machine Translation. ArXiv e-prints.

Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factoriza-
tion. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 27, pages 2177–
2185. Curran Associates, Inc.

Li, J., Luong, M.-T., and Jurafsky, D. (2015). A Hierarchical Neural Autoencoder for
Paragraphs and Documents.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Proc.
ACL workshop on Text Summarization Branches Out, page 10.

Liu, Y. (2019). Fine-tune BERT for Extractive Summarization.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-
based Neural Machine Translation.

73

Bibliography

Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and Optimizing LSTM
Language Models.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. pages 1–9.

Nallapati, R., Zhou, B., dos Santos, C. N., Gulcehre, C., and Xiang, B. (2016). Abstrac-
tive Text Summarization Using Sequence-to-Sequence RNNs and Beyond.

Olah, C. (2015). Understanding lstm networks. GITHUB blog, posted on August, 27:2015.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M.
(2019). fairseq: A Fast, Extensible Toolkit for Sequence Modeling.

Paulus, R., Xiong, C., Socher, R., and Alto, P. (2018). a Deep Reinforced Model for
Abstractive Summarization. pages 1–13.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In In EMNLP.

Peters, M., Ruder, S., and Smith, N. A. (2019). To Tune or Not to Tune? Adapting
Pretrained Representations to Diverse Tasks.

Peters, M. E., Ammar, W., Bhagavatula, C., and Power, R. (2017). Semi-supervised
sequence tagging with bidirectional language models. CoRR, abs/1705.00108.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations.

Popel, M. and Bojar, O. (2018). Training Tips for the Transformer Model. pages 1–28.

Radford, A. and Salimans, T. (2018). Improving Language Understanding by Generative
Pre-Training (transformer in real world). pages 1–12.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners.

Radim, R. and Sojka, P. (2010). Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta. ELRA.

Ruder, S. (2019). Neural Transfer learning for NLP.

Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model for Sentence
Summarization.

74

Bibliography

See, A., Liu, P. J., and Manning, C. D. (2017). Get To The Point: Summarization with
Pointer-Generator Networks.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural Machine Translation of Rare
Words with Subword Units.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks. pages 1–9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention Is All You Need. (Nips).

Wiseman, S. and Rush, A. M. (2016). Sequence-to-Sequence Learning as Beam-Search
Optimization.

Wu, F., Fan, A., Baevski, A., Dauphin, Y. N., and Auli, M. (2019). Pay Less Attention
with Lightweight and Dynamic Convolutions. pages 1–14.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and
Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with
Visual Attention. In Bach, F. and Blei, D., editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 2048–2057, Lille, France. PMLR.

Zhang, H., Xu, J., and Wang, J. (2019a). Pretraining-Based Natural Language Genera-
tion for Text Summarization.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2019b). Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675.

Zhou, Q. (2018). Neural Document Summarization by Jointly Learning to Score and
Select Sentences. pages 654–663.

75

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „– bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. §

21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Mastertarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Ansätze zu Deutscher, Abstrahierender Textzusammenfassung mit Deep Learn-
ing

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

76

	List of Figures
	List of Tables
	Introduction
	Research Question and Contributions
	Chapter Overview

	Neural Networks
	Sequence-to-sequence Models
	Attention
	Recurrent Neural Networks
	Self Attention Networks
	Discussion

	Language Modelling and Embeddings
	Evaluation
	Transfer Learning
	Word Embeddings
	Deep Language Representations
	Embeddings from Language Models
	Bidirectional Encoder Representations from Transformers

	Discussion

	Neural Text Summarization
	DPA Dataset
	Evaluation
	ROUGE
	BERT Score

	Abstractive Summarization
	Bottom-Up Summarization
	Copying and Coverage
	Beam Search

	BertSum for Extractive Summarization
	Bottom-Up BERT
	Discussion

	Experiments
	Bottom-Up BERT on CNN/Daily Mail Corpus
	DPA Corpus Preprocessing
	Description Summarization
	Summarization Results
	Model Overview and Training

	Headlines Summarization
	Summarization Results
	Model Overview and Training

	Discussion

	Conclusion
	Outlook
	Transfer Learning
	Reinforcement Learning
	Multi-document Summarization and Dossiers

	Selbstständigkeitserklärung

