
Proceedings of TMCE 2020, 11-15 May, 2020, Dublin, Ireland, edited by I. Horváth and G. Keenaghan
 Organizing Committee of TMCE 2020, ISBN/EAN: 978-94-6384-131-3

 539

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT
SYSTEMS: TWO USE CASES FOR DISTRIBUTED SOFTWARE DEVELOPMENT

SUPPORT

Tobias Eichler
Department of Computer Science

University of Applied Sciences Hamburg
tobias.eichler@haw-hamburg.de

Susanne Draheim
Kai von Luck

Department of Computer Science
University of Applied Sciences Hamburg

{ susanne.draheim, kai.vonluck }@haw-hamburg.de

Christos Grecos
School of Computing

National College of Ireland
cgrecos@staff.ncirl.ie

Qi Wang

University of the West of Scotland
School of Computing, Engineering and Physical Sciences

qi.wang@uws.ac.uk

ABSTRACT

Complex event processing (CEP) systems are typically
utilised for smart environments to cope with large
numbers of components and events without
simultaneously increasing latencies for user
interaction. Although CEP systems can simplify the
development of components with CEP queries, it
remains challenging to debug such complex
distributed systems. Using CEP introduces an
additional software development paradigm which can
make it harder for developers to obtain an overview of
system components or to pinpoint errors. We
introduce an approach to seamlessly integrate CEP
into an existing publish/subscribe middleware for
smart environments, leveraging agent-based
developing techniques to maintain the scalability and
latency characteristics of the existing system. Our
approach envisions a system in which it is irrelevant
whether a feature was implemented through an agent
or through a CEP query. The paper illustrates our
system’s architecture, describes its prototypical
implementation, and exemplarily shows its
applicability based on two real-world evaluations:
first, a sensor network for air quality measurements;
and second, an omnidirectional walking-in-place
recognition system for virtual-reality applications.

KEYWORDS

Complex event processing, multi-agent systems,
software development, distributed support, use cases

1. INTRODUCTION

With the latest developments in technology, smart
systems have become more complex and more
common. Smart technology and companion objects
are integrated into a variety of environments and there
are efforts to interconnect these environments to
generate additional benefits for the user (Zygiaris,
2013).

These smart systems can become complex because of
distributed components, heterogeneity, etc. Sensors
and actors that are used in smart environments are
often implemented with different programming
languages and have incompatible software
architectures and interfaces. Event-based architectures
and middlewares are used to reduce this complexity.
This can help to manage the communication of
components and to achieve a loose coupling between
them. Often, middleware platforms are accompanied
by development tools to help with the development of
new components or features (Henricksen, Indulska, &
Mcfadden, 2005).

Another approach to reduce the complexity and ease

540 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

development is the integration of complex event
processing (CEP) engines (Cobeanu & Comnac,
2011), that can process declarative queries (Luckham,
2001), often similar to SQL queries for databases.
They enable developers to handle easier context
changes and other events inside the system.
Additionally, CEP queries can be used to implement
entire components.

Publish/subscribe-based architectures are utilised to
realise loose coupling and simultaneously provide
high flexibility (Mühl, Fiege, & Pietzuch, 2006). To
this end, publish/subscribe-based messaging is often
utilised to implement open distributed systems.

Heterogeneous systems that include context
information dependencies and high number of
components can generally be challenging to debug.
Integrating CEP engines increases a system's
complexity, because developers have to take two
different development techniques (i.e., event-based
and agent-based) into account throughout their
debugging activities. So even presumably easy tasks,
such as finding a component which is responsible for
a specific action of the system, can become a problem.
In environments that are developed by many
developers or by a changing team, it can be
challenging to get an overview of the general system
structure.

In this paper, we reflect on existing architectural
designs and propose a new way to seamlessly integrate
CEP into publish/subscribe-based systems for smart
environments. Contrary to related designs, our
approach eases development activities, such as adding
components or altering a system, and simultaneously
does not increase the complexity of the debugging
task. To this end, our approach uses the design
principles of an underlying publish/subscribe-based
system.

The paper is organised as follows: first, we introduce
and discuss related work; second, the paper illustrates
our architecture of a seamlessly integrated CEP
engine; third, we evaluate our architecture by
exemplarily demonstrating its application in two case
studies; finally, the paper concludes with a summary
and recommendations for future work.

2. RELATED WORK

As our approach combines CEP with agent-based
systems, we highlight architectures from both worlds
and consider publications that combine their benefits.
Additionally, we summarise different debugging

techniques for agent-based and CEP systems to
evaluate their applicability for the presented
architectures.

2.1. Agent-based systems for smart
environments

Several publications present different software
architectures and agent-based middleware for smart
environments or context aware applications in general
(Cook, 2009).

One important feature of middleware for smart
environments is the processing of context information.
State or context information can be processed and
stored in different ways. All information can be stored
in database services. Typically, there is a central
database or database layer that handles all the data.
Additional services can then be used to query specific
information or to inform components about context
changes (Henricksen, Indulska, & Mcfadden, 2005).

Other systems either do not utilise a central database
service or do not store any data at all. All information
is processed live in the form of messages that are sent
among the agents and the system state is held inside
the agents (Novák & Dix, 2006). If data requires
persistence, it is stored as needed by the responsible
component. This maintains scalability but
simultaneously makes it harder to debug system
components, because there is no standardised way to
access the state of a component. Everything has to be
accessed over an application interface of the
responsible component.

2.2. Complex event processing

CEP can be used to analyse event streams and
recognise complex event patterns (vgl. Luckham,
2001). Complex event patterns can, for example,
consist of multiple events that have to happen in a
specific order. Moreover, event groups or the absence
of specific events can be monitored by complex event
queries.

Paschke and Vincent (2009) presented a reference
architecture for CEP engines that is compatible with
most event processing solutions. There are currently
multiple CEP engines available. Examples are ESPER
(EsperTech, 2019) and Siddhi (Suhothayan, et al.,
2011). Modern CEP implementations often focus on
providing high scalability with low message latency,
which makes them very useful for context-based
applications, smart environment sensor networks
(Dunkel, 2009), and Internet of Things (IoT)

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 541

applications (Chen, et al., 2014). Furthermore, CEP
engines are also used in context-aware computing in
manufacturing (Alexopoulos, Sipsas, Xanthakis,
Makris, & Mourtzis, 2018).

For our approach, we use the reference architecture
and related CEP implementations to identify common
query features and CEP engine components.

2.3. Integration of CEP into agent-based
systems

Another approach to support the processing of context
information in smart systems is the integration of a
CEP service. This is often achieved by the integration
of an existing CEP engine into a message-based
middleware. There are multiple publications that
combine CEP and agent-based or event-based systems
in different ways.

SAGE is an agent-based monitoring and control
system which is embedded in a publish/subscribe
architecture (Broda, Clark, Miller, & Russo, 2009). It
uses Prolog unification technology to detect complex
events.

Cobeanu & Comnac (2011) presented a traffic control
application that combines the JADE agent
development environment (Bellifemine, Poggi, &
Rimassa, 2001) with the Esper CEP engine
(EsperTech, 2019). All messages in that system are
routed over the CEP engine. The CEP engine can
temporarily store some messages to act as a database.

However, there are certain issues with this approach.
It is challenging to integrate an existing CEP engine,
because the messaging layer is the most important part
of an event-based system. Message throughput and the
overall scalability of the system can easily be
hampered by an engine that provides insufficient
scalability.

A further issue is that the complexity of the system is
shifted inside the CEP engine, which is often
implemented with other design paradigms in mind.
This makes debugging activities particularly
challenging, as errors are potentially hidden inside the
engine and debugging with existing debugging tools
is not possible.

Multiple CEP engines can be utilised to increase the
scalability and flexibility of a system (Paraiso,
Hermosillo, Rouvoy, Merle, & Seinturier, 2012), but
these approaches further increase the complexity.

Omicini, Fortino & Mariani (2015) propose a
conceptual framework to combine abstractions and

technologies from event-based and multi-agent
systems which can be used as a foundation for
complex software systems. There are three steps to
successfully combine these systems (Mariani &
Omicini, 2015). First, all agents have to be able to
work as event sources and sinks; second, the systems
need a uniform event model, which can be challenging
to achieve in a heterogeneous system; and finally,
there has to be an event-based coordination which
handles the message flow for event-based and agent-
based communication.

2.4. Debugging techniques

With the increasing demand and complexity of smart
environments, effective debugging techniques are
becoming more important.

There are many techniques and tools to support
debugging in message-based distributed systems, for
example, utilising event-based models of behaviour
(Bates, 1995). Message tracers can be utilised to
debug the message flow in an agent-based system
(Bosse, Lam, & Barber, 2006).

Tools for actor-based programming, for example,
model checkers (Fredlund & Svensson, 2007) or
custom interactive debugging tools (Higashino, et al.,
2013), (Shibanai & Watanabe, 2017) are often used.
Additionally, formalised debugging techniques are
available to evaluate these approaches (Torres Lopez,
Boix, Scholliers, Marr, & Mössenböck, 2017).

Our approach of a seamless integration of a CEP
engine allows developers to use these techniques for
all parts of the system, including features that are
implemented through CEP queries.

Furthermore, there are debugging techniques
specifically designed for complex event processing
and rule-based systems (Cugola, Margara, Pezzè, &
Pradella, 2015) which enable developers to
automatically check rulesets against correctness
properties.

3. SYSTEM DESIGN AND
IMPLEMENTATION

Our proposed architecture to seamlessly integrate CEP
can be separated into three different layers based on
their abstraction levels and interfaces (see Figure 1).
All agents and systems components are at the bottom
layer and are executed either inside runtime
environments or standalone. At this layer, there is no
communication between the components, but each

542 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

component can interact with external systems such as
sensors, actors, or databases.

Each agent provides a message-based application
interface that can be used to interact with the agent and
use it as a service. The middleware provides a
publish/subscribe interface that allows agents to send
and receive messages. This architecture shapes the
publish/subscribe layer on top of runtime
environments.

The CEP layer is at the top. All components that form
the CEP engine have to be implemented on the basis
of the design principles of the existing system to
seamlessly integrate complex event processing into a
message-based system. Thus, we approach the design
of the CEP engine as such that all queries can be
executed on the basis of agent groups and that all new
components have to exclusively use the messaging
services to communicate with each other and other
parts of the system. It uses the bottom layers to provide
the interface which allows it to send, execute, and
manage CEP queries. All components that provide this
layer are implemented as agents which run at the
bottom layer inside runtime environments. The
implications are two-fold: first, layers and systems are
becoming interchangeable; second, debugging tools
can be used for all layers, including the CEP layer.

This seamless integration is not achievable with the
integration of an existing CEP engine, such as Esper

(EsperTech, 2019), because all messages have to be
routed to and processed by the CEP engine.

Our CEP integration can be used with a variety of
existing systems. A crucial requirement is that there is
a topic-based publish and subscribe service (Baldoni,
Contenti, & Virgillito, 2003) that can be used to send
and receive messages from arbitrary topics.
Additionally, all message values have to be accessible
by a unique key such as in JSON or XML.
Furthermore, the underlying system should be agent-
based and provide development and debugging tools
for agents to take full advantage of our approach.

We implement and test our approach based on
(Eichler, Draheim, Grecos, Wang, & Luck, 2017), an
agent-based middleware with publish/subscribe
messaging. It is implemented using the Akka
Framework and Scala programming language.

It uses a binary or text message format based on JSON
which allows easy communication with external
systems, such as sensors, actors, or other IoT devices.
The middleware provides runtime environments to
execute arbitrary agents on multiple nodes with little
overhead and manages them to provide fault tolerance
and optimise system performance. The system decides
where an agent is initially located and can move agents
to other nodes when necessary. This is used in our
implementation to balance the load and minimise the
latency of messages by grouping clusters of

Figure 1. The three layers of abstraction inside the system after the integration of a CEP engine. Each layer is

implemented on the basis of the underlying layers. The system is based on an existing middleware layer
(Eichler, Draheim, Grecos, Wang, & Luck, 2017)

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 543

components that heavily communicate with each
other.

The CEP layer consists of three components that can
create and manage other agents to implement CEP
queries. The first component is the Query Parser and
Optimiser, which process queries. The second
component is the Query Agent Manager that creates
agents to execute a query and the last component is the
CEP Manager which manages all running queries. All
components are shown in Figure 2 and are explained
in the following sections.

3.1. Query language

We use a simple query language that is very similar to
SQL. Additional languages can be added to the system
by adding a component that compiles a query in the
new language to a compatible abstract syntax tree
(AST). Furthermore, additional language features can
be added, if necessary. This can be achieved without
altering or negatively affecting the rest of the system.

The output of a query is determined by its SELECT
clause. It defines what information is published to one
or more groups. Each processing step results in at most
one message per output group. Possible output values
can come from input messages, functions, or
constants. The SELECT clause can be used for a
variety of cases. For example, it can be used to extract
specific values from messages or apply predefined
functions to them. Additionally, constants or generator
functions can be used to produce new values.

The WHERE clause allows filtering of messages on
the basis of predicates that compare fields of messages
either to each other or to constants. With JOIN clauses,
it is possible to combine multiple input messages
according to a predicate. Listing 1 shows an example
query that joins messages from the two groups
first_input_group and second_input_group when they
have an identical id value. Messages with an ID less

than or equal to 5 are removed prior to the joining. If
one message pair is found, the query publishes a single
message containing a constant value of 1, the ID of the
messages, and max_val set to the value of the bigger
val1 variable of the two messages. All output
messages are sent to the group which is specified after
INTO and in this case is output_group.

3.2. Query parser and optimiser

Every agent in the system can create new CEP queries.
If a developer desires to create a query, he or she uses
the provided web interface which is implemented as
an agent inside the system.

Initially, the query is parsed and the syntax of the
query is checked by the Query Parser, which creates
an AST that is passed to the optimiser.

The Query Optimiser simplifies the AST. This is done
by the elimination of unnecessary elements such as
tautologies in predicates. The AST is reordered and
consequently all Filter Elements are preferably at the
beginning of the processing chain. This reduces the
number of messages that are passed down the chain as
early as possible.

After all optimisation steps are conducted, another
component uses the AST to create all necessary
agents. It is possible that a single agent can handle
multiple graph elements. For example, a Join Element
contains a filtering step. The system tries to reduce the
number of agents that are created based on an AST by
grouping as many elements as possible that can be
processed in one step.

Finally, the system schedules the creation of all
necessary agents. If there is already an agent that
provides the same functionality, it is reused instead. If
required, the system scales the amount of agents that
are processing a step to increase the throughput of the
chain. This is detected by monitoring the message
inbox of each agent. In most cases, this is possible, as
all manipulating or filtering of single messages are
stateless and thus can be easily parallelised.

Elements that are state dependent or have to handle
multiple input groups are not reusable between
multiple queries, because they would change the
semantic of the query. If an agent represents a
bottleneck to the chain of all agents, it has to be moved
to a more powerful processing node by the Query
Manager.

SELECT
 1 as constant,
 group_a.id as id,
 max(group_a.val1, group_b.val1)
 as max_val
INTO output_group
FROM first_input_group as group_a
JOIN second_input_group as group_b
ON group_a.id == group_b.id
WHERE group_a.id > 5

Listing 1. CEP query example.

544 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

3.3. CEP agents

There are four different categories of CEP element
agents that are required to implement all possible
queries that are allowed by our query language. The
language features are common elements found in
other CEP implementations, as seen in Paschke &
Vincent (2009) or, for example, ESPER (EsperTech,
2019).

The first type of elements are sources. These can either
be an input from an existing messaging group or
message generators. If an existing message group is
used as an input, the first CEP element subscribes to
this group.

Generators are used to create constant messages or
messages with values that are generated by a function.
This can be used to implement counters and random
messages and provides a convenient tool for
debugging purposes to generate messages.

The second type of element is used to alter messages
such as Apply and Extract. These manipulate an
incoming message and send it further down the
processing chain. This is useful to extract specific
values from messages or to apply functions to them.

Combining elements such as join are the third type of
elements that are used to group messages by a
predicate. This is needed to implement complex
queries with multiple input channels.

Finally, there are Window elements that group
messages from one source into groups of a fixed
number of messages or a time window. This is
required for the processing of aggregation functions
such as maximum, minimum, or average.

Message sinks are not listed as a graph element,
because they are not required. All graph elements can
output messages to arbitrary groups. The final
processing step is used to send the messages to the
requested output group in the query.

- Source: A Source element is used to subscribe an
agent element to a message group. All messages
that are sent to the group are forwarded to the next
elements in the graph.

- Generator: A Generator is utilised to generate
messages based on constants or functions. This
can, for example, be used to generate random
messages or to provide periodic scheduled
messages.

- Extract: An Extract element is used to extract one
or more paths inside the JSON message. The values
are then packaged inside a new message that is
forwarded to the output stream.

- Apply: This element applies a given function to a
message. The parameters of the function are
collected from paths inside the message. An
example is a max(a, b) function to find the greater
of two elements.

Figure 2. CEP layer components and interactions to create a new CEP query.

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 545

- Join: A Join combines two or more event streams
into one. Each message that is sent to one of the
input streams is forwarded to the output stream. It
is possible to filter the forwarded messages based
on its values. Joined messages are forwarded as
tuples, with one element per input stream. All
elements of the tuple can be null, depending on the
type of join that is used.

- Sliding Window: A Sliding Window is used to
combine a constant number of messages into one.
It accumulates n messages from its input stream
and forwards it as a single message to its output
stream. A timeout can be used to force the
forwarding of messages, even if there are fewer
than n messages in the queue to prevent delays.

- Sliding Time Window: A Sliding Time Window
accumulates all messages in a specific time frame.
It forwards all messages that were received from
the input stream grouped by their time slot as a
single message to the output stream.

3.4. Agent graph

The Query Agent Manager creates an agent graph
based on the AST using the CEP elements. In this step,
multiple graph elements can be combined into one

agent to improve the performance. For example, an
element chain, where all elements have a single input
and output, can be processed by a single agent. This is
possible because only groups that are specified inside
the SELECT clause are considered public to the rest of
the system. Temporary groups are generated with a
random identifier and are marked by the system to
prevent errors.

Figure 3 shows one possible graph that is produced by
the query in Listing 1. First, in the Join Stage, the two
input groups are joined on the applied filter. The
intermediate group joined_with_filter is used to pass
the resulting tuples with one message from each input
group with the same id. Then, in the Filter Stage, the
tuples are filtered by the predicate from the WHERE
clause of the query. Finally, the Extract and Apply
Stage produces all values that were specified in the
SELECT clause. The resulting message is then
published in the output_group.

The number of agents that are needed to process this
query is variable and depends on the decision of the
Query Agent Manager. The processing of the filter,
the extraction of values, and the application of
functions could be separated in three stages or
processed by only one. If some processing stages can
be reused, it could be better to separate them.
However, single-stage processing contributes the
smallest latency. The implementation of the stages can
be changed by the Query Manager at runtime, if
necessary.

Because all agents and groups are registered to the
middleware, it possible to request a list of all active
entities is at any time. This can be used to visualise the
state of the system, the communication flow, and the
dependencies between agents.

The middleware itself is composed of multiple agents
and the state of the system can be changed at any time.
The entity information is provided only as a best effort
to reduce the impact on the system performance to a
minimum.

Consequently, after a sufficient amount of time, all
agents and groups are in the entity list with their
correct information. Nonetheless in the meantime,
invalid information can be shown from an old state.

All information about the system is displayed with a
single graph, where the agents are represented as
rectangles and the groups as rectangles with rounded
edges, connected by arrows which represent the
publish/subscribe relationships. As the subscription of
a specific group is the sole way to interact with another

Figure 3. Graph of the example query in Listing 1.

546 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

agent, all dependencies are represented by the
subscribe relations. The current relative message rate
is indicated by the thickness of the edges.

The visualised state of the system is updated instantly
as soon as changes are recognised. For example, if an
agent is started, a node is added to the graph with its
current subscriptions and is automatically removed as
soon as the monitoring of the platform or a runtime
environment detects that it is unreachable.

In a real scenario, the number of agents and groups can
become significantly big. In that case, the graph
visualisation would be very hard to utilise. To
counteract this the graph can be filtered by agent
and/or group name. Each search can optionally
incorporate a configurable number of neighbours to
show agents and groups that interact with the selected
part of the system.

3.5. Interaction with external systems

The presented system interacts very well with external
systems. An adapter can be used to translate its
interface to JSON messages that are then sent to the
system to integrate an external system.

4. SYSTEM EVALUATION

4.1. Case studies

Multiple case studies were conducted to evaluate the
usage of our CEP integration approach.

4.1.1. Processing of environmental
sensor data

One use case that occurs in almost every smart
environment is the processing of context information
which is collected by various sensors. We use multiple
sensors to track the air quality in a smart home setting
(see. Figure 4). Air quality can, for example, be
measured by percentage of carbon dioxide (eCO2) or
by the quantity of particulate matter in the air (PM10).

All air quality sensors sample every 1–3 minutes and
publish their results as a message in the sensor_data
group. The message contains an identifier of the
measurement, the measurement itself, a timestamp,
and the unit.

The sensor measurements are interpreted by an
interpretation agent that collects all of the different
measurements and outputs an air quality value
between 1 and 100. The air quality value can then be
used to visualise the situation to the user or to trigger
actions, like opening a window, if a threshold is
reached.

To test the interpretation agents and actors, which use
the provided air quality data, we can use the CEP
query in Listing 2. This query produces an agent chain
which outputs a random value every minute into the
sensor_data group. The messages generated by this
statement are identical to messages that would come
from one of the sensors. This allows the developer to
use the CEP query during the development for testing.
If required for testing purposes, the message rate can
be easily altered in the query.

Alternatively, we can implement the interpretation or
parts of it as CEP queries (for an example, see Listing
3). This query takes all sensor data that are generated
in a 5 minute time window and sends the average of
all values that are in the allowed data range to the next
interpretation step.

Even if the processing of the sensor data is
implemented as multiple CEP queries or agents,
because of our seamless integration of the CEP
processing, a developer can find the whole agent

Figure 4. Overview of agents and groups to process air

quality sensor measurements to automate
ventilation in a smart home environment.

SELECT src.ec02
INTO sensor_data
FROM src.random.num(60000, 30, 60)

Listing 2. CEP query to simulate a sensor with
random data in a specific range.

SELECT avg(sensor.ec02)
INTO filtered_sensor_data
FROM sensor_data.win.time(300000) as
sensor
WHERE sensor.ec02 > 0 &&

 sensor.ec02 < 100

Listing 3. CEP query to aggregate all sensor
data in a 300,000 ms (5 minute) time window by
an average function. Values that are out of range
are filtered out prior to the aggregation step.

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 547

processing chain in the agent graph. In a system with
a separated CEP engine, the chain would be
interrupted at all points where the engine is involved.

In the second step, when we implement the sensors, it
is helpful to have an instant visualisation of their data
(see Listing 4). This query takes all sensor
measurements and transforms them into drawing
commands on a 2D canvas, which results in a real-
time visualisation of all past measurements. A
developer can use this, for example, to test sensor
implementation. As an example when he or she filters
the data inside an allowed range, the corresponding
event stream can be used to see the results
immediately.

4.1.2. Omnidirectional walking-in-
place detection

For our second case study, we use the implementation
of an omnidirectional walking-in-place (WIP)

1 Kinect for Windows - https://developer.microsoft.com/windows/kinect, accessed 31.01.20

detection service (Langbehn, et al., 2015). Walking in
place is one method to control the movement of users
inside a virtual environment. The users wear a head-
mounted display and utilise their legs for movements.
Sensors such as the Microsoft Kinect 2 1 can be used
to track this movement and detect a step. Each
detected step is then used to perform a movement in
the virtual environment. If the detection of the step and
the movement are processed fast enough, it can
increase the immersion for the user.

To allow a free 360° rotation of the user, multiple
sensors can be used to track the user from different
angles. The sensor data from each sensor are then
fused into one reliable skeleton which is used to
perform the step detection. Figure 5 shows this with
four sensors (k1–k4). The sensor data are collected by
a sensor fusion agent and the output is then used by
the VR application.

Twenty-seven joints are detected every 30 ms by each
of the sensors. Even if the resulting event stream is

slowed down, it is challenging for humans to
understand the three-dimensional vectors of the
skeleton to debug a problem with the sensor. An
easier-to-use representation would be a visualisation
of the skeleton on a 3D canvas.

Listing 5 can be used to implement this on the basis of
the live data from one of the sensors or the fused data.
The query sends all positions of the skeleton joints to
an agent that draws the points on a 3D canvas. This

Figure 5. Overview of all agents and groups that are

used to implement the omnidirectional
walking-in-place detection for VR

SELECT
 "CO2 Sensor Values" as name,
 sensor.name as x,
 sensor.ec02 as y
INTO draw_2d
FROM sensor_data

Listing 4. CEP query to visualise sensor data.

SELECT
 head.position,
 spine_mid.position,
 [...]
INTO draw_3d
FROM skeleton_data

SELECT
 Vector3D(2.3, 3.4, 1.2) as head.position,
 Vector3D(2.3, 3.3, 1.1) as
spine_mid.position,
 [...]
INTO skeleton_data
FROM src.periodic(1000)

Listing 6. CEP query to generate skeleton data
to simulate a sensor (truncated).

Listing 5. CEP query to draw selected skeleton
joints on a 3D canvas (truncated).

548 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

can be helpful to test the sensors or the fusing agent or
to debug processing issues.

The walking-in-place detection based on the fused
skeleton can also be implemented as a CEP query, as
shown in Listing 7. To implement this, we take the last
message from a sensor that detects the floor plane of
the room and combine it with the data from one sensor.
Because the rate of the skeleton data is much higher
than the data from floor plane sensor, we instruct the

join operation to keep the last values, even if this joins
multiple skeleton messages with one floor plane
message.

We then calculate the distance between the foot joints
to the floor plane. If the distance is greater than a
threshold, we publish a message that indicates the step
event and contains the current height of the foot.

Generally, if there is a problem with the
implementation, it can result from all of the
participating agents. The live representation of the
system state in Figure 6 can be used to investigate such
errors. Here, we can see that sensor k3 is not reachable
and that sensor k4 does not send any messages. It is
likely that there is a problem with both of them. As k3
is not reachable at all, it seems that the sensor
hardware is defective or the agent is not operating. k4
seems operational, but the sensor does not detect the
user.

The message throughput is indicated by the width of
the arrows. Apparently, k2 is sending many more
messages than k1. This occurs when k1 does not detect
the user all the time or when sensor k2 has a higher
configured frame rate.

Furthermore, the higher frame rate of k2 does not
increase the frame rate of the fusion agent. It waits for
data from all sensors that provide data in a configured
time frame before its fuses them together. Hence, it

produces a fused skeleton each time a message from
k1 arrives.

This representation does not change whether the
processing steps are implemented by CEP queries or
manually as agents. This is only possible because the
CEP integration is implemented based on the
underlying system.

4.2. Latency and scalability

Systems for smart environments have to handle a large
number of agents, groups, and messages, with a
latency that is suitable for user interaction.

The latency of messages that are processed by a CEP
query depends on the latency of the publish/subscribe-
system that is utilised. Each step in the processing
chain that results from a CEP query publishes the
message and the next agent then receives it by its
subscription. Thus, when 𝑙 is the latency of the base
system and n is the number of processing steps, the
latency of a message is 𝑙 ∗ 𝑛 + 𝑐, where c is the sum
of the overall processing time a message takes inside
each agent in the processing chain.

If the latency of the implementation is compared to
another implementation with the same processing
steps, c becomes irrelevant, because it is identical in
both systems.

The number of agents needed to implement a CEP
query could be decreased by executing multiple steps
in one agent, but this would violate the design
principle of an agent-based system, where each agent
has one specific task.

Furthermore, this is not an issue of the CEP integration
but rather a fundamental decision relating to a system's
design. Although an implementation separation on
multiple agents can ease the understanding and load
balancing, it simultaneously increases the latency.

For each CEP query, our implementation creates only
a few agents and groups. Multiple queries can share
parts of the agent processing chain to reduce the
number of components.

Agent-based systems can easily handle a large number
of components. If the underlying system is designed
to scale with an increasing number of agents and
groups, our CEP integration does scale at the same
time and does not affect other parts of the system. This
of course occurs only if the execution of agents is
capsuled and managed by the base system.

SELECT
 1 as step_detected,
 distance_point_floor(
 s.bone1.x, s.bone1.y, s.bone1.z,
 f.a, f.b, f.c, f.d
) as foot_height
INTO wip_events
FROM skeleton_data as s
JOIN floor_data.keep as f
WHERE foot_height > 3

Listing 7. CEP query to implement walking-in-
place detection based on a skeleton sensor.

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 549

5. CONCLUSION AND FUTURE WORK

Architectures that can cope with the increasing
complexity of smart environment systems are
becoming more relevant. One approach to building
platforms for smart environments is to combine event-
based and agent-based architectures to create a
flexible and loosely coupled system that can handle
context information.

In this paper, we present a new software architecture
that seamlessly integrates CEP into an existing agent-
based middleware for smart environments. We use the
publish/subscribe messaging interface of an
underlying system to implement an agent-based CEP
engine which interacts seamlessly with all other parts
of the system. This enables developers to use agent-
based debugging techniques for all system
components, to pinpoint specific components, or to
analyse message flows. Additionally, debugging
techniques for CEP queries and rule-based engines
can be utilised for features that are implemented with
the CEP engine.

We conducted two case studies based on the presented
architecture and demonstrated its applicability for
typical development tasks in smart environments. The
first example was a system that interprets air quality
sensor data and the second use case was an omni-
directional walking-in-place detection for virtual
reality applications. Furthermore, we demonstrated

that our seamless CEP integration can support simple
debugging tasks during the development process.

Our architecture is a first stepping stone towards an
integrated development environment for agent-based
smart environments, where CEP is utilised for the
development of new components and system
debugging.

We plan to analyse the applicability of our system in
further real-world scenarios. We will conduct a study
with a larger group of developers, foremost computer
science students. Additionally, we plan to further
scrutinise how developers interact with such
integrated development environments and how they
affect the velocity of development processes in such
challenging environments. A first experimental setting
for virtual and augmented reality based on our
platform was published separately (Becker, Meyer,
Eichler, & Draheim, 2019).

REFERENCES
Alexopoulos, K., Sipsas, K., Xanthakis, E., Makris, S., &

Mourtzis, D. (2018). An industrial Internet of
things based platform for context-aware
information services in manufacturing.
International Journal of Computer Integrated
Manufacturing (pp. 1111-1123). Taylor &
Francis.

Baldoni, R., Contenti, M., & Virgillito, A. (2003). Future
Directions in Distributed Computing. In A.
Schiper, A. A. Shvartsman, H. Weatherspoon, &
B. Y. Zhao (Eds.). Berlin, Heidelberg: Springer-
Verlag.

Bates, P. C. (1995, 2). Debugging Heterogeneous
Distributed Systems Using Event-based Models
of Behavior. ACM Trans. Comput. Syst., 13, 1-31.
doi:10.1145/200912.200913

Becker, J., Meyer, U., Eichler, T., & Draheim, S. (2019,
3). A Supernatural VR Environment for Spatial
User Rotation. 2019 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), (pp. 850-
851). doi:10.1109/VR.2019.8798290

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). JADE:
A FIPA2000 Compliant Agent Development
Environment. Proceedings of the Fifth
International Conference on Autonomous Agents
(pp. 216-217). New York, NY, USA: ACM.
doi:10.1145/375735.376120

Bosse, T., Lam, D. N., & Barber, K. S. (2006). Automated
Analysis and Verification of Agent Behavior.
Proceedings of the Fifth International Joint
Conference on Autonomous Agents and
Multiagent Systems (pp. 1317-1319). New York,
NY, USA: ACM. doi:10.1145/1160633.1160876

Broda, K., Clark, K., Miller, R., & Russo, A. (2009).
SAGE: A Logical Agent-Based Environment

Figure 6. Possible agent graph with message throughput

indicated by arrow width. This setting can
help more easily debug the system.

550 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

Monitoring and Control System. In M. Tscheligi,
B. Ruyter, P. Markopoulus, R. Wichert, T.
Mirlacher, A. Meschterjakov, & W. Reitberger
(Ed.), Ambient Intelligence (pp. 112-117). Berlin:
Springer Berlin Heidelberg.

Chen, C. Y., Fu, J. H., Sung, T., Wang, P. F., Jou, E., &
Feng, M. W. (2014, 8). Complex event
processing for the Internet of Things and its
applications. 2014 IEEE International
Conference on Automation Science and
Engineering (CASE), (pp. 1144-1149).

Cobeanu, I., & Comnac, V. (2011, 5). Embedding of event
processing into multi-agent systems decision
mechanism. 2011 6th IEEE International
Symposium on Applied Computational
Intelligence and Informatics (SACI), (pp. 105-
109). doi:10.1109/SACI.2011.5872981

Cook, D. J. (2009, 1). Multi-agent Smart Environments. J.
Ambient Intell. Smart Environ., 1, 51-55.

Cugola, G., Margara, A., Pezzè, M., & Pradella, M.
(2015). Efficient Analysis of Event Processing
Applications. Proceedings of the 9th ACM
International Conference on Distributed Event-
Based Systems (pp. 10-21). New York, NY, USA:
ACM. doi:10.1145/2675743.2771834

Dunkel, J. (2009, 3). On complex event processing for
sensor networks. 2009 International Symposium
on Autonomous Decentralized Systems, (pp. 1-6).
doi:10.1109/ISADS.2009.5207376

Eichler, T., Draheim, S., Grecos, C., Wang, Q., & Luck,
K. (2017, 10). Scalable context-aware
development infrastructure for interactive
systems in smart environments. 2017 IEEE 13th
International Conference on Wireless and Mobile
Computing, Networking and Communications
(WiMob), (pp. 147-150).
doi:10.1109/WiMOB.2017.8115848

EsperTech. (2019). Esper - EsperTech. Retrieved from
http://www.espertech.com/esper/

Fredlund, L.-A., & Svensson, H. (2007). McErlang: A
Model Checker for a Distributed Functional
Programming Language. Proceedings of the 12th
ACM SIGPLAN International Conference on
Functional Programming (pp. 125-136). New
York, NY, USA: ACM.
doi:10.1145/1291151.1291171

Henricksen, K., Indulska, J., & Mcfadden, T. (2005).
Middleware for Distributed Context-Aware
Systems. Proceedings of the 2005 Confederated
international conference on On the Move to
Meaningful Internet Systems - Volume / Part I,
(pp. 846-863). doi:10.1007/1157577153

Higashino, M., Osaki, S., Otagaki, S., Takahashi, K.,
Kawamura, T., & Sugahara, K. (2013).
Debugging Mobile Agent Systems. Proceedings
of International Conference on Information
Integration and Web-based Applications &

Services (pp. 667:667--667:670). New York, NY,
USA: ACM. doi:10.1145/2539150.2539261

Langbehn, E., Eichler, T., Ghose, S., Luck, K., Bruder, G.,
& Steinicke, F. (2015). Evaluation of an
Omnidirectional Walking-in-Place User Interface
with Virtual Locomotion Speed Scaled by
Forward Leaning Angle. Proceedings of the GI
Workshop on Virtual and Augmented Reality (GI
VR/AR), (pp. 149-160).

Luckham, D. C. (2001). The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Boston, MA,
USA: Addison-Wesley Longman Publishing Co.,
Inc.

Mariani, S., & Omicini, A. (2015, 5). Coordinating
Activities and Change. Eng. Appl. Artif. Intell.,
41, 298-309. doi:10.1016/j.engappai.2014.10.006

Mühl, G., Fiege, L., & Pietzuch, P. (2006). Distributed
Event-Based Systems. Berlin, Heidelberg:
Springer-Verlag.

Novák, P., & Dix, J. (2006). Modular BDI Architecture.
Proceedings of the Fifth International Joint
Conference on Autonomous Agents and
Multiagent Systems (pp. 1009-1015). New York,
NY, USA: ACM. doi:10.1145/1160633.1160814

Omicini, A., Fortino, G., & Mariani, S. (2015). Blending
Event-Based and Multi-Agent Systems Around
Coordination Abstractions. In T. Holvoet, & M.
Viroli (Ed.), Coordination Models and
Languages (pp. 186-193). Cham: Springer
International Publishing.

Paraiso, F., Hermosillo, G., Rouvoy, R., Merle, P., &
Seinturier, L. (2012, 9). A Middleware Platform
to Federate Complex Event Processing. 2012
IEEE 16th International Enterprise Distributed
Object Computing Conference, (pp. 113-122).
doi:10.1109/EDOC.2012.22

Paschke, A., & Vincent, P. (2009). A Reference
Architecture for Event Processing. Proceedings
of the Third ACM International Conference on
Distributed Event-Based Systems (pp. 25:1--
25:4). New York, NY, USA: ACM.
doi:10.1145/1619258.1619291

Shibanai, K., & Watanabe, T. (2017). Actoverse: A
Reversible Debugger for Actors. Proceedings of
the 7th ACM SIGPLAN International Workshop
on Programming Based on Actors, Agents, and
Decentralized Control (pp. 50-57). New York,
NY, USA: ACM. doi:10.1145/3141834.3141840

Suhothayan, S., Gajasinghe, K., Loku Narangoda, I.,
Chaturanga, S., Perera, S., & Nanayakkara, V.
(2011). Siddhi: A Second Look at Complex Event
Processing Architectures. Proceedings of the
2011 ACM Workshop on Gateway Computing
Environments (pp. 43-50). New York, NY, USA:
ACM. doi:10.1145/2110486.2110493

Torres Lopez, C., Boix, E. G., Scholliers, C., Marr, S., &
Mössenböck, H. (2017). A Principled Approach

INTEGRATION OF COMPLEX EVENT PROCESSING INTO MULTI-AGENT SYSTEMS 551

Towards Debugging Communicating Event-
loops. Proceedings of the 7th ACM SIGPLAN
International Workshop on Programming Based
on Actors, Agents, and Decentralized Control
(pp. 41-49). New York, NY, USA: ACM.
doi:10.1145/3141834.3141839

Zygiaris, S. (2013, 6 01). Smart City Reference Model:
Assisting Planners to Conceptualize the Building
of Smart City Innovation Ecosystems. Journal of
the Knowledge Economy, 4, 217-231.
doi:10.1007/s13132-012-0089-4

552 Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, Qi Wang

