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Abstract

Machine learning is currently widely used for recommender systems. Previous work often
represents users using unordered feature vectors while ignoring the sequential nature of
users’ actions. In addition, classification models are often used which are limited by
the time that they are trained. User history has grown exponentially since the age of
Big Data, which implies the need to constantly retrain classification models. This thesis
proposes a method which uses representations of users as time-series of embeddings,
replacing inflexible standard feature vectors and considering the sequential nature of
users’ actions. These user representations are then used to train a causal transformer
decoder regression model which outputs the embedding of the next entry in the time-
series, making it unnecessary to constantly retrain the model. The A/B testing results
show that the proposed method works.
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Kurzzusammenfassung

Maschinelles Lernen wird heutzutage häufig in Empfehlungssystemen verwendet.
Bisherige Arbeiten haben die Benutzer oftmals als nicht sortierte Feature-Vektoren
dargestellt. Dies ignoriert die sequentielle Verhaltensweise eines Benutzers. Ebenfalls
werden in vielen Fällen Klassifikationsmodelle verwendet, welche durch den Zeitpunkt
des Trainings beschränkt sind. Seit Big Data steigt die Anzahl der Interaktionen von Be-
nutzern exponentiell. Diese Tatsache impliziert, dass Klassifikationsmodelle konstant neu
trainiert werden müssen. In dieser Arbeit wird eine Methode vorgestellt, die Benutzer
als eine Zeitreihe von Einbettungen repräsentiert. Diese Zeitreihen ermöglichen es nicht
flexible Feature-Vektoren zu ersetzen sowie die sequentielle Verhaltensweise eines Be-
nutzers mit einzubeziehen. Die erwähnten Zeitreihen werden verwendet, um ein kausales
Transformer Dekodierer Regressions Modell zu trainieren, welches die jeweils nächste Ein-
bettung vorhersagt. Hierdurch wird verhindert, dass das Modell konstant neu trainiert
werden muss. Die A/B-Tests demonstrieren, dass die vorgestellte Methode funktioniert.
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The dotted lines underline that Êi depend only on the embeddings [E1, Ei−1] 22

3.2 This chart explains the experiment procedure . . . . . . . . . . . . . . . . 24
3.3 Deepspeed [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Train loss for each step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Test loss after each epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Cosine similarity score after each epoch . . . . . . . . . . . . . . . . . . . 34
4.4 Search cosine similarity score after each epoch . . . . . . . . . . . . . . . . 35
4.5 Search Precision@100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Click Rate Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



List of Figures

4.7 Click Rate Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 User Bounced Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9 User Bounced Standard Deviation . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Media time after click Mean . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Media time after click Standard Deviation . . . . . . . . . . . . . . . . . . 39

A.1 Topic Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Locality Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 Newstype Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Genre distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.5 Top ten countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.6 Top twenty regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.7 Mean click rate grouped by portal . . . . . . . . . . . . . . . . . . . . . . 61
A.8 Click rate standard deviation grouped by portal . . . . . . . . . . . . . . . 61
A.9 Mean user bounced grouped by portal . . . . . . . . . . . . . . . . . . . . 62
A.10 User bounced standard deviation grouped by portal . . . . . . . . . . . . . 62
A.11 Mean media time after click grouped by portal . . . . . . . . . . . . . . . 63
A.12 Media time after click standard deviation grouped by portal . . . . . . . . 63

viii



1 Introduction

Recommender systems today are heavily used in various services, including platforms like
Netflix, which provide personalized movie recommendations, and Facebook, whose feed
is built around recommender systems to increase user engagement and provide content
which is meaningful for the user [19, 26]. Recommender systems can be approached using
varied methods, from statistics to machine learning or, more specifically, deep learning.
The goal is usually to provide meaningful content to the user and thus increase the en-
gagement of the user with the service. It is common to use similar users for this purpose
so that a user is recommended items that he has not seen but that a similar user has
seen.
This thesis can be viewed as an extension of the idea of Chen et al. 2019 [13], which
enabled classifying the likelihood of the next click of a user using a time-series representa-
tion of the user that considers the sequential nature of the user’s behavior. This work in
contrast to Chen et al. 2019 [13], does not use classification to make the algorithm more
flexible since classification models are limited by the time that they are trained. In this
thesis, a method using news-article representations for entries in a time-series is used to
train a causal transformer decoder, which is capable of predicting the next news-article
representation [29, 34]. These news-article representations are vector representations of
the news-articles’ text generated by the pretrained transformer encoder model Language-
Agnostic BERT Sentence Embedding (LaBSE) [16]. The predicted news-article repre-
sentations are then used to determine which news-article the user is recommended using
a nearest neighbor algorithm. This method makes the recommendations independent of
the number of news-articles published on a daily basis and considers the taste direction of
a user regarding the reading history. The method is evaluated using a proprietary news
dataset, but it should work on all datasets where users can be represented as time-series
of vectors.
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1 Introduction

This thesis consists of four main chapters. The analysis chapter includes a basic analy-
sis of the proprietary dataset and related work forming the basis of this thesis and the
research question. The design chapter explains the design of the whole recommender
system, including technical aspects, evaluation scores, and model architecture. The eval-
uation chapter shows the results of training the causal transformer decoder and A/B
testing. In the conclusion and limitation chapter, the limitations are explained and pos-
sible future research is proposed.
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2 Analysis

This chapter analyzes the dataset used for this task and explains related work such as
metrics, machine learning models, and algorithms that are fundamental for the objective
of this thesis. This chapter examines the basics to build a recommender system which
predicts news article representations for users, where users are represented by a time-
series of news article representations using a causal transformer decoder and language
agnostic sentence representations.

2.1 Data Inventory

Real data are used in this thesis to build a recommendation system consisting of anonymized
user and news article data. The data are gathered from several German news portals. In
this section, the available data are presented without detailing their usage. The data are
divided into two categories: articles and pageviews. A detailed analysis of the columns
can be found in the appendix chapter.

3



2 Analysis

Articles

publisher_id article_drive_id . . . article_full_text

khhs iohhtm456fbi . . . ”Omicron is . . . no happy end.”
khhs 345fgkzu56 . . . ”Pi is . . . no happy end.”
...

...
...

...
khhs rtoiszhuif . . . ”Sigma is . . . no happy end.”
khhs rtoiszhuif . . . ”Omega is . . . happy end.”

The news articles are saved in six parquet files. Apache Parquet is a column-oriented
compressed data storage format used in multiple applications such as Apache Hadoop.
The size of all files together is 1.59 GB and there are 823,948 news articles. There are
two kinds of columns: The first holds general information about the news article, such
as the article’s full text and release date, while the second holds information extracted
from these general information columns using machine learning, such as the sentiment
of a news article.

Pageviews

user_id article_drive_id . . . time_engaged_in_s

uskljng iohhtm456fbi . . . 12332
uskljng 345fgkzu56 . . . 12

...
...

...
...

uskljng rtoiszhuif . . . 321
uskljng rtoiszhuif . . . 4321

The second part of this dataset regards pageviews using a table with 313,565,551 entries,
with 41.8 GB divided into 1,295 parquet files. A pageview is the interaction of a user
with an article on a website. Each article occurs on average 183.21 times, and thus each
article received on average 183 reads when of the pageviews occurred. The standard
deviation is 6,775.87, which is high considering the average pageview per article. A news
portal has an average of 18,445,032 pageviews and the standard deviation is 21,215,710,
which is also high and could indicate that the pageviews are from portals with highly
diverse page traffic.
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2 Analysis

2.2 Productive Metrics

This section describes two metrics which are commonly used to indicate a performance
increase or decrease of recommender systems while A/B-Testing.

Click-through Rate

This metric click-through rate (CTR) shows how often a recommendation is clicked
relative to the number of recommendations shown to a user [40].

CTR =
Clicks

Recommendations
∗ 100 (2.1)

When the score of this metric increases for a new recommendation method during A/B
testing, then this indicates better recommendations.

Session length

This metric calculates the individual or average session length of a user on a platform.
A session is a temporary and interactive information exchange between the user and
platform, which describes the length of time which a user spends continuously on a
platform. This metric can indicate how satisfied and engaged a user is with the platform
and thus its content. Since the content is also determined by recommender systems, an
increased session length can indicate an improved recommender system.

5



2 Analysis

2.3 Model-based Collaborative Filtering

Model-based collaborative filtering is a widely used method of building a personalized
recommendation system [31]. This section describes a possible approach to applying
model-based collaborative filtering to the news dataset. Model-based collaborative fil-
tering produces recommendations using users with similar interactions with items based
on a scoring of the interaction. A user-item matrix is usually used which describes the
interaction between users and items.

2.3.1 Example Use-Case

Using model-based collaborative filtering requires an indicator to describe the interaction
between a user and an item. For this purpose, a score that indicates the relative time
spent on an article is used.

We use the time t = readtime/words because longer articles require more time to read
and vice versa.

There are four different scores:

1. Significantly below average read time

2. The user spent below-average time but the time spent is statistically common

3. Above-average read time

4. Significantly longer read time

A score of 0 indicates that the user has not yet read the article, and these scores are
candidates for the recommendation.

6



2 Analysis

The calculation is performed as follows:

Average time per word t in a text, Overall mean µ and standard deviation σ Score

t = 0 0
t < µ− σ 1

µ− σ ≤ t < µ 2
µ ≤ t < µ+ σ 3

µ ≤ t 4

Using this relationship between users and items, we can create the user-item matrix as a
target and train a model which takes a users matrix and an items matrix and transforms
them to the user-item matrix. The users matrix is a matrix in which each row represents
a user, and the items matrix is a matrix in which each row represents an item using
embeddings. We now train a model with the user matrix and item matrix as inputs with
the aim to reproduce the user-item matrix using the mean squared error (MSE).

The output would be the following matrix:

User1 User2 User3 User4 User5


1 3 1 1 4 Article1

0 3 0 0 1 Article2

0 0 1 0 2 Article3

0 0 0 2 1 Article4

0 0 0 0 4 Article5

We also know the real relationship between a user and each item from the production
system. Using the model, we may acquire a high score for a user-item element although
the user has not yet interacted with the item. We could then recommend this item
because the model predicts that the user might want to interact with the item or, more
specifically, that similar users have interacted with this item.

7



2 Analysis

2.3.2 Advantages and Disadvantages

This method of creating recommendations includes the following advantages and disad-
vantages:

Advantages

• Personalized recommendations. Each user receives recommendations based on his
taste rather than based on similar items, for example, and thus the recommenda-
tions are personalized.

• This method is simple to train due to its simplicity.

Disadvantages

• Collaborative filtering cannot flexibly handle new items because embeddings are
generated while training.

• It is not easy to include meta data such as the location of a user.

• The order of items does not matter in the user-item interaction matrix, although
the order might impact what the user would like to interact with next.

• Users without an interaction would receive random recommendations.

2.3.3 Conclusion

Since model-based collaborative filtering does not consider the sequence of items or,
more specifically, the order in which articles have been read, and because the constantly
increasing amount of data would require constantly retraining the model, we will not
proceed with this approach.

8



2 Analysis

2.4 Behavior Sequence Transformer for E-commerce
Recommendation in Alibaba

Figure 2.1: Architecture of the Behavior Sequence Transformer.[13]

The method introduced by Chen et al. 2019 [13] suggested a transformer model capable
of classifying the likelihood of the next click of a user for a given target item while
considering the sequence of items [34]. A user is represented as a time-series of items and
other features such as the user profile. Each item and other features become embedded
to a low dimensional vector [18]. These vectors are then feed into a neuronal network to
classify the likelihood that the user will click on the target item. One major drawback of
this method is that the model needs to be retrained every time an item unknown to the
model is introduced, because embeddings are fixed mappings from a high dimensional
one-hot vector to a low dimensional vector representation of the one-hot vector.

9



2 Analysis

2.5 Latent Space in Machine Learning

Pictures, texts, and sounds need to be represented in a mathematical way to function
with machine learning algorithms.

Pictures are mapped into the latent space to enable increased efficiency since the scale
of Big Data requires consideration in machine learning. The latent space is usually a
multi-dimensional vector-space containing vectors which cannot be interpreted directly
but have the characteristic that similar items embedded to the vector space should have
similar vectors.

Figure 2.2: A latent space for the MNIST Dataset which shows how similar pictures
achieve similar representations in a two-dimensional latent space [7]

The compressed vectors are part of the latent space in which similar pictures have similar
vector representations. There are several ways to map inputs to a latent space, such as
training an autoencoder which takes the inputs, compresses them to a vector, and tries
to reproduce the input from the vector again. After training, we can use the encoder
part of the autoencoder to map inputs to a latent space. These vectors can now be used
for a variety of tasks such as classification, nearest neighbor search, clustering, etc.

10



2 Analysis

2.5.1 Sentence Embeddings

Since the data used in this thesis consist of news which are usually formulated using
natural language, we need a method to represent the news articles in a mathematical
manner [25]. A sentence embedding is a sentence mapped into a latent space. Similar
sentences are similarly represented in the latent space; for example, the sentence ”I hate
you” and ”I do not like you” should have a similar vector.

Similar vectors are defined as vectors with a high cosine similarity, while vectors of
sentences which are less similar have a smaller cosine similarity. The cosine similarity
is used because other distance measurements can be problematic since latent spaces are
usually high dimensional and not always normalized.

Models capable of compressing sentences to vectors are trained similarly to pictures in
latent spaces. A special aspect of sentences is the variable length of the input.

The method introduced in this thesis uses sentence embeddings to substitute fixed em-
beddings for each item.

11



2 Analysis

2.5.2 Language-agnostic Sentence Embeddings

Figure 2.3: Visualization of latent space with
language-agnostic sentence embeddings.
Similar sentences are encoded to similar
vectors, where similarity is defined by
cosine similarity [4]

Language-agnostic sentence em-
beddings are sentence embed-
dings created by a model capable
of encoding the ”sense” of a sen-
tence while ignoring the language
in which the input sentence is for-
mulated [16].

This means that the sentence
”How are you?” in English and
the German-translated sentence
”Wie geht es dir?” have a simi-
lar vector in the latent space.

The main advantage of this kind
of embedding is that models
trained on embeddings of sen-
tences in one language can also
be used for sentences in other lan-
guages. Data are currently one of the most valuable assets, and this kind of sentence
embedding implies that data are needed in only one language since one classifier trained
on these embeddings could also perform well on sentences in other languages.

The recommender system in this thesis is based on a model capable of effectively encoding
sentences in 109 languages.

Language-agnostic sentence embeddings are used because most effective open-source em-
bedding models are trained on English data or are language agnostic. The reason for
this is that the internet is English centric, and thus the datasets needed to train a model
capable of encoding text to sentence embeddings are often English centric. In addition,
different languages profit from each other since many languages share the same origin.

12



2 Analysis

2.6 LaBSE: Language-agnostic BERT Sentence
Embedding

LaBSE is a finetuned BERT model capable of mapping texts to language-agnostic sen-
tence embeddings [14, 16]. LaBSE supports 109 languages and was trained using con-
trastive learning [23]. BERT is a transformer encoder model which is explained in the
next section.

Figure 2.4: LaBSE bilingual and monolingual sentence pairs per language [4]

The language-agnostic sentence embeddings produced by LaBSE will be used for the
recommender system. LaBSE was trained on 17 billion monolingual sentences and 6
billion bilingual sentence pairs. A sentence pair consists of two sentences where one
sentence is, for example, a sentence in English whose pair is the German translated
sentence. This model was chosen because it is an efficient transformer sentence encoder
while performing well in cross-lingual text retrieval.

13



2 Analysis

2.6.1 BERT Model

Single recurrent neural network (RNN) models are difficult to distribute over multiple
GPUs due to their recurrent nature, where the next forward pass depends on the previous
one. Another negative aspect is the vanishing gradient problem of RNNs [22, 34, 20];
as a result, the transformer architecture was introduced in 2017 to enable processing
sequences more efficiently and solving the vanishing gradient problem using self-attention
[34]. While the vanilla transformer consists of an encoder and decoder, BERT only uses
the encoder to encode text with a variable-length bidirectionally [14]. The concept of
bidirectionally is the same as with bidirectional LSTMs, where the corresponding output
of a token (token representation) is determined by the whole sentence rather than only
the tokens before the token [21, 30].

Figure 2.5: Simplified Bert Architecture. Visualizes the connection between input to-
kens (< cls >/Tokeni) and output vectors (Rep<cls>/Repi), which should
represent the input token in the context of the text. [3]

The first input token of BERT is often a so-called classification token (< cls >) whose
corresponding token embedding is used as a sentence representation and is thus useful for
sentence-based tasks. LaBSE is a BERT-based multilingual model, which was finetuned
to produce language-agnostic sentence embeddings at the < cls > tokens’ corresponding
token embedding. The model consists of twelve transformer encoder layers, twelve at-
tention heads in each layer, a 500,000 token vocabulary (words and subparts of words),
and a dimension of 768 for each token representation.

14



2 Analysis

2.6.2 Contrastive Learning

Contrastive learning has been used to archive the capability of LaBSE to encode text to
a language-agnostic latent space [23].

Figure 2.6: Contrastive Loss Visualization [23]

The objective of contrastive learn-
ing is to maximize the similar-
ity of vectors between equal in-
puts and minimize the similar-
ity of unequal inputs; for exam-
ple, the vector representation of
the German sentence “Wir geht
es dir?” should ideally be equal to
the vector representation of “How
are you?”. At the same time,
we want to minimize the similar-
ity between the vector represen-
tation of “Wie geht es dir?” and
“I am a student” since they have
different meanings.

Figure 2.7: LaBSE Training Visualization [4]

A dual encoder with shared
parameters was used to train
LaBSE, which means that the en-
coder encodes a batch of texts in
several languages with one feed-
forward and a batch of trans-
lations of these texts with an-
other feedforward. The objective
is to maximize the similarity be-
tween sentence pairs and mini-
mize the similarity between their
uncorresponding translations in a
batch.
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2.7 Time-Series
Forecasting and Causal Transformer Decoder

Since the recommendation model will be based on time-series forecasting or, more specif-
ically, on forecasting of the next language-agnostic embeddings, this section explains
time-series forecasting and the possibility to use a GPT2-based causal transformer de-
coder for this purpose [29]. Time-series forecasting involves making predictions using
historical data ordered by timestamps. The historical data in this case are the news
article reading history of each user, where the simplified objective is to predict the next
news article. Since transformer encoders such as BERT can only be used bidirectionally,
and thus the prediction would always depend on both future and past entries in the time-
series, a GPT2 causal transformer decoder will be used. The main difference between
a transformer encoder and a causal transformer decoder is that the latter’s predictions
only depend on past time-series entries and can be compared with a simple RNN without
recurrence and many parameters. Causal transformer decoders always need at least one
input of a time-series and can use time-series with a maximum length determined by the
longest time-series in the training data. To archive the ability to only depend on past
time-series entries without recurrence the self-attention is masked so that while generat-
ing the corresponding output vector of an entry in the time-series, only information from
past entries of the time-series will be attended to while future tokens will not.

Figure 2.8: Self-Attention vs Masked Self-Attention [6]

This approach enables training a model capable of predicting the next news article from
one past news article while being trained on time-series with a minimal length of ten
entries and a maximal length of two hundred entries.
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2.8 Regression Problem

If the objective is concretized, then the training of the causal transformer decoder be-
comes a regression problem. The objective is to predict language-agnostic embeddings
for news articles produced by LaBSE, which represents the content of the news articles.
By predicting embeddings, the recommendation system gains flexibility because, as long
as the article is not out of bounds of the training dataset, new articles can be processed
without retraining a new causal transformer decoder in contrast to news article classi-
fication models; for example, if the model is only trained on corona news-articles then
the model might perform poorly on predicting news-article embeddings with different
content.

The MSE [35] is used as a loss function to minimize the error between output vectors of
the causal transformer decoder and the language-agnostic sentence embeddings which it
should predict:

MSE =
1

N

n∑
i=1

(yi − xi) (2.2)

2.9 Approximate Nearest Neighbors Search

Since the causal transformer decoder is trained using a regression error, the predicted
language-agnostic embeddings produced by the model only include vectors without spe-
cific news articles bound to them. These generated vectors can be viewed as taste direc-
tions showing what the user might want to see next. Providing proper recommendations
requires a method to acquire news articles for the predicted vector. For this purpose, an
approximate nearest neighbor search is used to retrieve the most similar vector to the
user’s taste direction [9], where the best recommendation for a user needs to be selected
from a news pool. All these news articles are encoded using LaBSE. The algorithm takes
all embeddings of the news articles in the pool and a predicted embedding of the model
and outputs the top k nearest neighbors of the vector using an angular metric.
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2.9.1 k-Dimensional Tree

If the news pool consists of ten billion news-article embeddings and the algorithm aims
to find the top ten neighbors of a predicted vector every ten milliseconds, the naive
approach is to compare the predicted vector every ten milliseconds with each of the ten
billion news-article embeddings, which would be highly inefficient.

Figure 2.9: Example of a 2-Dimensional Tree [32]

To make the algorithm more efficient, an approximate nearest neighbor algorithm is
used to circumvent the need to compare the predicted vector with each news article
embedding; instead, the algorithm uses decision trees to find the best fitting partition.
The news-article embeddings are partitioned into different parts of the latent space and
the algorithm uses decision trees to choose in which partition we need to search for the
nearest neighbors [11].
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2.10 Research Question

Since the reading history might have an impact on the news-article a user would like to
read next and the fact that news-article domains are very volatile the question arises:

Is it possible to build a recommender system which uses time-series represent-
ing a user, where each entry of the time-series is an embedding, by training a
causal transformer decoder regressions model which receives a time-series of
embeddings and outputs the next embeddings representing the article that
the user would like to read next, which is then used to retrieve the item out
of all candidates using a nearest neighbor algorithm?
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3 Design

This chapter explains design decisions and combines the previous chapter’s techniques
to a recommender system, starting with the cleaning and transformation of the dataset
to fit the needs for training the causal transformer decoder.

3.1 Data Cleaning, Transformation, & Analysis

Since the anonymized and proprietary news dataset has columns which are not necessary
for training the causal transformer decoder, the dataset first needs to be cleaned of unused
columns and rows with null entries as well as users with fewer then ten pageviews.

Only the columns user_id, article_drive_id, page_view_start_local, portal_id from
the pageviews are needed. The user_id was used to generate users with article_drive_-
ids. The article_drive_id were sorted ascending by page_view_start_local.

All pageviews were removed where at least one of the used columns is null.

The columns article_drive_id and article_full_text of the articles were used. The ar-
ticle_drive_id was used to map a pageview of a user to an article_full_text, which
will be embedded using LaBSE to generate a vector representation of the article. Only
users with 10-200 pageviews were considered. The minimum of ten pageviews was cho-
sen since each training step should maximize the improvement of the model, and smaller
time-series are implied in each step since the model is a causal transformer decoder. The
maximum of two hundred is used due to hardware limitations. Larger time-series require
more VRAM in combination with a decent batch-size, and there needs to be a maximum
size since VRAM is limited. Some facts about the transformation are listed as follows:

• The number of users without null values is 35,048,127, and the largest group of
users have only one pageview;
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• The number of users with 10 to 200 pageviews is 1,806,951;

• The number of articles without null values is 471,913;

• The mean sequence length of a user time-series is 31.63 and the standard deviation
is 32.27.

3.2 Recommender System Architecture

This chapter introduces the three components of the recommender system and how they
are used. Every user is described as a series of articles or, more specifically, a series
of language-agnostic embeddings produced by LaBSE and ordered by time. A model is
trained to generate the next embedding of a news article using the past embeddings in
the context of the time-series. The whole architecture can be divided into three parts:

• LaBSE: A model which encodes the content of a news article to an embedding;

• Causal transformer decoder: A model which takes an ordered series of embed-
dings and outputs vectors with content encoded which the user wants to read next
based on their reading history;

• Approximate nearest neighbor search: An algorithm which enables retrieving
the top k news-article recommendations for a user using the embeddings of a news
pool and the predicted vector.

This method of producing recommendations is chosen due to the volatility, velocity, and
variety of news articles. An approach is needed that enables quick handling of new news
articles which may have little in common with older articles.

It thus might not be sufficient to train a classifier that predicts the next news article
since new news articles are constantly released.
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3.2.1 Model Architecture

Figure 3.1: Causal Transformer Decoder Architecture & LaBSE. Article− i is a text in
natural language. All Articles−i are ordered by the reading history of a user.
Ei is the embedding for the full text of the Article − i. Êi is the predicted
embedding by the causal transformer based on past embeddings. The dotted
lines underline that Êi depend only on the embeddings [E1, Ei−1]

.

The pictured architecture visualizes training the causal transformer model.

1. Each text of an Article− i is encoded to a language-agnostic sentence embedding
Ei using LaBSE.

2. These ordered article embeddings are fed into the causal transformer decoder to
predict the embedding of the next article Êi+1.

The trained causal transformer decoder consists of 85.9 million trainable parameters.

The MSE is used as an error function between the output vectors of the causal transformer
decoder and the target vectors.

The LaBSE model will not be finetuned and is only used to generate language-agnostic
sentence embeddings for each news-article text.

22



3 Design

3.2.2 Approximate Nearest Neighbor Search

During testing between epochs and A/B testing, the approximate nearest neighbor search
is used to retrieve the best recommendation for a specific user. This method is necessary
because the causal transformer decoder only outputs a vector that may indicate the topic
or content of the next news that a user would like to read rather than the article itself.
All news articles are embedded using LaBSE, and a 768-dimensional tree is built for each
news portal. During testing between the epochs for each output of the causal transformer
decoder, the best-fitting article out of the news-article pool is searched for and included in
the score calculation. To receive a recommendation during A/B testing, the last output
vector of the causal transformer decoder is used to search for the best-fitting article out
of the news-article pool.
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3.3 Technical Design

This section explains the experiment procedure and most technical dependencies used
for experimentation and A/B testing.

3.3.1 Experiment Procedure

Figure 3.2: This chart explains the experiment procedure

The experiment procedure can be divided into four steps:

1. Initialization: In this step, the weights and biases training monitoring frame-
work is initialized, the causal transformer decoders parameters are initialized using
xavier_uniform_ and LaBSE is downloaded from the huggingface hub [17, 38].

2. Data Loading, Transformation, and Cleaning: In this the step, the 1,295
parquet files in which the pageviews are located are loaded using pyarrow and
threading. The six parquet files in which the articles are stored are loaded sequen-
tially. The data will be cleaned from rows with null values, and afterwards users
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will be generated from the tables. A user is a list of articles ordered by time, and
not used users are removed for training.

3. Embedding and Preprocessing: This step describes how the training and test
data are generated. A language-agnostic sentence embedding is initially generated
for each article using LaBSE. The training/test split of 99.9%/0.1% is applied to
the data. After generating all batches, each batch is stored locally as a json file,
because the amount of data would be too great to hold in memory since each data
loader holds the same data, and thus all data would be held in memory with a
redundance of four.

4. Training and Evaluation: The data loaders are separate processes to increase the
training speed since Python is not known for its threading speed. The initialization
of the training loop includes the definition to use the fairscale backend (explained
in the next section) and the defined training parameters.
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3.3.2 Technical Dependencies

Python

Python is the chosen programming language due to its widespread usage for machine-
learning tasks and large community [33].

Jupyter Notebook

The most basic tool used for training, data exploration, cleaning, and transformation
is the Jupyter Notebook [24], which enables running Python in a browser and thereby
making it easy, flexible, and fast to try different solutions on remote machines.

PyTorch

PyTorch is the chosen deep learning framework due to its fast releasing speed regarding
community-released pretrained models and its flexibility to change in-depth parts of the
training procedure with ease; for example, the optimizer LAMB was used during training
although PyTorch does not support LAMB natively [28, 39, 5].

Transformers

The transformers framework is currently one of the most popular deep-learning natural
language processing frameworks [37], which also enables using and sharing pretrained
transformer models. The framework also supports a wide range of transformer varia-
tions.

LaBSE was used directly from the transformers framework, and the causal transformer
decoder is a modified GPT2 model from the transformers framework. The transformers
framework supports tasks ranging from natural language generation to natural language
understanding and includes a trainer which was not used.
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PyTorch Lightning

PyTorch Lightning is a framework that combines PyTorch with other libraries which are
able to reduce the training time [15]. This framework tries to minimize the boilerplate
code and offers support for a wide range of extensions. The two PyTorch Lightning inte-
grations wandb and fairscale were used to monitor and accelerate the training process.

Wandb

Wandb is a tool that allows the user to monitor their machine learning training [12], it
offers an easy API and enables the user to monitor the live training online. Since the
training is being run on remote machine this tool is quite powerful and speeds up the
whole integration process.
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Fairscale

To speed up training, deep learning models are trained using multiple GPUs. The con-
servative approach of realizing this is to hold the deep learning model redundant on
all GPUs or to shard the model manually over all GPUs. When the model is held re-
dundantly on all GPUs, which is less effort compared to sharding, each GPU processes
a part of the batch. The main disadvantage, especially for deep learning models with
many parameters, is that such large models need significant VRAM, representing a waste
of resources.

Figure 3.3: Deepspeed [8]

Fairscale divides the model into several parts and evenly distributes them over the VRAM
of all GPUs. Like in parallel forward, each GPU processes a part of the batch, and the
parameters of other parts of the model are requested on demand during the feedforward
from other GPUs [10].

The ZeRO optimizer from deepspeed was the first implementation of this solution. The
author decided to use fairscale instead of deepspeed due to the more PyTorch-native
method of handling tensors.
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Annoy

Annoy is a framework for nearest neighbor searching from Spotify [1] and is mostly
written in C++ since searching in large vector spaces is a time-consuming task and C++
applications have a lower resource consumption than python programs. In addition, this
framework offers a python API which enables its use with python natively while taking
advantage of the speed of C++.

Pyarrow

Pyarrow allows rapidly loading compressed data in the form of parquet files. The main
advantage during data exploration is the possibility to only load certain columns and
directly filter entries of columns while loading, because the whole dataset is too large
to load directly into the memory, and usually the whole table needs to be loaded before
filtering [2].

Pandas

Pandas is an easy-to-use and flexible data analysis tool that offers significant functionality
for tables and time-series [27, 36]. After filtering and loading, only specific columns were
transformed to pandas using the pyarrow tables to gain insights faster.
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3.4 Evaluation Scores

Instead of the standard evaluation metrics, special metrics were used during training to
mimic productive usage. This section explains the three metrics used between epochs.
During training, no distinction is made between different news-portals while during evalu-
ation, each prediction is evaluated on the news articles of their target news portal instead
of all news portals, which is important because different news portals can publish similar
news articles and the recommendations in production are portal specific.

3.4.1 Cosine Similarity Score

The cosine similarity score indicates the similarity of the predicted vector of the causal
transformer decoder model to the target vector produced by LaBSE. It computes an
average over each cosine similarity between the output vector and target vector, which
can be described as follows:

1

N

N∑
i=1

(c(x, y)) (3.1)

where N is the sequence length, x is an output vector, y is a target vector, and c is defined
as follows:

c : R768 ×R768 → R, (3.2)

x, y 7→ x ∗ y
||x||||y||

3.4.2 Search Cosine Similarity Score

Instead of using corresponding targets, this score uses the most similar vector retrieved
from the approximate nearest neighbor search using each output vector of the causal
transformer encoder as input for the search algorithm. If the similarity between the
retrieved and target vectors is higher than 0.5, it counts as true positive (tp) otherwise
as false positive (fp). This approach should simulate the productive behavior of the
trained model between the epochs.

precision =
tp

tp+ fp
(3.3)
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3.4.3 Search Precision@100

The metric Search Precision@100 builds on the two previously mentioned scores. An
approximate nearest neighbor search is used to determine the 100 most similar vectors
to each output vector. A sample is counted as tp when the target news articles’ cor-
responding vector is found in the 100 most similar vectors; if not, then it counts as an
fp.

The score is calculated the same way as the search cosine similarity score.

It is more difficult to achieve a high score when applying this approach than with both
previously explained scores since there can be more than 100 news articles that are
appropriate candidates to recommend; for example, the news portal has more than 1,000
news articles about football and the target news article is about football, so football
recommendations would generally be a favorable fit, but the score would only count the
prediction as a tp if the target news article is part of the top 100 most similar vectors.
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The training required 46 hours and 43 minutes for almost 80,000 steps with a batch size of
150 per GPU. The machine used for training has four A100-SXM4 40GB VRAM GPUs,
one TB of RAM, and 64 logical CPU cores. The cleaned data were randomly divided
into training and test data, where the training data is 99.9% of the data and the test
data 0.1%. The sample size is statistically sufficient due to the amount of datapoints.
The test data were used for a test loss and to calculate the custom metrics between the
epochs.

4.1 Loss

This section presents and analyzes the training and test loss.

Figure 4.1: Train loss for each step
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Figure 4.2: Test loss after each epoch

During the first steps, the training loss converges drastically, which shows that the model
quickly adjusts to the latent space. In contrast to the training loss, the test loss converges
slower. The model with the lowest test loss will be used for A/B testing.
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4.2 Evaluation Scores

This chapter presents and analyzes the score results of the training.

Figure 4.3: Cosine similarity score after each epoch

This graph shows that the model generally produces vectors more similar to the target
vectors. The score seems generally low, which may be the result of insufficient data.
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Figure 4.4: Search cosine similarity score after each epoch

Figure 4.5: Search Precision@100

The two graphs above show that when the similarity between the most similar vector
and the target vector is not above 0.5, then the target vector will not be found in the 100
most similar vector to the predicted vector. In contrast to the cosine similarity scores,
these results could indicate that the model might not work perfectly in production. These

35



4 Evaluation

less-promising scores may also be the result of having insufficient users to generalize since
the complexity of predicting embeddings with a dimension of 768 is quite high.

4.3 A/B Testing

The recommender system introduced in this thesis was A/B tested against a propri-
etary recommender system on four news portals in Germany. The A/B testing was not
supervised by the author. The users are divided into the following three groups:

• A: Users which receive recommendations using the method introduced in this the-
sis;

• B: Users which receive recommendations using a proprietary recommender system;

• Fallback: Users experiencing their first pageviews and thus not receiving recom-
mendations since the recommender system introduced in this thesis requires at least
one pageview to produce a recommendation. This group is the control group.

The following three scores were used to measure the performance of each recommender
system after the user has seen the recommendations:

• Click rate: A score which indicates how often the user clicked on recommenda-
tions;

• User bounced: A score which indicates how often a user closed the portal after
seeing a recommendation;

• Media time after click: The time that a user spent on the portal after clicking
on the recommendation.

262.721 pageviews were generated for A/B-Testing by real users.
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4.3.1 Click Rate

Figure 4.6: Click Rate Mean

Figure 4.7: Click Rate Standard Deviation

The first iteration of the recommender system introduced in this paper seems to perform
worse than the proprietary recommender system. The standard deviation of B is higher,
which could imply more stable results of the recommendations received by user group
A.

Because this test occurred using the first iteration of the recommender system, the results
are promising.

37



4 Evaluation

4.3.2 User Bounced

Figure 4.8: User Bounced Mean

Figure 4.9: User Bounced Standard Deviation

Slightly more users of group A terminated their session on the website after seeing rec-
ommendations. Groups A and B generally perform equally, and more than 50% of the
users of groups A and B continued their session on the website.
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4.3.3 Media time after click

Figure 4.10: Media time after click Mean

Figure 4.11: Media time after click Standard Deviation

The B group has a higher mean media time after clicking on recommendations, which
indicates a better performance of the proprietary recommender system. The graph might
indicate a correlation between the user click rate and the media time after clicking. It
thus might be possible that if users click on recommendations more often, they might
spend more time on the portal.
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4.3.4 Conclusion

Group A and group B generally received recommendations which improved their time
spent on the portal considering the control group fallback. Group B might have received
better recommendations than group A, which might indicate that the proprietary recom-
mender system is better than the recommender system introduced in this thesis. Con-
sidering that the first iteration of this system was used for A/B testing, the performance
seems impressive. The A/B testing occurred more than half a year after the data for the
training were generated, which could imply that training on the latest data could have
substantially improved the performance of the algorithm. This favorable performance
and the fact that the data were old might justify further research and iterations.

The graphs grouped by portal can be found in the appendix.
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5 Conclusion & Limitations

It can be concluded that the pipeline including the model can produce useful recommen-
dations for users considering the A and control group in A/B testing. The recommender
system can be applied to varied domains since it only depends on the embeddings of
items, which can currently be generated using deep learning for texts, pictures, videos
and sounds. The following list consists of possible limitations and outlooks for future
research possibilities:

• Transformer models are usually trained with more data than were used in this
thesis. The model was trained on approximately 1,806,951 sequences, while a model
such as LaBSE has been trained on several billions of sequences. This implies that
the causal decoder transformer may not cover the whole domain of news-article
content. By including users with at least two pageviews in the training, the model
could have performed better since more data would have been used for training.

• The model requires constant retraining due to the velocity and variety of news
articles and to counter out-of-domain data. New news articles become published
on a daily basis which may lack similarities with older articles besides general
similarities, such as articles about football. A model trained before the coronavirus
pandemic, for example, might be unable to produce sufficient recommendations
during the coronavirus pandemic.

• The read time of an article was not considered while cleaning the data. A user which
only reads the first lines of an article still receives a similar article recommendation,
although their interest was not sufficient to finish the article. This could be one
reason for a decreased media time after clicking.

• No k-fold cross-validation was used, and thus the resulting model may not always
be as positive or negative as observed in the experiment.
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• Instead of a causal transformer decoder, other models with less parameters could
have been used for performance comparison.

• A user with no reading history will not receive a recommendation using this pipeline,
although general information about the user is given in the dataset. It would have
been possible to add information about the user as a prefix to the time-series of
news articles, which would have provided recommendations to a user without the
need to read at least one article.

• The number of users could have been increased by truncating the sequences of users
with a sequence length longer than 200.

• A benchmark could have been used to compare the technique proposed in this
thesis with other techniques since the proprietary recommender system could not
be described.

• The model could have been pretrained with randomly generated time-series of all
article embeddings. This approach would have given the model a general under-
standing of the latent space before learning how to predict the next embedding.

• Instead of language-agnostic sentence embeddings, feature vectors/multi-hot vec-
tors could have been used to represent each article, which would have decreased
the complexity of the training and thus possibly increased the performance.

In future experiments, the causal transformer decoder will be trained on a much larger
dataset.
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A Appendix

A.1 Articles

The following items describe each column of the general information columns:

• publisher_id An id of the publisher of the specific news article. A publisher can
own multiple news portals. There are ten unique publisher_id.

• article_drive_id A unique article id. There are 823,944 unique article_drive_id.

• article_header The article header. There are 755,922 unique article headers.
Each header consists of between one to thirty words with a mean of 6.12 words.

• article_teaser An article teaser. There are 738,363 unique article teasers. Each
article-teaser consists of 1-1,475 words with a mean of 23.73 words.

• article_full_text The full text of the article. There are 821,750 unique article
teasers. Each article-teaser consists of 1-29,832 words with a mean of 387.43 words.

• is_plus_article A bool which is set to true if only premium users have access to
the article. When the bool is false, then every user can read the article. 149,395
articles are only available for premium users and 656,183 for all users.

• is_dpa This bool holds the information if the article is from the news media
company Deutsche Presse Agentur (DPA). There are 98,222 articles from the DPA
and 725,726 are not from the DPA.

• article_dpa_id This is a unique identifier of the DPA. There are 47,290 unique
DPA identifiers in this dataset.

• published_at_local The local date when the article was published. The time
range is 2017-01-01 02:21:11 – 2020-11-10 05:22:08.
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• modified_at_local A date which indicates when the last modification of the spe-
cific article occurred. The time range is 2017-01-01 02:21:11 – 2022-02-22 01:00:00.
This date is officially marked as not reliable what explains that the range ends in
the future.

• article_header_contains_quote A bool which indicates whether the header of
an article contains a quote or not. 22,724 articles contain a quote in the header
and 801,224 do not.

• article_header_contains_question A bool which indicates whether the header
of an article contains a question or not. 24,604 articles contain a question in the
header and 799,344 do not.

• article_header_contains_doppelpunkt A bool which indicates whether the
header of an article contains a colon or not. 140,217 contain a colon in the header
and 683,731 do not.

• article_header_contains_pronoun_writer This bool indicates whether the
writer of the article header wrote in the writer’s perspective or not. There are
14,626 article headers in the writer’s perspective and 809,322 that are not.

• article_header_contains_pronoun_reader This bool indicates whether the
writer of the article header wrote in the reader’s perspective or not. There are
3,159 article headers in the reader’s perspective and 820,789 that are not.

• article_preview_contains_quote A bool which indicates whether the preview
of an article contains a quote or not. 43,290 articles contain a quote in the header
and 780,658 do not.

• article_preview_contains_question A bool which indicates whether the pre-
view of an article contains a question or not. 62,107 articles contain a question in
the header and 761,841 do not.

• article_preview_contains_doppelpunkt A bool which indicates whether the
preview of an article contains a colon or not. 235,333 contain a colon in the header
and 588,615 do not.

• article_preview_contains_pronoun_writer This bool indicates whether the
writer of the article preview wrote in the writer’s perspective or not. There are
39,728 article previews in the writer’s perspective and 784,220 that are not.
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• article_preview_contains_pronoun_reader This bool indicates whether the
writer of the article preview wrote in the reader’s perspective or not. There are
27,447 article previews in the reader’s perspective and 796,501 that are not.

The following items describe each column which were filled using classifiers with most
entries presented as floats in ranging from -1 to 1. Every entry smaller than zero will be
counted as negative and every other entry as positive:

• pad_pleasure This column indicates that the article triggers the emotional state
of pleasure. 296,561 articles tend to give pleasure and 9,765 do not.

• pad_arousal This column indicates that the article triggers the emotional state
of arousal. 4,908 articles tend to cause arousal and 301,418 do not.

• pad_dominance This column indicates that the article triggers the emotional
state of dominance. 290,812 articles tend trigger dominance and 15,514 do not.

• preview_pad_pleasure This column indicates that the article preview triggers
the emotional state of pleasure. 334,473 articles tend to cause pleasure and 50,907
do not.

• preview_pad_arousal This column indicates that the article preview triggers
the emotional state of arousal. 73,006 articles tend to cause arousal and 312,374
do not.

• preview_pad_dominance This column indicates that the article preview trig-
gers the emotional state of dominance. 307,074 articles tend to trigger dominance
and 78,306 do not.

• emo_aerger This column indicates if the article triggers the emotion anger. Ac-
cording to a machine learning model, 81,449 articles tend to trigger this emotion
and 224,877 do not.

• emo_erwarten This column indicates if the article triggers the emotion expecta-
tions. According to a machine learning model, 172,631 articles tend to trigger this
emotion and 133,695 do not.

• emo_ekel This column indicates if the article triggers the emotion disgust. Ac-
cording to a machine learning model, 68,888 articles tend to trigger this emotion
and 237,438 do not.
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• emo_furcht This column indicates if the article triggers the emotion fear. Ac-
cording to a machine learning model, 87,552 articles tend to trigger this emotion
and 218,774 do not.

• emo_freude This column indicates if the article triggers the emotion joy. Ac-
cording to a machine learning model, 114,705 articles tend to trigger this emotion
and 191,621 do not.

• emo_traurigkeit This column indicates if the article triggers the emotion sadness.
According to a machine learning model, 174,547 articles tend to trigger this emotion
and 131,779 do not.

• emo_ueberraschung This column indicates if the article triggers the emotion
surprise. According to a machine learning model, 121,711 articles tend to trigger
this emotion and 184,615 do not.

• emo_vertrauen This column indicates if the article triggers the emotion trust.
According to a machine learning model, 243,172 articles tend to trigger this emotion
and 63,154 do not.

• article_preview_emotion This item is not further analyzed because it consists
of the next eight items and is redundant.

• preview_emo_aerger This column indicates if the article preview triggers the
emotion anger. According to a machine learning model, 255,472 articles tend to
trigger this emotion and 129,908 do not.

• preview_emo_erwarten This column indicates if the article preview triggers
the emotion expectations. According to a machine learning model, 249,997 articles
tend to trigger this emotion and 135,383 do not.

• preview_emo_ekel This column indicates if the article preview triggers the emo-
tion disgust. According to a machine learning model, 281,310 articles tend to trigger
this emotion and 104,070 do not.

• preview_emo_furcht This column indicates if the article preview triggers the
emotion fear. According to a machine learning model, 236,373 articles tend to
trigger this emotion and 149,007 do not.
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• preview_emo_freude This column indicates if the article preview triggers the
emotion joy. According to a machine learning model, 205,822 articles tend to trigger
this emotion and 179,558 do not.

• preview_emo_traurigkeit This column indicates if the article preview triggers
the emotion sadness. According to a machine learning model, 278,898 articles tend
to trigger this emotion and 106,482 do not.

• preview_emo_ueberraschung This column indicates if the article preview trig-
gers the emotion surprise. According to a machine learning model, 266,127 articles
tend to trigger this emotion and 119,253 do not.

• preview_emo_vertrauen This column indicates if the article preview triggers
the emotion trust. According to a machine learning model, 252,792 articles tend
to trigger this emotion and 132,588 do not.

• topic This column is the classified topic of the article.

Figure A.1: Topic Distribution
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• locality This column is the classified geographical scope of an article. International
articles are internationally relevant while local articles are more likely to only be
published in local newspapers.

Figure A.2: Locality Distribution

The chart indicates that the portals favor publishing local news articles.
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• newstype This column is also provided by a machine learning model to classify
whether an article tries to tell the reader something for entertainment, knowledge,
or usage reasons; for example, an article about something funny occurring in the
world may be more likely published to entertain readers, while an article about a
local catastrophe tries to inform them.

Figure A.3: Newstype Distribution
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• genre This classification indicates the genre of an article.

Figure A.4: Genre distribution

A.2 Pageviews

• user_id A unique user identifier. There are 56,199,311 unique user identifiers.

• session_id A unique session identifier. There are 167,711,970 unique session iden-
tifiers. It indicates which pageview belongs to the same session.

• session_referer_medium It indicates how the session was started; for example,
the user came to the page over a browser. There are seven unique session_referer_-
medium.

• session_referer_source This columns adds details to sessio_referer_medium.
There are 88 unique session_referer_sources such as ”Google”.”

• geo.city This column shows the city in which the pageview occurred. There are
55,971 unique cities.
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• geo.country This column shows the country in which the pageview occurred.

Figure A.5: Top ten countries
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• geo.region This column shows the region in which the pageview occurred.

Figure A.6: Top twenty regions

• geo.region_name This column contains the names of the regions.

• geo.zipcode This columns contains 55,412 unique zip codes.

• browser This column describes properties of the browser used while accessing the
article. It consists of doc_width, doc_height, view_width, and view_height.

• os This column describes properties of the operating system used while accessing
the article. This column is anonymized.

• useragent.device_name This column shows the phone type used while accessing
the article. There are 10,617 unique phone types.

• publisher_id There are ten publishers of articles with unique identifiers. Each
publisher can have multiple portals.

• portal_id There are 17 unique portal identifiers. A portal belongs to a publisher
and can be understood as a website where articles are published.
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• page_view_id This columns consists of the unique identifiers of each pageview.
There are 312,908,725 unique identifiers. Considering that the length of the whole
table is 313,565,551, this identifier is not necessarily correct.

• url_ebene_1 Anonymized URL structure of the pageview’s URL. There are 3,273
unique parts.

• url_ebene_2 Anonymized URL structure of the pageview’s URL. There are
69,909 unique parts.

• url_ebene_3 Anonymized URL structure of the pageview’s URL. There are
89,922 unique parts.

• referer_url_ebene_1 Anonymized URL structure of the previous pageview’s
URL. There are 3,913 unique parts.

• referer_url_ebene_2 Anonymized URL structure of the previous pageview’s
URL. There are 40,687 unique parts.

• referer_url_ebene_3 Anonymized URL-structure of the previous pageview’s
URL. There are 26,384 unique parts.

• user_type This column consists of strings which describe the user type. There
are three different user types. 267,929,300 pageviews are from users with the user
type ”anonym”, 31,609,829 from the user type ”premium”, and 14,026,422 from the
user type ”registered”.

• x_scroll_pct x pct scrolling of a user on the article.

• y_scroll_pct y pct scrolling of a user on the article.

• x_scroll_pct_min Max x pct scrolling of a user on the article.

• y_scroll_pct_min Min y pct scrolling of a user on the article.

• time_engaged_in_s This column indicates how much time the user spent en-
gaged with an article in seconds. The minimum is 0 seconds, the maximum 489,825
seconds, and the mean is 30.87 seconds.
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• article_type This column indicates whether the article is only for plus users,
metering, or free. Metering means that this article belongs to the class of arti-
cles where non-premium users can only access those articles a certain amount of
times per month. There are 80,521,347 plus articles, 78,200,855 free articles, and
31,081,643 metering articles. This column is based on the user’s behavior.

• is_paywall This column indicates whether the article accessed has a paywall or
not.

• content_type This column shows what type of content the user viewed in this
pageview. There are 5 different kinds of content. 189,803,845 of the pageviews are
”article”, 111,773,153 ”overview”, 6,108,329 ”other”, 3,980,703 ”media”, and 1,899,521
”shop”.

• user_engagement_segment This column shows how engaged a user usually is.
There are eight engagement types, such as other which stands for new users or loyal
for users who visit the portal regularly.

• article_drive_id This identifier links the pageview to a specific article. There
are 823,945 unique article identifier in this table.

• page_view_start_local This column shows the local date when the user started
interacting with the article. The dates are range from 2020-10-01 00:00:00.169000
to 2021-05-21 02:05:19.343000

• page_view_end_loca This column shows the local date when the user stopped
interacting with the article. The dates range from 2020-10-01 00:00:02.841000 to
2021-05-21 02:05:19.343000

• completion_time_in_s This column shows how much time a user needed to
complete the article. It ranges from 0.4 seconds to 11,932.4 seconds with an average
read time of 199.725 seconds.

• fraction_article_read This column shows what fraction of the article the user
has read. It ranges from 0 to 1 and the average is 0.24.

• completion This column is true if the user completed the article and false if
not. 9,201,597 entries are true and 141,750,981 false, and thus most users are not
completely reading articles.
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A.3 AB-Testing

Figure A.7: Mean click rate grouped by portal

Figure A.8: Click rate standard deviation grouped by portal
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Figure A.9: Mean user bounced grouped by portal

Figure A.10: User bounced standard deviation grouped by portal
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Figure A.11: Mean media time after click grouped by portal

Figure A.12: Media time after click standard deviation grouped by portal
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