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ABSTRACT
Large Distributed Virtual Environments (DVEs) combine
the interactions of many users, constituting a highly com-
plex distributed system that encompasses of a multitude of
heterogeneous computers and communication over varying
networks. The size of a DVE is not only measured in the
spatial reach of its virtual world, but also the number of con-
current users it can provide a sufficient quality service for.
The existence of hardware or software failure of these many
parts must be considered the normal state of operations for
any sufficiently large DVE.

We propose QuP, an approach to provide high fault toler-
ance when compared to many P2P approaches. QuP is also
able provide the service of a large DVE service to clients
connected via asymmetric or lower bandwidth networks.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems

General Terms
Algorithms, Reliability

Keywords
DVE, MMOG, Cloud, fault tolerance, Spatial Publish Sub-
scribe

1. INTRODUCTION
DVEs provide a platform for a wide range of entertain-

ment and productivity applications. They allow the col-
laboration of a large number of participants in a game or
co-workers to share common set of information in a virtual
world. For smaller such environments a single computer may
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be able to supply the necessary coordination of the partic-
ipants. But with a growing number of connected users, or
more complex interactions, a distributed solution is needed.

Basically two basic architectures for DVEs have been put
forward in the past: (1) a Client/Server (C/S) approach and
(2) a Peer-to-Peer (P2P) approach. The C/S approach relies
on a single central computer to coordinate the interaction
of the users, which are then presented to the user, using
a client software. A central server may possess large pro-
cessing and networking resources, but scaling it further will
quickly become cost prohibitive, long before it becomes un-
available to procure. A much bigger concern is the fact that
the server constitutes a single point of failure that would halt
the service when failing. Obviously, modeling a real world
C/S implementations as a single machine is a stark oversim-
plification (e.g. [24]), but compared to the P2P approach,
the authoritative elements are controlled by the same orga-
nizational entity. In contrast, the P2P approach requires
that each participant computer shares the load of operat-
ing the DVE, and can in theory scale without limit. En-
tering participants would also provide more computing and
networking resources to the overall system. However, P2P
solutions are not without problems, as they make a number
of assumptions about the type of participants and their re-
sources. These assumptions might not hold true, especially
when operating a DVE for private customers over the public
Internet.

One area of DVEs driving research has been the field of
Massive Multi-player Online Games (MMOGs) with their
very large user base (beyond the order of 106 for some). But
their users expect a stable service while potentially engaging
in disallowed manipulation of game state (a.k.a. ”cheating”)
at the same time. This creates an operation environment
that requires very high resistance to any and all unplanned
changes, regardless of willfully by attackers or due to equip-
ment faults.

This paper proposes QuP1, a solution to apply P2P and
fault tolerance techniques to a server centric approach to
structuring a large DVE from small to mid-size server com-
ponents, readily available from commercial Cloud providers.
QuP is intended to support a large (> 10k) number of con-
current users, given sufficient server resources. These users
are intended to populate the same, continuous virtual en-
vironment, thus allowing them to interact without any re-

1Originally intended just as a placeholder name for the
project. As the focus changed, the original meaning of the
acronym lost its meaning, but was retained as the name for
the project.



strictions visible to the user.
QuP attempts to strike a balance between the require-

ments of operating a DVE as service in the presence of a
hostile environment and maintaining control of the game
state while retaining the superior scaling characteristics of
a P2P based approach. Our aim is to improve the overall
robustness of DVE systems.

1.1 Characteristics of Proposed Solution
QuP behaves like a client/server system when observed

from the outside, but has the capability to limit the impact
of any component fault. In the best case only a slight perfor-
mance degradation may be experienced by a subset of users.
In the worst case, a client will have to connect to a different
server node of the cluster. But there will be no loss to the
global world state. A client will retrieve state changes that
have occurred while the client was disconnected.

QuP operates on a number of server components that
communicate with each other over a high speed backbone
network. The clients are assumed to utilize WAN connec-
tions, typically in the 1 to 10 MBit range. The server compo-
nents are further differentiated into game server nodes and
storage nodes. Clients connect to the former, the later hold
and persist the game state.

QuP uses Spatial Publish Subscribe (SPS) to apply Area
of Interest (AoI) Management to dynamically partition the
spatial space of a large DVE. This allows the partition of
the computational interaction into zones of potential inter-
actions of the entities representing the user within the game
according to the internal rules of the DVE. In the following
these representations of the user with in the game are called
avatars.

1.2 Modes of Failure
When designing QuP we have considered the following

failure modes: a) failure of a server component b) commu-
nication errors, c) failure of a storage component.

For a single failing server node, all clients connected to
that node will be disconnected from the service. Upon at-
tempting a reconnection, the client will be assigned to an-
other server node by the system management service. Only
the state change messages already sent to the failed server
node will be lost. The global state will be preserved by the
storage nodes. As the clients need to be re-assigned to other
nodes, a slight degradation of performance may be experi-
enced by other clients connected to those new server nodes,
due to the load created by fetching those elements of the
global state that are relevant to the migrated clients. De-
termining the exact percentage of failed server nodes, that
a QuP cluster can recover from is left for a complete imple-
mentation and further experimentation.

Failed storage nodes can be recovered from as the com-
plete world state is replicated over a number of nodes. Errors
during individual reads or writes are handled by a Quorum.
Sloppy Quorum and recovery through vector clocks [12] are
intended for a more complete implementation.

2. RELATED WORK
Numerous P2P solutions for many application other than

DVEs, like [9] and others have been published in the past.
Specific adaption to the stringent latency requirements of
interactive applications of DVEs have also been the contin-
uous focus of research for the last years. Most, like [8] form

a publish/subscribe infrastructure, that will selectively for-
ward state change information to a subset of the participants
each.

Partitioning the global state of the VE has often (like [4])
been done in fixed manner, assigning nodes to fixed regions
as in [10]. As discussed in [23] and others, this may lead to
overloading certain parts of the service while starving oth-
ers, as users tend to cluster around elements of the virtual
world that interests them. To solve this zone-less partition-
ing techniques like [1] have been proposed.

Hu deploys SPS in [16] to partition the state of a DVE
and identify the required set of recipients for state change
messages. It uses AoI to partition the global state to filter
the interaction between any given set of two participants.
QuP extends the notion of visibility to support any form
of potential interaction as presented in [14]. QuP supports
multiple forms of interactions concurrently by automatically
selecting the one with the greatest range as base for AoI
range computation.

In [17] a number of drawbacks of a P2P solution are out-
lined (some are specific to that SPS approach). First among
them is the requirement, that all nodes need to be trusted.
Miller points out, that the management of security in a P2P
DVE is difficult and may never achieve the level that is re-
quired for a commercial offering [21]. Work in this, like Mer-
abti et al. [20] usually require redundant work to be done in
some form or other, thus increasing the required bandwidth
to send verification information. Miller et al also points out
that most private users connect to the Internet via asym-
metric connections [22]. Thus in a P2P network of equals,
the lower bandwidth of the two directions has to be used as
the base of performance calculations.

Waldo et al. describe Darkstar [26], modeling three dis-
tinct types of nodes operating in the DVE: a) a client to be
operated by the user; b) a logic- or game-server and c) a per-
sistence node, the later two operated by the service provider.
QuP extends this model to avoid performance bottlenecks
and single points of failure, for instead of a single database
host, as in Darkstar, QuP consists of a larger number of
storage nodes. The number of required storage nodes must
be large enough to support rate of updates generated by
the operation of the DVE, including replication. Also does
the QuP storage node consist of a in-memory database and
an additional persistence back-end, that will read data from
disk only the case of failure recovery. The exact number of
each is a parameter for optimisation and depended on the
server and network hardware used, as well as the design of
the game deployed on the platform.

Large distributed storage systems, like Dynamo [11] and
Riak [6] have been state of the art for a number of years now.
They support proven resistance to component failure. QuP
builds upon their design, but was adapted to the specific
requirements of a DVE, which allow the identification of
clients with similar sets of requested data, grouping their
connection onto the same server node.

QuPs design is capable of connecting external code as de-
scribed in Horn et al. [15], which they state as one vital de-
sign benefit of their solution. QuP only manages the state
of the game world, not the rules on how to manipulate that
state. In our base design, game logic would be executed on
the same node as the QuP server, but is architectural sepa-
rate and not part of this paper. But as the change requests
and notification of failure or success are send as messages



throughout the system, they could easily be forwarded to
an external program via a publicly defined protocol, like
HTTP/JSON or similar (possibly after some filtering to en-
force access permissions or similar restrictions).

The architecture of QuP discussed in the following does
not exclude the exploitation of communication off-loading
as discussed in [2]. We consider these extensions to an AoI-
centric system design, which can quickly identify candidates
for a direct client to client communication, especially if both
clients regularly send, potentially aggregated, notifications
to the server for merging with the global state.

3. ARCHITECTURE
As shown in figure 1, game server nodes not only execute

the code to implement the game rules, but also act as cache
to game state. For each active object (avatars, represent-
ing the connected clients, as well as objects that act as au-
tonomous agents, like non-player characters, magic effects,
etc.) the AoI management identifies the set of objects that
could possibly be interacted with. The attributes of these
objects are retrieved from the storage nodes. Regardless of
actions by a connected clients, the cached state is continu-
ously updated by change messages arriving from the storage
nodes. A system management service allows the dynamic
assignment of clients to server nodes when establishing con-
nections between the two. By assigning the clients based
on the proximity of their avatars, caching can be optimised
and most interactions become local operations. This results
in only changes to be written to the storage backend, and
all state to have been previously been cached (during the
establishment of the first client). For the worst case it de-
generates into a system similar to RING [13], as each state
change messages is passed from the client to the first server
on to the second server and then forwarded again to the
receiving client.

The global state is structured as a set of objects with an
arbitrary key/value attribute set and a unique object iden-
tifier (OId). Position information as well as the interaction
nimbus of each object are transformed into octree node Ids
upon change to the pertaining attributes. For passive ob-
jects the node Id for both would be the same. The global
state is persisted in the storage nodes. It is partitioned using
consistent hashing [19] to assign a subset of the OId name
space to a storage node and replicated over a number of
additional storage nodes.
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Figure 1: Components of Architecture

As state partitioning is independent from the spatial or-
ganisation of the VE, node overload through a high avatar
density (and thus most likely a high rate of state change)
should be governed by the network bandwidth of the server
nodes. The number of storage nodes can be scaled indepen-
dently to meet demand. Increasing the number of servers
nodes that replicate a given section of the VE can scale
the available CPU and RAM resources as long as the local
changes can be transmitted fast enough.

In QuP, the server holds the authoritative copy of the
state, to be queried by the clients. While clients may cache
partial world state, to improve user experience, they don’t
strictly need to do so.

QuP does not provide a synchronous primitive for reading
a value from storage to the server node. Rather, all state
within the influence nimbus of the avatar is subscribed to
by the server when the client connects to the system, and
kept current during the duration of the connection. The
state is cached by the server node. Subscriptions to state
are handled on a per server node basis, for the sum of state
required by the connected clients. A process (e.g. a client
listener) on the server node may request object data from
this cache. In the case of a cache miss, it is transparently
retrieved from the storage nodes.

In order to change the state, the game process would send
a request to update a value to the QuP process running on
the same server node. This request will be forwarded to the
storage servers, which are indicated by the consistent hash-
ing (QuP uses SHA1 as does Riak). Provided the request
does not collide with another update, the changed value is
stored, and update messages are sent to all subscribers of
the object (including the writing process, wich will be auto-
subscribed, if need be.) There it will update the local caches
on the game server nodes and forward the message to the
game process that initiated it. Also all other game processes
that are subscribed to that object and run on the same ma-
chine will be notified. They in turn may optionally forward
the change to the client.

It has been reported, that the majority of all state infor-
mation within the DVE is static or experiences little change.
(Horn et al. showed that in SecondLive only 8% of all objects
are mobile [15]). QuP exploits this by pre-loading all state
information within the visibility envelope of an avatar. Thus
all state required for updates in reaction to a command mes-
sage sent by a client is already available to the server node
that the client is connected to. This state change is then
propagated concurrently to all other server nodes that share
a spatial proximity.

QuP utilizes an octree as the method to structure the
space of the virtual world, as it has been well documented
for a number of years. It was chosen for its simplicity. In
QuP the spatial positions are all normalized to be within the
cube with length of 1, thus turning all operations within the
octree into simple bitfield operations encoding the position
in the tree. Other than the Voronoi diagrams used e.g. in
VAST [18] or BSP-Trees as proposed in [25] , the octree is
static, regardless of change in the set of connected clients,
the position of the avatars or even the change of the world
it models.

The subset of world state loaded onto a server node is
dynamically determined by the position and size of the vis-
ibility envelope of the avatar (see 2). In an unloaded server
with no initial client connections, the subtree of octree that



models the world space will need to be fetched from the
storage servers once a client connects. As additional clients
connect, only the difference between the subtree of client A
and client B need to be read from the server. This allows
fast handling of connection of new clients to a server node,
provided that the avatar of the client is positioned in a sim-
ilar spatial region as most of the other avatars connected to
the server. But if (re-)connection is cheap, clients may easily
be moved to the server most optimal for the partitioning of
clients among the game world.

As avatars move over time, the visibility envelopes of the
avatars may move apart, increasing the amount of loaded
state per server node. Should the server be unable to han-
dle the load, it needs to shed client connections through
reconnection to other server nodes.

QuP does not take into account view frustum nor culling
nor any other directed AoI approaches. We assume that
by rotating the avatar may quickly change its set of visible
objects. As QuP is intended as an overestimating heuristic,
objects are pre-fetched to a certain envelope as described
in [1], as only QuP filters the intra-server traffic. Further
reduction of the data sent to the clients may be done by the
actual game code that runs on the game server.

3.1 Structure

root

Postion of Object

Observation Point 
of Object

A

B

C

B

A

C

Envelope of
Server 1

Envelope
of 

Server 2

Figure 2: Example of fetch envelopes. Clients A and B are
connected to server 1, client C is connected to server 2

QuP maintains two sets of objects: a) The game state
objects, form the content of the game state. b) the octree
nodes. Each object contains a set of key-value pairs. The
keys are named via global identifiers, the values are arbitrary
data. Each object is identified by a sequence of byte. The
game state objects hold arbitrary state data. The octree
nodes hold two attributes: the list of objects contained in
this node and the list of objects that can observer the con-
tents of the subtree with this node as the root. The system
maintains these lists automatically. Objects of both types
can be subscribed to and will will be copied to a server node
initially as well as when the objects change. These transfers
are done automatically, without need for intervention by the
game software author.

An object is considered contained in an octree node, when
there is no smaller node (i.e. further down the tree) which
will fully encompass the spatial location and size of the ob-
ject. The visibility envelope forms a type fo pseudo-objects,
thus is registered in the containing octree node just as well.
All positions and sizes are normalized to be between 0 and
1.0 in order to make the implementation independent from
the actual size and resolution of the game world. The max-
imum tree depth is fixed for the lifetime of the game, to
make processing the bit fields, identifying the octree nodes
simpler. The octree nodes are only created on demand, to
save vast amount of unused storage space

Objects and octree nodes alike are stored in a number of
copies in the storage nodes. QuP uses the same assignment
of fixed length chunks of multiple virtual storage nodes.

3.2 Consistency Model
When perceived from the outside, QuP provides serializ-

ability [7], as it forms a single entity. The order of messages
arriving at the server is not necessary the order in which the
messages are executed (i.e. the resulting state changes are
performed). For conflicting changes, the one that reaches
the quorum of storage nodes first will succeed. The others
will return with a failure. Since change messages are pro-
vided with the old value as known by the writing process,
a conflicting change can be detected. A number of non-
conflicting change requests (add-to-set, remove-from-set,
increment-counter) is provided by the API in order to re-
duce the number of failures.

3.3 High Load
Given that sufficient server nodes are available, a QuP

based system will migrate client connections from nodes to
those under lesser load, given that the interest envelopes of
the connected clients on the new node are sufficiently close to
those required by the migrated clients. Repeatedly adding
server nodes will eventually fill up the available network re-
sources. But as each server node acts as a replicator of state
change messages forwarded to the clients, this still will aid
in scalability.

3.4 Access Controls
In addition to the need to protect the state of DVE from

unauthorized manipulation, a DVE may also contain con-
tent, that is indented to be perceived only by a subset of
users. This may either be a certain content, which not all
users have been licensed to consume or simply be a ”fog
of war” type functionality, common to many multi player
games, where exploration is a central part of the game ap-
peal. As outlined in [5], ”explorer” type players may feel
cheated, if technical means will get other players the same
information. As QuP implements an authoritative server, it
may filter any content disclosed to users, based on business
or game rules.

4. EXPERIMENT
In order to verify our approach, we have implemented a

prototype in Erlang [3]. Erlang was chosen to reduce the de-
velopment effort to send messages over the network, and in
order to reduce the complexity of writing software that han-
dles a large number of threads of execution in a concurrent
manner.



The main focus of the experiment is to show that the
communication overhead between server nodes and storage
nodes grows slower than the n2 expected for a fully con-
nected network between clients. The latency incurred by
WAN connections between game client and game server was
not covered by the test.

The experiment was run five standard desktop PCs (twin
core, 2 to 4 Gig RAM each). The use of Erlang allows us to
start a large number of virtual machines, to show how the
message latency for state updates increased with added con-
nected clients, distributed over a growing number of server
cluster components.

As shown in figure 3, each physical machine runs a number
of server nodes, as well as a number of storage nodes, each
in separate virtual machines. On each server node a number
of load generator simulate connected clients by generating a
movement update every 500ms. As consistent hashing will
ensure that the objects are evenly distributed among the
storage nodes, on average 80% of all message will have to be
transmitted over the LAN, instead of being received locally
on the physical machine.
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Figure 3: Experiment Setup

A fixed number of 100 load generators (clients) was started
on an increasing number of virtual machines, primarily in or-
der to establish the overhead of setting up the octree and
copying the object to the individual VM. Each load genera-
tor would perform 50 steps and then terminate.

As shown in figure 4, the average latency, while increasing,
due to the fixed hardware resources, increases dramatically
less than the n2 for a full distribution. The amount of la-
tency, especially for the 90th percentile is still extremely
high. We attribute this to the lack of fine tuning that the
prototype still has.

We consider QuP to warrant further investigation to im-
prove the worst case behavior to the levels required for inter-
active game play. At the same time we are already improving
the test platform to include fault injection.

We plan a number of future experiments to quantify the
robustness of the approach by determining two vital limits:
a) the maximum number of failed nodes that will retain a
global service, even if individual clients experience loss of
connection and have to reconnect to working nodes. b) the
number of nodes that need to fail before the system cannot
recover a unified global state due to the dynamic connective-

ness of the state of individual objects (objects in a container,
objects in spatial locale, etc.). This object connection is dif-
ferent from the state commonly used to test data stores like
Dynamo or Riak and thus warrants additional work. Very
early indications suggest that QuP haves in a very robust
nature in these situations.

Further optimisation of the architecture e.g. through the
use of IP level multicast to send out messages to a large
number of subscribers, or the use of message collation will
be an option should the local network become a bottleneck.
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5. CONCLUSIONS
We have shown that our approach can maintain a similar

level of scalability as documented for most P2P solutions in
this area. We have argued that it provides higher levels of
fault tolerance, as shown for approaches that our system is
derived from.

QuP achieves this at the cost of increased requirements
for central server infrastructure and network resources, that
have to be borne by a service provider. In order to opti-
mize the tasked resources for a changing a number of users,
more research is needed to improve client migration, while
maintaining the level of service for a client that is currently
connected. This will allow the number of server nodes to be
adapted for current users levels.

6. FUTURE WORK
The next steps in validating QuP will focus on a number

of areas: (1) Improve the measurements during normal op-
eration to measure end-to-end latency in detail and message
bandwidth between server nodes; (2) Establishing the exact
amount of failed nodes the architecture can support while
maintaining a given number of clients for a set maximum
latency; (3) Test the maximum avatar density for a given
spatial area of the VE for a maximum.

For those areas as well as an general improvement of the
test and validation quality, we are currently constructing the
necessary test platform. It will encompass increased hard-
ware resources and automation and measurements to allow
a wide range of test parameters. The testbed will be op-
erated as a private cloud, allowing the system management
to to control system resources. This enables not only the
automated testing of node failure, but also the addition and
removal of resources to dynamically adapt server resources
to demand by client connections.



A further area of study is the establishment of limits for
the visual range of objects in relation to the local avatar den-
sity. Objects with a very high view range (e.g. an“All Seeing
Eye”) can quickly overwhelm the network connection of the
server node it is connected to, as all state change would need
to be copied to this node. Modelling the maximum range
that can be supported and verifying this experimentally will
be a further focus of future work.
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