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ABSTRACT
The automatic recognition of activities can assist people in keeping
track of their health and in avoiding injuries. Nowadays, inertial
measurement units have gained notable interest for such tasks
due to being low-cost, small-sized, and easy-of-use. Inertial sensor
technology in combination with physiological data allows to state
holistic conclusions regarding, for example, an activity’s quality.
This research draws attention to the case of stress levels in sports,
where researchers typically rely on obtrusive stress markers an-
alyzed in laboratories (e.g., lactate and cortisol). While there are
known stimuli for stress such as fatigue, existing knowledge is lim-
ited concerning methodological means and measurement standards
for unobtrusively detecting stress in challenging contexts such as
sports. In response, this work reports from our ongoing research,
where we aim to develop the necessary means to unobtrusively
detect stress levels in real-time based on machine learning algo-
rithms. The main contribution of the present paper is a preliminary
experimental outline. It illustrates the steps we intend to take to
methodologically guide the data collection procedures and to train
machine learning models towards this goal. In doing so, we hope
contributing helpful insights to aid other researchers in designing
stress-related studies in the sports context.

CCS CONCEPTS
• Human-centered computing→ Laboratory experiments.
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1 INTRODUCTION
Based on information about user behavior, activity recognition
enables computer systems to help users with their tasks [1]. The
automatic recognition of physical activity has historically been of
notable interest in computer vision research, while efforts to recog-
nize activities beyond instrumented rooms led to a shift towards
body-worn inertial measurements units (IMU) [12]. IMUs are now
one of the dominant technical aids to assist in home-based exercise
therapy [33], while being low-cost, small-sized, and easy-of-use
devices [11]. Due to their characteristic of retrieving motion-related
data such as acceleration and angular velocity, IMUs play an impor-
tant role in determining human motion [47]. Fundamentally, IMU
data allows to assess the execution quality of a training exercise
in terms of technique and accuracy [20]. With the term quality,
we lean towards a definition from the International Organization
for Standardization, which understands quality “as the degree to
which a set of inherent characteristic fulfills requirements” [35].
Feedback in terms of quality is an interesting field of research in
sports and healthcare [48]. However, research indicates limitations
of IMU sensors in terms of, for instance, detecting deviations from
the ideal movement (e.g., improper timing of muscular activation)
hence studies additionally incorporate biofeedback systems such
as electromyographic (EMG) sensors to overcome such limitations
[47].

575

https://doi.org/10.1145/3453892.3461833
https://doi.org/10.1145/3453892.3461833
https://doi.org/10.1145/3453892.3461833


PETRA 2021, June 29-July 2, 2021, Corfu, Greece Jeworutzki et al.

The ability to simultaneously detect physical activity and stress
levels can assist users in keeping track of their health, while IMU
data in addition to physiological data builds a crucial foundation for
this task [60]. Stress is considered to have a bidirectional relation-
ship with injuries in activities such as training exercises. However,
research is still controversial [56, 61]; as originally hypothesized
by [58], stress increases muscle tension that can lead to a motor
coordination disturbance as well as a reduction in flexibility and
an increase in fatigue. A monitoring system that determines stress
and fatigue during exercises could aid future research in examining
this relationship. Since fitness-oriented exercises at home are often
poorly or ineffectively performed [55], a monitoring system could
also serve as an early warning system [28]. So far, there is a lack of
studies investigating stress in challenging contexts such as training
exercises [31, 43]. More research on methodological and measure-
ment standards is needed [6]. Since there is no single stress marker
that globally assesses an individual’s stress response [6], we apply
a multivariable approach that incorporates workload, lactate, and
other unobtrusive biosignals such as heart rate to determine stress
levels.

To the best of our knowledge, no existing study attempted to
unobtrusively measure stress in the challenging context of training
exercises. In our ongoing research, we examine methodological
approaches and potential biosignal candidates. The present paper
contributes an experimental outline that utilizes a supervised ma-
chine learning process to build a model that can determine stress
levels without the need of invasive stress markers such as lactate
and cortisol. Our research is part of a larger European funded re-
search project. This project includes industry as well as university
partners and targets the development of a product for the fitness
market aiding people in their home-based training.

This paper is organized as follows: In Section 2, the relevant
related literature is presented. Then, the research context is in-
troduced in Section 3. Subsequently, Section 4 elaborates on the
experimental setting, which is the foundation for our research. Sec-
tion 5 then discusses our chosen approach, highlights research
implications, and indicates research limitations. Finally, Section 6
concludes the present paper and provides recommendations for
future research.

2 RELATEDWORKS
Our literature review builds on the circumstance that physiological
signals alone are not sufficient to determine stress levels and the
use of IMU data to detect physical activities is encouraged to enrich
investigations [60]. Therefore, the related work is elaborated on
from two perspectives: firstly, it is concentrated on how studies
approach the challenge of detecting human motion during training
exercises; and, secondly, it is focused on the challenge of determin-
ing stress levels during training exercises, including fatigue as a
stimulus for stress.

2.1 Detecting Human Activities Throughout
Training Exercises

Traditionally, computer vision approaches have been at the fore-
front of recognizing human activities, while there is a shift towards
body-worn inertial sensors observable (e.g., due to their capability

to detect activities beyond instrumented rooms [12]). A commonly
used general-purpose framework to design and evaluate activity
recognition systems is the so-called Activity Recognition Chain
(ARC) [48]. The ARC was introduced in [12] and prescribes dif-
ferent steps that transcend raw sensor data to classified pieces of
information. In principle, any type of multimodal sensor data could
be used with the ARC; which sensors are suitable depends on the
application context [6, 41].

The initial step in the ARC is the task of preprocessing the incom-
ing data to smooth and prepare the signal for subsequent processing
and analysis. To this end, related studies leveraged different filters
such as the Butterworth filter [9] and a moving average filter [47].
Such filters make it easier to divide the incoming signal into in-
dividual segments (e.g., where an activity begins and ends), since
noise is largely filtered out. In the chain’s next step, the filtered data
is segmented into parts, each representing an individual repetition.
However, the literature emphasizes that segmentation of time series
data is difficult [11, 42]. After successfully segmenting the filtered
stream of data, features are subsequently extracted on this basis.
Features reduce the data to information that is discriminative for
the corresponding activity that is performed [12]. Finally, there is
the classification step in the chain. Here, feature vectors result in
labeled decisions – e.g., an activity is labeled as correct or incorrect.

The different steps of the ARC are more thoroughly discussed in
Section 4, while we focus on providing a brief introduction to ARC
in this context. It is worth highlighting that there are a variety of
different solutions for each step in this chain. For example, the task
of data segmentation can be solved by supervised or unsupervised
machine learning approaches. Furthermore, algorithms exist that
allow for light-weight online segmentation and algorithms for more
heavy-weight offline segmentation. Lin et al. discuss these various
approaches of data segmentation in more detail [42]. Similarly, the
definition of appropriate features and their calculation vary notably
in related studies. Whereas some studies rely on statistical features
(e.g., mean, median, and variance) [47], other leverage dynamics
features (e.g., energy and energy ratio) as well [9]. Finally, there is
a notable number of classifiers to be utilized for the classification
process. To name a few, support-vector machines (SVM), decision
trees, and k-nearest neighbor (KNN) algorithms are three of the
potential candidates that a researcher can choose from [12].

2.2 Detecting Stress in Training Exercises
Attention is now drawn to the field of stress in the context of sports,
its relation to fatigue, and how studies have attempted to measure
it during training exercises.

There is a long debate across multidisciplinary fields about the
concept of stress [15]. Since each discipline has its own concepts on
stress, a common definition is unlikely [6, 17]. Stress can be classi-
fied as acute or chronic [15, 29]. While chronic stress is pathological
and psychological in nature, acute stress is the immediate response
of the body to a stimulus (stressor) [29, 49]. The acute response
triggers alertness, energy release, physiological regulation, and im-
munological activation to compensate for the effects of the stressor
[29]. During training exercises, the body experiences an acute stress
response in which more oxygen and energy are required. The heart
rate increases so that more blood is pumped through the body and
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thus oxygen is transported to improve cardiorespiratory function
[7]. Stress could be understood as a response to a disturbance of
homeostatic balance by events or conditions (stressors) [49]. For
example, untrained people suffer from more stress due to higher
demand for oxygen and energy, while trained people become ac-
customed to use less oxygen; their body will eventually feel the
stress over a longer period [7, 14]. The physiological reactions are
summarized as follows:

• Sympathoadrenal system (SAM axis): Sympathetic activation
and parasympathetic withdrawal cause increased heart rate
and respiratory rate, bronchial and pupil dilation, sweaty
skin, and other symptoms. The body is rapidly prepared for
a physical “fight or flight” stress response [7].

• Hypothalamic-pituitary-adrenal axis (HPA axis): Slowly acti-
vated by the secretion of cortisol leading to increased catabolism,
anabolism inhibition, and depression of the immune system.
Typically activated by mental tasks [22].

In addition, stress is highly subjective and individual in all as-
pects [19, 21]. There is a lack of research on methodological and
measurement standards to determine stress during challenging con-
texts such as training exercises [2, 6, 19, 41, 50], for which stress
is a natural physiological response [4, 7, 26, 53]. In principle, there
are countless stimuli that are associated with stress [21, 46]. One of
them is the performed quality of a training exercise [3, 31]. Fatigue
is another stimulus for stress [38, 40]. Physical activity could be
viewed as providing stimuli that promote specific and varied adap-
tations of the body depending on the type, intensity, and duration
of exercise performed [14, 26, 27]. Chronic exercise training does
not eliminate the acute exercise response, but it can attenuate the
overall effect of the response as the body adapts to the training
stimulus in a positive way. An excessive intensity and/or volume
of training may lead to maladaptation [26, 27]. Hence, a stress re-
sponse is dependent on the athlete and the exercise. An unfamiliar
exercise is likely to elicit a higher metabolic stress response than
a familiar, routine exercise, e.g., a long-distance runner will prob-
ably have a different stress response profile for a given exercise
than a weightlifter. Exercises represent an effective methodological
tool to study the body’s response to metabolic stress, and from a
clinical perspective, offers an alternative treatment choice to drug
intervention strategies [7].

Thus far, only a few studies have attempted to investigate physi-
ological stress during training exercises. For example, Magiera et
al. focused on the effect of physical and mental stress on the heart
rate as well as cortisol and lactate concentrations [43]. They found
that the heart rate is most sensitive to physical and mental stress.
Hong et al. investigated the influence of physical activity on stress
recognition with physiological responses [31]. The authors used dif-
ferent stressors to induce stress and found that, among others, stress
models for each physical activity should be built due to variations
in physiological changes caused by physical activity. Alamudun
et al. introduced two multivariate signal processing algorithms to
cope with the differences in physiology between participants and
changes in physical activity [3]. They found that these two algo-
rithms can bring noticeable improvements for the process of stress
prediction. Wong et al. used IMU data to distinguish stress and high
intensity activity in daily life [60].

Based on our literature work, we created a tabular overview of ex-
isting stress markers (see Table ??). Stress (and fatigue) markers can
be classified as subjective or objective depending on the measure-
ment technique [24]. Subjective stress markers, on the one hand, are
traditionally used by psychologists in the form of questionnaires,
interviews, or self-reports, which are usually conducted retrospec-
tively. Subjective markers are not suitable to continuously monitor
stress during training exercises but can be used to determine stress
levels before and after an exercise. Objective stress markers, on
the other hand, are quantifiable and cover physiological, physical,
behavioral responses, and other contextual data. They can reduce
the possibility of self-deception, falsification, fabrication, attention,
or recall bias, which is usually present in subjective markers [51].
Objective markers are measured either obtrusively or unobtrusively
[6]. Biomedical researchers rely on obtrusive biochemical markers,
typically hormones, to measure stress [6, 53]. One of these hor-
mones is cortisol, which is commonly used in studies on stress [19].
Another less expensive marker is lactate [13, 30] which was once
incorrectly attributed to muscle fatigue [13]. Such obtrusive bio-
chemical markers provide accurate quantitative data [6]. However,
they are not suitable for real-time monitoring systems due to their
inherent nature and that they, at times, necessitate analyzing data
in a laboratory. Unobtrusive stress markers, such as heart rate or
muscle activity, are measured by sensors that are attached to the
body. They provide continuous data in real-time and do not require
analysis in a laboratory [19]. Yet, unobtrusive markers are suscepti-
ble to noise or artifacts due to individual’s body parts movements or
activities [19]; however, studies show that they can provide relevant
indicators to determine stress [2, 6, 19, 21, 24, 32, 50, 60, 62].

Regardless of the stress marker, Arza et al. state that a single
stress marker cannot globally assess an individual’s stress response,
because stress causes different physiological reactions, and a multi-
variable approach is therefore suggested [6]. Due to themultifaceted
characteristics of stress, determining a ground truth is a difficult
process [19]. Some studies use subjective measures of perceived
stress. Other studies rely on biosignals or biomarkers that they con-
sider reliable for determining stress. In many studies, ground truth
is established by placing a subject in a neutral and in a stressful
situation to label the collected data accordingly. Others use the
amount of workload and cognitive demand that is being applied as
the stressor [6, 19, 28].

In summary, stress cannot be objectively and unobtrusively mon-
itored in real-time [21]. Determining stress is challenging because
of the subjectivity and individual nature of stress [21]. Moreover,
the start, the duration, and the intensity of a stress event is often
not clearly identifiable [21]. There is also no commonly agreed
methodological or measurement standard for unobtrusive markers
[6, 19]. The relationship between the body’s activation of biochem-
ical stress markers and the intensity of the stress perceived is both
complex and understudied [6]. However, it has been shown that
unobtrusive stress markers can be used to approximate stress (and
implicitly fatigue) in real-time [6, 19].

3 RESEARCH CONTEXT
This study is part of a European funded, interdisciplinary research
project. The project aims at developing a smart training shirt for the
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Table 1: An overview of commonly used stress markers.

Subjective Stress Markers Objective Stress Markers
E.g., interviews, self-reports,

and questionnaires.
Obtrusive Unobtrusive (real-time)

Salvia, hair, and blood samples
(e.g., cortisol or lactate).

Wearables (e.g., heart rate),
contextual (e.g., air quality),

video-based (e.g., thermal imaging),
behavioral (e.g., physical activity).

home-based fitness market to assess a person’s movements during
repetitive training exercises in real-time and to provide additional
health information (e.g., repetition counter). For this project, we
decided to initially focus on repetitive exercises, as such exercises
can be more easily assessed (e.g., in terms of the labeling process
and data segmentation), but we plan to expand to non-repetitive
exercises in the future. The collaborating university and industrial
project partners have expertise in computer science, medical engi-
neering, sports science, and embedded systems. The prototype in
development consists of four body-worn sensors integrated into
the textile of the shirt. By utilizing their mobile devices, users will
be provided with immediate visual and acoustic feedback about the
quality of the exercise performed as well as will be able to track their
training progress over time. The current prototype integrates four
IMUs, one on each shoulder, the chest, and the abdomen. A custom
embedded system is used for data collection and data processing.
Additional physiological sensors for biosignals (electrocardiogram,
electromyography, electrodermal activity, respiration, and pulse)
will be added in the future. Based on this data, supervised machine
learning algorithms are trained to assess the quality of movement
and detect, for example, muscle fatigue. First tests (see Figure 1)
were conducted in our laboratory called Creative Space for Tech-
nical Innovations1 to create sets of labeled training data and to
implement first parts of the outlined ARC variant in software (see
Section 4). Building on this context, the present study’s goal is
to allow for unobtrusively detecting stress levels during training
exercises in the future.

Figure 1: Preliminary tests in our laboratory – Left: IMU
data was leveraged to detect muscle fatigue; Right: Sets of
push-up exercises were utilized to train first machine learn-
ing models based on IMU data.

4 EXPERIMENTAL OUTLINE
The experimental outline consists of a supervised machine learning
training process that is built on a custom software implementation

1https://csti.haw-hamburg.de/

of the ARC. While we implemented the latter, we are currently
working on the realization of the former.

Figure 2: An overview of the training process and its individ-
ual elements.

4.1 Training Process
Figure 2 shows the experimental procedure to train a model that can
classify the quality of performed repetitions and the corresponding
stress levels. We chose supervised machine learning to guide the
training process in this study. The training process begins with one
participant who is initially wired with sensors and then performs a
repetitive exercise. The unobtrusive senor data is collected during
the exercise. Further data is collected separately: firstly, the quality
of the performed repetitions is assessed (labeled) by sports experts;
secondly, the subject fills in a questionnaire for perceived exertion;
thirdly, a blood sample is taken for the lactate values at the index
finger. This procedure is repeated with the same subject for different
exercises. After all exercises have been completed by the subject,
the training is repeated with a new participant until sufficient data
has been collected. By using the word sufficient we gear towards a
machine learning model that shows good results in evaluating its
accuracy, precision, recall, and f-measures. We also aim at collecting
a balanced set of training data to avoid too stark class imbalances
that would deteriorate the classification performance [54]. Related
studies recruited a varying number of (healthy) participants to reach
satisfactory results. For instance, while Seiffert et al. recruited as few
as two participants [48], Morris et al. gathered data from as much
as 114 people (i.e., in both the training and evaluation phase) [45].
A notable number of studies recruited no more than 20 participants
(e.g., [8, 25, 42, 47]) hence we initially target a similar cohort in our
research. However, Morris et al. [45] note that the variation in the
form inevitably affects the recognition accuracy and, consequently,
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see the necessity to conduct large-scale trainings. While we intent
to recruit first subjects fromwithin our research group, we therefore
also plan to prospectively gather data from more people. Yet, we
are unaware of any general rule of thumb as regard to a minimal
required number of subjects to reach satisfactory classification
performance at scale. We expect that the recognition accuracy will
incrementally improve on a subject-to-subject basis.

Features are calculated for each repetition to train a model. For
this purpose, all sensor data passes through each stage of the ARC
(see Section 4.2). The IMU sensor data is used as the basis for find-
ing individual repetitions and for segmenting all other sensor data.
The labels are added to each corresponding feature set (for each
repetition). The trained model is eventually able to classify individ-
ual repetitions by using only unobtrusive sensor data without any
labels. Since our first prototype has only IMU sensors, we could
only create features for the performed quality.

Figure 3 presents the training process in detail. It is divided into
two phases: a baseline and a stress phase. This structure is based on
[6] and was modified to reduce the time required per participant
who originally had to be available on two days. In addition, the
stress phase now has a variable duration. All subjects should be
evaluated in the morning to avoid differing physiological responses
due to circadian changes [6, 16, 52, 53].

Figure 3: The rationale of the stress determining procedure
throughout the training process.

In the baseline phase, individual stress levels are determined
by placing each participant in a rested, neutral state for protocol
calibration and the determination of normal conditions [19]. The
participant first receives a short briefing regarding the procedure.
After all sensors are firmly attached and in the correct position
on the body, it is assured that each sensor transmits data. The
subject fills in the Acute Recovery and Stress Scale (ARSS) [37].
A blood sample is taken from an index finger and analyzed for
lactate levels with a handheld meter. The subject then performs a
relaxation exercise (e.g., mediation or autogenic training) for ten
minutes. During the relaxation exercise, data is recorded by the
sensors. Upon completion of the relaxation exercise, the subject
fills in the ARSS again and a second blood sample is taken to end
the baseline phase.

In the subsequent stress phase, one or more training exercises
are performed. Each training exercise consists of three sets. A set
consists of repetitions (see Section 4.2.3). Each subject is instructed

to perform as many repetitions as possible. In our preliminary
experiments, this usually took less than two minutes, though this
depends highly on the exercise and individual’s fitness level. During
each set, data is recorded by the sensors. After each set, there is a
break of ten minutes. Meanwhile, the subject fills in the Borg Scales
[10] on perceived exertion and another blood sample is taken after
the seventh minute, as peak values can be observed three to eight
minutes after exercise [23]. Once all exercises are completed, the
subject fills in the ARSS one more time. This ends the stress phase
and another baseline phase can begin with the next participant.

The described training process builds on the premise that suffi-
cient training data can be collected for each stress level. Further-
more, it is presumed that workload [28], heart rate [43], and lactate
values [30] correlate with stress. Magiera et al. state that the lactate
level depends on recovery periods, while no effect of fatigue, when
recovery periods were greater than 20 minutes, were experienced
[43]. According to Kop and Kupper, there is a bidirectional rela-
tionship between fatigue and stress, so recovery periods should
be considered [40]. Moreover, lactate accumulates only when the
training intensity is above the anaerobic threshold (through short,
intense exercises). Heart rate is affected by an increase in fatigue
after a short recovery time [43]. Since our stress phase tends to be
short and intense, we opted for 10-minute recovery periods, which
also keeps the total time per participant low.

4.2 Implementation of the Activity
Recognition Chain

As part of the aforesaid research project, we already implemented
a custom variant of the ARC in MATLAB (see Figure 4). This imple-
mentation constitutes the software foundation for the experimental
outline summarized in Figure 2. In the following, we introduce
this custom chain and the different choices we made throughout
the implementation. The central element of this implementation is
the Online Classification Thread, which continually executes the
different stages of the chain in real-time. Below, we present the
individual stages that are visualized in Figure 4 and indicate how
data passes through the chain to transform raw signals to classified
stress levels. It is noted that we have implemented the chain based
on IMU data and are planning to do the same with data stemming
from physiological sensors in the future. Similar to Guo et al., our
implementation lays a focus on processing the acceleration (IMU)
data to create segments [25].

4.2.1 Raw Data Stage. Sensor data is constantly received and pro-
cessed by the Receiver Thread. This thread handles all data connec-
tions to the sensors and parses the raw data to value objects which
are used internally for representation. Based on related studies (e.g.,
[25]), we decided for working with the Euclidean norm to combine
the x, y, and z axes for each IMU sensor into one signal. In doing so,
it is no longer necessary to determine which of the three axes has
the highest signal strength. Additionally, an exact orientation of
the attached IMU sensors is no longer necessary. This is due to the
reason that the gravity that accelerometers measure spreads across
the three axes and the Euclidean norm summarizes the magnitudes
in one signal.
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Figure 4: The different components of our custom imple-
mentation of the ARC.

Because we went with calculating the Euclidean norm, we were
required to work with a sliding window approach [34]. This ap-
proach is embodied in the SlidingWindow component, which limits
the amount of data to be processed, primarily because the chain is
intended to run on an embedded system with limited computation
and storage capacity. The Sliding Window stores a total of 1000
milliseconds worth of sensor data. Currently, the prototype works
with a frequency of 200 Hz but we intend to lower this frequency
to 50–100 Hz as suggested by Trimpop et al. [57]. A reasonably
chosen window size is crucial – a very large window would delay
the real-time feedback and a small window would potentially result
in detecting too many irrelevant data points in a time series. The
Sliding Window component is essentially a data structure that fol-
lows the first in, first out (FIFO) principle. The window continually
moves across the incoming signals. With each movement step, a
new data point is added to the window and, at the same time, the
oldest data point is removed. The Sliding Window is transferred
through each of the next three stages.

4.2.2 Preprocessing Stage. The Preprocessor component uses the
data from the Sliding Window for interpolation (i.e., if data is miss-
ing due to network losses) and for filtering the incoming sensor
data. Related studies leveraged different filter techniques to smooth
incoming sensor signals; reducing additive noise is the key con-
cern at this stage due to sensor variability and limited digitization
processes [19, 59]. Utilized candidates were, among others, the
Butterworth filter [9] and the moving average filter [47]. In our
preliminary experiments, we tested different configurations of the
two mentioned filters (e.g., different window sizes for the moving
average filter). Finally, we decided to use the Butterworth filter
because it is efficient for real-time filtering and produces smooth
signals (see Figure 5), which are beneficial for our segmentation
approach (see Section 4.2.3). The following parameters were deter-
mined manually by experimental test runs: an order of 3, a cutoff
frequency of 0.8, and a sample rate of 200 Hz – analogous to the
sample rate of the IMU sensor. The goal was to produce a smooth

signal with as little oscillation as possible and without attenuating
the signal beyond recognition. We also noticed a significant shift
of the signal to the right on the time axis (about 450 ms) when low
cutoff frequencies (like 0.8) were used (the shift has been corrected
in Figure 5). In summary, we observed that the filter settings have
a notable impact on the resulting signal (i.e., especially the total
number of maxima and minima).

Figure 5: Comparison of filtered IMU signals (push-ups): raw
data (green), moving average filter (red), and Butterworth fil-
ter (blue).

4.2.3 Segmentation Stage. The preprocessed data is forwarded to
the Peaks Finder component, which detects individual repetitions of
an exercise. The literature indicates different means to accomplish
repetition detection such as minima and maxima searches [42], also
known as Zero-Velocity Crossing [11]. We decided for a search
of maxima. Every time a new data point is added to the Sliding
Window, the window is checked if a new maximum can be found.
For this purpose, the value in the center of the window is used
as reference. An algorithm checks if all values to the left and to
the right of the central reference point are smaller. If this is the
case, a maximum is found and the maximum is stored in a separate
storage. The window then continues to move forward until another
maximum is found. All sensor data from the first to the second
maximum is considered as one segment (i.e., one repetition of the
current exercise). However, some exercises may consist of multiple
maxima per repetition (e.g., squats), in which case a segment is
created only after every x maximum. It is assumed that the exercise
to be performed is known in advance.

After a segment is found, further analysis is applied to discard
unwanted segments. Since Zero-Velocity Crossing algorithms tend
to over-segmentation [11], some segments do not represent a valid
repetition. For example, if the duration of a segment exceeds or
falls below a certain threshold or if the variance (amplitude) of
the segment is very low. A more advanced analysis could be the
calculation of prominence [44]. However, finding the right thresh-
olds to filter segments manually is a challenging task [11]. Another
approach would be to not discard any segments and let the trained
model decide whether the segment is a valid repetition.

Finally, each found segment is based on the data of the IMU
sensors and will be used in the future as reference for segmenting
all the other sensor data such as heart rate, which is then used to
determine the stress level per repetition.
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4.2.4 Feature Extraction Stage. The next stage receives and pro-
cesses the latest segment found and is referred to as the Feature
Extractor component in Figure 4. The foundation for this stage
was a literature review to find suitable features that can charac-
terize individual repetitions most accurately. We found a diversity
of types of features for this task such as dynamic [9], statistical
[25], or frequency-based features [5]. We finally went with a set
of statistical features used by Guo et al. [25], who exclusively built
their study on such features. However, we also limited our selection
to statistical features in this early stage of our research, because we
were able to readily calculate themwith built-in MATLAB functions.
In the end, our preliminary set of features consisted of the measures
skewness, kurtosis, std, var, mode, median, range, trimmean, and
mean. The selection of appropriate features is critical in influencing
the accuracy of the trained model to successfully detect repetitions
[33]. During this stage, the input vector of the size of n dimensions
(i.e., the number of data points in a segment) is transformed to
a vector, the feature vector, which has the size of one dimension.
The feature vector consists of a summary of calculated values (e.g.,
mean and variation) that are finally passed to the next stage. In
our study, the aforesaid features were calculated for the IMU used
(i.e., its accelerometer and gyroscope sensors) as well as each axis
of these sensors. As a result, the feature vector had a total of 54
unique measures per IMU sensor. In the future, we will enrich this
IMU feature vector with data stemming from biosensors.

4.2.5 Classification Stage. The Classifier component incorporates
a trained model that can determine either the quality of the per-
formed repetition of an exercise or, in the future, the stress level
(i.e., in the form of the feature vector). Like the previous stage,
we initially conducted a literature review to find suitable classifier
candidates. Examples are SVMs [47], decision trees [33], random
forests [9], and Naive Bayes classifiers [8], whereas most of the
mentioned studies leveraged and compared a set of different classi-
fiers. However, for exploration purposes, we leveraged MATLAB’s
own Classification Learner App2 to test and find suitable classifiers.
In our test runs, we utilized a 5-fold cross validation and found
that especially SVM classifier variants, a tree algorithm, as well
as KNN algorithms showed a comparably high accuracy with our
dataset. The dataset consisted of 304 push-up exercises from six
different subjects. Each subject performed three sets of push-ups to
the point of exhaustion. Subsequently, these push-ups were labelled
by our collaborating sports science partners as correct or incorrect.
Overall, 202 push-ups were labelled as correct, while 102 push-ups
were identified as incorrectly executed. Table 2 shows an overview
of the most accurate classifiers that were trained in MATLAB. In-
terestingly, while visually exploring the dataset in a scatter plot,
we found that both the standard deviation and the variance of the
gyroscope’s x and y axis were particularly suitable to separate both
classes of data (i.e., correctly and incorrectly executed push-ups).
The results presented in Table 2 are based on these two measures
from the feature vector.

The outcome of the classification stage are labels such as correct
and incorrect that reflect the internally determined decision of
the trained model. It is noted that in our preliminary experiments,
we concentrated on a binary classification problem, while we are
2https://www.mathworks.com/help/stats/classificationlearner-app.html

Table 2: An overview of the most accurate classifiers.

Classifiers Accuracy
Cubic SVM 98.0 %
Medium KNN 98.0 %
Coarse Tree, Quadratic SVM, Fine Gaussian SVM,
Coarse Gaussian SVM, and Cubic KNN

All 97.7 %

planning to incorporate more classes to distinguish correctly from
incorrectly performed repetitions (i.e., multi-class classification).
We would also like to emphasize that, although related work shows
similar good results [47], the findings presented Table 2 illustrate
notable high accuracies and we therefore plan to conduct further
investigations in the future (e.g., as regard to overfitting). We will
also incorporate more data from other subjects.

5 DISCUSSION
The main contribution of this paper is a preliminary experimental
outline, how we plan to unobtrusively detect stress levels during
training exercises. Our work’s novelty primarily arises from the
circumstance that there exist methodological and measurement
challenges when it comes to determining stress in this demanding
context [2, 6, 41, 50]. To the best of our knowledge, the present
study is one of only a few studies that attempts to investigate stress
during trainings exercises [31, 43]. However, we experienced sev-
eral challenges throughout our ongoing research. For example, as
indicated in the literature [11, 42], we similarly experienced the seg-
mentation process as difficult. While different filters were examined
in preparation for the segmentation stage, various settings for the
peak-finding algorithms were tested to reduce over-segmentation.
Our preliminary results concur with the related literature as regard
to the classification process. Like Bevilacqua et al. [9] and Guo et al.
[25], we also found that SVM classifiers (i.e., variants of this classi-
fier) are particularly accurate in correctly determining the quality
of an exercise. In that regard, our study stands in some contrast to
[8] as we did not find as strong the support for the Naive Bayes
classifier in our test runs. This classifier, according to Baumbach
and Dengel, shows similar accuracy performance to more complex
classifiers [8]. It is worth highlighting that other studies also took
entirely different avenues to the segmentation problem and used,
for instance, machine learning algorithms such as clustering to
unveil similarity in the data [8]. Again, Lin et al. provide a thorough
overview in that regard [42]. Our contribution is, however, also
underlined by the non-academic part of the research project – i.e.,
a product for the fitness market is to be developed. Segmentation
approaches are rarely applied beyond academic contexts [18] and
more of such approaches are warranted that operate in real-time,
produce accurate segments, and are computationally inexpensive
[11].

We see the following implications for research and practice. Re-
searchers, on the one hand, profit the most from our elaborations in
terms of the literature work and the design decisions we made. Fu-
ture studies can leverage this knowledge to design their own studies
and to make profound contributions to the field. Practitioners (e.g.,
fitness studio personnel and health tool developers), on the other
hand, benefit most notably from the fact that we envision ways
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to unobtrusively detect stress levels. Prospectively, studies such
as ours may lead to less expensive equipment and labor-intensive
work (e.g., analyzing blood samples in laboratories) to determine
stress levels during training exercises. Likewise, the feedback for
the trainee is enriched and potential injuries may be avoided. In
sports and healthcare, feedback regarding an execution’s quality is
an interesting aspect to consider [48].

Our work is not without limitations. Firstly, most of the hard-
ware is provided to us by the cooperating company developing the
embedded system. Hence, whether there are more accurate sensors
on the market to more accurately detect repetitions, is an issue
beyond the scope of this study and may affect the overall results
(e.g., the segmentation procedure).

Secondly, lactate has limited use in measuring stress due to the
anaerobic threshold and recovery periods [43]. Lactate has only
been used in recent studies on stress [13, 30]; most studies on
stress use cortisol as obtrusive marker, because cortisol secretion is
directly associated with activation of the hypothalamic-pituitary-
adrenal axis [6, 19]. However, cortisol is more expensive to analyze
per sample.

Thirdly, further research is needed to identify which set of stress
markers is best suited to determine stress levels [6, 19]. We will
initially focus on heart rate variability, lactate, and perceived stress
scales, but other markers such as electrodermal activity or body
temperature show promising results as well [60]. Furthermore,
the use of subjective stress scales can be prone to self-deception,
fabrication, and attention bias [51].

Fourthly, according to Giannakakis et al. [19] and Morris et al.
[45], it is important to take the natural variability into account when
measuring stress in experiments. A laboratory environment that
does not aesthetically resemble a gym may result in different data
as if the experiments had been carried out in a real environment.
Giannakakis et al. suggest keeping the experimental environmental
conditions constant [19], which is challenging due to the variety
of contextual stressors such as the duration of the experiment,
rest periods, noise factor, temperature, lightning, or air quality
[19, 36, 39, 53].

Finally, the segmentation approach we have chosen is known
to be efficient, to require little computational effort, and to allo-
cate a comparably small amount of system memory. However,
the approach also has some drawbacks. First, it can lead to over-
segmentation of the data [11], and second, it does not generalize
well across primitives and subjects [42]. Moreover, the approach is
very sensitive to the chosen size of the sliding window (see Section
4.2.1) and how the data is preprocessed and filtered (see Section
4.2.2).

6 CONCLUSION AND FUTUREWORK
This study responses to recent developments regarding the lack of
methodological and measurement standards to detect stress during
challenging contexts such as training exercises [2, 6, 41, 50]. It
introduces a preliminary experimental outline that illustrates, how
we plan to unobtrusively detect stress in our experiments. To this
end, we elaborated on both the rationale behind the training process
to be developed and the specific variant of the ARC that we already
implemented. We intend to conduct test runs with participants in

the near future and we are currently preparing for these studies
by, among others, evaluating different technical means to measure
blood lactate levels and assessing suitable exercise candidates.

In summary, there exists no commonly accepted definition of
stress [6], whereas stress is caused by various stimuli such as fa-
tigue [38, 40]. Due to the limited number of studies scrutinizing
stress levels during trainings exercises, we conclude that this field
encompasses promising avenues for future research. In outlining
our preliminary implementation and design decisions, we hope
that other researchers will find helpful assistance in preparing their
own studies as they embark on similar endeavors including injury
prevention and rehabilitation training.
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