
Distributed Architecture With
Complex Event Processing For

Support of Program
Comprehension and Debugging In

Smart Systems

by

Tobias Peter Eichler

Thesis submitted in partial fulfilment of the requirements
of the University of the West of Scotland

for the award of Doctor of Philosophy

30th November 2022

Declaration
The research presented in this thesis was carried out by the undersigned. No part
of the research has been submitted in support of an application for another degree
or qualification at this or another university.

Signed:

Date:

i

Abstract

This work contributes to smart systems research with a novel software architecture
especially designed for the support of the program comprehension and debugging
tasks.

The aim of this thesis is to design a software architecture to ease development
tasks and allow fast experimentation in smart system research laboratories. The
architecture consists of a distributed publish/subscribe middleware, agent-based
frameworks for development, and runtime environments for agent execution. Com-
plex Event Processing (CEP) is integrated into this agent-based system in a novel,
seamless way for both context handling and system status inspection to assist in
program comprehension and debugging tasks.

This work uses a mixed-methods methodology and contains three studies. Firstly,
seven expert interviews were conducted to analyse requirements for architectures
in smart systems laboratory environments. Secondly, experiments to measure
message latency and scalability of the implementation of the designed software
architecture. And finally, an evaluation of the architecture using the Architecture
Trade-off Analysis Method (ATAM).

In addition to the requirements for software architectures for smart systems from
the literature, such as scalability and heterogeneity, the expert interviews show
that for laboratory environments, support for program comprehension and debug-
ging is an important requirement. The conducted experiments revealed that the
developed software architecture meets the latency and scalability requirements
because the system scales with the number of middleware nodes and still has
average message round trip times of less than 4.6 ms with up to 10,000 agents.
Furthermore, the results of the ATAM showed that the architecture meets all the
requirements, both from the literature and the expert interviews. Thus, it can be
used to support software development and rapid experimentation in smart system
environments.

The results of this thesis could be used in the future to ease smart system research
experiments with the presented architecture and the seamlessly integrated CEP
engine.

Contents

Declaration i

Abstract ii

List of Publications vii

List of Figures viii

List of Tables x

Listings xiii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Aim and Objectives . 3
1.3 Research Questions . 5
1.4 Thesis Outline . 6

2 Related Research 9
2.1 Process of Literature Review . 9
2.2 Smart Systems . 11

2.2.1 Smart Environments . 12
2.2.1.1 Context-awareness 16

2.2.2 Cyber-Physical Systems . 18
2.2.3 Internet of Things . 20
2.2.4 System of Systems . 22

2.3 Smart Systems Middleware . 23
2.3.1 Generic Middleware Architecture 24
2.3.2 Agents and Actors . 25
2.3.3 Publish/Subscribe . 29

iii

Contents iv

2.3.4 Middleware Architectures 32
2.4 Complex Event Processing . 35

2.4.1 Event Processing Reference Architecture 37
2.4.1.1 Event Producers 38
2.4.1.2 Event Modeller . 39
2.4.1.3 Event Processing Medium 39
2.4.1.4 Event Consumer 40

2.4.2 Integration of event-based and agent-based systems 40
2.4.3 CEP in Smart Systems . 41

2.5 Program Comprehension in Complex Distributed Systems 45
2.6 Conclusion . 51

3 Requirement Analysis 53
3.1 Interdisciplinary Research Laboratories 53

3.1.1 Living Place Hamburg . 53
3.1.2 Creative Space for Technical Innovations 55

3.2 Requirements for Smart System Architectures 57
3.3 Conclusion . 62

4 System Design and Implementation 64
4.1 Architecture Layer Outline . 64
4.2 Messaging Layer . 67

4.2.1 Layer Architecture . 68
4.2.2 Messaging . 72
4.2.3 Message Format . 73
4.2.4 Programming Toolkit . 75
4.2.5 Interface Libraries . 76
4.2.6 Runtimes and Agent Migration 79
4.2.7 Integration with other messaging platforms 81

4.3 Complex Event Processing Layer 81
4.3.1 Query Language . 83
4.3.2 Query Parser and Optimiser 84
4.3.3 CEP Element Agents . 86
4.3.4 Creation of Agent Graphs 88

4.4 User Interaction Layer . 91
4.4.1 Agent and Group Status Information 91
4.4.2 Agent Communication Graph 93
4.4.3 Complex Event Processing Queries 98
4.4.4 Case Studies . 102

4.4.4.1 Omnidirectional walking-in-place detection 102
4.4.4.2 Processing environmental sensor data 107

4.5 Conclusion . 110

5 Evaluation Methodologies 112
5.1 Methodological Outline . 112

Contents v

5.2 Expert Interviews . 116
5.3 Qualitative Content Analysis . 119

5.3.1 Coding . 121
5.4 Scenario-based Analysis Method . 124

5.4.1 Architecture Tradeoff Analysis Method 127
5.4.2 Adjustments to the procedure 131

6 Expert Interviews 134
6.1 Interview Research Questions . 135
6.2 Interview Guideline . 136

6.2.1 Procedure and General Conditions 136
6.2.2 Middleware and CEP Interaction Demonstration 138

6.3 Participants . 140
6.4 Interview Evaluation . 142

6.4.1 Coding . 142
6.4.1.1 Main Categories 142
6.4.1.2 Coding Process . 143
6.4.1.3 Subcategories . 144

6.4.2 Evaluation of the Coding Frame 147
6.5 Results . 148

6.5.1 Software Environments . 148
6.5.2 Identified Challenges . 150

6.5.2.1 System Complexity 150
6.5.2.2 Team Composition 152
6.5.2.3 Documentation . 153

6.5.3 Debugging, Testing and Program Comprehension 155
6.5.4 Evaluation of the CEP Approach 158

6.5.4.1 Potential Use Cases 159
6.5.4.2 Possible Limitations 162

6.6 Conclusion . 164

7 Experimental Evaluation 169
7.1 Experimental Set-up . 169
7.2 Messaging Layer Latency . 171
7.3 Scalability . 175
7.4 CEP Integration Overhead . 177
7.5 Conclusion . 177

8 Scenario-based Evaluation 181
8.1 Architecture Analysis . 181

8.1.1 Architectural Approaches 181
8.1.2 Quality Attribute Utility Tree 184
8.1.3 Scenario Prioritisation . 185
8.1.4 ATAM Workshop . 190
8.1.5 Scenario Brainstorming . 191

Contents vi

8.1.6 Architectural Approaches Analysis 193
8.2 Results . 194

8.2.1 Sensitivity Points . 194
8.2.2 Tradeoff Points . 195
8.2.3 Risks . 196
8.2.4 Nonrisks . 198

8.3 Conclusion . 201

9 Conclusions and Future Work 204
9.1 Summary . 204
9.2 Contributions . 207
9.3 Limitations . 209
9.4 Research Implications . 211
9.5 Future Research . 212

Bibliography 239

A Expert Interview Details 240
A.1 Expert Interview Guideline . 240

A.1.1 Middleware and Software Development in Smart System
Laboratory Environments 240

A.1.2 Program Comprehension and Debugging in Smart System
Laboratory Environments 241

A.1.3 Evaluation of Program Comprehension and Debugging with
CEP . 242

A.2 Coding Frame . 243
A.3 Interview Information Sheet and Consent Form 245

B Scenario-based Analysis 248
B.1 Questionnaire 1 . 248
B.2 Questionnaire 2 and Consent Form 252
B.3 ATAM Workshop Results . 256

B.3.1 Analysis of Architectural Approaches 256
B.3.2 Sensitivity Points . 283
B.3.3 Tradeoff Points . 284
B.3.4 Risks . 286
B.3.5 Nonrisks . 289

List of Publications
Eike Langbehn, Tobias Eichler, Sobin Ghose, Kai von Luck, Gerd Bruder, and
Frank Steinicke. Evaluation of an omnidirectional walking-in-place user interface
with virtual locomotion speed scaled by forward leaning angle. In Proceedings of
the GI Workshop on Virtual and Augmented Reality (GI VR/AR), pages 149–160,
2015

Tobias Eichler, Susanne Draheim, Christos Grecos, Qi Wang, and Kai von Luck.
Scalable context-aware development infrastructure for interactive systems in smart
environments. In 2017 IEEE 13th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), pages 147–150, 2017.
doi: 10.1109/WiMOB.2017.8115848

Jonathan Becker, Uli Meyer, Tobias Eichler, and Susanne Draheim. A super-
natural vr environment for spatial user rotation. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pages 850–851, 2019. doi: 10.1109/
VR.2019.8798290

Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, and Qi Wang.
Integration of complex event processing into multi-agent systems: two use cases
for distributed software development support. Thirteenth International Tools and
Methods of Competitive Engineering Symposium, 2020

vii

List of Figures

1.1 Thesis structure . 7

2.1 Literature review process . 11
2.2 General Middleware Architecture 25
2.3 Agent sense reason act cycle . 27
2.4 Complex Event Processing Architecture 37
2.5 General EP Architecture . 38

3.1 Living Place Hamburg. The kitchen, the bedroom, the bathroom
and a tangible object . 54

3.2 The CSTI with areas for microelectronics and 3D printing projects
and a truss system with tracking systems for VR and AR experiments 57

4.1 The three main layers of the architecture 65
4.2 System architecture overview . 66
4.3 Architecture comparison to generic architecture 67
4.4 Structure of the messaging layer . 69
4.5 Messaging layer architecture . 70
4.6 CEP Layer components and interactions to create a new CEP query 82
4.7 Graph of the example query in Listing 4.3 90
4.8 Searchable list of all active agents in the user interface. 92
4.9 Filterable list of all known groups in the user interface. 92
4.10 Sending and receiving messages from one group via the user interface. 93
4.11 Display of all artefacts in a runtime environment with search and

interaction possibilities with the loaded agents. 94
4.12 Agent group graph that shows the communication paths between

the middleware interface and the middleware web interface 95
4.13 Example of a agent group graph based on components in a smart

home environment . 96
4.14 Filtered agent group graph based on the graph in Figure 4.13 ex-

hibiting only components that are in the range of three edges of the
WakeUpScene agent . 97

4.15 Complex Event Processing (CEP) query based on data from Fig-
ure 4.13 listing all groups where agents have posted messages but
which have not done so for more than two minutes. 99

4.16 Example of an implementation of a dynamic load balancer with a
CEP query . 101

viii

List of Figures ix

4.17 Omnidirectional tracking setup with four sensors. 103
4.18 Overview of all agents and groups that are used to implement om-

nidirectional walking-in-place detection 104
4.19 WIP agent graph with message throughput indicated by arrow

width, which can help to debug the system 106
4.20 Overview of agents and groups to process air quality sensor meas-

urements to automate ventilation in a smart home environment . . 108

5.1 Research onion with methodological choices 113
5.2 Methodological outline . 114
5.3 Main steps of the QCA procedure 122
5.4 QCA coding procedure . 124

7.1 Experiment setup for the latency and scalability measurements . . . 170
7.2 Latency measurements with different numbers of agents and one

middleware node . 172
7.3 Main memory with different numbers of agents on one middleware

node . 173
7.4 Latency measurements with different numbers of agents and seven

middleware nodes . 174
7.5 Latency measurements with fixed number of agents and variable

number of middleware nodes . 176

8.1 Distribution of professional roles among the participants of the first
questionnaire . 187

8.2 Differences in the average evaluation of the scenarios by students
and staff . 190

List of Tables

2.1 Overview of the different smart systems analysed in this thesis . . . 13
2.2 Comparison with other middleware architectures that include de-

veloper support and are agent-based and/or support publish/sub-
scribe communication. 33

2.3 Comparison of other approaches to integrating CEP queries and
event processing into a smart system. 45

3.1 List of all requirements for the architecture to be designed. The
requirements are based on the literature and have been extended
based on the results of the expert interviews. 62

5.1 Comparison of sample sizes of computer science publications with
expert interviews . 118

5.2 Overview of the professional roles of the stakeholders involved in
the analysis. It is important to note that in steps 7 and 8, the
results of steps 4 and 5 are evaluated and completed if necessary. . . 133

6.1 List of the expert interview participants with anonymised names. . 141
6.2 List of environments mentioned during the interviews 149
6.3 Overview of the message formats and messaging software used in

the software environment . 150
6.4 List of team sizes and composition mentioned during the interviews 153
6.5 List of estimated training periods for new team members 154
6.6 Overview of the documentation platforms and formats in the work-

ing environments of the interviewees. 155
6.7 Participants’ previous experience with CEP 158
6.8 Identified use cases mentioned during the interviews 161
6.9 Limitations mentioned during the interviews 162
6.10 List of requirements that were added based on the expert interviews,

with the corresponding numbers from the requirement analysis in
Table 3.1 . 166

8.1 Quality attribute utility tree . 186
8.2 Rating of the 15 scenarios from the quality attribute utility tree

based on the first questionnaire from 5 (very important) to 1 (not
important), sorted by importance. 189

x

List of Tables xi

8.3 Rating of the 11 additional scenarios from the second questionnaire
from 5 (very important) to 1 (not important), sorted by importance. 192

9.1 Overview of the studies conducted in this thesis 205
9.2 Overview of the evaluation of the requirements for the presented

architecture . 207

Listings

2.1 CEP query that selects all temperatures from a sensor higher than
30◦C . 36

4.1 JavaScript Object Notation (JSON) message example 74
4.2 Light control API in the DSL of the framework 78
4.3 Example CEP query. 84
4.4 CEP query to generate skeleton data to simulate a sensor (truncated)103
4.5 CEP query to draw selected skeleton joints on an 3D canvas (trun-

cated) . 105
4.6 CEP query to implement walking-in-place detection based on a skel-

eton sensor . 105
4.7 CEP query to simulate a sensor with random data in a specific range108
4.8 CEP query to aggregate all sensor data in a 300,000 millisecond (5

minute) time window by an average function. Values that are out
of range are filtered out prior to the aggregation step 109

4.9 CEP query to visualise sensor data 109
6.1 CEP query to draw selected skeleton joints on an 3D canvas (trun-

cated) . 139
6.2 CEP query to generate skeleton data to simulate a sensor (truncated)139
6.3 CEP query to select all agents that have not published a message

in the last 60 seconds . 139

xii

Abbreviations

AAL Ambient Assisted Living

API Application Programming Interface

AST Abstract Syntax Tree

ATAM Architecture Trade-off Analysis Method

CAN Controller Area Network

CEP Complex Event Processing

CML Context Modelling Language

CPN Cyber-Physical Network

CPS Cyber-Physical System

CSTI Creative Space for Technical Innovations

DSL Domain Specific Language

EP Event Processing

HAW Hamburg University of Applied Sciences

HCI Human-Computer Interaction

IDE Integrated Development Environment

IE Intelligent Environments

IoT Internet of Things

JMS Java Messaging Services

xiii

Abbreviations xiv

JSON JavaScript Object Notation

JVM Java Virtual Machine

MAS Multi-Agent System

MQTT Message Queuing Telemetry Transport

ORM Object-Role Modelling

QCA Qualitative Content Analysis

RAM Random-Access Memory

REST Representational State Transfer

SAAM Software Architecture Analysis Method

SoS System of Systems

UML Unified Modelling Language

VR Virtual Reality

WIP Walking-In-Place

XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

In 1991, Weiser described the concept of ubiquitous computing as "specialized

elements of hardware and software, connected by wires, radio waves and infrared

[that] will be so ubiquitous that no one will notice their presence" [Weiser, 1991,

page 1].

Since then, several types of smart systems have emerged in research. The first of

these was smart environments, in which users are supported in their lives or work

by ubiquitous intelligent components [Cook and Das, 2004]. After that Cyber-

Physical System (CPS), consisting of seamlessly integrated physical components

and network infrastructure [National Science Foundation, 2021], and the Internet

of Things (IoT), consisting of smart devices connected over the internet [Gokhale

et al., 2018], arose.

Over time, very large and complex systems developed [Laghari et al., 2022]. This

complexity arises primarily from the interconnections of the components [Fortino

et al., 2021], context awareness [Bettini et al., 2010] and dynamic reconfigurations

[Shi et al., 2011] at runtime. In addition, the interconnection of several of these

systems creates a System of Systems (SoS) that adds yet another abstraction

1

Chapter 1. Introduction 2

layer [Santos et al., 2022]. These complex distributed systems pose a challenge to

traditional software engineering methods [Fang, 2021].

Various methods are used to make this complexity manageable for developers.

A common method is the use of middleware, which implements the communica-

tion layer in the system and thus provides a higher abstraction layer independent

of heterogeneity and communication complexity [Deohate and Rojatkar, 2021].

Middleware can include frameworks and toolkits for developers to simplify pro-

gramming [Henricksen et al., 2005].

Yet questions remain regarding how to check if the system is working as expec-

ted and how to locate errors when they occur. With the help of formal design

methods, it is possible to model distributed systems mathematically, to establish

theorems about the behaviour of the programme and prove them [Beschastnikh

et al., 2016]. If the formal specification is then transferred into a programme, it

can be ensured that the system functions as expected. However, it can be shown

that formal design methods are insufficient even for some supposedly simple multi-

agent systems [Edmonds and Bryson, 2004]. Therefore, an experimental approach

is often necessary to show that a complex system functions as expected. To do

this, it is necessary to improve the methodology and technology for testing and

adapting software because this – in contrast to the specification and implementa-

tion – accounts for a large part of the work with complex systems [Edmonds and

Bryson, 2004].

Furthermore, the growing dependence of systems and their environments creates

the need to analyse and comprehend software at runtime [Baresi and Ghezzi,

2010]. For this reason, the traditional separation between the development time

and the runtime of a programme is becoming increasingly obsolete [Baresi and

Ghezzi, 2010], and tools are needed to understand and modify complex software

at runtime. Hence, there is a need for a middleware with a framework and tools

for smart systems [Fortino et al., 2021] that can deal with the complexity of the

systems, support the development process, and analyse software at runtime.

Chapter 1. Introduction 3

The main motivation for this thesis is the lack of architectures for smart systems

designed to support the development processes of software in laboratory envir-

onments. Furthermore, there is a lack of qualitative studies in this area that

investigate the interrelationships between the requirements for new architectures.

This thesis contributes to the current knowledge on the one hand with a qualit-

ative analysis of requirements for smart system laboratory environments and on

the other hand with an architecture that implements these requirements. The

availability of such architectures is important because both the interest in and

complexity of smart systems continue to grow. Therefore, supporting the research

and development of these systems with suitable architectures is important for their

future development.

My personal motivation is based on my seven years of professional experience

in two research laboratories at the University of Applied Sciences Hamburg. This

began with the design of a low-latency middleware for a smart home laboratory, the

Living Place Hamburg. The design of the middleware was published as part of my

master’s thesis [Eichler, 2014] and serves as a preliminary study for the messaging

layer of the architecture in this thesis. In the following years, the Creative Space

for Technical Innovations (CSTI), an interdisciplinary research laboratory, was

established. This is where the approaches and studies developed in this thesis

were carried out.

1.2 Research Aim and Objectives

The aim of this thesis is to design a software architecture to improve development

tasks in smart systems in general and in smart system research laboratories in

particular; this includes both program comprehension and debugging support,

and it is intended to ease the development of smart systems and allow rapid

experiments for research projects in smart system laboratories.

The research aim of this thesis comprises four research objectives:

Chapter 1. Introduction 4

The first objective is to identify the requirements for software architectures for

smart system laboratory environments. For this purpose, multiple interviews

were conducted with several experts who have worked in such software labs (see

Chapter 6). In addition, the stakeholders in two software labs were surveyed to

confirm the identified requirements (see Chapter 8). The requirements were then

used for the design and evaluation of the architecture.

• O1: Smart Systems Research Lab Middleware Requirements

– To conduct a study to determine the requirements for software archi-

tectures in smart systems research labs.

The next objective is the design and implementation of the base architectural

layer. This layer is responsible for the monitoring of all components as well as

the communication between them. For the architecture presented here, a pub-

lish/subscribe approach was chosen because it provides a loose coupling between

the components and allows easy developers access to the communication for pro-

gram comprehension and debugging tasks. The publish/subscribe messaging must

be scalable and have a low message latency, which was evaluated in two exper-

iments with a large number of agents in Chapter 7. This goal is achieved via

non-blocking actor programming techniques (see Section 4.2).

• O2: Basic System Architecture and Messaging

– To design a scalable low latency publish/subscribe-based middleware

to improve software development tasks in smart systems.

The third objective concerns the second layer of the architecture, the CEP layer.

Complex Event Processing (CEP) allows for the processing of event streams [Luck-

ham, 2002] and is used in the architecture for the processing of context inform-

ation as well as for the support of program comprehension and debugging tasks

(see Section 4.3). The integration was developed using an agent-based architecture

and evaluated by multiple case studies as well as a scenario-based evaluation (see

Chapter 8).

Chapter 1. Introduction 5

• O3: Seamless Integration of Complex Event Processing

– To integrate CEP into the system to further improve the software devel-

opment tasks with minimal added complexity and comparable latency

and scalability characteristics.

The fourth objective concerns the third layer of the architecture, the interaction

layer. This layer is intended to support developers with program comprehen-

sion and debugging tasks through a graphical user interface and to allow them to

interact directly with the system using CEP queries (see Section 4.4). The func-

tionality of this layer was evaluated with expert interviews (see Chapter 6) and a

scenario-based evaluation (see Chapter 8).

• O4: System Inspection and Interactive Debugging

– To design an interactive tool to analyse the system state of smart sys-

tems, including interaction with CEP queries to analyse components

and their interactions during development, testing, and runtime.

Together, these four objectives provide three contributions to the research on soft-

ware architectures and software engineering for smart systems (see Section 9.2).

The contributions concern the improvement of development tasks with the design

and implementation of the software architecture presented here. This includes,

firstly a scalable middleware that explicitly monitors all components and their com-

munication and makes this collected information available to developers, secondly

the seamless CEP integration, which provides interactive access to this informa-

tion for the developers, and finally, the support of program comprehension and

debugging tasks in smart systems with the visualisation of the collected data and

CEP queries.

1.3 Research Questions

The research objectives lead to the following four research questions:

Chapter 1. Introduction 6

• Q1: What are the requirements for a software architecture in research labs,

that uses loosely coupled distributed applications in smart systems?

• Q2: How is it possible to create a software architecture that supports devel-

opment tasks in research labs without compromising the performance of the

system?

• Q3: How can Complex Event Processing (CEP) be integrated into a mid-

dleware for smart systems without increasing the complexity of the system

for developers?

• Q4: How can such a middleware with an integrated CEP engine support

program comprehension and debugging tasks in smart systems?

1.4 Thesis Outline

The structure of the thesis is illustrated in Figure 1.1.

This thesis starts in this chapter with an introduction and the definition of the

aim of the thesis, research objectives, and research questions.

Chapter 2 includes an analysis of related work and defines the research gaps that

this thesis aims to address. The chapter first explains the process of the literature

review, after which, related works to the main topics of this thesis are analysed.

These include smart systems, middleware architecture, CEP, and program com-

prehension.

Chapter 3 presents the research labs in which the results of this thesis were tested.

Based on the literature presented in the previous chapter and the evaluations

conducted in the research laboratories, requirements for an architecture for smart

system laboratory environments are defined.

Chapter 4 presents the middleware architecture that was designed based on the

requirements identified in the previous chapter. Firstly, a summary of the architec-

ture is described and then the architecture is presented in detail from the bottom

Chapter 1. Introduction 7

1. Introduction

2. Related Research

4. System Design and Implementation

4.2. Messaging Layer 4.3. Complex Event Processing
Layer

4.4. User Interaction
Layer

6. Expert Interviews 8. Scenario-based Evaluation

9. Conclusions and Future Work

3. Requirement Analysis

5. Evaluation Methodologies

7. Experimental Evaluation

Figure 1.1: Thesis structure

up in three layers, beginning with, the messaging layer and followed by the CEP

layer and, finally, the user interaction layer. Important parts of the implementa-

tion of the architecture are presented, and, finally two case studies for the support

of program comprehension and debugging tasks are described. This includes a

sensor network and the construction of an omnidirectional tracking sensor with

the help of sensor fusion.

Chapter 5 starts with an explanation of the evaluation methodology for the archi-

tecture presented here. This is followed by a literature analysis of the evaluation

methods used. Firstly, expert interviews are presented. With the help of this

method, the identified requirements for laboratory environments and the transfer-

ability of the architecture to other research laboratories are examined. In addition,

the Qualitative Content Analysis (QCA) procedure for evaluating the interview

results using existing literature is introduced. Afterwards, the Architecture Trade-

off Analysis Method (ATAM), a scenario-based evaluation method for software

Chapter 1. Introduction 8

architectures that is used to evaluate the architecture presented here, is described

in detail.

The evaluation of the presented software architecture starts in Chapter 6 with

expert interviews. The interview guideline is presented and the general conditions

for the interviews are explained. This is followed by a structured qualitative ana-

lysis of the interviews. Finally, the results are evaluated in relation to the research

questions.

Chapter 7 contains the experimental part of the evaluation. Firstly, the experi-

ment setup for the latency and scalability measurements is described. Then, the

results are presented and evaluated against the requirements.

Chapter 8 concludes the evaluation of the architecture with an analysis of sev-

eral scenarios. Scenarios are collected and prioritised through a questionnaire for

stakeholders. With the help of these scenarios, the architecture is then evaluated

in a workshop with the participation of the stakeholders. Finally, the results of

the evaluation are presented and assessed with the help of the established require-

ments.

Finally, a summary of the thesis is given in Chapter 9. The main contributions

and limitations are detailed, and the chapter also discusses the research implica-

tions and makes suggestions for future research.

Chapter 2

Related Research

To achieve the aim of this thesis, the first step is to analyse related literature in

relevant areas. This includes an analysis of the various forms of smart systems,

their defining characteristics, and common software architectures. Furthermore,

Complex Event Processing (CEP) and its use in smart systems is analysed. This

technology can be utilized for, among other things, the processing and analysis

of contextual information and is therefore relevant for this thesis. In addition,

literature from the field of program comprehension and debugging in complex and

agent-based systems is examined. Finally, the results of the literature review are

summarised, and the identified research gaps are highlighted.

2.1 Process of Literature Review

The literature review for this thesis started based on the literature research for

the first paper [Eichler et al., 2017] about a middleware architecture for a smart

home laboratory. Given the aim of this thesis, three main topics were addressed

in this literature review:

• Smart Systems - This research and all of the analysed software relate

to smart systems. To support the development of software in this area, the

targeted environments and their special requirements have to be understood.

9

Chapter 2. Related Research 10

• Event Processing and Messaging - Due to the complexity of communic-

ation in smart system software, the processing of large amounts of events is

an essential part of this thesis. In the following, the handling of complex dis-

tributed events and messages is further analysed. Two of the main topics for

this thesis are publish/subscribe messaging and complex event processing.

• Program Comprehension - Research on program comprehension in other

areas and especially in agent-based systems must be considered in this thesis

because its main goal is to support the software development process. This

includes the analysis of legacy systems and the debugging of errors in running

systems.

Figure 2.1 shows the process of the literature review, which is further explained

here. Starting with the main topics, search phrases and keywords were chosen to

find publications on ACM Digital, IEEE Explore, and Google Scholar.

The following keywords were used in different combinations for the searches in the

mentioned digital libraries:

• Smart Environment

• Ambient Assisted Living

• Smart Home

• Smart Object

• Context Handling

• Internet of Things

• Cyber Physical System

• System of Systems

• Middleware

• Debugging

• Program Comprehension

• Complex Event Processing

• Actor/Agent Framework

• Distributed Messaging

• Publish/Subscribe

• Multi-agent Systems

The relevance of the papers was then assessed based on their title, abstract, and

keywords. In cases of ambiguity, the introduction and conclusion of the paper were

Chapter 2. Related Research 11

included in the selection process. All relevant publications were then scanned

for references recursively that matched one of the keywords or search phrases.

Additionally, other publications that were submitted to discovered conferences and

journals were included in the search. This also includes recommendations from

the double-blind reviews of other published research papers and recommendations

from people at attended conferences.

Some topics were excluded from the literature search, including research about

real-time processing, security aspects, network protocols, and agent-based simula-

tions. These topics are not the focus of this thesis and are therefore not considered.

The selection for exclusion was also made based on the title, keywords, and ab-

stract of the paper.

Keywords Authors Conferences

Start
Keywords

Document Search
ACM
IEEE

Google Scholar

Queue of
Uncategorized

Documents

Recommended
Documents

Track & Trace
(manual / Citavi)

Identifier
Extraction

Tags / Categories
relevant / irrelevant

Smart System
IoT / CPS / SoS

Smart Environment
Middleware

Publish/Subscribe
Agent-based
Debugging

Program Comprehension

Figure 2.1: Literature review process

2.2 Smart Systems

This section analyses the target environment for the architecture. The differ-

ent types of smart systems and their special characteristics are explained, and

then known architectures and middleware approaches in this area are compared.

Table 2.1 offers an overview of various smart systems, their properties, and places

of use. The table is intended to clarify the definition and differentiation of the

Chapter 2. Related Research 12

various smart system research areas, which are presented one by one in the fol-

lowing. Starting with smart environments, then Cyber-Physical System (CPS),

Internet of Things (IoT) and finally System of Systems (SoS).

2.2.1 Smart Environments

A smart environment is defined by Cook and Das [2004] as "a small world where

all kinds of smart devices are continuously working to make inhabitants’ lives more

comfortable" [Cook and Das, 2004, page 3].

Weiser [1991] describes his vision of pervasive embedded computing in his 1991

article stating that "the most profound technologies are those that disappear."

[Weiser, 1991, page 3]. He discusses hardware and software components in our

daily environments that become so small and integrated into their surroundings,

that they disappear from the user’s field of attention and become ubiquitous. This

forms the origins of ubiquitous computing [Weiser et al., 1999, Poslad, 2009] and

since then become reality in our everyday lives.

Coen et al. [1998] refer to these highly interactive environments as Intelligent En-

vironments (IE) and describe a prototype laboratory set up to explore IE called the

Intelligent Room. In this lab, natural and multimodal Human-Computer Interac-

tion (HCI), computer vision, and gesture and speech recognition were explored.

The ever-increasing availability of computing power and the ability to fit powerful

computing devices inside small form factors make humans the limiting factor in

ubiquitous computing environments [Cook and Das, 2004]. The user’s time, at-

tention, and decision-making resources are limited and do not scale over time like

the power of computing devices. This forces us to think about the HCI to improve

the assistance of humans in their environments further. This is the intention of

Smart Environment research [Cook and Das, 2004].

According to Cook and Das [2004] common features of smart environments include

the following.

Chapter 2. Related Research 13

Sm
ar

t
Sy

st
em

s
Si

ng
le

Sy
st

em
C

yb
er

-P
hy

sic
al

Sy
st

em
s

In
te

rn
et

of
T

hi
ng

s
Sm

ar
t

En
vi

ro
nm

en
ts

N
et

wo
rk

of
Sy

st
em

s
Sy

st
em

of
Sy

st
em

s
C

yb
er

-P
hy

sic
al

N
et

wo
rk

Ex
am

pl
es

fo
r

Ty
pi

ca
l

U
se

C
as

es

-e
du

ca
tio

n
-t

ra
ns

po
rt

at
io

n
-s

m
ar

t
en

er
gy

gr
id

s
-e

m
er

ge
nc

y
m

an
ag

em
en

t
-e

-c
om

m
er

ce

-m
ed

ic
in

e
-p

ow
er

gr
id

-i
nt

el
lig

en
t

ro
ad

s
-s

el
f-d

riv
in

g
ca

rs

-s
m

ar
t

ho
m

es
-w

ea
ra

bl
es

-D
ig

ita
lH

ea
lth

-s
m

ar
t

ho
m

es
-s

m
ar

t
wo

rk
sp

ac
e

-A
m

bi
en

t
A

ss
ist

ed
Li

vi
ng

(A
A

L)

D
efi

ni
ng

C
ha

ra
ct

er
ist

ic
s

-c
on

ce
pt

-a
ut

on
om

ity
-h

ig
h

di
ve

rs
ity

-e
m

be
dd

ed
co

m
po

ne
nt

s
-r

ea
lt

im
e

re
qu

ire
m

en
ts

-c
on

st
ra

in
t

re
so

ur
ce

s

-c
on

ne
ct

io
n

ov
er

in
te

rn
et

-h
et

er
og

en
ou

s
co

m
po

ne
nt

s

-c
om

po
ne

nt
au

to
m

at
io

n
-c

on
te

xt
-a

wa
re

-d
ec

isi
on

m
ak

in
g

-u
se

r
in

te
ra

ct
io

n

T
ab

le
2.

1:
O

ve
rv

ie
w

of
th

e
di

ffe
re

nt
sm

ar
t

sy
st

em
s

an
al

ys
ed

in
th

is
th

es
is.

A
s

th
e

bo
un

da
rie

s
be

tw
ee

n
th

e
in

di
vi

du
al

en
vi

ro
nm

en
ts

ar
e

no
t

cl
ea

rly
de

fin
ed

in
th

e
lit

er
at

ur
e,

th
er

e
ar

e
ov

er
la

ps
.

Fo
r

cl
as

sifi
ca

tio
n

pu
rp

os
es

,t
hi

s
ta

bl
e

co
nt

ai
ns

ex
am

pl
es

of
ty

pi
ca

lu
se

ca
se

s
an

d
de

fin
in

g
ch

ar
ac

te
ris

tic
s

fo
r

al
le

nv
iro

nm
en

ts
.

Chapter 2. Related Research 14

• Remote Control of Devices - Remote control of devices is a basic feature

of a smart environment. This could be basic appliances, like a coffee machine

at home or desk lights at work. A smart context dependent control can free

the user of basic interaction task that would otherwise be necessary with

older technology like remote light switches.

• Device Communication - With today’s technology, devices can commu-

nicate wirelessly with a large network. This allows all smart devices inside

the environment to communicate with each other, which enables interaction

between them. This interaction can be utilised to realise more complex tasks

and whole scenarios for the user.

• Information Acquisition/Dissemination from Intelligent Sensor Net-

works - Sensors are important to collect context information about the en-

vironment. Sensor networks can produce and process huge amounts of data,

that can be utilised by smart components to make adequate content depend-

ent decisions.

• Enhanced Services by Intelligent Devices - Intelligent devices or smart

objects [García et al., 2017], can assist the user with complex tasks. Many

devices in human environments can be altered with smart functions. Ex-

amples include vacuum cleaners that clean automatically or smart flooring,

that detects falls and calls for help. Over the years, many small devices have

been developed and have become part of the consumer market.

• Predictive and Decision-Making Capabilities - Predictive and context

dependent decision-making are important tasks for devices to support users

intelligently [Youngblood et al., 2005]. Predictions could be based on simple

rules or complex machine learning algorithms. Decisions can be based on

context and depend on multiple sources. For example, based on the user’s

calendar entries and current traffic reports, an application could determine

the optimal time to prepare a cup of coffee in the morning.

• Networking Standards and Regulations - Various networking stand-

ards are an important part of a smart environment, because they are used

Chapter 2. Related Research 15

for communication between devices. Examples of commonly used wireless

communication standards are WLAN, Bluetooth, and Zigbee.

Smart environments contain different types of software and hardware components.

Two important components are sensors and actors [Cook and Das, 2007]. Sensors

collect data about their environment and make this information available for the

rest of the system. Actors can perform actions to change their environment, such

as the manipulation of physical objects. Automation inside a smart environment

can be modelled by a sense-and-act cycle [Cook and Das, 2007]. For example, a

temperature sensor can measure the temperature of the room. This information is

then used by another component to decide when to increase or decrease the gauge

of the heating system, which is controlled by an actor. When the heating control

is changed, the temperature changes after some time, and the cycle continues.

Smart environment is thus a collective term for various environments with smart

components. The following paragraph details some of the environments frequently

described in the literature.

• Smart Homes - In smart homes pervasive technology and context-awareness

are used to assist people at home [Augusto and Nugent, 2006]. This includes

not only context-aware home automation, such as light and window control,

but also the support of inhabitants in various scenarios [Meyer and Rako-

tonirainy, 2003] with the help of intelligent processes [Zaidan and Zaidan,

2020].

• Ambient Assisted Living - Research on Ambient Assisted Living (AAL)

tries to improve the everyday lives of elderly and disabled people with per-

vasive technology [Costa et al., 2009]. Smart homes are often associated with

AAL research and efforts tho allow older people to continue living independ-

ently at home for longer [Suryadevara and Mukhopadhyay, 2015].

• Smart Workplaces - Smart workplaces are working environments that are

enhanced with pervasive technology. The aim is to facilitate both routine and

Chapter 2. Related Research 16

specialised tasks in a natural and intuitive way for the user [Mikulecky, 2012].

These environments include smart offices and smart classrooms. In addition,

ambient assisted working is a research area that deals with the support of

people with disabilities in the working environment [Bühler, 2009].

• Smart Cities - The term smart city refers to projects to improve life in

cities through technology and to make them more efficient [McClellan et al.,

2018]. An important aspect of this is to improve sustainability, such as by

reducing the consumption of natural resources and the emission of harmful

substances such as CO2. These projects can concern areas intelligent power

distribution, intelligent passenger transportation or public security. Smart

cities combine several aspects, such as smart living, smart economy, and

others. This creates very large, ver complex networked systems [Zygiaris,

2013].

2.2.1.1 Context-awareness

One of the key aspects of a smart environment is context-awareness [Cook and

Das, 2007]. Context information is gathered by sensors and can be processed ad

hoc or be stored in and later queried from databases. Context-awareness was

first mentioned by Schilit and Theimer [1994] as applications that are aware of

the location of the user and nearby objects that adapt their behaviour to mobile

users. This definition of context was later broadened by Abowd et al. [1999] to

the following: "Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user

and applications themselves" [Abowd et al., 1999, page 4-5].

Information about the context of an application can be used to simplify and im-

prove the user interaction [Abowd et al., 1999], which can reduce the amount of

user attention needed to support humans with their tasks [Cook and Das, 2007].

This is what makes a component act smartly in the current application context

[Cook and Das, 2007].

Chapter 2. Related Research 17

The use of context information for decision-making in applications can be challen-

ging for the comprehension of a programme and the development process. One of

the reasons is that context information is often not reproducible and can be very

complex. At the time of writing code or debugging of a programme, it is often not

clear what the context is or will be in the future. This high complexity also af-

fects distributed context-aware systems, which in addition are often heterogeneous

[Henricksen et al., 2005]. As a result, components often use different hardware and

communication methods and are written in different programming languages.

There are different ways to model contextual information and make decisions based

on this information [Bettini et al., 2010]. Challenges can be the quality as well as

the quantity of the data [Bettini et al., 2010]. This is due to the potentially high

number of sensors in a context-aware system. All these sensors may have measure-

ment errors, or individual measurements may be lost during transmission. Early

approaches to context-aware systems were based on key-value databases or XML-

based context descriptions [Bettini et al., 2010]. However, these approaches had

only limited possibilities for modelling dependencies, relationships, and temporal

sequences [Bettini et al., 2010]. Later, a Context Modelling Language (CML) was

developed based on the ORM approach to database modelling [Henricksen and In-

dulska, 2004]. Object-Role Modelling (ORM) is a data modelling technique used

to model real world objects and their relationships to each other. For this purpose,

the relationships between objects are described with simple sentences or diagrams,

where the objects are the nodes and the relationships are the edges. In CML, con-

text facts are represented as entities with different classes. Relationships between

entities are modelled similarly to ORM. There are further additions in CML com-

pared to ORM. This includes support for dependencies, imperfect sensor data,

and the representation of past values. Queries regarding the data representation

can be made with an SQL-like language [Bettini et al., 2010].

One advantage of CML is that it supports the modelling of contextual informa-

tion in several phases of software development. However, not everything can be

modelled in CML. For example, hierarchical structures cannot be modelled [Bet-

tini et al., 2010]. In addition, it is difficult to achieve interoperability with other

Chapter 2. Related Research 18

systems [Bettini et al., 2010] because the entire system must be modelled in CML

in order to be able to query all data.

An alternative is modelling with the help of ontologies, such as the Web Ontology

Language (OWL1) [World Wide Web Consortium, 2012]. The ontology-based

approach has advantages in the area of heterogeneity and interoperability [Bettini

et al., 2010]. However, this approach also requires a complete modelling of the

context information in the description language.

Hybrid approaches have emerged that combine ontologies with CML features and

combine their advantages [Bettini et al., 2010]. However, these approaches also

require that all components use the prescribed model or that a complete model

exists that represents all contextual information.

This can be a problem, especially for environments with fast development cycles

and prototyping, because modelling can become complex and may require addi-

tional knowledge from the developers. Therefore, none of the modelling techniques

are used for the architecture developed here. A more flexible and much more in-

formal way of processing contextual information is through CEP. CEP and its

application in smart systems for context processing is of particular interest for

this thesis and is described separately in Section 2.4.

2.2.2 Cyber-Physical Systems

Cyber-Physical Systems (CPS) integrate computation seamlessly with physical

components [National Science Foundation, 2021]. These components can be actu-

ators, sensors or network infrastructure.

CPS have the following defining characteristics [Shi et al., 2011]:

• CPS are closely integrated with physical processes.
1Actually WOL, but the World Wide Web Consortium (W3C) chose OWL as the acronym.

Chapter 2. Related Research 19

• The physical component and embedded systems which contain the software

have restraint resources, such as computing power and network band-

width.

• CPS components communicate over potentially large networks with

protocols such as WLAN, Bluetooth, and mobile networks.

• The components of a CPS have potentially different granularities of time

and are constrained by spatiality and real-time requirements.

• CPS are adaptive and can dynamically reorganise and reconfigure

themselves to adapt to specific circumstances.

• CPS support human interaction with the system through a high degree of

automation.

• CPS should be reliable and secure.

Human interaction with the system is not mandatory but can also be part of a

CPS. The typical applications of CPS are manifold; they are used, for example, in

medicine, electrical power grids, intelligent roads, and self-driving cars [Shi et al.,

2011]. Other areas of use include agriculture, education, energy management,

and environmental monitoring [Chen, 2017]. In addition, CPS are used for Smart

Systems, such as smart cities, smart homes and smart manufacturing Chen [2017].

CPS can become very large and complex as a result of networking on a large scale

and interaction with the physical world through, for example, sensors. Therefore,

failure detection is an important issue for CPS [Alippi et al., 2017].

By connecting multiple CPS over the network to achieve a common goal, a Cyber-

Physical Network (CPN) is created [Brinkschulte et al., 2019]. Developing CPS

and CPN is challenging due to their complexity [Brinkschulte et al., 2019]. The

complexity of CPN arises, among other things, from the dynamic behaviour of

the system, changing environmental conditions, and strict latency requirements

[Brinkschulte et al., 2019, Wang et al., 2019]. As such, adapted middleware systems

are necessary for CPS and CPN to reduce this complexity for the developers.

Chapter 2. Related Research 20

2.2.3 Internet of Things

The term Internet of Things (IoT) was first proposed by Ashton in 1999 [Ashton,

2009, Gokhale et al., 2018]. It describes the connection of physical devices and

other objects via the internet [Gokhale et al., 2018]. An IoT device can be, for

example, a tool, vehicle, building, or other object that is connected to a network

by means of electronics and that can thus collect and exchange data with other

devices.

The IoT is widely used for several applications. These include smart urban cities,

connected automobiles, wearables, smart retail, digital health, and more [Laghari

et al., 2022]. IoT components are also often used within smart systems, such as

in smart environments, smart homes, smart cities, smart agriculture, and smart

parking [Sathish and Smys, 2020]. In smart homes, IoT devices can be used as

sensors and actuators to enrich the smartness of the environment and to monitor

and control home appliances [Williams et al., 2019].

A variety of protocols can be used for IoT systems. These include many widely

used communication standards such as WLAN, ZigBee, Bluetooth, RFID, NFC,

and mobile network standards such as 3G to 5G [Li et al., 2015]. Messaging

protocols, such as MQTT and others, are also often used [Yassein et al., 2017].

The Message Queuing Telemetry Transport (MQTT) protocol [OASIS, 2019-03-

07] allows for communication with other components and middleware based on

a publish/subscribe pattern. One advantage of MQTT is that it is supported

on many platforms and is also suitable for use on resource-constrained devices.

These and other properties mean that MQTT is often used in IoT applications.

As a result, these systems can use group communication and thus achieve a loose

coupling between the components.

Because of this message-based communication and the heterogeneity of the IoT

components, agent-based computing is well suited for programming these systems

[Savaglio et al., 2017]. Each IoT component can be implemented as an agent, and

components can be addressed as agents via software adapters [Takahashi et al.,

Chapter 2. Related Research 21

2005]. The latter has the advantage that the component itself does not have to

implement the functions of an agent, which is particularly helpful for resource-

constrained devices.

Among other challenges in IoT, such as security [Ammar et al., 2018], the com-

plexity of IoT systems is currently one of the known disadvantages of the utilised

architectures [Li et al., 2015, Laghari et al., 2022]. This can cause problems in the

development of new systems and lead to errors. One way to reduce this complexity

for the developer is to use of a middleware to manage the system [Razzaque et al.,

2016] or a framework for development.

The development of IoT systems can be challenging for many reasons. These

include the lack of a high level of abstraction to handle large systems, to deal

with the huge heterogeneity in the field and the handling of life cycles [Patel and

Cassou, 2015]. Here, frameworks can be used to help deal with these problems at

a higher level of abstraction. Patel and Cassou [2015], for example, use a Domain

Specific Language (DSL) to automate tasks for IoT devices and the process of

integrating components.

There are currently several open research issues regarding IoT, including concerns

related to a standardised IoT architecture, improvement of the user experience for

IoT applications, and the improvement of security for more sensitive areas, such

as health or automotive systems [Laghari et al., 2022]. This shows that there will

be a need for IoT research systems and laboratory infrastructure to address these

issues. Improvements in the development processes of IoT applications in such

research environments could support further research in this area.

According to Savaglio et al. [2017], the full realisation of the potential of IoT is

not hindered by hardware constraints or software performance limitations, but by

other requirements that have not been adequately addressed yet. Agent-based

computing can help address problems in the modelling, development, and simu-

lation of IoT systems [Savaglio et al., 2017]. This simplifies and accelerates the

Chapter 2. Related Research 22

development process for IoT systems and reduces the probability of errors, indic-

ating that improving the development of agent-based systems can also be useful

for IoT systems in the future.

2.2.4 System of Systems

A system consists of a set of entities that are related to each other. This inter-

connection creates an added value so that the system is more than the sum of its

parts [Boardman and Sauser, 2006]. In order to continue to understand a system

as its complexity grows, it is helpful to think not only about a particular part of

the system, but about the whole. System thinking [Arnold and Wade, 2015], a

common language, and a framework for sharing knowledge about complex systems

are necessary. Since many of today’s societal, economic, and environmental chal-

lenges have characteristics of complex systems [Plate, 2010], it is important that

new or improved ways to think about complex systems are found. Plate [2010]

posits that it is therefore also important in education to provide students with

assistance in understanding complex systems.

A System of Systems (SoS) is the interconnection of multiple systems. SoS have

special features compared to normal systems, due to their composition based on

many systems [Boardman and Sauser, 2006]. The individual systems are often

already existing systems that are connected to each other, producing an increased

diversity within the SoS compared to a normal system. Another difference is the

autonomy of the components. In a SoS, each individual system is expected to be

designed to act fully autonomously. In comparison, within a system, it is common

for individual components to subordinate themselves to the autonomy of the whole

system.

Software and hardware components that communicate with each other can also

form complex systems and SoS [Nielsen et al., 2015]. For example, the treatment of

a person in a hospital depends, on the functioning of many individual systems such

as the telephone system, the hospital management system, the patient database,

Chapter 2. Related Research 23

and many other independently developed and maintained technical components.

The individual systems were likely developed at different times, when there may

have been different requirements for the hospital.

In engineering, SoS can be used for a wide range of application domains [Nielsen

et al., 2015]. These include, for example, transportation, smart energy grids, emer-

gency management, and e-commerce. An IoT system is also a SoS [Fortino et al.,

2021] because it consists of heterogeneous, independent components that were of-

ten developed independently of each other. Additionally, CPS evolve from single

independent systems into a network of collaborating systems, which is considered

a SoS [Nousias et al., 2021].

The characteristics of SoS pose a challenge to traditional software engineering

methods [Fang, 2021] that requires innovative methods and architectures. The

current challenges in working with a SoS arise from its complexity and special

properties [Santos et al., 2022]. For example, predicting the behaviour of a SoS

is challenging because the behaviour depends directly on the properties of the

individual systems. In addition, it is difficult to prepare suitable documentation

for the system, especially during the development phase of a SoS, because SoS

continue to evolve and because the initial complexity of the individual systems

can be high.

Hence, that more research is needed to support the development and mainten-

ance of complex systems like SoS, including the construction and investigation of

complex systems in laboratory environments.

2.3 Smart Systems Middleware

A middleware is used in smart system architectures to make the high complexity of

the systems more manageable and to manage the coordination of and communic-

ation between the distributed components [Henricksen et al., 2005]. The previous

literature review has demonstrated that in smart environments, IoT, CPS and

Chapter 2. Related Research 24

SoS, the complexity of the systems is a challenge [Fortino et al., 2021]. Further-

more, research interest in this area remains high, and larger systems have been

developed and investigated over the years [Laghari et al., 2022]. SoS and CPN are

good examples of how the degree of interconnection between systems is further

increased by connecting systems to each other. This creates even more complex

systems requiring special software architectures that benefit from middleware.

In addition, traditional software engineering methods reach their limits when it

comes to the development and maintenance of these complex systems [Fang, 2021].

For this purpose, tools are needed to support developers in their tasks, and simplify

both debugging and program comprehension tasks [Fang, 2021]. These tools are

often also part of the software architecture and depend on the capabilities of

the middleware. Since the requirement for development support is central to this

thesis, the analysis of comparable middleware architectures focuses on publications

that support the development process.

The following sub-sections present a general middleware architecture and address

two aspects of architecture that are important for smart systems and this thesis

in particular: agent-based programming and publish/subscribe messaging. After-

wards, comparable related research is analysed and compared with the approaches

in this thesis.

2.3.1 Generic Middleware Architecture

Henricksen et al. [2005] conducted a review of several middleware solutions. They

defined a general architecture for middleware for context aware systems as follows.

The components of a context-aware system can be separated into five layers, as

shown in Figure 2.2. Sensors and actors are in Layer 0. They sense context inform-

ation and can perform actions to change the environment. Layer 1 includes the

context processing components. This layer contains components that assist with

the processing of sensor information and components that map update operations

Chapter 2. Related Research 25

to the actors in the layer below. The context repositories in Layer 2 provide per-

sistent storage of context information and assist with queries of contexts. Layer

3 contains decision support tools, which provide functions to select sensor in-

formation and actions based on the stored context information. The application

components are at the top of Layer 4. Furthermore, programming toolkits that

assist with the development of application components are also located in the top

layer. They provide functions that support interaction with the components of

the other layers. Layers 1-3 are called middleware.

Figure 2.2: General middleware architecture Henricksen et al. [2005]

2.3.2 Agents and Actors

Smart systems are often developed using agent-based architectures [Cook, 2009,

Savaglio et al., 2017]. Such systems commonly consist of a large number of software

components that communicate with each other. The individual components can

Chapter 2. Related Research 26

be regarded as intelligent agents as soon as they have some autonomy and follow

an intelligent design [Cook, 2009].

The term agent is not completely uniformly defined. Wooldridge and Jennings

[1995] give a definition of weak agency that is, by their own account, relatively

uncontroversial. According to this definition, an agent is a hardware- or software-

based computer system with the following properties:

• Autonomy - Agents can act without direct human intervention and have

at least partial control over their actions and internal state.

• Social ability - Agents can communicate with each other via an agent

communication language.

• Reactivity - Agents can perceive their environment and react to changes.

• Pro-activeness - Agents can not only react but also act pro-actively ac-

cording to their own goals.

Depending on the definition, other properties can also play a role for agents

[Wooldridge and Jennings, 1995]. These include, for example, mobility: the ability

to change the location of the execution of a system component at runtime. Further-

more, there is a stricter definition according to which agents, especially intelligent

agents, must be computer systems that are augmented with characteristics that

are more commonly attributed to humans [Wooldridge and Jennings, 1995]. These

can include knowledge, beliefs, intentions, obligations [Shoham, 1993], or emotions

[Bates et al., 1994].

Another definition from Russell and Norvig [2016] states that an agent is anything

that can perceive its environment through sensors and that can change the envir-

onment with actuators. A visualisation of this definition is shown in Figure 2.3.

In that case, both humans and robots are agents. They can perceive their environ-

ment through their eyes and cameras and change the world around them through

muscles and motors. This definition also applies to software agents, where the

environment would be, for example, a graphical user interface or communication

Chapter 2. Related Research 27

with another agent, and the change in the environment could be a display on the

screen or a message to other parts of the system.

Agent

Internal Reasoning

Environment

sensor
input

action
output

Figure 2.3: Agent sense reason act cycle

In this thesis, both the definition from Russell and Norvig [2016] and the properties

of agents [Wooldridge and Jennings, 1995] are used in combination, because the

overall definition is flexible and can therefore be applied to all components of a

smart systems and the properties can be used to explain the behaviour of an agent.

This definition also fits with Cook and Das [2007] description of the behaviour of

composites in a smart environment using a sense and act cycle.

A predecessor of agent-based programming is the actor model [Wooldridge and

Jennings, 1995]. The actor model is a mathematical theory in which actors can be

used to describe concurrent processes [Hewitt and Baker, 1978]. The actor model

can be used both as a framework for the theoretical understanding of concurrency

and for the implementation of concurrent systems [Hewitt, 2010]. In such systems,

actors can send messages to other actors via addresses. This triggers an event at

the receiver, which can send further messages, change its state, or create new

actors.

Chapter 2. Related Research 28

The term actor is used for different things in related work. In smart environ-

ments, components that are used to change their environment are called actors.

In contrast, the term actor used in this section stands for a reactive software unit

that can react to messages in the system. In practice, there are different ways to

implement actors [Ricci, 2014]. In object-oriented languages such as Java or Scala,

actors are often modelled as objects that implement one or more receive methods

[Ricci, 2014, Lightbend]. These methods define the behaviour when a message

arrives. A change in the behaviour of an actor can be implemented by switching

to another receive method [Ricci, 2014].

In contrast to this event-based reactive implementation of actors, agents are mostly

implemented on the basis of control loops [Ricci, 2014]. The control loop consists

of the sense, reason, and act actions defined above and is repeated in a loop.

Agent-based programming languages usually have a higher level of abstraction

than actor frameworks. For example, agents can be implemented using goals,

beliefs, and plans. Goals define the tasks of an agent, beliefs consist of facts and

rules that represent the state of the agent and plans define the process when an

event occurs. Both changes to the beliefs and the creation of new goals or the

failure of goals can serve as events. This control-loop model allows activations and

processes to be implemented more naturally [Ricci, 2014]. However, more complex

programming structures are needed for implementation, where for example each

plan is held in a stack.

Multiple agents in a distributed system are called a Multi-Agent System (MAS)

[Dorri et al., 2018]. Each agent in this system should have a simple and distinct

function it fulfils, and complex tasks are implemented by groups of communicating

agents [Dorri et al., 2018]. External systems and other entities can be encapsulated

by agents to allow communication [Takahashi et al., 2005].

Because all agents need to communicate this functionality is often implemented

separately as a fundamental part of the software architecture. The software com-

ponent responsible for the communication layer is often called middleware, and it

can provide additional services, such as discovery, monitoring, or task scheduling

Chapter 2. Related Research 29

[Gazis and Katsiri, 2022]. A middleware can help handle the complexity of MAS

by providing the fundamental service to the rest of the system [Gazis and Katsiri,

2022].

The architecture presented in this thesis is also agent-based and has the aim of

reducing the complexity of the system by using individual components with ded-

icated tasks, and communication via messages. In addition, features of actors are

used for the implementation of the agents to make them easy to programme and

resource-efficient.

2.3.3 Publish/Subscribe

Erman et al. [1980] presented the Hearsey-II Speech-Understanding System in

1980, which uses a global database called blackboard for communication. All

hypotheses generated by the knowledge sources, and independent interpretation

programs, are recorded on this blackboard. Each knowledge source can publish

new records or modify existing ones. This may satisfy the preconditions of other

knowledge sources, that can read the stored information, process it, and then add

more information to the global state. The blackboard is divided into multiple

levels based on the steps of the language decoding process. This ensures the basic

structuring of global knowledge. The blackboard architecture introduces a global

state, which is no problem for a single-threaded application, but in a distributed

system this is not desirable, e.g., to avoid race conditions and deadlocks.

In contrast, event-based systems are better suited for distributed systems. An

event-based system is "a system in which the integrated components communic-

ate by generating and receiving event notifications" [Fiege et al., 2002, page 4].

Events are any "transient occurrence of a happening of interest" [Fiege et al.,

2002, page 4]. This could be information from a sensor or a state change within

a component. When an event occurs, components can be notified by a message,

that contains the relevant data about the event. Messages can be delivered over

varying communication methods, depending on the application architecture. An

Chapter 2. Related Research 30

event can produce multiple notifications containing different data depending on

the needs of the receiver or security or privacy restrictions. Event notification ser-

vices are responsible for the management of subscriptions from components that

want to receive events matching a defined criteria. The notification service uses

this subscription data to notify all components when an event they subscribed to

occurs. Components can publish events via messages and consume them through

subscriptions. As such, each component can act as an event producer and event

consumer.

There are three types of subscriptions with increasing expressiveness [Fiege et al.,

2002]:

• Subject-based - A subject-based subscription is the simplest type of sub-

scription utilising a additional subject field that is added to each message

and that can then be used as a filter. For example, all messages regard-

ing location changes could have the subject location_event, and a subscriber

could then register their interest by applying for all events with that subject.

• Type-based - A type-based subscription utilises type definitions (e.g. in

the form of pre-defined data classes). This allows filters to be defined to

match specific types or subtypes of events. Additionally, a filter can defined

for known fields of the expected class. One example would be a location

event that triggers when a person is seen in a specific location. This could

be modelled as LocationEvent(’Conference Room’, ’Person 1’) and subscrip-

tions could, for example, filter all LocationEvents regarding Person 1 and be

notified when this person moves. An example of a type-based subscription

model is given in Bates et al. [1998].

• Content-based - A content-based subscription contains a boolean expres-

sion that is evaluated based on the message content. This form of subscrip-

tion is the most expressive but also the most challenging to implement.

There are different techniques for implementing an event-based system with the

behaviour defined above. Some examples are publish/subscribe, IP multicast, and

Chapter 2. Related Research 31

tuple spaces [Fiege et al., 2002]. Publish/subscribe systems are defined by the

two actions they provide for clients to communicate: publish and subscribe. The

publish action sends a message, that can include, depending on the system, meta

information. With the subscribe action, a client can signal their interest in certain

messages. All messages matching the defined criteria are then sent to the client.

Publish/Subscribe is a common communication paradigm in smart systems and

has still been used in recent related architectures. As shown for example in a

study by Mishra and Kertesz [2020] analysing research publications about the

usage of the MQTT messaging protocol in IoT systems. Their study determines

that MQTT is one of the most widely used IoT protocols.

Additionally, beyond the two naming operations publish and subscribe, there are

two other operations that are common for publish/subscribe systems. These are

unsubscribe and notify [Fiege et al., 2002]. Unsubscribe counteracts the subscribe

operation and causes no more messages matching defined criteria to be sent to the

client. Notify is a method that is implemented by the client and which is called by

the system to deliver a message that matches at least one of the criteria defined

with a subscribe operation. Notify is a callback method that can be realised

differently depending on programming language used and may be handled with

anonymous functions.

Publish/Subscribe messaging is compatible with agent-based systems. It can

provide a loose coupling between the communicating components because it does

not require a component that sends a message to know its recipient [Fiege et al.,

2002]. Messages are no longer sent directly from one agent to another, meaning one

of the agents needs to know the address of the other one, but they are rather sent

to messaging topics. An agent can send arbitrary messages to as many topics as it

likes. To receive messages an agent is interested in, the agent has to subscribe to

the appropriate groups. For these reasons this thesis focuses on publish/subscribe

architectures.

Chapter 2. Related Research 32

2.3.4 Middleware Architectures

This sub-section identifies related work on middleware architectures and compares

these with the approaches in this thesis. Since there are a large number of middle-

ware architectures for different environments and with different goals, this section

is focused on a certain selection of architectures that are comparable to the ap-

proaches in this thesis.

The following two sets of selection criteria are used for this purpose. The necessary

criteria include:

1. Research context - Only architectures that originate in a research con-

text are considered. This restriction is necessary to establish comparability

since the architecture developed here is primarily aimed at use in research

laboratories and this thesis also belongs to the research context.

2. Development support - The support of development processes in smart

systems is the focus of this thesis. Therefore, comparable work must include

methods to support developers. This can be, for example, a visualisation of

the system or the provision of a framework, debugger, or Integrated Devel-

opment Environment (IDE). Sometimes this is also referred to as support

for fast experimentation or rapid prototyping.

The optional criteria include:

1. Agent-based - The architecture should be agent-based. It has been shown

that agent-based architectures are often used in smart systems and that,

among other things, they can make the complexity of these systems more

manageable (see Section 2.3.2. This criteria, is helpful for comparison be-

cause the approach to development differs for other programming paradigms,

such as a pure event-based approaches, which would make a comparison of

architectures more difficult.

Chapter 2. Related Research 33

Author Environment Ab P/S Evaluation
Ranganathan and Campbell [2003] Ubiquitous Computing Envir-

onments
x -

Gu et al. [2005] Context-aware Systems x x performance measurements
Henricksen et al. [2005] Context-aware Systems x case study
Soldatos et al. [2007] Context-aware Systems x x simulations
Bader et al. [2010] Smart Environments x -
Fortino et al. [2013] Smart Objects x x case study
Maciel et al. [2015] Smart Environments x x systematic review
Soldatos et al. [2015] IoT x x case study
Pahl and Liebald [2019] IoT x x performance measurements,

user study
Elhabbash et al. [2020] SoS x case study, performance meas-

urements
Elhabbash et al. [2022] IoT x user study
Borges et al. [2023] IoT x performance measurements
this thesis Smart Systems x x performance measurements, ex-

pert interviews, scenario-based
evaluation (ATAM)

Table 2.2: Comparison with other middleware architectures that include de-
veloper support and are agent-based (Ab) and/or support publish/subscribe

(P/S) communication.

2. Publish/Subscribe messaging - Another criterion is that the architec-

ture should support publish/subscribe communication. Publish/subscribe

communication is an important design decision of the architecture presen-

ted here and according to previous the literature analysis also often used in

smart system architectures.

All publications describing a middleware architecture identified as relevant for

this thesis using the process described in Section 2.1 were sorted according to the

four criteria mentioned above. After that, all publications that did not fulfil the

first two criteria (research context and development support) and at least one of

the second criteria (agent-based, publish/subscribe) were sorted out. Table 2.2

contains an overview of all remaining publications.

Only a few of the resulting publications focus on developer support, such as the

short paper by Bader et al. [2010] based on experience in research and teaching, but

this contains no evaluation of the architecture. The architecture is based on tuple

spaces and is designed to support debugging and to allow easy access to human

readable communication between components [Bader et al., 2010]. Elhabbash

et al. [2020] and Elhabbash et al. [2022] present a method to support the developer

with the composition of multiple IoT components into a SoS, but it is based on

Chapter 2. Related Research 34

ontologies and requires a compatible specification of all components. This requires

additional know-how when working with the system. However, these studies do

not examine support for debugging. In Borges et al. [2023] IoTvar, a middleware

that supports the development of IoT components by abstracting and simplifying

the connection to other IoT platforms, is presented, but, the support for program

comprehension and debugging tasks is not evaluated.

Henricksen et al. [2005] define ease of deployment and configuration as one of seven

requirements after evaluating middleware architectures, which is evaluated along

with the other requirements via a single case study. Ranganathan and Campbell

[2003] state that supporting developers is one of the main goals of their ontology-

based middleware and that it supports rapid prototyping, but this claim is based

only on the implementation of several agents using the middleware. In Gu et al.

[2005] rapid prototyping is also mentioned as one of the features of the presented

service-oriented middleware for context-aware services, but the middleware is only

analysed with regard to its performance and not for its usability.

Only Pahl and Liebald [2019] describe a user study to evaluate the usability of

the system. For this, 150 students were asked to implement a feature within

the architecture. The time for implementation and the length of the code were

evaluated. They were then asked whether they found the system easy to use and

how easy the task was for them. This study demonstrated that the system is

easy for students to use for the purpose analysed, but the requirements of other

stakeholders or the use for other purposes were not analysed. Elhabbash et al.

[2022] also include a user study with 26 participants, measuring the coding time

and coding correctness of a given workflow with and without their architecture.

Maciel et al. [2015] are the only ones to use a structured approach to evaluating the

architecture, but they do not specify a method for doing so. During the evaluation,

selected requirements are compared with architectural approaches to measure the

suitability of the architecture. All other publications either do not contain an

evaluation of usability for developers or justify the suitability of the architecture

with case studies that are not evaluated according to a documented or structured

method.

Chapter 2. Related Research 35

Notably, comparable approaches often focus more on system performance, despite

the usability features that are sometimes emphasised. The qualitative approaches

for the evaluation of middleware architectures are based on the analysis of one or

more case studies, without defining the term case study or specifying a method.

Soldatos et al. [2015] write here of "proof-of-concept applications". The suitability

of the architecture is primarily shown by the author through the implementability

of individual agents or scenarios.

The publications listed here are based on different technologies. Gu et al. [2005]

and Henricksen et al. [2005] use Remote Procedure Calls (RPCs) for their commu-

nication, and Bader et al. [2010] use tuple spaces. Some of the architectures use

open source agent-based middleware, for example, Fortino et al. [2013] use JADE,

a FIPA2000 compliant agent development environment written in Java, which sim-

plifies the development of multi agent systems [Bellifemine et al., 2001]. Moreover,

most of the IoT architectures, like Elhabbash et al. [2020], Elhabbash et al. [2022]

and Borges et al. [2023] use MQTT or are compatible with it. However, some, like

Soldatos et al. [2015] or Pahl and Liebald [2019] use custom protocols.

In summary, it can be said from the analysis of the literature that there is a lack of

a structured approach to the evaluation of usability aspects of architectures that

focus on the support of developers in smart systems. Furthermore, it becomes

apparent that the support of developers in these systems is often not a central

requirement, and that usability aspects are less studied in the literature than,

for example, performance requirements. This is also a research gap for software

architectures in the field of smart systems.

2.4 Complex Event Processing

Event Processing (EP) in general is a paradigm in which streams of events are pro-

cessed to make inferences about events in the real world [Dayarathna and Perera,

2018]. One of the challenges is the number of events that need to be processed, but

distributed EP platforms can handle thousands to millions of events per second

Chapter 2. Related Research 36

[Dayarathna and Perera, 2018]. Complex Event Processing (CEP) is a subset of

EP and can be utilised to process (simple) events into (more complex) events and

reactions based on a defined rule set [Luckham, 2002]. The characteristic of CEP is

the possibility of recognising patterns that describe complex event constellations.

The abilities of the CEP-system depend on the implementation, but there is a

set of common features that are implemented by most systems. Rules can detect

specific events or event groups based on their attributes or types, and they allow

events to be combined, filtered and modified. Often, events can be detected based

on timing, such as, to detect if a specific event happens before another.

Queries to the system are often realised with SQL-like languages [Dayarathna

and Perera, 2018] that allow a descriptive specification of what is to be done.

Listing 2.1 shows an example of a CEP query that reads all temperature events

of a sensor and outputs all temperatures above 30◦C together with the location of

the sensor.

SELECT temp_sensor.celsius, temp_sensor.location

FROM temp_sensor

WHERE temp_sensor.celsius > 30

Listing 2.1: CEP query that selects all temperatures from a sensor higher

than 30◦C

The basic functionality of a CEP engine is visualised in Figure 2.4. CEP queries are

processed by the engine and stored as patterns and rules. The engine monitors one

or more streams of events (shown here as a large arrow) in which events are sent.

If a pattern is detected based on the current events in the stream, the associated

events are processed by filtering them with the specified logical expressions in

the query and executing any transformations specified in the query. Finally, the

reactions are executed, which allows the generation of new events that can be

published to the event stream. The CEP engine is a stateful application and can

save the occurrence of certain events if required. This is necessary to realise time

windows and patterns with temporal dependencies between events.

Chapter 2. Related Research 37

Events

CEP
Engine

Pattern
Detection

Logic
Rule Execution

Reactions

Pattern + Rule Storage / Engine State

Event Stream

Figure 2.4: Complex Event Processing Architecture

CEP can be used in distributed systems to process events. It is also possible to

use CEP as a diagnostic tool for the events in these systems [Luckham and Brian,

1998], which makes it possible for the user to dynamically adjust which events are

relevant to him and which events should be included in the processing.

2.4.1 Event Processing Reference Architecture

Paschke and Vincent [2009] propose a reference architecture for event processing-

based systems which consists of six layers (Figure 2.5). The use of a common

reference architecture allows it to compare different architectures for EP-systems.

In this architecture, events are produced by Event Sources on the bottom layer.

These events are then processed by Event Modellers, which use an Event Pattern

Definition to route the events based on their type to the Event Processing Medium.

The Event Processing Medium filters the events and processes them further, for

example by translation or aggregation. It can detect and predict situations based

on the given rules. This process allows it to build complex business events from

simple atomic events, which can then be consumed by Event Consumers at the top

layer of the reference architecture. Each detected event can be used to produce

Chapter 2. Related Research 38

Figure 2.5: General EP Architecture Paschke and Vincent [2009]

new events that can be fed back into the systems. This creates an event processing

circle and allows it to aggregate events into more complex events.

The terms for the components in this reference architecture are used throughout

the document and are explained in the following sub-sections.

2.4.1.1 Event Producers

Event Producers, also often called called Event Originators, Event Emitters or

Event Sources are system components, that send events to the system [Paschke

and Vincent, 2009]. Events can be generated based on various sources, for example

from message streams, processes, work flows, application events, or temporal data

stores. Event Producers can also be wrappers for sensors, for instance a temper-

ature sensor that publishes an event with the current room temperature every

minute. These events can be simple, like a trigger from a switch, or complex, like

the skeleton data from a 3D motion tracking sensor.

Chapter 2. Related Research 39

2.4.1.2 Event Modeller

The Event Modeller receives the events and matches them based on the Event

Pattern Definition [Paschke and Vincent, 2009]. It is responsible for the forwarding

of events from the Event Sources to the Event Processing Medium.

2.4.1.3 Event Processing Medium

An Event Processing Medium handles the selection, filtering, and classification of

events and can aggregate events, which can produce more complex events [Paschke

and Vincent, 2009]. The resulting events are then forwarded to the Event Con-

sumers. Possible processing types are:

• Event Rating

• Situation Detection

• Prediction

• Event Consolidation

• Composition

• Aggregation

• Detection

• Event Monitoring

• Tracking

• Discovery

• Selection

• Filtering

Chapter 2. Related Research 40

2.4.1.4 Event Consumer

Event Consumer, also often called Event Sinks, subscribe to events, that match

specific criteria [Paschke and Vincent, 2009]. Based on the received event, Event

Consumers can trigger actions or act as Event Producers and create new events.

2.4.2 Integration of event-based and agent-based systems

The combination of event-based and agent-based approaches is not trivial because

they follow two different paradigms. Agent-based systems consist of independent

agents communicating via messages. The agents can act intelligently and inde-

pendently. Event-based systems consist of event consumers and event producers

interacting indirectly via an event bus using events or notifications. Since CEP

engines are event-based and the smart systems studied here are agent-based, this

is a special case of integrating an event-based system into an agent-based system.

According to Mariani and Omicini [2015] and Omicini et al. [2015] there are three

steps to integrating multi-agent systems and event-based systems. These steps

are:

• Recognising the sources of events - In the first step, all agents and the

environment have to be valid event sources, and vice versa. This means that

each agent can act as an event source, sending messages directly into the

event processing. Furthermore, as event sources have to be valid agents,

they inherit all agent features and become more expressive, because agents

encapsulate control as well as management criteria.

• Defining the boundary artefacts - In the second step, boundary artefacts

are defined to mediate between the event-based and agent-based worlds.

A boundary artefact is responsible for the translation of events inside the

agent-based system to the common event model. It can be used to transform

multiple event definitions into one.

Chapter 2. Related Research 41

• Providing expressive event-based coordination models - The third step

ensures that there are coordination components inside the system that can

handle multiple event flows and mutual dependencies between agents and

event-based components. This is important because, after an integration

of event-based and agent-based systems, the complex dependencies between

agents could emerge indirectly in the event-based part of the system.

This thesis does not consider EP architectures in general but only CEP archi-

tectures. Furthermore, this thesis focuses on multi-agent architectures with loose

coupling, such as publish/subscribe communications. This decision is based on the

results of the previous analysis, which found that both CEP and loosely coupled

agent-based systems are typical for smart system architectures. The aim of this

thesis is to support developers working with smart systems by integrating CEP

into an agent-based architecture, not to show how event-based systems can be

embedded into agent-based systems more generally. Nonetheless, the above steps

are taken into account in the planned integration.

2.4.3 CEP in Smart Systems

CEP-systems are designed to be scalable and to handle a huge number of events

with low latency, which matches well with the requirements of software in smart

systems. This is because one of the challenges of smart systems, and especially

context-aware systems, is the processing and storage of contextual information

[Cook and Das, 2004]. A possibility to meet this challenge is to model the contex-

tual information as events and process them through a CEP engine. The short-

term storage of events and their aggregation can also be handled by the CEP

engine.

There are many different implementations of CEP engines, thate have been used

in distributed systems for a long time [Luckham and Brian, 1998]. Three such

implementations are Esper, Siddhi, and Etalis. Esper [EsperTech, 2021] is a com-

mercially supported open-source CEP engine that is implemented in Java and

Chapter 2. Related Research 42

uses a SQL-standard compliant query language. It is used frequently in the lit-

erature to integrate CEP capabilities into smart systems and as a baseline for

CEP implementations in the literature. The Siddhi event processing architecture

[Suhothayan et al., 2011] combines stream processing aspects like multithreading

and pipelining with the capabilities of a CEP engine, which has performance ad-

vantages over Esper. Etalis is a language for CEP, that is supposed to bridge

the gap between event-driven and logic-based systems [Anicic et al., 2010]. It is a

rule-based language with declarative semantics, temporal logic, and logic inference.

There are many possible applications of CEP in smart systems. For example,

Augusto and Nugent [2004] argue that temporal reasoning based on contextual

information can be used to recognise the activities of an occupant in a smart home

environment, and Hallé et al. [2016] showcase that this can be done efficiently with

CEP. It is also possible to use CEP to process sensor data and to detect errors

in sensor networks, for example, to manage road traffic [Dunkel, 2009, Elchaama

et al., 2017]. CEP is also often used in the field of IoT architectures for the

pre-processing of context information [Chen et al., 2014, Ziehn, 2020].

Taylor and Leidinger [2011] argue that in heterogeneous sensor networks, there

needs to be support for rapid specification of queries and experiments because it

is challenging to derive measurable properties from sensor values or even to know

what events of interest a sensor might produce over its lifetime. Therefore, a plat-

form should include functions to find sensors, specify events, reuse measurement

results, define actions when events are detected, and easily deploy these specific-

ations at runtime. To implement all this, the context information and queries are

modelled as an ontology. Queries are then automatically converted into a CEP

query and processed by an existing central CEP engine, which processes all event

streams in the system.

In a further development of this approach, Wang and Cao [2012] use a context-

aware CEP architecture for IoT event processing agents. Ontology-based requests

are converted into context-independent event stream tasks and processed by CEP.

These agents form part of the event processing logic and handle the processing

Chapter 2. Related Research 43

of events from the event producers to the event consumers. The agents take on

different tasks, such as filtering, pattern detection, and transformation of events.

CEP queries to the system are preprocessed and then executed with the help of

one or more event processing agents. In this approach, there is no interaction

with other agents in the IoT system. The results of the queries can be interpreted

directly by the user or read by other components from an event cloud.

Cobeanu and Comnac [2011] use an Esper CEP engine for decision-making in

agents for a traffic control application. The events generated by the agents are

stored and read into an CEP engine, for example to detect traffic jams. The results

of the evaluation in the CEP engine can then be used by the agents to adapt their

behaviour accordingly.

Another way of integrating CEP into IoT systems was presented by Chen et al.

[2014] and is based on a client server architecture. There can be several web-based

clients in the system, each of which can start several servers that contain a CEP

engine. Thus, this is a distributed CEP architecture with several engines. Each

engine consists of multiple modules, including multiple event processing agents.

Akbar et al. [2015] presented a lightweight CEP architecture, called the Micro

CEP Engine, for IoT applications that can run on hardware with limited resources.

The core of the architecture is a central event processing engine that can process

multiple event streams. Both normal CEP functions and event clustering based

on machine learning methods are implemented.

It is possible to use several CEP engines in one system. Paraiso et al. [2012]

present a distributed CEP engine that allows to process different event domains

from different engines, building a CEP federation. This increases adaptability to

different domains and scalability. The approach integrates the Etalis and Esper

CEP engines, but the combination of several identical or different CEP engines

increases the complexity of the system and creates a communication overhead

between the engines. Different engines, different CEP dialects, or a new DSL

must be used. The increased complexity makes it more difficult for developers to

work with the system.

Chapter 2. Related Research 44

Zu et al. [2016] use a distributed data-driven CEP approach with Esper for a

smart grid IoT application. The system uses a data distribution service. This

is a middleware based on publish-subscribe messaging thats is connected to a

distributed CEP engine to support the agents in the system in their decision-

making.

Lachhab et al. [2016] integrate CEP into a context-aware service-oriented archi-

tecture to handle big data. It uses a central in-memory CEP engine to process

the event streams. The CEP engine contains an event processing network consist-

ing of several event-processing agents, that handle the event stream processing.

The CEP agents are built with the Etalis engine to form a central CEP engine,

and they interact with the system only via the output events. However, the data

sources, such as CO2 sensors, are hardwired into the CEP engine. The CEP en-

gine is therefore not flexible enough to be used for several use cases at the same

time without adapting the architecture.

Meslin et al. [2018] use CEP to process sensor data in smart cities on several levels.

The information is first pre-processed at the sensors before it is sent on. At the

highest level, CEP enables queries that can be used for various tasks, such as to

evaluate the delays of bus connections.

Parra-Ullauri et al. [2021] combine CEP with temporal graphs in an architecture

for service monitoring. Temporal graphs allow for an efficient representation of the

event history. Queries on these graphs can be used both for live monitoring and to

investigate past system states, such as in the event of an error. The architecture

combines these capabilities with the fast processing and short response times of

CEP engines. The result is a central middleware that can work with temporal

graphs and has an integrated CEP engine, Esper in this case, that processes event

streams.

Table 2.3 offers a comparison of the publications analysed here. All these ap-

proaches have in common that the used CEP engine is not integrated seamlessly

into the rest of the system. Either the CEP engine is used as a central component

that processes all event streams and outputs the results, or several CEP engines

Chapter 2. Related Research 45

Author [Year] Architecture / CEP Integration Engine
Taylor and Leidinger [2011] Central CEP server Coral8
Wang and Cao [2012] Central CEP server Custom agent-based
Cobeanu and Comnac [2011] Separated systems with API Esper
Dunkel [2011] Each agents have own CEP engine Esper
Chen et al. [2014] Distributed client-server based Custom agent-based
Akbar et al. [2015] Central CEP server µCEP
Paraiso et al. [2012] Distributed Heterogeneous CEP engines Esper, Etalis, a.o.
Zu et al. [2016] Data-centric publish-subscribe approach Esper
Lachhab et al. [2016] Single purpose in-memory CEP engine Etalis
Meslin et al. [2018] Large scale multi-layered distributed CEP Esper
Parra-Ullauri et al. [2021] Central CEP server with temporal graphs Esper

Table 2.3: Comparison of other approaches to integrating CEP queries and
event processing into a smart system.

are used, each of which processes specific event streams. Incorporating CEP into

a smart systems architecture means mixing two different paradigms. On the one

hand, smart systems consist of independently acting, often heterogeneous, com-

ponents that communicate with each other. Therefore, an agent-based paradigm

is often chosen for the architecture. At the same time, CEP engines promote

descriptive definitions of the system’s behaviour with rules or queries that are

separate from the actual components of the system.

This thesis contributes to this research gap through the design of an architecture

that allows a seamless integration of an CEP engine into an agent-based smart

system in order to avoid the disadvantages identified and to keep the complexity

of the system as low as possible.

2.5 Program Comprehension in Complex Dis-

tributed Systems

Program Comprehension is the task of understanding how a software system or

part of it works [Maalej et al., 2014]. This includes the task of understanding

the source code of a programme, which is one of the most time-consuming tasks

during software development [Siegmund, 2016]. An understanding of the system

is important to perform maintenance tasks correctly [Cornelissen et al., 2009].

Chapter 2. Related Research 46

To augment developers’ comprehension, tools can automate manual tasks such

as the generation of abstract system representations and knowledge verification

[Lin et al., 2020]. They can identify components and their dependencies and help

generate an abstract representation of the system [Siegmund, 2016].

In traditional software development, there is a strict separation between development-

time and runtime and software engineering research is mostly focused on development-

time [Baresi and Ghezzi, 2010] to make the development of software less error-

prone and faster. The traditional assumption is that software is only changed

during the development phase and is then unchangeable during runtime. If an

error occurs during the runtime of the software, it must be fixed offline by a pro-

grammer. This strict separation is becoming increasingly softened [Baresi and

Ghezzi, 2010]. Software develops quickly, and changes should often reach the user

as quickly as possible. Adaptive software systems are needed that can adjust to

changed environments at runtime [Baresi and Ghezzi, 2010].

Smart systems are an example of such adaptive systems. They adapt their function

to changes in context and are partly subject to requirements for quick adaptability

to the needs of the user [Bettini et al., 2010]. In addition, they often consist of

subsystems and form a complex SoS [Fortino et al., 2021] that cannot be processed

in an offline development environment, as is traditionally the case [Fang, 2021].

To be able to use development tools not only at development time but also during

the runtime of a programme, they must be adapted or replaced by other tools.

One challenge in processing software at runtime concerns discovery and learning

[Baresi and Ghezzi, 2010]. In dynamic software systems, services can appear or

disappear at any time, influencing the behaviour of the overall system. Tools

are needed to make the current state of software visible to developers and other

components at runtime. Another challenge is the verification or monitoring of the

software at runtime [Baresi and Ghezzi, 2010]. Traditional methods such as unit

tests, which are supposed to detect errors after a change during development, do

not work here. Tools are needed that can find bugs due to changes at runtime or

help developers track changes made to the code.

Chapter 2. Related Research 47

One possibility to implement this is rule-based verification of the runtime beha-

viour of software [Havelund, 2015]. The behaviour of the system is monitored at

runtime and then analysed during or after the execution of the programme. The

programmer formulates rules that must be followed during the execution of the

programme [Havelund, 2015]. A simple example would be to define that an event

A always has to occur before event B to ensure that this is the case at all times

during the runtime of the programme.

If an error is reported during runtime by runtime verification or other sources,

such as a user of the system, it is the task of a developer to find the cause of

the error through debugging techniques in order to be able to fix it. Debug-

ging complex distributed systems is an important but sometimes very difficult

task, because tracing concurrent events and understanding the communication re-

lationships between components can be challenging [Beschastnikh et al., 2016].

Beschastnikh et al. [2016] list seven approaches that can help developers debug

distributed systems:

• Testing - Manually written tests can help check whether individual com-

ponents or parts of the system show the expected behaviour. But there is

no guarantee that all errors will be detected by tests.

• Model checking - Model checking is the systematic checking of a system

description against a specification. The system is modelled with mathemat-

ical methods and then examined for expected properties. This procedure can

be very time-consuming for larger systems and can only be used to a limited

extent if the system is dependent on environmental influences [Beschastnikh

et al., 2016]. For example, agent-based systems can be analysed with petri

nets to find deviations or errors in the protocol [Poutakidis et al., 2002].

• Theorem proving - Theorem proving can be used to verify that a system

behaves according to expectations. To do this, a developer must specify (e.g.

by using special programming languages) why a programme must behave

as expected, so that a theorem proving tool can check the specifications.

Chapter 2. Related Research 48

This can be very time-consuming and may not really be suitable for legacy

systems, as they are often found in SoS.

• Record and replay - An execution of the system can be recorded in order

to reproduce or simulate it later. In this way, processes can be reproduced

afterwards, and errors can be localised.

• Tracing - Tracing refers to the follow-up of events or messages in the sys-

tem between components. Messages are annotated with tracing information,

which requires the compatibility of all message-processing components.

• Log analysis - If the system under investigation outputs log messages, these

can then be analysed to find errors or to understand the functioning of the

system. Large systems that log in detail can produce large amounts of data

that can only be analysed by developers with great effort. Here, tools can

help to automatically find anomalies in the log data and certain processes in

the system.

• Visualisation - Distributed systems can become very complex due to the

interconnectivity and dependencies between components. Visualisation tools

can help developers understand relationships and processes by creating a

graphical model of the software.

Model checking and theorem proving are not considered further in this thesis.

Both are powerful tools for understanding relationships in systems and proving

their functionality. However, this requires the formalisation and prior knowledge

of the developers in this area. It is unclear how fast experimentation in a dynamic

smart system would be feasible with such approaches. Furthermore, it has been

shown that these formal methods are not suitable for all purposes, and that there

are limits in multi-agent systems that require the use of other methods [Edmonds

and Bryson, 2004].

An alternative approach to formal methods is reverse engineering. Reverse engin-

eering is the practice of understanding hardware designs from one’s own or others’

Chapter 2. Related Research 49

finished products [Chikofsky and Cross, 1990]. Similarly, an existing software pro-

ject can be analysed to produce design documents and thus create a higher level of

abstraction to better understand the software [Chikofsky and Cross, 1990]. Des-

pite the availability of support tools, this process is a predominantly manual task

that is very time-consuming [Bosse et al., 2008].

To generate a higher abstraction of the agent system architecture, concepts such as

goals and beliefs can be used [Lam and Barber, 2005]. Automated explanation gen-

eration can interactively generate relational graph interpretations of goals, beliefs,

intentions, actions, events, and messages and compare them to the developers’

current knowledge [Lam and Barber, 2005]. This can not only document the be-

haviour of an agent, it can also lead to an automated explanation of its behaviour.

To gather runtime information with this method, the comprehension tool provides

the developer with logging instructions that then must be added to the part of

the source code that defines specific concepts of an agent. However, this requires

a correspondingly uniform representation of the inner relationships of intelligent

agents that is uniform in the system. In heterogeneous systems, however, this is

usually not the case or can only be achieved with considerable effort.

Most reverse-engineering tools include visualisations to directly display generated

models of the system [Stroulia and Systä, 2002]. Visual representations have been

found to be very effective in communicating this complex information [Stroulia

and Systä, 2002]. Visualisations of dynamic systems are often based on variations

of direct graphs [Stroulia and Systä, 2002].

One example is ViVA [Lee et al., 2014], a visualisation and analysis tool for dis-

tributed event-based systems. It combines three techniques into one tool: runtime

visualisation, message-log replay, and combined static and dynamic analysis. The

runtime visualisation should enable developers to better assess the state of the

running system batter than relying on the source code or diagrams from the doc-

umentation. The visualisation depicts all components, connectors, dependencies,

and the event stream between the components. The tool can record the message

stream and then play it back interactively under the control of a developer, which

Chapter 2. Related Research 50

should support the identification of errors and their causes. Finally, Viva includes

a combined static and dynamic analysis of control-flow paths, allowing the system

to be analysed and traced at any time.

Another example of a visualisation tool is Shiviz [Beschastnikh et al., 2016]. Shiviz

was developed to help analyse event chains to improve the debugging of distrib-

uted systems. The tool supports keyword and structured searches to enable the

identification of events with specific attributes as well as events that are related

to other events. With the latter, common patterns such as request-response or

broadcast messages can be found and analysed. In addition, the tool supports

the comparison of several executions and the clustering of similar executions of a

part of a system, which helps to identify anomalies in the programme flow. Static

analysis, in conjunction with formal verification methods, can be used to verify

and validate processes. This can help find events that trigger other events and

possible scheduling problems [Rabinovich et al., 2010].

There are similar approaches for agent-based systems. Flater [2001] use a case

study to demonstrate that in cases of coordination problems between agents, it

can be helpful to have a visualisation of the interaction between agents to local-

ise problems and to then investigate them in a second step with formal methods.

There are different views that can be used for visualisation to debug agent-based

systems [van Liedekerke and Avouris, 1995]. Often, a distribution view that shows

which components are running on which machines or an agent-based view is used,

but an interaction-based view that shows the different relationships between agents

in a graph can also be helpful. These relationships can be dependencies, commu-

nication, or other relationships such as cooperation and negotiated roles.

Another way to debug agents is analogous to conventional step-based debuggers

for programmes. However, the problem with agents compared to conventional

software components is that agents can often be mobile. This means they can

change the computer they are running on at runtime and therefore debugging tools

need to work remotely if they want to track these migrations [Osaki et al., 2015].

In addition, the execution environment should be considered when debugging,

Chapter 2. Related Research 51

as agents can behave differently due to differences in the execution environment

[Higashino et al., 2013].

In summary, visualisation and other debugging tools are an important part of

facilitating programmers’ work in distributed agent-based systems. It is important

that both the agents and the communication between agents can be visualised and

analysed. Since many systems in smart systems change dynamically and behave

in accordance with on the context, it is necessary to carry out analyses at runtime

to support understanding of the programme and troubleshooting. For this reason,

visualisation, tracing, log analysis, and recording of messages are features provided

in the architecture presented in this thesis to support program comprehension and

debugging tasks.

2.6 Conclusion

During the preceding literature review, all research areas considered relevant for

this thesis were analysed one by one. Literature on middleware for smart systems

was discussed starting with a generic middleware architecture, and the literature

was then evaluated for two architectural elements central to this work: agent-based

design and publish/subscribe communication. This has shown that architectures

and middleware for smart systems are active research topics, which also means

that there is a need for research laboratories to investigate these topics to find

new solutions for smart system software.

Several research gaps were identified through the analysis of the literature. Firstly,

coupled with the lack of analysis of middleware requirements for smart systems

laboratory environments, and no published architectures could be found that

primarily addressed the challenges in these environments. Supporting developers

in program comprehension and debugging tasks is at most one of many require-

ments in the comparable publications analysed, but this is rarely reflected in the

evaluation of the architecture (see Section 2.3.4).

Chapter 2. Related Research 52

Secondly, comparable architectures for smart systems using publish/subscribe

communication were analysed with performance measurements, simulations, and

case studies (see Section 2.3.4). The first two methods are difficult to reproduce

or compare with other architectures without the concrete implementation of the

system or simulation tools. Moreover, these methods are more suitable for evalu-

ating performance characteristics, such as message latency, and less for evaluating

functionality or usability. The case studies carried out are more suitable for this,

but in the publications analysed, they were not carried out according to a repro-

ducible method, and several stakeholders were not involved in the research. This

means that there is a lack of reproducible, structured evaluations of architectures

for smart systems.

Finally, the review of literature dealing with the integration of CEP in smart

systems failed to identify a publication that allows seamless integration into an

agent-based system (see Section 2.4.3).

In the following, first the requirements for an smart system architecture are ana-

lysed (see Chapter 3). Then an architecture (see Chapter 4) and its evaluation

(see Chapters 6, 7 and 8) are presented as a contribution to filling the identified

research gaps.

Chapter 3

Requirement Analysis

This chapter analyses the requirements of a software architecture for smart sys-

tems. In particular, the requirements of laboratory environments for smart systems

is addressed, including both requirements from the literature and requirements

from experiences in the two research laboratories presented below.

3.1 Interdisciplinary Research Laboratories

The analyses and evaluations in this thesis were carried out over several years and

mainly took place in two research laboratories, the Living Place Hamburg and

the Creative Space for Technical Innovations (CSTI), which are presented in more

detail in the following sub-sections.

3.1.1 Living Place Hamburg

The Living Place Hamburg is a smart home laboratory at the Hamburg University

of Applied Sciences (HAW) [Livingplace]. The main part of the laboratory con-

sists of a 140 m2 loft-style apartment, including a kitchen area, sleeping, dining,

and living areas, and a separate bathroom (see Figure 3.1). It is a fully func-

tional apartment that can be used for experiments under real-life conditions. In

53

Chapter 3. Requirement Analysis 54

(a) (b)

(c) (d)

Figure 3.1: Living Place Hamburg. The kitchen (A), the bedroom (B), the
bathroom (C) and a tangible object (D). [Broscheit, 2022]

addition, three office rooms and a control room are part of the Living Place. The

control room contains the network technology and workstations for monitoring

and evaluating experiments with the help of video and audio monitoring in the

laboratory.

The Living Place was established in 2009 with the aim of conducting research

in the fields of ubiquitous computing and smart homes. Initial projects included

the development of position recognition and, based on this, the prediction of the

movement patterns of residents [Jens Ellenberg et al., 2011]. In addition, sensors

and actuators for the smart home were researched. These include the recognition

of sleep phases with sensors in the bed, the recognition of sitting positions on the

couch, a RGB light control, and window and blind actuators.

The software architecture in the Living Place is based on a publish/subscribe black-

board approach using ActiveMQ as a message broker [Jens Ellenberg et al., 2011].

Chapter 3. Requirement Analysis 55

Sensor data is published on the blackboard in communication groups and enriched

by interpretation agents in several steps. Decisions are then made and actuators

controlled based on the enriched contextual information. The software infrastruc-

ture of the Living Place has grown steadily over the years through further research

and student theses, including projects such as an intelligent bathroom mirror, ges-

ture and voice control of home automation, and a service for the automatic display

of situation-dependent information on suitable displays near the user.

In 2020, the goals of the laboratory were redefined and expanded to give greater

attention to people, with investigations into the effects that digital changes can

have on residents. With these adapted goals, the software architecture was also

changed and is now based on MQTT and other software. The experiments and

analyses in this thesis are based on the Living Place before the changes in 2020.

3.1.2 Creative Space for Technical Innovations

The Creative Space for Technical Innovations (CSTI) is an interdisciplinary re-

search laboratory that was established in 2016 at the Hamburg University of Ap-

plied Sciences (HAW) [CSTI]. The CSTI is a platform for interdisciplinary projects,

collaborations, research studies, and student projects. It offers the technical and

methodological prerequisites to support these projects.

The laboratory is designed for rapid prototyping of projects. In research environ-

ments, it is essential to enable researchers to quickly conduct experiments based on

their research questions without limiting their creativity. Resnick [2007] proposed

the kindergarten approach for learning, which is based on short imagine-create-

play-share-reflect cycles and was developed in the MIT Lifelong Kindergarten

Group, to improve creative thinking. The CSTI follows this idea and provides

a space for creative work on projects.

The CSTI is composed of projects with four different main topics:

Chapter 3. Requirement Analysis 56

• Machine Learning and Data Mining - Machine learning can be used

in a wide variety of areas, such as the recognition of objects, people, and

gestures for interaction. Other use cases include smart recommendations for

users, speech recognition, and more.

• Interactive Virtual and Augmented Reality - The CSTI researches in-

teractive virtual and augmented reality topics in areas such as virtual teach-

ing, visualisation of complex data, and intelligent environments.

• Ubiquitous and Tangible Interaction - Research in the field of ubiquit-

ous computing and tangible interaction at the CSTI mainly includes envir-

onmental sensing and quantified self projects. Smart objects, tangibles, and

ubiquitous computing devices are developed and analysed to study Human-

Computer Interaction (HCI).

• Science and Technology Studies - In the field of science and techno-

logy studies, the CSTI’s projects use interdisciplinary methodologies such

as critical design, situated action, ethnography, and creative computing to

investigate the relationship between digital technology and human adapta-

tion.

All the main topics of the CSTI combined to create smart environments. Machine

learning can be used to intelligently support people in their environment. Virtual

and augmented reality, and ubiquitous and tangible interaction both deal with

the interaction between humans and machines. Science and technology studies

reflect these projects from an interdisciplinary perspective. Both the Living Place

and the CSTI are part of the Research and Transfer Centre Smart Systems at

the HAW. There are thematic overlaps between the labs, and the teams work

closely together. The topic of ubiquitous and tangible interaction, in particular,

is a common one between the two labs and is the reason the CSTI is also used as

a prototyping lab for projects in the Living Place.

Chapter 3. Requirement Analysis 57

(a)

(b) (c)

Figure 3.2: The CSTI with areas for microelectronics (A) and 3D printing (B)
projects and a truss system with tracking systems for virtual and augmented

reality experiments (C)

3.2 Requirements for Smart System Architec-

tures

A number of requirements for software architectures for smart systems in general

and middleware in particular emerge from the literature and previous experience in

the presented laboratories. These requirements are presented and analysed in the

following paragraphs, and they form the basis for both the design of the software

architecture presented here and the subsequent evaluation.

There are several literature surveys that list requirements for and features of dif-

ferent smart systems. These refer to specific environments, such as context-aware

systems [Henricksen et al., 2005, Bratskas et al., 2009, Fortino et al., 2014], IoT

[Razzaque et al., 2016, Plattner et al., 2020], CPS [Shi et al., 2011], and SoS

[Fortino et al., 2021]. The requirements largely coincide but in part have a dif-

ferent perspective on the requirements. Based on these surveys, the following

Chapter 3. Requirement Analysis 58

requirements arise for the architecture presented here.

• Support for heterogeneity - Support for heterogeneity is one of the de-

fining characteristics of architectures for smart systems. Heterogeneity is

a challenge for smart environments [Fortino et al., 2014] as well as for the

IoT [Savaglio et al., 2017, Plattner et al., 2020], CPS [Shi et al., 2011] and

SoS [Fortino et al., 2021]. In these systems, it is common to have compon-

ents developed in different programming languages and supporting different

protocols [Henricksen et al., 2005]. There are also large differences in the

capabilities of the individual components, which can range from small micro

controllers, for example for sensors and actuators, to their own powerful com-

plex systems, for example for machine learning tasks. In addition, potentially

complex legacy systems have to be supported in some cases. Furthermore,

it is often necessary to connect physical processes and hardware components

to the system [Shi et al., 2011], which is especially the case in CPS.

• Scalability and latency - The middleware must be able to scale from small

systems to large numbers of components [Henricksen et al., 2005, Razzaque

et al., 2016, Plattner et al., 2020] because smart systems can become very

large and also grow over time. At the same time, the message latencies

must remain low to be able to implement time-critical functions such as user

interaction.

• Support for mobility - A smart system must be able to handle and support

mobile components. In smart environments, sensors and applications can be

mobile [Henricksen et al., 2005, Bratskas et al., 2009] and may be located, for

example, on the user’s smart phone. In CPS, the dynamic reorganisation of

components is one of the defining criteria. Therefore, the middleware must

support appropriate protocols and implement a flexible discovery mechanism

for components [Henricksen et al., 2005].

• Tolerance for component failures - The system should have a high fault

tolerance to reliably perform its tasks [Henricksen et al., 2005, Bratskas et al.,

Chapter 3. Requirement Analysis 59

2009, Shi et al., 2011, Plattner et al., 2020]. When working with sensors and

other context-dependent components, it is to be expected that measurement

errors and failures will occur, which the system must handle appropriately. In

addition, components in a smart system are distributed across the network,

so errors such as disconnections and temporary inaccessibility of components

must be handled in such a way that the rest of the system can continue to

run.

Henricksen et al. [2005] list two further requirements: Traceability and Control and

Ease of deployment and configuration. These are further subdivided and specified

in the following. This is necessary because the support of developers in smart

systems is the focus of this thesis, and additional requirements have to be added.

In addition, further requirements are added, that result on the one hand from the

experiences in the research laboratories in which the architecture in this thesis was

developed and on the other hand from the results of the studies carried out in this

thesis (see Chapter 6). This results in the five additional requirements as follows:

• Traceability and control

– Support for debugging - Even if the architecture includes a high

degree of fault tolerance, any errors that occur must still be analysed.

Unexpected error states can affect the availability of the system and

even intercepted error states can have a negative impact and affect per-

formance. To localise errors, it is helpful if the components and the

messages between them are visible and can be inspected to support the

debugging process [Henricksen et al., 2005]. This is especially import-

ant for systems that can only be analysed at runtime, which may be

necessary, for example, if the system is highly context-dependent. Here,

it must be ensured that system components can be inspected without

affecting the system. It is also useful for debugging to have control over

the system, such as to use or isolate specific agents and groups. This

can be used to create specific scenarios, reproduce errors, and perform

tests.

Chapter 3. Requirement Analysis 60

– Program Comprehension support - Similar to the debugging ap-

proach, it is necessary to help developers understand the system. This

is particularly necessary for new developers to become familiar with

the system. At the same time it is also important for more experienced

developers, because it is a challenge to keep track of complex dynamic

systems that change depending on contextual information. It is import-

ant that the system make information openly available to developers to

allow easy inspection in test settings and at runtime.

• Development support

– Support for fast experiments - The possibility to conduct quick ex-

periments is helpful for many steps of the development process. Manual

and automatic tests can be helpful or even necessary to identify and

reproduce errors to sufficiently exclude the possibility that they occur

again. Experiments can also be used to test assumptions about the

system and improve understanding of its behaviour at runtime. Fur-

thermore, these experiments can also be used for research purposes

in research laboratories or for decision-making in companies. There

are often time constraints and a limited budget for answering a ques-

tion, which makes it helpful to conduct experiments quickly. Here,

frameworks for the development of new components, and tools for de-

velopment support are helpful to accelerate the development process

[Henricksen et al., 2005].

– Deployment and configuration - Smart systems usually consist of

a large number of components that communicate via the network and

run distributed on different computers. Therefore, it is important that

the architecture supports the deployment of components and facilitates

their configuration. A simple configuration promotes the adaptability

of the system to the needs of the users and the reusability of com-

ponents, which can thus reduce the complexity of the system. A high

degree of configurability of the components can also be useful to provide

configuration options for end users [Henricksen et al., 2005], which can

Chapter 3. Requirement Analysis 61

be particularly useful for smart homes, where the tenants or owners are

supposed to control the system.

• Flexibility - Architectures for smart systems must have a high degree of

flexibility. This becomes clear when one considers the diverse use cases of

these architectures. A few examples are smart homes, smart cities, smart

power grids, medical devices, wearables and many more. With the increasing

interconnectedness of these systems, it becomes more important that they

be developed with compatible architectures. In addition, it is important

in the research context of laboratory environments that these can be used

universally to be able to react flexibly to upcoming projects and research

projects. These may not yet be determined when the system is set up and

will only be added over time, depending on project applications.

• Support of communication between developers - In a conversation

between developers about a complex system, it is helpful or even necessary

to have a common framework to think about processes in the system [Plate,

2010, Arnold and Wade, 2015]. Therefore, it is a further requirement for

the architecture to support this. On the one hand, it is important that

the architecture is consistent in its concepts. The use of several different

paradigms for similar requirements can increase complexity and lead to con-

fusion. On the other hand, uniform visualisations of the system can help

develop common ideas about processes.

Another important requirement in the literature is Privacy and Security. This

requirement is not considered for the architecture developed here because it is an

architecture for development and laboratory environments and not for production

systems. Therefore, this requirement is not included as part of the evaluation in

the following work.

• Privacy and Security - Smart systems work with safety-critical systems

and context information about users that needs to be protected. In smart

environments, it is common to collect sensitive information about the user,

Chapter 3. Requirement Analysis 62

analyse it, and then support the user depending on the situation [Cook,

2009]. This collected information must be protected from outside access

according to the user’s requirements [Henricksen et al., 2005]. Furthermore,

actors and other sensitive components must be protected from manipulation

by third parties. This can be particularly important depending on the type of

system and its purpose. For example, systems like CPS have high security

requirements as they are also used in the health sector [Shi et al., 2011,

Plattner et al., 2020].

Requirement Main Source
1 Support for heterogeneity Literature
2 Scalability and latency Literature
3 Support for mobility Literature
4 Tolerance for component failures Literature
5 Support for debugging Expert Interviews
6 Program Comprehension support Expert Interviews
7 Support for fast experiments Expert Interviews
8 Deployment and configuration Literature
9 Flexibility Literature
10 Support of communication between developers Expert Interviews

Table 3.1: List of all requirements for the architecture to be designed. The
requirements are based on the literature and have been extended based on the

results of the expert interviews.

3.3 Conclusion

In summary, there is no publication of requirements especially for smart systems

research lab environments in the literature. This is a research gap to which this

thesis contributes by supplementing the requirements from the literature of dif-

ferent smart systems with specific requirements based on the experiences from

research lab environments. The list of all requirements and whether they are

based on the literatures or are a result of the expert interviews is displayed in

Table 3.1.

Chapter 3. Requirement Analysis 63

The listed requirements are used in the following chapter for the design of a soft-

ware architecture for smart systems. The architecture is then evaluated with

regard to these requirements. In the process, the requirements themselves are also

examined. On the one hand, other environments are examined during the expert

interviews to determine the transferability of the requirements determined here.

On the other hand, scenarios are collected and evaluated through a survey of the

stakeholders to concretise the requirements and determine their importance.

Chapter 4

System Design and

Implementation

This chapter presents the system architecture that has been designed to meet the

identified requirements. The aim of the architecture presented here is to support

the development of software in smart systems in general and in research laborator-

ies in particular. Therefore, the main goals of the architecture are the improvement

of program comprehension and debugging tasks.

This chapter first provides an overview of all layers of this architecture, followed by

a detailed description of each layer. Each layer is presented individually and is de-

signed according to the requirements relevant to that layer. The evaluation of the

entire architecture with expert interviews, latency and scalability measurements,

as well as a scenario-based architecture evaluation is carried out in Chapters 6, 7

and 8.

4.1 Architecture Layer Outline

Based on the literature and the requirements identified (see Section 3.2), a middle-

ware architecture is presented below, that was designed in particular to support

developers during development, program comprehension and debugging. Since the

64

Chapter 4. System Design and Implementation 65

focus here is on the interaction with the developers, the architecture is first ex-

amined from the perspective of this interaction. The architecture consists of three

main layers, which are described and further subdivided in the following sections

layer by layer. The bottom layer is the messaging layer, or the publish/subscribe

layer. It provides the interfaces for communication with other agents and imple-

ments the basic functions of the system, such as monitoring the availability of

agents. Based on this, the CEP layer is built. It contains a complete CEP engine

based on the publish/subscribe middleware layer. Finally, the User Interaction

Layer provides the interface for developers to interact with the system via visual-

isations of the system structure and CEP queries. Figure 4.1 presents an overview

of the three main layers of the architecture.

User Interaction Layer

Complex Event Processing Layer

Messaging Layer

Node
1

Node
2

Node
n

Sy
st

em
 A

rc
hi

te
ct

ur
e

Publish Subscribe

User

CEP
Engine

Figure 4.1: The three main layers of the architecture

Figure 4.2 offers an overview of the whole architecture, which is described in detail

in the following chapters. In addition to the three layers already mentioned, the

application layer is also shown here, in which all agents and user applications

are located. This illustration also highlights the management and monitoring

Chapter 4. System Design and Implementation 66

functions of the middleware for the individual layers. These functions are part of

the middleware and are also implemented in agents. These include the monitoring

and management of the nodes, agents, and CEP queries.

System Overview CEP Console IDE

Debugging Tools Context Query Applications

CEP Engine
CEP Query Parser

CEP Query Agent Handler

Publish Subscribe

Middleware Node 1 Middleware Node 2 Middleware Node n

Agent Runtime
Lifecycle

Management

Messaging
Management

Management

User Interaction Layer

Complex Event
Processing Layer

Messaging Layer

User System
Admin Developer

Framework 1 Framework 2 Framework n
Application Layer

CEP Monitoring /
Graph Overview

Agent Lifecycle
Monitoring / Graph

Overview

Message Analysis

Monitoring

Agent 1 Agent 2 Agent n

Cluster Monitoring
Cluster

Management

External Systems
(e.g. Message Broker)

CEP Query
Management

Figure 4.2: System architecture overview

The presented architecture can also be seen as middleware for context processing,

based on the Generic Middleware Architecture by Henricksen et al. [2005], which is

more in line with the representation of a middleware for smart environments. This

describes the processing of context information and the control of actors starting

from the user application and is shown in Figure 4.3

The right side includes the layers from the generic model of Henricksen et al.

[2005] and the left side includes the architecture presented here. The bottom layer

is identical in both architectures and it contains sensors and actuators. The only

difference is that in the architecture presented here, programming toolkits can

also be used for the integration of sensors and actuators. The two layers above are

implemented with context processing agents and databases, as in Henricksen et al.

[2005], as well as with a CEP engine. Developers can choose whether they write

their own agents or implement the functionality via the CEP engine in the system.

The CEP engine takes over both the processing of the context information and the

storage of messages for defined periods of time. If data has to be persistent over

Chapter 4. System Design and Implementation 67

Application and
Programming Toolkits

Application
Components

CEP Queries Decision Support Tools

CEP Engine

Databases

Context
Processing
Agents

Context Repositories

Context Processing
Components

Context Sensors and ActivatorsProgramming Toolkit
Sensors / Actors

Pu
bl
ish

 /
Su
bs
ci
be

M
id
dl
ew

ar
e

Presented Architecture Generic Architecture

Figure 4.3: Architecture comparison to generic architecture

a longer period of time, it should be stored in a database. The decision support

tools that help to make context-dependent decisions are defined in the architecture

presented here with CEP queries and processed by the CEP engine. In addition, it

is possible for agents to access the events directly or read data from the database.

The top layer, in which application agents are located, is also identical in both

models. The implementation of the agents is supported by programming toolkits.

4.2 Messaging Layer

The messaging layer forms the foundation for the architecture presented here. Its

most important component is the middleware, which provides the interfaces for

communication between agents and takes care of monitoring the agents and system

components. A first version of the architecture of this layer was published in

Eichler et al. [2017]. The main characteristics of the messaging layer are presented

Chapter 4. System Design and Implementation 68

below. These include, above all, the middleware nodes, the message format, the

programming toolkits, and the runtime environments. At the end of the section,

the results of a latency and scalability test are presented.

As pointed out during the literature review in Section 2.3.4, there are already

publish/subscribe systems used in smart system architectures. Commonly used

examples include MQTT, but ZeroMQ and RabbitMQ are also used, as evidenced

by the expert interviews in Chapter 6. To fulfil the requirements determined during

the analysis, a custom publish/subscribe implementation is used here. To meet

the identified requirements for program comprehension and debugging support,

the middleware should be able to tell the developer which agents are running at

any time and what communication links they have. To do this, it is necessary to

monitor all agents and their subscriptions, which is not easy with the open-source

solutions listed above. One reason for this is that many publish/subscribe imple-

mentations do not monitor subscriptions for performance reasons. Furthermore,

to support heterogeneity, it should be possible to subscribe and publish messages

without programme libraries using basic network protocols such as UDP or Web-

Sockets. Supporting mobility across runtime environments also requires changes

to the messaging systems to support changes to location at runtime with ongoing

subscriptions without message loss. None of the existing implementations could

implement all these requirements without requiring major adaptations or major

efforts for agent developers. For this reason, the message layer presented below is

based on a custom implementation.

4.2.1 Layer Architecture

The messaging layer can be subdivided into three sub-layers, as shown in Fig-

ure 4.4. The layer at the bottom, called the middleware node layer, is the found-

ation for the system’s messaging. It is a distributed cluster consisting of multiple

middleware nodes. The abstraction layer is the Publish/Subscribe Layer, which

implements the publish/subscribe based group communication for all agents in

the system. It handles the subscriptions from all agents and distributes messages

Chapter 4. System Design and Implementation 69

Application Layer

Publish / Subscribe Layer

Middleware Node Layer

Upper Layer

M
es

sa
gi

ng
 L

ay
er

Agents

Node
1

Node
2

Node
n

Figure 4.4: Structure of the messaging layer

accordingly. The application layer at the top contains all user applications. This

includes all agents connected to the middleware that implement, for example,

context handling and user interaction. The layers that are built on the messaging

layer, such as the CEP layer, are implemented with the help of agents in the

application layer.

Another representation of the messaging layer thats includes the communication

paths of the components, is given in Figure 4.5. The cluster of middleware nodes

maintains itself by sending regular heartbeat messages, to detect the reachability

of each node. The heartbeat messages are sent over TCP between all middle-

ware nodes. Cluster management tasks, like handling a non reachable node, are

completed by a selected leader. Since the leader is negotiated by a majority vote

between the nodes, the cluster is capable of acting as long as more than half of

all middleware nodes are reachable. This ensures that at any given time, there is

only one leader and therefore only one cluster. It is not possible that one or more

Chapter 4. System Design and Implementation 70

AgentAgent

Agent

Fr
am

ew
or

kNative-
objects Middleware-

Node 1 Webinterface

Middleware-
Node n

External systems
e.g. message brokers

Fr
am

ew
or

k

Agent

Control Agent

JSON
TCP / SCTP

JSON
Websocket

Control messages
Heartbeats
TCP

JMS

Runtime environment

JSON
TCP / SCTP

JVM

JVM

Figure 4.5: Messaging layer architecture

nodes that have temporarily lost their connection to the cluster decide to form a

new cluster, because there can only be one group of nodes with more than half of

the total number of nodes.

Each node can act as a connection point to agents by providing an Application

Programming Interface (API) over TCP, SCTP, and WebSocket connections. This

selection of protocols should make it possible for many different components and

programming languages to communicate with the middleware. It is assumed that

TCP connections are supported by the vast majority of programming languages. In

addition, a simple connection between JavaScript modules and websites is possible

via WebSockets. SCTP support is available in fewer programming languages, but

is offered here because SCTP is very suitable for the communication interface

with agents. In contrast to TCP, the SCTP protocol makes it possible to realise

several message streams over one connection [Randall R. Stewart, 2007], which can

improve performance. The middleware node cluster monitors all connected agents

via their connection protocol and maintains a list of all connected components.

Additionally, the platform can be monitored by the users via a web interface,

which is also an agent implemented with web technologies that can be opened in

Chapter 4. System Design and Implementation 71

a web browser. External messaging systems, like Java Messaging Services (JMS)

or other middleware systems, can be connected to the system via the middleware

API to allow transparent communication with other messaging systems.

The implementation of the middleware node layer is based on an Akka [Lightbend]

cluster. Akka is a modern, high-performance and well-tested library, which is why

it is used here for the implementation of the cluster management, the leader se-

lection and the the TCP, SCTP, and WebSocket servers for client communication.

The library allows an easy implementation of non-blocking servers and can help

implement concurrent tasks, hereby meeting the requirements for many concurrent

agents as clients and high message loads. By using standard network protocols and

a Protobuf1 API between agents and the middleware, no implementation details

from Akka are passed to the clients. The agents can also be based on Akka, but it

is also possible to connect to the middleware using other libraries or custom code.

Figure 4.5 shows the two recommended ways of connecting agents to the mid-

dleware. Firstly, an agent can be connected to the middleware via one of the

frameworks provided (see Section 4.2.4). Here, an example agent is shown run-

ning on the Java Virtual Machine (JVM) and integrating the framework as a

library. This allows the agent to communicate with native Java objects and leave

the serialisation and deserialisation to the framework. Secondly, agents can be

dynamically executed in runtime environments managed by the middleware (see

Section 4.2.6). The agents in a runtime environment are managed by a control

agent, which enables dynamic control of the agents in the system via an interface

to the middleware. In addition, it is also possible for agents and other components

to communicate directly with the middleware, as described above.
1Google Protobuf - https://developers.google.com/protocol-buffers - accessed 15.09.22

Chapter 4. System Design and Implementation 72

4.2.2 Messaging

Messaging is the most important functionality of this layer. To enable loosely

coupled communication between the agents, a publish/subscribe system is imple-

mented. The decision to use publish/subscribe for the communication is based on

the literature evaluation in Section 2.3.3, which indicated that publish/subscribe

communication is well suited for and often used in smart systems and especially

IoT systems, such as MQTT or similar message protocols. The analysis of the

requirements revealed that an architecture for smart system laboratory environ-

ments should support developers in understanding the system (see Section 3.2). In

contrast to direct communication between agents, group communication, like pub-

lish/subscribe, offers the possibility of exchanging agents or letting other agents

listen in without adapting the system. This loose coupling allows for easier insight

into the communication and supports the important requirement that the system

be open and assist developers with program comprehension and debugging tasks.

A topic-based system based on the formal modelling approach of Baldoni et al.

[2003], is used in this architecture. Each message is explicitly sent to a group, also

called a topic. A group is uniquely identified by a freely selectable string. Agents

can subscribe to any group and will receive all messages sent to that group after

a subscription until the subscription is terminated. Alternatively, a content-based

publish/subscribe system could be used, which would allow subscribing not only to

certain groups, but also to messages with certain properties sent to any group. A

topic-based rather than a context-based system was chosen to keep the foundation

of the system as simple as possible. The functionality to subscribe to messages

with certain properties is possible via the functions of the CEP layer in the form

of CEP queries. This functionality is not provided in the messaging layer such

that each layer retains distinct functionalities.

There are no limitations or security mechanisms in the base system. Messages can

be sent to arbitrary groups that can be subscribed to by all agents in the system.

A group exists exactly as long as there is at least one subscriber. Messages to non-

existing groups are discarded. Additional functionalities, such as access control

Chapter 4. System Design and Implementation 73

and encryption, could be implemented for individual agents based on the publish

and subscribe functions offered. Encryption and authentication are not offered

as part of this messaging layer because the goal is to keep this layer as simple

as possible. As mentioned in Section 3.2 during the requirement analysis, these

security functions are not needed for laboratory environments.

All messages are delivered with an at-most-once semantic. There is therefore no

guarantee that a message will be delivered to an agent, only that it will not be

delivered twice. This semantic was chosen because it allows an implementation

without performance constraints. In addition, guaranteed delivery of messages is

not necessary in many of the environments for which this architecture is to be

used. For example, if a sensor sends 60 measurements per second as messages to

the system, it is not necessary that all of them arrive. A lost measurement can be

replaced with the measurements received before or after it. Each message is given

a unique ID consisting of the ID of the sending agent and a unique message ID

generated by that agent. On the receiving side, it is checked that all messages are

delivered to the agent’s application logic at most once within a defined time inter-

val. Higher guarantees for message delivery can be implemented on the basis of

this semantic. For example, an exactly-once semantic could be achieved with con-

firmations of each message from the recipient and a re-send of the message if this

confirmation is not received. However, this function would significantly increase

the number of messages and would therefore burden the system. In addition, this

function could lead to messages arriving late and the sequence of messages being

changed. Without re-sending lost messages at the application layer, the used net-

work protocols TCP, SCTP, and WebSockets can guarantee that messages from

an agent to a group, when they arrive, are received in exactly the order in which

they were sent, because the middleware nodes retain this guarantee.

4.2.3 Message Format

When selecting the message format for this architecture, three aspects had to be

taken into account. Firstly, the format should follow a machine-readable structure

Chapter 4. System Design and Implementation 74

that can be read with high performance. This is important for checking the validity

of messages and for automatic processing of the message content. Secondly, the

format should be human-readable, because the focus of this middleware is on

supporting developers. It should be easy to read the network traffic and process

it with simple text processing commands. Lastly, the format should be usable by

many programming languages with as little effort as possible. Hence, it would be

good if there were stable libraries for as many programming languages as possible

that could parse the format. Performance is an important aspect, but it is not the

main consideration in the selection process.
1 {

2 "type": "ControlLightRGB",

3 "id": 177,

4 "color": {

5 "r": 100,

6 "g": 0,

7 "b": 0

8 },

9 "identifier": "sender",

10 "options": ["debug", "timestamp"]

11 }

Listing 4.1: JSON message example

With the above criteria, several message formats come into question. These are

mainly frequently used structured text formats, such as JSON and YAML. JSON

was chosen because this format was already used for many other components in

the laboratory environment in which the development of the messaging layer took

place and it allowed easy integration of existing components and simple initial

tests with the existing software.

Each message contains a unique type attribute, which allows the assignment to

an interface definition of an agent and is intended to simplify parsing. All other

attributes can be freely chosen by the developer in accordance with the agent’s

Chapter 4. System Design and Implementation 75

interface definition. Listing 4.1 presents an example of a JSON message to set a

RGB light in a smart home with a specified ID to the colour red.

4.2.4 Programming Toolkit

For the development of new agents, a framework is provided that handles the

connection to a middleware node, implements an auto-reconnect mechanism, and

hides the serialisation and deserialisation of messages. This allows the developer

to focus on the application logic and work directly with native classes and objects

in the programming language, rather than, for example, worrying about parsing

incoming messages and the associated error handling. The use of the framework

is optional, but recommended for the implementation of agents with JVM lan-

guages and JavaScript. Alternatively, agents can communicate directly with the

middleware via TCP or UDP messages or be connected via another communic-

ation interface and adapter agents. In this way, other programming languages

that are not supported by the framework can be connected. There are multiple

adapters for different programming languages available. Among others a native C

library, which can be used by many other implementations over a foreign language

interface.

The JVM framework follows an actor-based programming model. The implement-

ation of the framework is also based on Akka [Lightbend], a JVM library for actor

programming. Akka is very well documented, is actively developed, and is act-

ively used in many projects and by many companies. The library is the most

frequently used actor programming library for JVM languages and is therefore

very well suited as a basis for the framework.

In the framework, an actor is a component that contains a mailbox and defines

how to react to messages in the mailbox. The mailbox is implemented using a

queue in which messages are placed in order of arrival. All messages to an actor

are inserted into this mailbox and processed one after the other by this actor.

The behaviour of an actor is defined in a receive method. It contains instructions

Chapter 4. System Design and Implementation 76

for each of the messages expected by the programmer. Unexpected messages can

be ignored, logged, or handled with own programme code. The processing of the

messages in the mailboxes of the actors is carried out within a thread pool. This

means that as many actors can work simultaneously as there are threads. If the

thread pool is configured with at least as many threads as there are processor

cores available, the available processor performance can be fully utilised because,

if implemented correctly, the threads never block, for example to wait for IO.

In addition, Gradle is used as a build tool because it can be used for Java, Scala,

and many other programming languages and is easily extensible. As part of the

framework, the build tool was pre-configured to manage the dependencies of the

framework libraries and to handle the publication of build artefacts, in this case

the agents.

4.2.5 Interface Libraries

To define how the JSON messages being sent between the agents are structured,

a simple message DSL is used, which can be seen in Listing 4.2. A Domain

Specific Language (DSL) is a language that has been developed to fit a particular

application domain. DSLs can have a higher expressive power for their specific

domain and can be easier to use compared to generic programming languages

[Mernik et al., 2005]. Here, a DSL is used to help developers define APIs.

With the help of the DSL, it is possible to determine how the messages of an

interface between two or more agents are structured and which messages belong

to it. The DSL is oriented around the possibilities and attribute types of JSON

messages. It is possible to use strings, numbers, and booleans and to nest messages

as desired. For example, Listing 4.2 defines an interface for controlling coloured

lamps. With the message UpdateLightSources, several lamps can be set to the

specified colours at the same time. The lamps are uniquely identified by an ID

and it is possible to specify colours by their red, green, and blue values as well as

a white value.

Chapter 4. System Design and Implementation 77

The DSL files can then be converted into class definitions or similar representations

of a target language. This makes it possible to programme with automatically

generated native objects in the target language. For example, in Java any message

marked with the keyword msg would be converted into a class, and a trait would

be converted into interfaces. The big advantage is that programmers can use type

checking and auto-completion in the IDE if this is implemented in the language

used. It also ensures that all messages sent in this way comply with the interface

definition. The interface libraries are versioned to ensure that any changes to the

interfaces are documented. This is necessary to detect whether two agents are

also using the same version of an interface to guarantee that they both send and

receive the same messages. An API generator, that generates the native class

representation based on the DSL file is built into the Programming Toolkit and

implemented for Java, Scala, and JavaScript. If another language is to be used,

support can be added or self-built JSON messages can be used. In addition, the

instructions for serialising and deserialising the messages are generated.

If the interface libraries are used, the framework transmits the expected interface

name (as defined in the DSL) when an agent subscribes to a group automatically,

otherwise, it has to be set manually by the agent’s developer. This allows the

middleware to check which messages are expected and whether the sender’s library

is compatible. It is also possible to enrich visualisations of agent communication

with information from the interface definitions to help developers understand the

dependencies between agents.

Chapter 4. System Design and Implementation 78

name LightControl

version 0.1

package de.hawhamburg.csti.actor.light

trait LightControlError

trait Color

msg RGB(r: Int, g: Int, b: Int) extends Color

msg RGBW(r: Int, g: Int, b: Int, w: Int) extends Color

msg LightSource(id: Int, color: Color)

msg UpdateLightSources(lightSources: Seq[LightSource])

msg ErrorUnknownLightSourceId(invalid: Seq[Int], requested: Seq[

Int]) extends LightControlError

Listing 4.2: Light control API in the DSL of the framework

Furthermore, the framework contains functions for configuring agents. Configur-

ations are stored in a JSON or YAML file, checked at the start, and then read

in. The programmer can then access individual attributes of the configuration via

methods in the framework and can adapt the behaviour of the agent accordingly.

The special feature here is that this configuration can also be provided by the

runtime environment and can thus be controlled by the middleware when new

agents are started. This makes it possible to dynamically start agents with dif-

ferent configurations or to reconfigure parts of the system by restarting individual

agents with a new configuration. The group names for communication via the

middleware can also be defined in this configuration file. This makes it possible

to programme in a reusable and customisable way. A simple example would be

to write a logging agent that responds to messages in a configured group. This

agent can be reused with different configuration files for different purposes. In ad-

dition, this further strengthens the loose coupling. If the communication groups

can be easily adjusted when starting agents, it is possible to add more agents in a

processing chain of agents to change or debug the behaviour.

Chapter 4. System Design and Implementation 79

In addition to the above-described functions, the framework offers support for

the development of unit tests and integration tests. The framework’s test kit

allows agents to be started without a connection to the middleware, messages to

be delivered directly to the agent, and expected messages to be easily defined. It

also facilitates the handling of timeouts as well as the simulation of regular and

delayed messages to test the behaviour in case of problems with the network.

It is important to note that the functions provided here to support developers

come with performance penalties. For example, with JSON and text messages,

serialisation and deserialisation may be slower than with binary optimised proto-

cols, such as Protobuf2. Furthermore, keeping a list of all agents and checking

their reachability produces an overhead. To ensure that the system meets the

performance requirements, both the message latency and the scalability of the

system will be tested as part of the evaluation to confirm that even high numbers

of agents and messages can be handled (see Chapter 7).

4.2.6 Runtimes and Agent Migration

An agent runtime is provided so that agents can be dynamically executed by

the system itself. The first implementations were based on the OSGi framework.

OSGi supports component and service-oriented software development on the JVM

[Tavares and Valente, 2008]. For this purpose, so-called bundles, or JVM soft-

ware artefacts with additional metadata, can be used for tasks such as managing

dependencies and the life cycle of the software. This approach is also already suc-

cessfully used for context-aware applications, as in Gu et al. [2004] and Wu et al.

[2007].

However, the use of OSGi comes with an overhead. All components must specify

their dependencies and be tested with the OSGi runtime. It became apparent that

the use of OSGi can complicate and slow down the development of components.
2Google Protobuf - https://developers.google.com/protocol-buffers - accessed 15.09.22

Chapter 4. System Design and Implementation 80

Since this contradicts one of the central requirements, the support for fast exper-

iments in a research context, a separate runtime was developed that is limited to

the most necessary features. This includes the controlled dynamic execution of

components with a configuration that is passed on at the start. The implement-

ation is based on a Java Class Loader that isolates the individual components

from each other in to exclude conflicts in the dependencies and that also main-

tains complete control over the life cycle of the component. Agents can be started

and stopped by the runtime via the middleware. In addition, the execution is

monitored by the runtime and reported to the middleware. The management and

monitoring of the agents in a runtime environment are implemented by a control

agent that is directly connected to the middleware.

As soon as several runtimes are available, agents can be migrated between them.

This fulfils the requirement for mobility in the system and allows agents to be

restarted elsewhere in the event of a failure in one runtime. Another use case is to

run an agent close to the user to reduce communication channels for interaction.

For an agent to be migrated without data loss, it must be stateless or keep its

state in an external location. This can be achieved with an external database

or implemented with event sourcing. Event sourcing systems use an event log to

persist their state and decouple their communication [Lima et al., 2021]. All state

changes are modelled and stored as events. In the case of an error, the event log

can be read in and the state restored. To optimise this process, an agent can

create snapshots of the state to summarise past events in the log. In this context,

it is also possible to use the stored events for debugging, profiling, and anomaly

detection [Lima et al., 2021]. Event sourcing is supported by the framework used,

but its use is optional in order to avoid further hurdles for new developers and to

keep development times short.

Chapter 4. System Design and Implementation 81

4.2.7 Integration with other messaging platforms

Connecting other messaging platforms can be useful to connect other parts of an

existing system and to make information about the agents and their communic-

ation available to developers. Message brokers, such as MQTT, are often not

designed to quickly look at the messages in a group or to demonstrate who has

subscribed to those messages. In addition, the middleware can test the accessibil-

ity of agents from other platforms, if they have an interface that allows this. This

would require, for example, a heartbeat message or a function to query the status

of the agent.

Other systems can be connected to the middleware via adapters. In doing so,

either all messages from the other system are transferred to one group or a group is

created for each group in the source system.. All forwarded messages are provided

with a proxy header, allowing the adapter to prevent loops and enabling debugging

of the rest of the system. For example, software could be connected by reading

incoming control commands in one group and publishing outgoing status messages

in another, as with an actor. When connecting another message system, such as

a message broker, all groups from the other system would be taken over, and all

messages would be forwarded between the systems.

All groups created in this way can be given a prefix in their names to prevent

collisions. This function can also be used to connect several middleware node

clusters together, such as, to create a cross-lab network or to separate individual

parts of a lab.

4.3 Complex Event Processing Layer

The Complex Event Processing Layer is built based on the Messaging Layer, which

provides monitoring and messaging. The CEP layer enables the processing of

messages as events with the help of SQL-like queries. On the one hand, the layer

can be used to query and process context information and, on the other hand, it

Chapter 4. System Design and Implementation 82

Query
Parser

Optimizer

Client
Agent

CEP Query

Query
AST

Query
Agent

Manager

CEP Agent
Events

CEP Manager

Input
Group

Output
Group

Filter Agent

creates

controls agent
in runtime

environment

Figure 4.6: CEP layer components and interactions to create a new CEP
query [Eichler et al., 2020].

can also be used to access information about the agents and the system provided

by the middleware.

Instead of integrating an existing CEP engine into the system, the CEP function-

alities are designed based on the design decisions of the messaging layer of the

architecture presented here. This means that all components are agents and that

the CEP engine exclusively processes the messages from the publish/subscribe

system. In this way, the CEP functionalities are seamlessly integrated into the ex-

isting system. This seamless integration method and the architecture of the CEP

layer were published in Eichler et al. [2020]. Since the goal is a CEP engine that

is fully integrated into the agent-based system and that is based on the messaging

layer, it has to be developed from scratch.

The CEP integration presented here uses the topic-based publish/subscribe service

that allows messages to be sent to arbitrary groups. Furthermore, all messages in

the system must follow a uniform structure that can be parsed. In this case, JSON

is used, but other formats such as Extensible Markup Language (XML), YAML,

and binary formats can be supported by additional parsers.

Chapter 4. System Design and Implementation 83

The CEP layer consists of three main components that are responsible for creating

and managing agents for the execution of queries. The first component is the query

parser and optimiser. This takes a query as a string, and transforms the query into

a form that can be further processed and optimised. The second component is the

Query Agent Manager, which creates all agents that implement CEP queries. The

last main component is the CEP Manager, which manages all queries and monitors

the execution of the queries. All these components are listed in Figure 4.6 and

explained in detail the following sections.

4.3.1 Query Language

A query language similar to SQL is used for the CEP queries. The SQL queries are

parsed and transferred into an Abstract Syntax Tree (AST), rendering the query

language extensible and interchangeable. Thus, additional languages or features

can be added without adapting the processing components.

Like SQL queries, all CEP queries consist of one or more clauses. The SELECT

clause is at the beginning of the query and defines which attributes are present

in the output messages. These messages are published in one or more groups

that can be specified with the INTO keyword. The values for the attributes

in the output messages can come from other messages, functions, or constants.

Attributes in input messages can be referenced by specifying groups and attribute

names. Constants can be specified with JSON values such as strings or numbers.

In addition, there is a predefined set of functions for transformation, such as

capitalize, for attribute generation, e.g. random numbers in a specified range, and

for aggregation messages in time windows, such as min, max, and average.

The WHERE clause defines filters for the incoming messages. Here, free predic-

ates with logical operators can be specified that refer to constants and message

attributes. The FROM keyword specifies the groups from which messages are to

be subscribed for the query. Further groups can be specified via JOIN clauses,

and the mapping of messages from the groups can be defined with ON conditions.

Chapter 4. System Design and Implementation 84

Attributes and group names can be overwritten with the keyword as, which is

helpful if, for example, the outgoing messages have a certain structure.

Listing 4.3 shows an example query that joins messages from the first_input_group

and second_input_group, when they have an identical ID value. The WHERE

clause filters all messages with an ID lower than or equal to 5 prior to the join. For

each matching message pair according to the join predicate, the query publishes

a single message. Each of these messages contains attributes with the following

values: a constant value of 1, the ID of the matching messages, and max_val set

to the value of the bigger val1 variable of the two messages. All output messages

are sent to the output_group as after by INTO keyword.

SELECT

1 as constant,

group_a.id as id,

max(group_a.val1, group_b.val1) as max_val

INTO output_group

FROM first_input_group as group_a

JOIN second_input_group as group_b

ON group_a.id == group_b.id

WHERE group_a.id > 5

Listing 4.3: Example CEP query.

4.3.2 Query Parser and Optimiser

CEP queries can be created from different sources. All agents can start new queries

and manage existing queries via messages to the CEP engine. This can also be

done by the provided frameworks to offer the programmer a native API in the

programming language of the agent. In addition, queries can be started via the

web interface of the middleware, which is especially useful for developers who want

to query information about the system or create CEP queries interactively.

In the first step, all queries are checked and parsed by the query parser into an

AST. This is a uniform tree-like structure for all queries that facilitates further

Chapter 4. System Design and Implementation 85

processing and optimisation. Queries with syntax or semantic errors are returned

to the requesting agent with a corresponding error message.

The AST is then passed to the query optimiser, which simplifies the query and

optimises it for execution. In the process, unnecessary elements, such as tautolo-

gies from the filter clause, are removed from the queries. In addition, the AST is

reordered so that as many filter elements as possible are at the beginning of the

processing chain. This results in messages being filtered out as early as possible

and thus no longer having to be forwarded to later processing steps. Further op-

timisation of the queries is possible by, for example, performing union operations

or equality checks in an optimal order [Schultz-Møller et al., 2009] or by additional

join query optimisations [Kolchinsky and Schuster, 2018]. However, this is not yet

part of the implementation presented here.

After all optimisation steps have been completed, the AST is forwarded to the

CEP query manager, which manages the agents for executing the queries. Further

optimisations are carried out in the process. It is possible for an agent to take over

several processing steps for a query. For example, a join clause can be connected

with a filter step. In this and similar cases, the query manager tries to bundle as

many related steps as possible into one agent, as this reduces the communication

overhead and thus speeds up the execution of the queries.

Finally, all necessary agents for processing the query are started. If there is already

an agent for a certain processing step, this is used instead of starting a new agent.

This can happen if several queries contain the same filter clauses from the same

groups. The responsible agent does not have more work due to additional quer-

ies; it receives all messages from the requested group, filters them, and forwards

them to an output group that is subscribed to in the following processing steps.

The reuse of agents is only possible for stateless processing steps, such as filters

and transformations. Stateful steps, such as the aggregation of events in certain

time windows, are always taken over by their own agents because otherwise the

semantics of the query would change.

Chapter 4. System Design and Implementation 86

If necessary, individual processing steps are scaled by adding further agents. This

is possible, for example, for filter operations and other stateless processing steps.

The number of messages per agent is monitored by the CEP manager and as soon

as the message load becomes too large, additional agents are started behind a load

balancer, thus parallelising the processing. In addition, the agents are distributed

to different runtime environments, so that the CPU and RAM load are distributed

to different nodes.

Further optimisation of the implementation is planned for the future and is not the

focus of this thesis. This includes further optimisation of the queries, for example

by adapting the processing sequence [Schultz-Møller et al., 2009] and optimisations

in the deployment and distribution of the processing agents [Cugola and Margara,

2013].

4.3.3 CEP Element Agents

Five different types of CEP elements are implemented to process the queries. Each

step of the processing is taken over by an agent. Together, they are able to realise

all the features of the presented query language. The elements used here are based

on the reference model of [Paschke and Vincent, 2009] and equivalent components

are also found in other CEP implementations such as Esper [EsperTech, 2021].

The difference of this implementation is the embedding in the agent-based system

and the interface to the publish/subscribe layer.

The first type of CEP elements are sources. Sources generate events that can be

further processed in the following steps. Generators can supply constant, random,

or other algorithmically generated values, insert them into messages and publish

them at specified intervals. Sources can also subscribe to messages from groups

and forward them to the processing agents.

Elements such as apply and extract are used to modify the content of messages.

Incoming messages are processed according to fixed rules and sent to the next

Chapter 4. System Design and Implementation 87

agents in the processing chain. In this way, individual attributes can be extracted

from messages or functions can be applied to attribute values.

With a join, messages from several input groups can be combined, which is needed

to implement complex queries with several input groups.

Window elements group a set of messages together and send them on as one

message. This is necessary for the aggregation functions, such as finding the

message with the largest value in a certain time slot.

Finally, there are the sinks, which represent the end of the processing chain. In

the architecture presented here, all messages resulting from the CEP queries are

published in the specified output groups. Since this step does not change the

messages, it is omitted in the implementation and taken over by the last processing

agent.

The implementation of the CEP engine in the architecture presented here contains

the following concrete agents that are used to execute all CEP requests. All agents

are implemented using the presented framework based on Akka actors, permitting

the processing of messages in a loop without much overhead and the forwarding

of the results to the next agent. The necessary parameters for this work and the

communication group for forwarding to the next agent are passed to the agent

when it is created.

• Generator - A generator creates values based on constants and functions

and inserts them into messages. This can be used, for example, for period-

ically scheduled messages. The generator is implemented as an agent that

sends a single or multiple repeated messages to the output group.

• Extract - An extract-agent can extract one or more attributes of a JSON

message based on its position. The extracted message parts are then pack-

aged into a new message and forwarded. The extract-agent subscribes to the

input group and tries to find the specified values in each received message.

These values are then sent to the output group.

Chapter 4. System Design and Implementation 88

• Apply - Apply agents are used to execute functions on specific attribute

values in messages. The parameters of the function are constants or values in

the message. An example is the function max(msg.a, msg.b), which forwards

the larger value of the attributes msg.a and msg.b as the result. The Apply-

Agent is given a function and uses it to generate values based on the specified

inputs in the received messages. The execution of the function is handled in

parallel.

• Join - A join-agent subscribes to two groups and tries to match the received

messages according to the specified criteria. The output messages then con-

tain a tuple with one element per message stream. Depending on the spe-

cified join type, only complete tuples are forwarded, or missing elements are

replaced by a null value.

• Sliding Window - A sliding-window-agent collects messages from the input

stream until a specified number of messages is reached and then forwards

them together in an output message. With the help of an optional timeout,

the waiting time for further messages can be limited.

• Sliding Time Window - An sliding-time-window-agent collects messages

for a specified time period and forwards these messages together as one

message. A timeout is also used for this.

4.3.4 Creation of Agent Graphs

The query agent manager is responsible for creating the agents needed to execute

a CEP query. It decides, on the basis of the optimised AST which agents have to

be created. For optimisation purposes, several nodes in the AST can be covered

by one agent. The agents are started by messages to the control agents in runtime

environments. The parameters are also written in the JSON messages and conver-

ted before an agent is started in a runtime environment. Normal communication

groups with automatically generated names are used for communication between

the individual processing agents. Only the output groups of the query use the

Chapter 4. System Design and Implementation 89

group names specified by the user to allow interaction with the rest of the system.

The communication groups are created by the middleware as soon as a subscription

is requested by one of the created agents.

Figure 4.7 shows an agent graph created from the query in Listing 4.3. The given

group names have been simplified for this illustration. Firstly, the two input groups

are merged, applying the specified filter. The resulting messages are published in

the intermediate group joined_with_filter. Then, the tuples from the two messages

are filtered by an agent based on the WHERE clause. Finally, in the extract and

apply stage, the values specified in the SELECT clause are extracted from the

messages in the tuples, and the specified functions are executed. The messages

created in this way are then published in the output_group.

Since only the input and output groups of the query interface with the rest of the

system, the flow in between can be freely controlled by the CEP Agent Manager.

For example, it would be possible to apply the filter from the WHERE clause

directly in the join agent to speed up execution. However, this would reduce

the traceability of the processing for developers and reduce the reusability of the

individual agents. In addition, it would ensure that both processing steps must

be executed in the same runtime environment and cannot be distributed. Since

there is no optimal behaviour for all situations, the decision algorithm of the CEP

Agent Manager can be adapted through configuration parameters.

By dividing the processing into several steps, the agent graph can also be retrieved

via the middleware, as shown in Figure 4.7. The graph can be displayed for in-

dividual queries for debugging or as part of the overall system in an optionally

filtered graph. The way of integrating the CEP functionalities presented here en-

sures that the queries are fully visible and traceable via the agent-based view of

the system and the debugging tools of the middleware. For example, it is also pos-

sible to find out via these tools which query is responsible for the communication

between two agents. This would not be possible if an external CEP engine were

used.

Chapter 4. System Design and Implementation 90

first_input_group second_input_group

joined_with_filter

Join Agent
Filter: _1.id == _2.id

filtered

Extract Apply Agent

output_group

Filter Agent
Filter: _1.id > 5

Join
Stage

Filter
Stage

Extract
and Apply

Stage
 Values: 1 → constant
 _1.id → id
 max (...) → max.url

Figure 4.7: Graph of the example query in Listing 4.3 [Eichler et al., 2020].

Chapter 4. System Design and Implementation 91

4.4 User Interaction Layer

The user interaction layer forms the interface between the layers already presented

and the user. In this case, the developers who work with the system are seen as

users. End users, such as someone who lives or works in a smart environment, are

not the target group. Rather, developers are to be supported by the user inter-

action layer in their work with the system. This includes tasks such as program

comprehension, debugging, the development and adaptation of components, and

the execution of manual and automatic tests. Different user interfaces are offered

for this purpose, which are explained in the following sub-sections along with the

use cases.

4.4.1 Agent and Group Status Information

The messaging layer collects information about the agents, groups, and agents’

subscriptions. This information is part of the registration of agents with the

middleware and the subscription of groups via the middleware API, and it is

automatically transmitted by the agent framework. The agents and groups are

displayed as simple lists in the interface. For each agent further information can

be retrieved, that was transmitted to the middleware. This includes links to the

source code and documentation, dependencies and included interface libraries, and

a short description of the function of the agent. An example of this is available in

Figure 4.8.

Further information about the groups can also be displayed, including list of agents

that have published messages to this group, a list of all subscribers, and an over-

view of the interface libraries used. Figure 4.9 provided an example of the group

selection. In addition, when a group is selected or created, all new incoming

messages are displayed live (Figure 4.10). For this purpose, the user interface

subscribes to the group in the background and outputs the incoming messages

chronologically in a readable format.

Chapter 4. System Design and Implementation 92

Figure 4.8: Searchable list of all active agents in the user interface.

Figure 4.9: Filterable list of all known groups in the user interface.

As the middleware monitors the availability of the registered agents, agents that

lose their connection are automatically removed from the lists. The disconnection

is then logged for the user. In addition to this information, the user interface

displays log output from agents. The presented framework is preconfigured in

such a way that all log output is automatically sent asynchronously to a specific

middleware group for each agent. This allows developers to browse the log output

in a central location and to quickly access the output during debugging.

In addition, information about the runtime environments and the agents executed

in them can be displayed via the user interface of the middleware. The interface

Chapter 4. System Design and Implementation 93

Figure 4.10: Sending and receiving messages from one group via the user
interface.

view in Figure 4.11 shows a list of all software artefacts loaded in the selected

runtime environment. If these artefacts contain agents, they are listed separately

and can be controlled via additional buttons. In this way the user can start agents

from artefacts, query their status and stop them again. The artefacts can be

filtered via the input fields and further artefacts, including the dependencies, can

be loaded dynamically.

4.4.2 Agent Communication Graph

To represent the communication structures between the agents, the user interface

can visualise them in a graph. Agents and groups are represented as differently

coloured nodes connected by directed edges, which represent the message flow. A

subscription forms a directed edge from a group to the subscribing agent. If an

Chapter 4. System Design and Implementation 94

Figure 4.11: Display of all artefacts in a runtime environment with search
and interaction possibilities with the loaded agents.

agent publishes at least one message to a group, a directed edge is added from

the agent to this group. Edges resulting from subscriptions are removed when the

subscriber terminates or unsubscribes from the group. Edges indicating published

messages are removed when no message were sent for a configurable time window,

the sender terminates, or there are no subscribers left for the group to which the

messages where sent. Figure 4.12 depicts an agent communication graph for the

middleware user interface.

The thickness of the arrows indicates how many messages have been sent via a

group within a configured time interval. The number of messages is weighted

relative to the group with the most messages to determine the thickness of the

arrow. In this way, it is immediately visible where there is currently the greatest

message activity in the system.

The displayed graph can become unmanageable for larger systems. Figure 4.13

gives a more complex example with components from a smart home laboratory.

The example contains various sensors, such as temperature, sitting position, and

sleep detection sensors, which provide information about the home and the user.

Chapter 4. System Design and Implementation 95

Figure 4.12: Agent group graph that shows the communication paths between
the middleware interface and the middleware web interface

This information can be used to support a user’s morning routine. Among other

things, information can be displayed on various displays, such as a touch table,

the television, and the bathroom mirror.

To reduce the complexity and size of the graph, it is possible to limit the graph to

a certain part of the system (Figure 4.14). This is done by specifying an agent or

group in the system and how far from this point the graph should be displayed.

All outgoing and incoming paths in the graph up to this point are included if they

are less than or equal to the maximum specified visibility range. This allows a

developer to analyse certain parts of the system without having to deal with the

complexity of the whole system. More complex queries and filters are possible via

a later-introduced interface with CEP queries.

Chapter 4. System Design and Implementation 96

F
ig

ur
e

4.
13

:
Ex

am
pl

e
of

a
ag

en
t

gr
ou

p
gr

ap
h

ba
se

d
on

co
m

po
ne

nt
s

in
a

sm
ar

t
ho

m
e

en
vi

ro
nm

en
t

Chapter 4. System Design and Implementation 97

Figure 4.14: Filtered agent group graph based on the graph in Figure 4.13
exhibiting only components that are in the range of three edges of the

WakeUpScene agent

Changes in the system are updated directly in the graph display. As such, if the

connection to an agent is broken and the middleware decides that this agent is no

longer active, the corresponding node and its edges are removed from the graph.

The display algorithm was chosen in such a way that the positions of the remaining

nodes and edges change as little as possible during an update so that a user does

not lose the overview in case of changes.

All nodes in the graph can be repositioned by the user via drag and drop and kept

in this position as long as the page is displayed. This allows the user to organise

individual parts of the graph appropriately or to read any hidden information if a

graph cannot be displayed without overlaps.

The agent communication graph has proven to be a powerful and versatile tool for

interactively answering questions about the structure of the system and exploring

the relationships between agents. These questions are important for debugging

system components and can speed up the work of developers.

Chapter 4. System Design and Implementation 98

4.4.3 Complex Event Processing Queries

Thus far, only user interface functions provided by the messaging layer have been

presented. By using the CEP layer, these functions can be made more extensible

and accessible to improve developer support, which can be especially helpful for

the developers because they are already familiar with the query syntax if they

used it during the implementation of new components.

CEP queries can be used instead of a subscription when implementing agents,

and they provide more control over message filtering. An additional advantage

of using CEP queries is that they can be developed and tested live, directly in

the middleware user interface. The query interface is presented in Figure 4.15.

It allows ad hoc and interactive queries, and then uses them unchanged for the

implementation of the agents. This helps in the development of components,

because the feedback on whether a query works as expected is much faster than if

an agent has to be compiled, and executed, and the outputs checked.

Simple agents can even be implemented entirely using CEP queries and started

via the middleware interface. For example, an agent might be needed to filter the

messages in a group, split them among several other groups, or reformat them

to make them compatible with other existing components. Instead of implement-

ing new agents or adapting existing components, CEP queries can be deployed to

implement these functions. This could also be achieved with the integration of a

existing CEP engine or a rule-based machine. The decisive advantage here is that

simple agents are started when deploying CEP queries via the middleware, and

they are therefore seamlessly integrated into the overall system and are transpar-

ent via the presented user interfaces and from the perspective of the rest of the

system. From the outside, there is no difference between a function implemented

directly via an agent or via a CEP query. This is important because otherwise all

components and developers would have to potentially distinguish how agents were

implemented when interacting with them. It would not be possible to generate an

overall view of the flow of a request in the system without having to handle two

different paradigms.

Chapter 4. System Design and Implementation 99

Figure 4.15: CEP query based on data from Figure 4.13 listing all groups
where agents have posted messages but which have not done so for more than

two minutes.

These simple agents, implemented with CEP queries, can also be used to simulate

sensor data or produce messages in the test, which can be useful when creating

unit tests as well as during debugging. For example, the output of a temperature

sensor could be replaced by a request that sends random values within a certain

range or a fixed value at configured intervals. This allows testing that is quick

and independent from the sensor. More complex sensors could be simulated by

recording messages. With the help of a CEP query, it is easy to display all messages

from an agent in a group. The messages can then be exported via the middleware

user interface. Afterwards, it is possible to send these messages in a loop via

another CEP query or an agent to allow controlled tests with this data.

All functions described so far are based on interaction with the underlying pub-

lish/subscribe system. To further expand these possibilities for interaction with

the system, the CEP engine has been extended with additional functions. On the

one hand this allows ad hoc queries to be made about the state of the system,

and on the other hand, it permits the usw of CEP queries as a filter for the agent

communication graph.

For this purpose, two virtual groups are created, with the names agents and groups.

They contain the active agents and groups inside the system at any time. Analog-

ous to the messages in a normal group, these special groups also contain entities

with attributes, such as the name, the time of creation, and others. Hence, the

Chapter 4. System Design and Implementation 100

query SELECT agents.name FROM agents returns a list of all active agents. As

long as the query is active, the delivered results are adjusted for changes in the

system. For example, additional agents appear dynamically in the results list, and

terminated agents are removed. With these functions, it is possible to query status

information about the system, such as to generate a list of all groups on which

no messages have been sent in the last five minutes or a query that returns all

agents that have sent error messages. The result can be enriched with information

regarding which group these error messages were sent to and how long ago this

occurred.

Queries about the state of the system can also be used for testing and verification.

CEP queries can check that no error messages occur and display accumulated

errors in test results. In addition, it is possible to formulate expected states for

the system in CEP queries and check them. For example, it could be checked

whether at least one agent is serving an interface to a certain group at all times.

As soon as certain states are communicated via the message traffic, they can also

be included in the queries. An example of this would be a leader election in a

group. Using the messages and the status information about the agents, a query

could determine whether there is a leader at any time after at least five minutes.

This is also an example of how normal messages from agents can be used together

with status information from the middleware, because they are made uniformly

accessible here via CEP queries.

A complex system with many agents and groups would generate too many events

and graphs that are too large to be easily understandable by developers, but the

CEP queries can be used to filter the information. Events regarding the system

topology can be filtered by the distance to a point of interest inside the graphs.

Two different agent graphs can be used as a metric to provide a distance for this

kind of filtering: the agent communication graph, which was explained earlier, and

the agent creation graph. The latter graph connects an agents with all its child

agents with the middleware as the creator of the first agents.

Chapter 4. System Design and Implementation 101

Since there is no difference between the virtual agents and groups and the nor-

mal groups from the publish/subscribe system, this opens even more possibilities.

These include the combination of system information with messages from the sys-

tem and the use of system information by agents. For example, a load balancer

could be implemented using this information. An agent starts a query for a list, of

all agents that implement a certain interface. The query additionally contains the

group names of the subscriptions of these agents. Unreachable agents are auto-

matically filtered out of the list and changes are sent to the requesting agent. This

agent can then forward any incoming message on a configured group to one of the

agents from the query results, thereby acting as a load balancer. This example

can be seen in Figure 4.16. Another possible application would be an agent that

queries the reachability and sending behaviour of another agent. The requesting

agent would then be able to react to changes in the behaviour of the monitored

agent and act accordingly. A possible action would be to replace the supposedly

faulty agent or to inform the user.

CEP Query Agents

Load Balancer Agent

CEP Manager

4. Forward
Messages

2. Starts Agents

3. List of Agents
(updated regularly)

A 1

A 1

A 1

1. Starts CEP
Query

Incoming Messages

CEP Query AgentsCEP Query Agents

Figure 4.16: Example of an implementation of a dynamic load balancer with
a CEP query, which provides an updated list of agents to which messages are

forwarded.

Chapter 4. System Design and Implementation 102

4.4.4 Case Studies

This section presents two short case studies, as examples of how the interaction

with the agent communication graph and CEP queries works. These case studies

were published in Eichler et al. [2020] and both cases were used in multiple research

projects in the CSTI.

A case study is a method of examining an empirical case in detail [Farrow et al.,

2020] and is often used to analyse organisational, political, social, and related

phenomena [Yin, 2010]. However, case studies are also used to evaluate methods,

as in Clements et al. [2009] and are often utilised to demonstrate the suitability

of software architectures (see Section 2.3.4).

The aim of the following case studies is to showcase different interaction possibil-

ities with the user interaction layer to illustrate how the functionalities described

here can help with program comprehension and debugging tasks. The evaluation

of the presented architecture is done separately and is explained in Chapter 5.

4.4.4.1 Omnidirectional walking-in-place detection

The first application is an omnidirectional Walking-In-Place (WIP) tracking sys-

tem, which can be used for Virtual Reality (VR) experiments. The first research

publication using this system was published in Langbehn et al. [2015]. Sub-

sequently, this installation was used for several student theses in the CSTI.

WIP is a method to enable the movement of users in a VR world. The user

wears a head-mounted display and walks in place to move forward in the virtual

world. The direction of the user’s gaze can be used to control the direction of

movement. There are various ways of recognising the user’s steps, such as using

acceleration sensors on the feet. In the experiment planned here, it was intended

to test whether the immersion of the user increases when the speed of movement

can be controlled by leaning forward. Therefore, it was decided to use a skeleton

Chapter 4. System Design and Implementation 103

Figure 4.17: Omnidirectional tracking setup with four sensors [Langbehn
et al., 2015]

detection sensor, such as the Microsoft Kinect 23, for both step detection and

forward lean angle detection. Since the user should be able to rotate freely in the

real world while interacting with the VR world, several sensors were used to track

the user from different viewing directions. The measurement results were then

transported in real time via the network, calculated and transferred to a common

coordinate system. This was also intended to increase the measurement accuracy

and reliability of the sensors.

Figure 4.18 displays the tracking system with 4 Sensors (k1–4). The sensor data

is collected by a sensor fusion agent, and the output is then used by the VR

application.

SELECT

Vector3D(2.3, 3.4, 1.2) as head.position,

Vector3D(2.3, 3.3, 1.1) as spine_mid.position,

[...]

INTO skeleton_data

FROM src.periodic(1000)

Listing 4.4: CEP query to generate skeleton data to simulate a sensor

(truncated)

In this system, a skeleton consists of 27 joints that are detected by each sensor

every 30 milliseconds. The data collected in this way is difficult for humans to
3Kinect for Windows – https://developer.microsoft.com/windows/kinect, accessed 10.06.22

Chapter 4. System Design and Implementation 104

Figure 4.18: Overview of all agents and groups that are used to implement
the omnidirectional walking-in-place detection [Eichler et al., 2020]

understand because there are a large number of three-dimensional vectors. To

examine the data, a visualisation on a 3D canvas similar that in Figure 4.17

can help. Listing 4.5 shows a CEP query that extracts the relevant data for a

visualisation from the sensor data and passes it to a drawing component. This

procedure is possible for single, multiple, or merged sensor data and can help

debug the sensors or the sensor fusion algorithm.

Chapter 4. System Design and Implementation 105

SELECT

head.position,

spine_mid.position,

[...]

INTO draw_3d

FROM skeleton_data

Listing 4.5: CEP query to draw selected skeleton joints on an 3D canvas

(truncated)

The WIP detection can be implemented using the sensor data as a CEP query

based on the sensor data. The corresponding query is shown in Listing 4.6. For

this purpose, the Fusion Agent calculates the distance between the floor plane and

the user’s foot bone for each update of the skeleton data. If this distance is greater

than a predefined threshold, a message is sent to inform other agents that a step

has been detected. Since the skeletons are updated much more frequently by the

sensor than the position of the floor plane, the latter information is stored by the

CEP engine, and the last state in the join is always used.

SELECT

1 as step_detected,

distance_point_floor(

s.bone1.x, s.bone1.y, s.bone1.z,

f.a, f.b, f.c, f.d

) as foot_height

INTO wip_events

FROM skeleton_data as s

JOIN floor_data.keep as f

WHERE foot_height > 3

Listing 4.6: CEP query to implement walking-in-place detection based on a

skeleton sensor

If there is a problem with the sensors or the sensor fusion, the cause must be

found. The agent group graph can help investigate such error cases. The graph in

Figure 4.19 indicates that sensor k3 is not accessible because it is not displayed.

Chapter 4. System Design and Implementation 106

Figure 4.19: WIP agent graph with message throughput indicated by arrow
width, which can help to debug the system [Eichler et al., 2020].

This could be a connection failure or a defect in the sensor. In addition, k4 does not

send any messages, which indicates that there are also problems with the sensor.

Since k4 is reachable, further information about the agent could be requested by

the middleware. This could clarify whether the sensor has already delivered data

and whether any error messages have been logged.

Other errors can also be detected in the graph. For example, the thickness of the

arrows reveals that k2 sends more messages than k1, suggesting that k1 has prob-

lems with the recognition of the skeleton and therefore sends fewer data updates.

The sensor fusion agent sends a similar number of messages as k1 because the fu-

sion agent is waiting for messages from all available sensors to be added together.

As a result the application will continue to run at a lower update rate.

When training new students in the research lab, the interfaces of the system are

Chapter 4. System Design and Implementation 107

visible via the web interface of the middleware. In addition, the data can be

displayed and visualised. Through the publish/subscribe communication, several

projects can access the data simultaneously without affecting other parts of the

system. Due to this modular implementation of tracking and sensor fusion, the

application could be used in many different projects. Over time, this has resulted

in a generic tracking framework that can process the position data from different

sensors and play them out in a common coordination system. Among other things,

gesture recognition for the control of different actuators and other interactions were

implemented.

Because of the message-based implementation of WIP detection via the middle-

ware, the project could be reused later and was used for further VR projects. One

of the projects, which was published in Becker et al. [2019], involved the compar-

ison of different forms of interaction for movement in impossible virtual worlds.

In this case, the application allowed the user to walk on the walls and ceiling of a

virtual room.

4.4.4.2 Processing environmental sensor data

The second application example is the processing of environmental sensor data.

This is often implemented in smart homes to collect contextual information about

the user’s environment. For example, two sensors are used to measure the air

quality. The first sensor is a carbon dioxide sensor (eCO2) and the second is a

particulate matter sensor (PM10). The sensor data is to be processed further to

be able to make statements about the air quality and this information can then be

used to control an air filter system or to automatically air the smart home together

with a window control. Both sensors measure every one to three minutes and

publish the results as messages in the sensor_data group. Each message contains

an identifier of the measurement (e.g., eCO2), a timestamp, the measured value,

and the unit. The interpretation agent subscribing to the sensor_data group takes

the readings and periodically publishes an assessment of the air quality from 0%

Chapter 4. System Design and Implementation 108

Figure 4.20: Overview of agents and groups to process air quality sensor
measurements to automate ventilation in a smart home environment [Eichler

et al., 2020]

to 100%. This value can then be used to control actuators in the home or for

visualisations for the user.

To test the implementation of the interpretation agent independently of the sensors,

CEP queries can be used to generate suitable test data. This is especially useful for

sensors where the sensor data is rarely updated and cannot easily be quickly altered

for testing, as is the case with the air quality sensors. The query in Listing 4.7

creates an agent that generates a message with random values every minute and

publishes it to the specified group. The messages created in this way are identical

to the messages from the sensor and are therefore well suited for testing. By ad-

justing the query, the interval or the values of the messages can be quickly changed

to test further properties of the agent.

SELECT src.ec02

INTO sensor_data

FROM src.random.num(60000, 30, 60)

Listing 4.7: CEP query to simulate a sensor with random data in a specific

range

The implementation of the interpretation or parts of it can also be implemented

as aCEP query. The query in Listing 4.8 takes all sensor data and aggregates it

within a five minute time window. The average of all sensor values within a valid

range is then forwarded to the next integration step. Even if the processing of

Chapter 4. System Design and Implementation 109

the sensor data is implemented with several CEP queries, agents, or a mixture

of both, the complete path of the messages from the sensor via the interpreta-

tion to the actuator is visible via the visualisations of the middleware due to the

seamless integration of the CEP engine. Any interruptions due to programming,

configuration, or hardware errors would be directly visualised for the developers.

SELECT avg(sensor.ec02)

INTO filtered_sensor_data

FROM sensor_data.win.time(300000) as sensor

WHERE sensor.ec02 > 0 &&

sensor.ec02 < 100

Listing 4.8: CEP query to aggregate all sensor data in a 300,000 millisecond

(5 minute) time window by an average function. Values that are out of range

are filtered out prior to the aggregation step

In the second step, during the implementation of the sensors, it is helpful to have

a real-time display of the sensor data. This can be implemented with the query in

Listing 4.9. It converts all sensor readings from the sensors into drawing instruc-

tions for a 2D display. The display then shows a real-time representation of the

sensor values, which can be used to interpret the data and test the implementa-

tion. It is possible to filter the data with further queries to ensure that it is within

the expected range or sent at the expected interval.

SELECT

sensor_values as name,

sensor.name as x,

sensor.ec02 as y

INTO draw_2d

FROM sensor_data

Listing 4.9: CEP query to visualise sensor data

The system was expanded to include additional sensor nodes and sensor types

in several interactions and research projects with students. In addition, various

Chapter 4. System Design and Implementation 110

post-processing methods were implemented to detect and correct errors in sensor

data.

4.5 Conclusion

This chapter gave an overview of the system design and implementation and then

presented the three layers of the architecture.

The first layer, the messaging layer, implements publish/subscribe messaging and

the basic functions of the agent-based system. When designing the architecture,

particular attention was paid to the supporting program comprehension and de-

bugging tasks, which is a special requirement for a software laboratory that is

often neglected for other areas of application in the literature analysed (see Sec-

tion 2.3.4). In addition, these requirements cannot be implemented, or can only be

implemented to a limited extent, with the message brokers often used in practice,

such as MQTT.

The second layer, the CEP layer, is mainly responsible for processing contextual

information in the form of messages from the agents. It works entirely on the basis

of the messaging layer and the publish/subscribe communication provided there,

which consists of agents themselves.

The advantage of the type of integration presented here is that, in program com-

prehension and debugging tasks, developers can view all components of the system

as agents. If a message from a sensor is processed through several steps in the

system to trigger an actuator, all steps can be tracked regardless of whether the

processing was implemented entirely by agents, by CEP queries, or a mixture

of both. Thus, the advantage of the seamless integration used here is that the

event-based and agent-based paradigms complement each other.

Messages and also system information about agents can be processed by CEP quer-

ies, which can also be used for development tasks. These functions are provided

in the third layer, the user interaction layer, which is mainly responsible for the

Chapter 4. System Design and Implementation 111

developer support requirements. The layer consists of several user interfaces that

build on the interfaces of the messaging and CEP layers. The user interface sup-

ports developers in the development, testing, and deployment of agents and allows

them to interactively explore the system at runtime. The latter supports debug-

ging and program comprehension tasks in particular.

One of the most important features of the user interaction layer is the agent

communication graph, which dynamically displays the current system status and

can be filtered by the user as desired. For example, an agent and all agents that

communicate directly with it can be displayed to find out which dependencies exist

for this agent or to locate the source of faulty messages.

To illustrate that the functions of the user interaction layer presented here fit the

use cases in a smart system, first interviews with experts (see Chapter 6) and then

a scenario-based architecture evaluation (see Chapter 8) are conducted.

Chapter 5

Evaluation Methodologies

This chapter gives an overview of the research design choices in this thesis. Based

on the research questions, the studies conducted in the following chapters to eval-

uate the architecture are presented. Then, in preparation for the evaluation, the

literature on expert interviews as well as scenario-based architecture evaluation is

analysed.

5.1 Methodological Outline

Based on the objectives and the research questions (see Section 1.3), the follow-

ing section provides an overview of the further procedure in the analysis of the

requirements for software architectures in smart systems and the evaluation of the

architecture presented in this thesis.

The methodology of this work is predominantly based on Saunders [2019]. The

research onion by Saunders [2019] is an overview of the different research design

choices. It is organised in layers and goes from research philosophies on the outside

in several steps to the concrete methods for data collection and analysis in the

middle. This model is used here to present the research design in accordance with

literature. Figure 5.1 depicts a research onion with the decisions made for this

thesis.

112

Chapter 5. Evaluation Methodologies 113

Pragmatism

Deduction / Induction

Mixed-methods

Experiment /

Scenario-based Analysis /

Interview Survey

Cross-sectional

Latency
Measurments /

ATAM /

Expert
Interviews

Philosophy

Approaches

Methodological

choice

Strategies

Time horizon

Techniques and procedures

Figure 5.1: Research onion based on Saunders [2019] with the research design
choices made in this thesis

Saunders [2019] describes five major research philosophies. They lay the ground-

work for the decisions and assumptions made during a research study. Since the

research questions Q1 to Q4 require very different approaches and methods, the

philosophy that best fits this thesis is pragmatism. Pragmatism encourages choos-

ing methods that best fit each research question, regardless of whether they are

quantitative or qualitative. This is appropriate for this thesis because, for ex-

ample, question Q2 is about message latency and scalability, which is a good case

for quantitative methods, and Q4 considers whether CEP can support developers

can therefore be analysed effectively with qualitative methods.

This thesis follows both an inductive and a deductive approach. The scalability

of the middleware is inferred from an experiment confirming that adding more

nodes increases the performance of the system. In contrast, the expert interviews

Chapter 5. Evaluation Methodologies 114

Experiment Scenario‐based
Analysis Interview Survey

Latency
Measurements

ATAM Expert Interviews

Study 1 Study 2 Study 3

Strategy

Method

Q2
Basic Architecture
Messaging
Performance

Research
Question

Q3
Seamless
CEP integration

Q4
Debugging + Program
Comprehension
With CEP Queries

Q1
Requirements for
Middleware
In Researchlabs

Figure 5.2: Methodological outline

are used to inductively infer the requirements of software architecture for smart

system laboratories, based on the individual data collected in the interviews.

Since both quantitative and qualitative methods are used to answer the research

questions, in line with the research philosophy of pragmatism, the methodology of

this thesis follows a mixed methods approach. More precisely, since not all steps

in this thesis use both quantitative and qualitative methods, this is partially integ-

rated mixed method research. The different methods are each applied separately,

and the results are combined in relation to the research questions.

Several strategies were used for the studies carried out here. Figure 5.2 displays

the relationship between the research questions and the research strategies and

methods chosen. The requirements for middleware in smart system labs (Q1) were

determined with the help of an interview survey [Bhattacherjee, 2012] with expert

interviews (see Seaction 5.2). In addition, the approach of using CEP queries to

support program comprehension and debugging tasks (Q4) is evaluated.

Bhattacherjee [2012] distinguishes between two different survey types. Both fol-

low a structured procedure and serve to collect data from individual persons to be

able to evaluate them afterwards. In the case of questionnaire surveys, a stand-

ardised questionnaire is usually used to enable a quantitative evaluation even of

large numbers of participants. Interview surveys, on the other hand, are usually

analysed using qualitative methods and allow the interviewee to comment more

Chapter 5. Evaluation Methodologies 115

freely and express their own opinions. Here, interview surveys were conducted to

support an exploratory approach in which open questions were asked to determ-

ine the requirements for middleware in smart systems labs and to evaluate the

developed approach to debugging with CEP queries.

The performance characteristics of the software architecture (Q2) presented here

were evaluated with the help of multiple experiments. An experiment examines

the dependence of an independent variable on another dependent variable [Saun-

ders, 2019]. The independent variable is changed during the experiment, and the

changes in the dependent variable are measured. In this thesis, the latency of

messages depends on the number of nodes and the number of components and

messages in the system is tested in two experiments.

Furthermore, the basic architecture and seamless integration of CEP were analysed

by a scenario-based evaluation method [Babar and Gorton, 2004] (see Section 5.4).

The presented architecture is analysed with the help of several scenarios to de-

termine whether the previously determined requirements are fulfilled.

All studies in this paper are cross-sectional studies that examine contexts or events

at a specific point in time. The scenario-based analysis of the architecture is

based on concrete research projects that have a limited project duration, which

is analysed here. A long-term study is not within the scope of this thesis. The

latency and scalability measurements are also based on a given scenario to make

the results as reproducible as possible. No long-term study is necessary here

because message latency and scalability behave independently of the progress of

a project or similar changes.

The individual data collection and analysis methods listed here are outlined in

detail in the following sections. This includes the qualitative studies consisting

of expert interviews [Meuser and Nagel, 2009] (see Section 5.2) and the evalu-

ations of the scenario-based evaluation following the Architecture Trade-off Ana-

lysis Method (ATAM) [Kazman et al., 1998] (see Section 5.4). The quantitative

study of the latency and scalability of the system is conducted in Chapter 7.

Chapter 5. Evaluation Methodologies 116

5.2 Expert Interviews

To analyse the requirements of software architectures in smart system research

laboratories and to evaluate the transferability of the architecture presented, ex-

pert interviews were conducted.

Meuser and Nagel [1991] started the initial systematic debate of expert interviews

in Germany, but the debate was only intensified 10 years later [Bogner et al.,

2009]. Expert interviews should be open and based on an interview guideline,

which structures the interviews [Meuser and Nagel, 2009]. The guideline is not

a script that defines every question of the interview in a fixed order but a list of

topics that are covered in each interview. According to Bogner et al. [2009] expert

interviews are an efficient way to obtain good results quickly.

Whether someone is considered an expert for a research project depends on the ex-

act research question. The expert status is in some way assigned by the researcher

Meuser and Nagel [1991], depending on a specific research project. There are dif-

ferent definitions of experts. According to Meuser and Nagel [1991], someone can

be considered an expert if they are is part of a field of action that represents the

object of research. Experts can be people, who have responsibility for the design

or control of a solution or have privileged access to information about people or

decision-making processes [Meuser and Nagel, 1991]. This definition is used in this

thesis. Often, experts are not to be found at the highest hierarchical level but two

to three levels below, because this is where decisions are prepared and enforced

[Meuser and Nagel, 1991]. This means that people who work with loosely coupled

software, staff and students in research laboratories, are particularly suitable for

this study.

The quality of the interviewees in expert interviews strongly influences the success

of the study [Gläser and Laudel, 2009]. The experts are expected to understand

what information the interviewer is asking for and to give as detailed and complete

statements as possible. Researchers are considered experts in their field of research

[Gläser and Laudel, 2009]. However, there are differences in quality, and it can

Chapter 5. Evaluation Methodologies 117

be very difficult to judge whether a researcher is a good or a bad expert for an

interview. Most studies ignore this problem and only some define the quality of

researchers as experts using research performance indicators [Gläser and Laudel,

2009].

Since this study is primarily concerned with the practical experience of working

with loosely coupled systems in a research context rather than research experi-

ence in the field, the work experience and not the academic performance of the

interviewees is used here as an indicator.

Expert interviews were used in this thesis to get insights into two research ques-

tions. On the one hand for an exploratory analysis of the requirements for software

architectures in the research context when working in smart systems and laborat-

ories with similar requirements. This were achieved with the open questions and

detailed structured analysis of the interviews. Using questionnaires and a quant-

itative analysis would make it more difficult to understand the connections and

reasons behind statements during the analysis. On the other hand, the expert

interviews were used to analyse use cases in other laboratory environments and

limitations of the software architecture. The aim is to draw conclusions about the

transferability of the architecture to similar environments. It is assumed that open

questions, in contrast to a fixed questionnaire, can yield more detailed results, for

example, by asking further questions during the interview to analyse topics in

detail that were not expected in advance.

Qualitative research, in contrast to quantitative research, is concerned with mean-

ing instead of general statements [Mason, 2010]. Therefore, the number of par-

ticipants in a qualitative study is usually smaller than in a quantitative study,

because the results are often not dependent on the frequency of individual data

points [Mason, 2010]. In addition, the analysis of large sample sizes in the qualit-

ative evaluation of interviews is very time-consuming or even impractical because

of the extensive evaluation procedures. For example, to show that software is

appropriate for a user group, one could survey a large number of users with a

Chapter 5. Evaluation Methodologies 118

Publication Number of
Participants Field of Expertise

Lehner et al. [2010] 30 /
3 groups of 10

informatics /
didactics of informatics /
informatics teachers

Haselbock et al. [2018] 10 microservices
Koch [2019] 7 digital ecosystem-related industry
Hannibal [2021] 8 robotics
Beck et al. [2022] 5 business software architecture

Table 5.1: Comparison of sample sizes of computer science publications with
expert interviews

questionnaire and statistically analyse it. Since the presented software architec-

ture for smart systems and the CEP engine are special domain-specific software

that is only to be used in very specific environments in the research context, there

are probably not enough candidates who can be surveyed. In addition, a training

period and prior knowledge are necessary to use the software, which makes it even

more difficult to find participants.

The question of exactly how many interviews should be conducted is not easy to

answer and depends on the circumstances. According to Mason [2010], the guiding

principle for the selection of a sample size should be saturation, which is reached

when no new findings are added with further data. In a study by Mason [2010],

560 PhD studies with interviews where evaluated with a median of 28 and a mean

of 31 participants. The most common sample sizes in the analysed studies were 20

and 30. However, all types of qualitative interviews were considered in this study.

If all participants must be experts regarding the research questions, it can be more

difficult to reach these numbers. For expert interviews, the potential candidates

may be very limited. Indeed, according to Baker and Edwards [2012] it can be

very difficult to find more than 10 participants. For the studies in this thesis,

it is difficult to find such a large number of participants because a considerable

amount of prior knowledge, such as experience with loosely coupled systems and

smart systems, is required.

Chapter 5. Evaluation Methodologies 119

Expert interviews have not only been used in the social sciences but also for vari-

ous publications in computer science and other fields. Table 5.1 shows examples

of computer science publications that conducted expert interviews and compares

their sample sizes. All had 10 or fewer participants per field of expertise.

5.3 Qualitative Content Analysis

This section presents how the recordings of the expert interviews are analysed.

The aim is to carry out the evaluation in a structured, reproducible way based on

the literature and focused on the research questions.

According to Meuser and Nagel [2009] the evaluation of expert interviews generally

follows six steps.

1. Transcription - All relevant sections of the recorded interviews are tran-

scribed in the first step. The transcription of pauses (prosodic and paralin-

guistic) is optional, because they are not considered in the evaluation Meuser

and Nagel [1991]. It is important that the transcription is complete in terms

of content and reflects the content of the interview.

2. Paraphrase - The sequencing of the text based on thematically matching

sections comprises the second step. Individual parts of the interview can

be paraphrased to reduce the size of the material. Which parts should be

transcribed and which paraphrased depends on the research questions.

3. Coding - In the coding step, the volume of the material is reduced by

assigning codes to individual paraphrases or text sections. In this step,

the terminology of the interviewee is used whenever possible. Hence, text

sections can be understood independently of the sequence with one or more

codes.

Chapter 5. Evaluation Methodologies 120

4. Thematic comparison - From this step on, different interviews are com-

pared with each other instead of looking at individual interviews. Com-

parable text sections from the interviews are assigned the same codes, and

redundancies are reduced.

5. Sociological conceptualisation - From this point on, the exact text or

terminology of the interviewee is no longer considered, but rather terms

and categories are formed. The terms and codes taken from the text are

translated to make them comparable with other results and studies.

6. Theoretical generalisation - In the last step, theories are derived from

the created categories by considering them in terms of their relations to each

other

In the first step, Transcription, all interviews are transcribed for further analysis

into text, with time-stamps for each question and answer. Afterwards, all texts

are anonymised, with all names of persons, places, and institutions are replaced

by place holders. In addition, all information that would allow for a clear identi-

fication of the interviewees is removed.

To analyse the collected data and evaluate it in relation to the research questions,

a Qualitative Content Analysis (QCA) can be used [Schreier, 2012]. This method

is used in this thesis to cover step 2 to 6 of the evaluation according to Meuser and

Nagel [1991]. It is widely agreed that a QCA is structured Schreier [2012] in three

aspects: Firstly all the material is sorted by the coding frame. Secondly, the QCA

includes the same sequence of steps every time, independent of the material or

the research questions. Finally, the goal of the coding process is to be consistent.

To make QCA independent of personal understanding and interpretation of the

data the consistency of QCA is checked throughout the whole process via multiple

coding steps by different people or the same person at different times. A QCA can

help describe the material with regard to certain previously defined criteria. It can

not be used to describe the full meaning of the data in every aspect, wich is what

distinguishes it from other qualitative methods for data analysis [Schreier, 2012].

Chapter 5. Evaluation Methodologies 121

The method thus helps to extract information from a large amount of data in a

way that is targeted to the research questions instead of performing an analysis of

all contained information.

According to Schreier [2012], a QCA consists of the following eight steps:

1. Deciding on the research questions

2. Selecting your material

3. Building a coding frame

4. Dividing your material into units of coding

5. Trying out your coding frame

6. Evaluating and modifying your coding frame

7. Main analysis

8. Interpreting and presenting your findings

Figure 5.3 shows the evaluation process based on a schematic from Kuckartz [2018]

and the QCA steps from Schreier [2012].

5.3.1 Coding

In qualitative research, a large amount of data can accumulate quickly that can-

not easily be processed automatically [Schreier, 2012]. For example, in the case of

interviews conducted for this thesis with a length of 30 to 45 minutes and 5,000 to

6,000 words per interview transcript, there are approximately 4.5 hours of video

and 38,500 words of transcript to evaluate. Even with a very specific research

question, it would therefore be very difficult to exclude the possibility of over-

looking something without a structured approach. In addition, the goal of the

evaluation is to find new and possibly unforeseen results. To make this possible

Chapter 5. Evaluation Methodologies 122

Interpretation
and

Presentation

Main
Analysis

Coding
Building a
coding
frame

Material
Selection

Research
Question

Figure 5.3: Main steps of the QCA procedure based on Kuckartz [2018] and
Schreier [2012]

and ensure that the evaluation of the data is done in a structured way, a coding

frame is used.

All interviews were be coded into coding units using the coding frame. The coding

frame is the core of the evaluation. It is used intensively to classify, sort, and reduce

the collected data. "[...] coding units are units that are distinguished for separate

description, transcription, recording, or coding" [Krippendorff, 2004, page 99]. For

example, a coding unit would be a statement during one of the interviews about

a category that fits within the coding frame.

The coding frame consists of a list of main categories, subcategories, and their

definitions. It is used to annotate the gathered data. The main categories of the

coding frame are the topics that are the focus of the analysis. The identification

of the main categories is carried out based on the research questions [Kuckartz,

2018]. Subcategories are used to further organise the main categories into aspects

Chapter 5. Evaluation Methodologies 123

that are relevant to the study. For each main category, subcategories are formed

to gradually narrow down all the units of coding assigned to the main category

[Schreier, 2012].

The coding frame is developed according to the following requirements by Schreier

[2012]:

1. Validity - The coding frame should be comprehensible and appropriate for

the defined research questions.

2. Reliability - The coding frame should lead to the same results when used

several times, even by other people.

3. Unidimensionality - Each category of the coding frame should represent

only one aspect of the material. If multiple dimensions are grouped together

into one category, they should be split up. or the coding frame has to be

reorganised accordingly. For example problems with distributed software

and solution strategies related to this study should not be part of the same

category to allow an independent analysis.

4. Mutual exclusiveness - Subcategories in the coding frame should be mu-

tually exclusive. This means that each unit of coding should fit at most one

of the subcategories of the main category.

5. Exhaustiveness - All relevant units of coding should match at least one

subcategory in the coding frame. If a relevant text section cannot be clas-

sified, a new category should be created for it be able to consider it in the

evaluation.

6. Saturation - Each subcategory should be used at least once. Unused sub-

categories should be removed from the coding frame.

A good coding frame should implement the majority of these requirements, and

the most important of which are validity and reliability [Schreier, 2012], which are

evaluated with a coding test.

Chapter 5. Evaluation Methodologies 124

The process of coding with the coding frame is illustrated in Figure 5.4 based on

Kuckartz [2018]. Firstly, all the material is coded with the main categories. Then,

the subcategories are inductively generated from the material during a second

coding step.

Research
Question

1) Initiating text work:
marking important passages,

writing memos

2) Creation of the main
categories

3) Coding with main
categories

4) Collating all text passages
coded with the same main

category

5) Inductive determination
of subcategories

6) Coding of the complete
material using the coding

frame

7) Simple and complex
analyses, visualisations

Figure 5.4: QCA coding procedure based on Kuckartz [2018]

The analysis of the interviews with the help of a QCA and the presentation of the

results is available in Chapter 6

5.4 Scenario-based Analysis Method

This section describes the procedure for evaluating the architecture in this thesis

will be selected and described. Santos et al. [2022] surveyed research papers with

an evaluation of SoS software architectures from 2006 to 2021, focusing on the

last 10 years. Their study demonstrates that different evaluation approaches have

been used to determine the quality of software architectures in this area, includ-

ing experience-based, simulation-based and scenario-based evaluation, as well as

mathematical modelling.

Chapter 5. Evaluation Methodologies 125

In an experience-based evaluation, the architecture is evaluated based on the know-

ledge of the software architecture according to the requirements [Patidar and Su-

man, 2015]. Compared to the other approaches, this has the disadvantage that

it is less based on a well-defined and structured process and instead follows more

subjective factors, such as the intuition and experience of the architect [Bosch and

Molin, 1999]. However, since the opinion of experienced software architects has

a value that should not be underestimated, this approach can serve as a basis or

starting point for other evaluation methods [Bosch and Molin, 1999].

Alternatively, architectures can be evaluated by simulation or mathematical mod-

els. This approach is also suitable for agent-based architectures, as is often the

case with smart systems. Often times, certain attributes of the architecture, such

as performance or correctness, are evaluated by automatic simulation tools or

mathematical proofs [Balsamo and Marzolla, 2003, Reussner et al., 2003].

Conversely, in scenario-based approaches the quality characteristics of an archi-

tecture are systematically evaluated based on scenarios.

Although simulation-based approaches for the evaluation of SoS have domin-

ated in recent years, scenario-based approaches are better suited for the evalu-

ation of trade-offs between quality attributes of an architecture [Santos et al.,

2022]. Scenario-based approaches, in contrast to simulation-based and mathem-

atical modelling, can investigate several quality attributes and their interactions

simultaneously [Santos et al., 2022]. The architecture evaluated here was designed

to facilitate development processes for complex systems. In addition to the per-

formance of the system, usability aspects and functionalities related to the work of

developers are particularly important. Several different properties and functions

of the architecture must be included and set in relation to each other. An example

of this is performance and the system’s ability to provide debugging information.

For this reason, a scenario-based approach was chosen for the following evaluation.

Different methods can be used for a scenario-based analysis, which is usually based

on the following sequence [Babar and Gorton, 2004]: Firstly, the process is planned

and the evaluation is prepared, secondly, the main approaches of the software

Chapter 5. Evaluation Methodologies 126

architecture are presented, and thirdly, scenarios are identified that depend on

desired quality attributes, and finally, the software architecture is evaluated based

on these scenarios, and the results are interpreted and presented.

The central aspects of a scenario-based evaluation are the scenarios. A scenario

consists of a brief description of the interaction of one or more stakeholders with

the system [Clements et al., 2009]. Stakeholders can have different views of the

system depending on their roles. From a user’s perspective, a scenario could be a

description of a use case; from a maintainer’s perspective, it could be a description

of a change to the system; and from a developer’s perspective, it could be a design

or enhancement of the system.

The description of a scenario consists of three parts [Clements et al., 2009]. The

stimulus is the description of the action, or the trigger that causes a change in

the system. The environment is a description of all relevant internal and external

circumstances at the time of the change. These can be system states, system

failures, errors, and other effects. This part can be omitted if there are no special

circumstances. Finally, the response describes the reaction of the system to the

stimulus. This can be certain expectations, such as providing a response within

100 ms or outputting an error description.

The scenarios can result from the requirements for an architecture but are de-

scribed in more detail on the basis of a use case. For example, a common re-

quirement is the fault-tolerance of the system. A corresponding scenario would

additionally define which components are fault-tolerant, how many components

may fail at the same time under which circumstances, and what the expected

behaviour is when this occurs.

There are several different methods to perform a scenario-based architecture ana-

lysis [Babar and Gorton, 2004, Dobrica and Niemela, 2002].

In this study, ATAM was used because it is a mature and proven method for eval-

uating software architectures. Babar and Gorton [2004] presented a framework

for the comparison of software architecture evaluation methods that it uses the

Chapter 5. Evaluation Methodologies 127

maturity stage as one criterion for comparison. According to this, ATAM is one

of the most mature methods and is in the refinement stage, which means that

the method has been validated by results in credible research literature and is be-

ing continuously developed. Another indication of the maturity of ATAM is that

ATAM and its predecessor, the Software Architecture Analysis Method (SAAM),

unlike many other methods, have been used in different industry projects [Shan-

mugapriya and M. Suresh, 2012, Patidar and Suman, 2015]. These projects have

been recorded and evaluated in books as extensive case studies [Clements et al.,

2009].

ATAM is the only method that offers comprehensive process support [Babar et al.,

2004]. Furthermore, only ATAM provides support for the production of reusable

results, such as the identification of risks, scenarios, and quality attributes [Babar

and Gorton, 2004]. According to Dobrica and Niemela [2002], the method to be

used should be determined by the context of the problem. A method should be

applicable early in the development process, support the evaluation of all quality

attributes of the architecture to be evaluated, and be easy to apply. ATAM sup-

ports all these requirements [Dobrica and Niemela, 2002] and fits all the quality

attributes evaluated in Chapter 8.

5.4.1 Architecture Tradeoff Analysis Method

In the following the ATAM will be discussed first and then the exact procedure

used here will be described in detail before continuing with the evaluation and the

presentation of the results. The procedure to evaluate the architecture, which is

used in this thesis is based on the Architecture Trade-off Analysis Method (ATAM)

[Kazman et al., 1998] and has been supplemented to take the circumstances of this

study into account.

ATAM [Kazman et al., 1998] is a method for architecture evaluation that is based

on the Software Architecture Analysis Method (SAAM) and it includes both so-

cial and technical aspects. The social aspects regulate the interaction between

Chapter 5. Evaluation Methodologies 128

stakeholders and provide a framework for an exchange to transform the implicit

assumptions of individuals into an explicit overall picture. The technical aspects

regulate what data is collected and how it is analysed.

Instead of only evaluating whether a quality attribute is covered by an architec-

ture, ATAM addresses multiple quality attributes and aims to determine how they

are related to each other [Kazman et al., 1998]. For example, performance can

negatively affect modifiability, and availability can affect safety. These depend-

encies are called tradeoffs and their identification is one of the main objectives of

ATAM.

ATAM can be used during different stages of software development for the eval-

uation of one or the comparison of several software architectures [Santos et al.,

2022]. In the early stages, a scenario-based evaluation can help to ensure that

the architecture meets the requirements and is able to react to problems early.

ATAM can also be used to analyse legacy systems, such as when major changes

are planned or the architecture is to be compared with a successor to assess whether

a change of architecture makes sense [Clements et al., 2009]. According to [Babar

and Gorton, 2004], ATAM is most effective for evaluating the final version of a

software architecture, as is the case in this study.

ATAM involves all major stakeholders, or all persons with a vested interest in the

system [Babar and Gorton, 2004]. This includes software architects, designers,

and end users. The evaluation procedure consists of four major phases [Kazman

et al., 1998] and eight steps [Clements et al., 2009], that can involve different

stakeholders. They conduct the following evaluation steps during one or more

workshops.

• Presentation - The working group receives all necessary information about

the further procedure and its contents through a series of presentations.

1. Present the ATAM - First of all, the ATAM is presented to all stake-

holders involved in the evaluation.

Chapter 5. Evaluation Methodologies 129

2. Present the business drivers - Subsequently, the business drivers of

the development of a system and the evaluation are presented. This

includes the presentation of the purpose of the system, constraints,

business goals, and an introduction of the main stakeholders.

3. Present the architecture - Finally, the architecture to be evaluated

is presented. Among other things, the structure of the architecture,

the technical constraints, and relevant interfaces to other systems are

discussed. Here, it is important that the architecture is presented in

appropriate detail for evaluation because the results depend directly on

the information given.

• Investigation and Analysis - The quality characteristics and requirements

for the architecture are mapped to the architectural approaches.

4. Identify the architectural approaches - The first step in the ana-

lysis is to identify the architectural approaches or architectural styles.

These describe, for example, important structures in the system, and

how the system can grow, react to changes, or interact with other sys-

tems. This includes a description of the components involved, their

structure, and their interaction. The list of approaches is created by

the system architect and is used to support the following evaluation.

The list of approaches is completed with all participants during the

following steps.

5. Generate the quality attribute utility tree - The next step is

to identify and order the quality goals of the architecture by import-

ance. Firstly, the major goals of the architecture, such as performance,

modifiability, or availability, are identified. These are then subdivided

and described with scenarios. For example, performance could be sub-

divided into message latency and throughput. A concrete scenario for

message latency could then be an expectation of certain maximum or

average latencies for a component. The individual scenarios are then

Chapter 5. Evaluation Methodologies 130

pre-prioritised, according to their importance for the success of the sys-

tem.

6. Analyse the architectural approaches - In this step, the quality

attribute tree is used to examine the suitability of the architectural ap-

proaches for the prioritised scenarios. The goal is to determine whether

the architecture to be examined fulfils the established requirements.

The result is the assignment of the architectural approaches to the

scenarios, analysis questions, and answers. In addition, risks, sensitiv-

ity points, and tradeoffs are identified.

• Testing - The preliminary results are checked against the requirements of

all relevant stakeholders.

7. Brainstorm and prioritise scenarios - At the beginning of the test-

ing phase, additional scenarios are first searched for, and then all ex-

isting scenarios are weighted. New scenarios are compared with the

existing ones and added or merged if necessary. Only the architects

and project leaders are involved in setting up the utility tree. Here, all

stakeholders are consulted to expand the scenarios. With this approach,

it is possible to determine if there are scenarios that were neglected

when the architecture was set up.

8. Analyse the architectural approaches - Analysis of the architec-

tural approaches for any newly added high-priority scenarios during the

testing phase is carried out in the same way as in step 6.

• Reporting - Presentation of the results of the evaluation.

9. Present the results - Finally, the results are collected and presented.

This includes the architectural approaches, the prioritised scenarios, the

analysis questions and answers, as well as the utility tree.

Chapter 5. Evaluation Methodologies 131

5.4.2 Adjustments to the procedure

The procedure description for ATAM in Clements et al. [2009] is mainly laid out

for an evaluation of an architecture in a business context. The motivation is to

evaluate an architecture as early as possible in the decision-making process in

order to save costs. The evaluation can be done before the implementation of the

architecture as well as on the basis of existing systems, for example to compare

legacy systems with a newer approach to decide whether a change is worthwhile.

Scenario-based evaluation methods for software architectures are also frequently

used in research. In particular, a survey by Santos et al. [2022] indicates that this

also applies to SoS.

Since the architecture examined here is not in a business context, but in a research

context, ATAM is adapted. The adjustments mainly concern the time frame of the

implementation and the composition of the working group. All deviations from

the method described in the literature are explained and justified in detail below.

According to Clements et al. [2009], an evaluation following the ATAM usually

takes three days, plus preparation and follow-up. In contrast, this study spans

a longer period of time and several phases, bacause the architecture presented

here has been developed in multiple steps and has evolved over time. The ba-

sic architecture was developed first, and the CEP integration was added later,

after intensive experience had been gained with the messaging layer. This has

the advantage that the results of the evaluation incorporate the experiences and

feedback of the entire development period and are not just a snapshot of the final

results. In addition, the longer period gives stakeholders the opportunity to work

intensively with the architecture and to implement their own projects based on

this architecture. These advantages are not possible to this extent with the ori-

ginal method lasting a few days. It is assumed that the evaluation benefits from

the longer investigation period, and ATAM specifies a shorter period to keep the

necessary effort for investigations within the business context feasible.

Chapter 5. Evaluation Methodologies 132

The situation is similar with the participants and the procedure of the study.

According to Clements et al. [2009], a four person evaluation team, the architect,

the client, and the stakeholders are normally involved in an evaluation according

to ATAM. In addition, the evaluation is carried out together with all stakeholders

over a few days.

In this study there are different groups of participants with whom the architecture

is discussed. The organisation and compilation of the results lie with the software

architect and the author of this thesis. The evaluation includes experiences and

results from several student courses at the university and discussions with users

of the architecture in the two investigated laboratories. These include students

writing their theses and their supervisors, lab managers, and lab staff.

Compared to an evaluation according to ATAM, more individuals are likely in-

volved, but the examination was not carried out in the presence of all participants

at once. These adjustments are justified by the longer study period and the nature

of research projects in the laboratories mentioned. Bachelor’s and master’s theses,

research projects, and university courses with students usually run for six month

to one year. It would therefore only be possible to carry out this study at a fixed

point in time if the number of participants were significantly reduced. Table 5.2

gives an overview of the professional roles of the stakeholders participating in the

individual steps of the ATAM architecture evaluation with in this thesis.

Chapter 5. Evaluation Methodologies 133

Step Number Responsible Roles
Presentation 1-3 System Architect
Identification
Architectural
Approaches

4 System Architect

Quality Attribute
Utility Tree 5

System Architect
Laboratory Manager
Student Supervisor

Analysis
Architecture
Approaches

6, 8

System Architect
Laboratory Manager
Laboratory Staff
Student Supervisor
Student

Brainstorm and
Prioritize
Scenarios

7

System Architect
Laboratory Manager
Laboratory Staff
Student Supervisor
Student

Reporting 9 System Architect

Table 5.2: Overview of the professional roles of the stakeholders involved in
the analysis. It is important to note that in steps 7 and 8, the results of steps

4 and 5 are evaluated and completed if necessary.

Chapter 6

Expert Interviews

To further analyse the requirements for software architectures in smart systems

laboratories and to start the evaluation of the program comprehension and debug-

ging improvements, interviews were conducted with experts who have consider-

able experience in the development of software components for smart systems or

in the maintenance of distributed, loosely coupled software systems in a laborat-

ory context. The interviews pursue three objectives: Firstly, to analyse research

environments and the team compositions the interviewees work in, secondly, to

identify special requirements for software architectures in these environments, and

thirdly, to analyse whether and how the software architecture presented here can

be used in other smart system laboratory environments.

The use of expert interviews as opposed to other methods has two advantages.

Firstly, it is possible to address all the above-mentioned objectives together through

the interviews. For example, it would have been possible to perform an evaluation

of the improvement of debugging by the architecture through a study with stu-

dents measuring how long certain tasks take or how much code had to be adapted

by them for certain tasks. However, this would not have provided any information

on how the architecture could be applied to improve debugging at all. With the

expert interviews, it is not only possible to ask about these aspects at the same

time, but the results are also linked together during the evaluation. Secondly, this

part of the evaluation had to be conducted under the contact restrictions of the

134

Chapter 6. Expert Interviews 135

COVID-19 pandemic in 2020 and 2021. Expert interviews allow participants to

be interviewed online without risk. Other methods would have required access to

laboratory environment and meetings with participants in person. In addition, the

necessary number of participants was reduced by using expert interviews. Normal

interviews or a survey questionnaire would have required more participants, which

did not exist due to the limitations mentioned above.

The following section details, the research questions for the interviews are specified

and an interview guideline. Then, the analysis of the interviews via a Qualitative

Content Analysis (QCA) is presented, and the evaluation is carried out, includ-

ing the presentation of the coding system. Finally, the results of the QCA are

illustrated.

6.1 Interview Research Questions

In the first step of preparation for the expert interviews, the research questions to

be answered by the interviews have to be defined. These questions depend on the

research questions of the thesis, which are already defined in the context of this

work and have been shown in the introduction (s. Section 1.3).

Research question Q1 was only partially answered by the literature review, which

concluded with a listing of known requirements for smart system middleware,

based on published information about smart systems. During the analysis of the

requirements in Chapter 3, it was assumed that these requirements could be adop-

ted for research environments, but should be extended by additional requirements.

The additional requirements are mainly due to the need for increased flexibility

in a research environment. The interviews aim to confirm this assumption and to

concretise the requirements. Therefore, QI1 addresses the software architectures

in research laboratories. In addition to this QI2 investigates program comprehen-

sion and debugging tasks in the interviewees’ research labs to further substantiate

the analysed requirements.

Chapter 6. Expert Interviews 136

• QI1: Which software architectures are used in research laboratories for

loosely coupled systems, and which requirements are to be met by them?

• QI2: What do program comprehension and debugging tasks look like in

research laboratories with loosely coupled software architectures?

Research question Q2 is addressed in Chapter 7 with latency and scalability eval-

uations of the developed middleware and of the integrated CEP engine. Parts of

research question Q3 were answered on the one hand by the implementation of

the architecture in Section 4.3 and on the other hand will be further evaluated

with scenarios in Chapter 8.

Finally, research question Q4 is covered with QI3 to determine whether the ap-

proaches developed here are compatible with other laboratory environments.

• QI3: To what extent can the presented method support program compre-

hension and debugging tasks with the help of CEP in smart system research

laboratories?

6.2 Interview Guideline

In the second step, the materials for the content analysis must be created and

selected. In this case, this means planning and conducting the expert interviews.

As described above, an interview guide is used to pre-structure the interviews and

ensure that no relevant topics are left out during the interview. In addition, the

general procedure of the interviews is further specified, and the participants are

selected.

6.2.1 Procedure and General Conditions

The guideline is used to ensure that the process of all interviews is as similar as

possible and no topics are left out, but the concrete questions asked depend on

Chapter 6. Expert Interviews 137

the interviewee and the development of the interview itself to allow for the indi-

vidual answers and opinions of the interviewees. There are therefore no predefined

answers or other restrictions. The full interview guideline can be found in the

Appendix (see A.1). The interview guideline was tested in advance with one test

interview to adjust the timing and reduce the chance of misunderstandings.

The expert interviews are divided into three thematic groups, with QI1 to QI3 as

lead questions and a short demonstration of the architecture of this thesis between

Part 2 and Part 3:

• Part 1 - Middleware and Software Development in Smart System Laborat-

ory Environments

• Part 2 - Program Comprehension and Debugging in Smart System Labor-

atory Environments

• Demo - A short demonstration of the developed middleware and the pos-

sibilities of interaction for program comprehension and debugging tasks.

• Part 3 - Evaluation of Program Comprehension and Debugging with CEP

The interviews were conducted online with video and audio in order to interview

people over long distances and eliminate any risk related to the COVID-19 pan-

demic. All interviews were recorded with video and audio with the consent of the

interviewee and took approximately 30-45 minutes as planned. To ensure data

privacy and security, the interviews took place on a private, self-hosted meeting

server, and all recordings were stored directly on the hard drive of this server.

All interviewees volunteered to participate and received no compensation. Prior

to the interview, they were sent a document explaining the procedure and high-

lighting the following general conditions. The informing of all participants and

the collection of consent forms was done by email before arranging the interview

appointments. The documents can be found in the Appendix in Section A.3.

The information sheet, and the consent form were approved by the UWS ethics

committee.

Chapter 6. Expert Interviews 138

The interviewee could abort the interview at any time, without having to give

a reason or worrying about disadvantages, but none of the participants made

use of this possibility. Apart from a few minor technical problems and temporary

problems with the audio quality, there were no interruptions during the interviews,

and all interviews were finished. Thus, all interviews conducted were included in

the evaluation.

All interviews began with a welcome, after which participants were asked to in-

troduce themselves. The interview guideline was then followed, starting with

questions about general experiences with loosely coupled systems. The second

part then asked about procedures for identifying the root cause of software fail-

ures. After that, CEP was presented in a short talk as an approach to improving

program comprehension and debugging processes. Finally, the participants were

asked about the presented approach. At the end of the interview, all participants

were given the opportunity to address open issues or to add further topics that

they felt had been left out.

6.2.2 Middleware and CEP Interaction Demonstration

During the interviews, the approach presented for program comprehension and

debugging with the help of CEP queries was demonstrated. To ensure that the

presentation contained the same information for all participants, a presentation

consisting of six slides was prepared. Firstly, a short introduction to the func-

tioning of CEP was given if the participant had no related experience prior to

the interview. A figure similar to Figure 2.4 and an example CEP query were

used for this purpose. Afterwards, two figures depicting the developed interface

were shown to demonstrate the user interface. The first figure includes a small

graph of agents and groups and their interactions with messages, and the second

figure shows a list of messages that were published inside of a group, including

a textbox and button to interactively send messages to that group. During the

presentation parts of the Omnidirectional Walking-In-Place Detection case study

(see Section 4.4.4.1) were given as an example.

Chapter 6. Expert Interviews 139

SELECT

head.position,

spine_mid.position,

[...]

INTO draw_3d

FROM skeleton_data

Listing 6.1: CEP query to

draw selected skeleton joints on

an 3D canvas (truncated)

SELECT

1 as step_detected,

distance_point_floor(

s.bone1.x, s.bone1.y,

s.bone1.z,

f.a, f.b, f.c, f.d

) as foot_height

INTO wip_events

FROM skeleton_data as s

JOIN floor_data.keep as f

WHERE foot_height > 3

Listing 6.2: CEP query

to generate skeleton data to

simulate a sensor (truncated)

SELECT

agents.name,

groups.name,

groups.last

INTO output

FROM system.agents as agents

JOIN system.groups as groups

ON agents.publish CONTAINS groups.id

WHERE groups.last > 60

Listing 6.3: CEP query to select all agents that have not published a message

in the last 60 seconds

Several examples of CEP queries were discussed and explained during the present-

ation. These examples are provided in Listings 6.1, 6.2 and 6.3.

The designed software architecture and the implementation of the seamless integ-

ration of CEP were not part of the demonstration to keep the focus on the of

interaction with CEP queries and to keep the interview length manageable. To

ensure that the interviews work well even with limited connection quality or on

Chapter 6. Expert Interviews 140

devices with a lower resolution, the text portion of the presentation was kept to

a minimum. The slides only contain the example queries with a large font size to

show the interaction with the CEP engine. The rest of the information was given

during the presentation by the interviewer based on a prepared script and was

based on experiences of the interviewees that were asked about beforehand. These

examples were used to make it as easy as possible to follow the presentation.

6.3 Participants

For this study, seven interviews were conducted in total. All participants are listed

with anonymised names in Table 6.1. The suitability of the participants as experts

for these interviews was determined based on information provided by the inter-

viewees and referrals. All participants had worked in research laboratories with

loosely coupled software architectures for multiple years. Several research labor-

atories were contacted. and interview participants were sought through referrals.

All the candidates who responded were male. At the time of the interviews, two

participants were computer science professors, three were postdocs and two were

students. Two interviewees reported their experiences in more than one software

environment, and two other interviewees worked in the same research laboratory.

In total, the interviews contain experiences from eight different environments with

loosely coupled software. Six of these are research projects at universities, and

two are projects in companies that had to be excluded later in the evaluation,

because of an incompatible software architecture. The topics of the projects range

from smart home and Ambient Assisted Living (AAL) to middleware and network

topology research, self-driving cars, and micro-controller networks. Both for the

collection of requirements for these environments and for the evaluation of the

architecture presented in this paper, an attempt was made to find people with

experience in as diverse environments as possible. This should provide indications

about the transferability to other environments.

Chapter 6. Expert Interviews 141

The language in which the interviews were conducted depended on the preference

of the interviewee to encourage as much discussion as possible. However, due to the

limitation of the language selection to German and English, some interviews were

not performed in the mother tongue of the interviewees. In total, four interviews

were conducted in German and three in English.

Interview Name Role Language Environments
1 Adam Postdoc German E1
2 Bob Postdoc English E2
3 Charlie Postdoc English E3
4 Dave Student English E4
5 Edward Professor German E5, E7
6 Frank Student German E5
7 Gabe Professor German E6, E8

Table 6.1: List of the expert interview participants with anonymised names.

It is often difficult to find more than 10 experts for interviews [Baker and Ed-

wards, 2012] and the number of seven interviews is comparable to other studies

in the literature where 5-10 participants per field of expertise were interviewed

(see Section 5.2). Since experts were interviewed here, the number of interviews

required to derive statements from them is likely smaller since it is assumed that

the experts have the information we are looking for and can reproduce it correctly.

What matters is not the number of participants but the quality of the participants,

the conduct of the interviews, and the systematic evaluation.

Interviews with experts, like other interviews, can fail. One possible failure would

be if it emerges during the interview that the interviewee does not feel comfortable

with the expert role [Meuser and Nagel, 1991] or if it turns out that they are not

suitable as an expert according to the defined criteria after all. This was not

the case in the interviews conducted here. All seven interviews were included in

the evaluation, which reduces the necessary number of participants compared to

studies where it is more difficult to identify experts.

Chapter 6. Expert Interviews 142

6.4 Interview Evaluation

The next step after conducting the interviews is the evaluation of the results based

on the video and audio recordings.

Steps 1 and 2 of the evaluation steps according to Schreier [2012] have already

been dealt with. The research questions for the interviews were derived from the

research questions of the thesis. The material for this QCA consists of the tran-

scripts of the interview recordings and accompanying text material about the tech-

nologies mentioned during the interviews. In addition, this study looks at other

documents that were mentioned during the interviews. This includes, among other

things, documentation on software products used in laboratory environments. The

remaining steps are described in the following sections.

6.4.1 Coding

The next steps require the construction of a coding frame and the coding of the

entire material. The main categories and subcategories defined during the coding

process are presented below.

6.4.1.1 Main Categories

Based on the interview questions, the following main categories were developed to

analyse the transcribed recordings.

• Part 1 - Middleware and Software Development in Smart System

Laboratory Environments

– Information about the interviewee - Current and past roles of

interviewees in the laboratories addressed and their experiences with

loosely coupled systems. This information is mainly used to confirm

the suitability of the interviewees as experts.

Chapter 6. Expert Interviews 143

– Software laboratories - Information on the addressed laboratory en-

vironments, work processes, and software architecture.

– Challenges due to the environment - Challenges that arise from

working in laboratory environments with loosely coupled software.

• Part 2 - Program Comprehension and Debugging in Smart System

Laboratory Environments

– Challenges due to the software architecture - Problems that arise

when using loosely coupled software. These include, for example, prob-

lems with the delivery of messages or problems with the identification

of individual faulty components.

– Solution approaches - Strategies used to get to know the system or

for debugging in case of error, and whether software is used to support

this.

• Part 3 - Evaluation of Program Comprehension and Debugging

with CEP

– Experience with CEP - Interviewee’s experience with CEP prior to

the interview.

– Feedback - Positive and negative feedback on approaches presented

during the demo.

– Use cases - Possible uses of the approaches presented that are ad-

dressed by the interviewee.

– Limitations - Reasons an application of the presented approaches

might not be possible or why it may only be possible to a limited extent

in the addressed software environments.

6.4.1.2 Coding Process

In the coding process, the coding frame is used to divide the material into indi-

vidual units that are assigned to categories [Schreier, 2012]. The software MAXQDA

Chapter 6. Expert Interviews 144

2022 (VERBI Software [2019]) was used for the coding process. This software al-

lows the creation of coding frames and applies them to texts without modifying

them. In addition, the software can easily compile and evaluate text sections from

selected categories.

The coding process is incremental [Schreier, 2012]. In the first step, all relevant

text sections are coded into the main categories. All relevant statements are added

to a main category one by one. If no suitable category exists, the coding frame

must be adjusted accordingly. Text sections irrelevant for the evaluation are not

assigned to any of the categories and thus do not hinder the further evaluation

steps [Schreier, 2012]. Examples of irrelevant sections include the greeting at the

beginning of the interview or questions about the operation of the meeting software

used.

Suitable subcategories are subsequently created with the help of the units selected

in this way. The text units are then completely or partially assigned to one or more

of these subcategories. Afterwards, the coding for the main category is removed.

This increases the overview and leads to the fact that no unit is omitted during

this process. No information is lost in the process because assignment to the main

category continues to exist indirectly through the subcategory.

6.4.1.3 Subcategories

In the following, the subcategories are presented for the three parts of the eval-

uation, which were defined during the coding process as described earlier. The

full coding frame with all subcategories can be found in the Appendix in Sec-

tion A.2. Only subcategories that are described further and contain several units

of coding are further described in the following. Since some subcategories result

directly from individual statements, they are omitted here and described later in

the evaluation.

Part 1 of the interview was mainly about the experiences of the interviewee, es-

pecially about the software environments they have worked in. The information

Chapter 6. Expert Interviews 145

about the interviewee is divided into statements about their role and statements

about their working experiences. This information is not part of the following

evaluation, but was used to assess the expert role of the participants.

To further evaluate the mentioned software environments, important aspects of

the architecture were created as subcategories. These include the message formats

and the messaging software used as well as a subcategory added to the coding

frame to identify how large and complex the environment is and how changes are

made to the architecture.

• Information about the interviewee

– Role

– Experiences - Statements about the curriculum vitae of the participant

• Software laboratories

– Goals - Aims of the project

– Software Architecture

∗ Messaging Format

∗ Messaging API

∗ Messaging Software

∗ Complexity - Indications of complexity of the software environ-

ment, e.g. number of agents

∗ Architecture Change Management - How are changes made to the

system architecture?

∗ Security - Security relevant parts of the architecture

[...]

In Part 2, challenges and solution approaches into working with loosely coupled

systems in research projects are further analysed. For this purpose, the categories

Problem Fields and Approaches were further subdivided according to the identified

units of coding.

Chapter 6. Expert Interviews 146

• Problem Fields

– Complexity

– Distributed Systems

– Faulty Agents

– Messaging

– Documentation

– Sensors

• Approaches

– Message Validation

– Debugging Strategies - Information on how debugging is performed

– Debugging and Testing Software - Used debugging and testing scripts

or software

[...]

Part 3 contains the evaluation of the approach presented during the interview. At

the beginning, people were asked about their experiences with CEP. The answers

were sorted into three categories according to the extent of experience in the coding

frame. The Feedback, Potential Uses Cases and Limitations categories were further

subdivided to further sort the responses. The subcategories are described in more

detail in the further evaluation. They are small and contain only 1-3 units of

coding each.

• Experience with CEP

– A lot of experience - CEP used in own projects or in research.

– Some experience - Heard from CEP but only superficial experience with

the use

– No experience - No knowledge of CEP

[...]

Chapter 6. Expert Interviews 147

6.4.2 Evaluation of the Coding Frame

At this point, the coding frame is complete, and all relevant parts of the material

have been assigned to categories. The coding frame presented in the previous

chapter is the final version used for the evaluation. It contains all adjustments

and improvements that were made to the coding frame during the evaluation

based on the experience gained during the evaluation.

As recommended by Schreier [2012], the coding process was repeated for the com-

plete material. Hence, after a period of several weeks, a second coding was per-

formed. The results of the two runs were then compared. Some inaccuracies in the

first version of the coding frame were noticed and are explained in the following

paragraphs.

In the first version of the coding frame, there was an overlap of the Challenges

categories in Part 1 and Part 2. To resolve this, the category names were adjusted

and the descriptions were made more explicit. Now only challenges that have to

do with the software environment are collected in the first part. Problems with

processes are assigned to categories in Part 2.

In addition, an attempt was made to divide the classification of feedback into

positive and negative feedback, but this was changed after the second coding

run, because the assignment was not clear. For example, the comment that the

presented system is not suitable for a purpose can have a negative effect in the

first step. However, if the system was designed with this restriction, this feedback

can also be perceived as positive. Therefore, the category Feedback was divided

thematically into Use Cases, Features and Limitations. Further interpretation of

the feedback in the individual subcategories took place during the later evaluation.

The coding frame was refined over several steps: during the first coding with the

main categories, during the creation of the subcategories, and during the second

coding. In addition, the coding frames were discussed with other researchers from

the working group to gather feedback. However, no additional coding was per-

formed by other researchers.

Chapter 6. Expert Interviews 148

6.5 Results

In the following, the collected and processed results from the interviews are presen-

ted. The presentation of the results is based on the structure of the interview guide.

First, the environments in which the interviewees worked are presented and the

software architecture used there is discussed. Afterwards, the challenges that were

addressed when working in these environments will be explained. Then the ap-

proach of using CEP for debugging is evaluated with the statements made during

the interviews and finally a conclusion based on the presented research questions

is drawn.

6.5.1 Software Environments

Table 6.2 lists all the environments that were addressed during the interviews. En-

vironments E1 to E6 are research projects, and E7 and E8 are industrial projects.

Environments E7 and E8 are not considered in the following because no message-

based, loosely coupled software architectures was used in these projects. This only

concerns a very small portion of the material because the excluded environments

represent the previous work experiences of two interviewees and constitute a small

part of the respective interviews.

Notably different environments were mentioned during the interviews. Because

the interviews focused on how work was done in these labs rather than what

the aim of the research projects was, the types of environments are only briefly

described here. E1 and E5 are laboratory flats with the aim of researching systems

to support people in their home. E1 started as an AAL laboratory and now focuses

on assistance for everyone. E2 and E3 are mobile networking projects. E2 focuses

on the networking itself, E3 on the visualisation of network topologies and E4

on self-driving cars. Finally, E6 is a research project about the development of a

middleware for distributed agent-based systems.

Chapter 6. Expert Interviews 149

Environment ID Environment type Research Topic
Smart Home A E1 Research laboratory Smart Home, AAL
Mobile Networking E2 Research project Mobile Networking
Networking Visualisation E3 Research project Mobile Networking Topology
Self-Driving E4 Research project Self driving cars
Smart Home B E5 Research laboratory Smart Home
Agent Middleware E6 Research project Middleware for agent-based system
- E7 Industry project Microcontroller network
- E8 Industry project Facility control system

Table 6.2: List of environments mentioned during the interviews

One of the main characteristics of a loosely coupled, distributed system is the

communication between the components. In all included architectures, this was

achieved via one or more messaging systems. Table 6.3 gives an overview of the

messaging systems and formats used in the different environments. In the smart

home laboratories E1 and E5, mainly MQTT and Home Assistant are used. Both

environments are heterogeneous and also use other software and protocols for

individual systems, for example KNX in E1. E2 additionally uses Node-RED

for graphical programming of processes in the laboratory. In E3 and E4, two

other popular messaging systems, RabbitMQ and ZeroMQ, are used. Though

very different technologies are used in each environment they are all based on the

exchange of messages and, depending on their use, can lead to a loose coupling of

the components.

There are also big differences in messaging formats. With JSON in E3, YAML

in E4, and XML in E6, three formats frequently used in software development

are already represented. In E1 and E5, there are few restrictions on the message

format. In E1, a Representational State Transfer (REST) API is used. No other

restrictions were mentioned during the interview. In E6 there are explicitly no

restrictions, except that all messages must be formatted as strings.

IT security was not the primary focus in an of the environments. The systems

are operated internally for research and are only accessible to a few users. Never-

theless, some security mechanisms were reported during the interviews, but these

are mainly intended to support multi-user operation. For example, two separate

Chapter 6. Expert Interviews 150

messaging systems are operated in the E5 smart home laboratory. One for the pro-

duction system and one for developing new components. Some message groups are

then shared between the systems to allow, for example, the control of individual

actuators in the laboratory from the test system without making the function of

the production system completely dependent on the test operation. In E1, the

REST interfaces are authenticated to protect them from unauthorised access.

Environment Messaging Format Messaging Software
E1 HTTP, KNX MQTT, HomeAssistant, KNX
E2 Native Open vSwitch
E3 JSON RabbitMQ
E4 YAML ZeroMQ
E5 Text MQTT, HomeAssistant, Node-RED
E6 XML Schema, Java Code Custom
E7 KNX KNX
E8 Unknown Custom

Table 6.3: Overview of the message formats and messaging software used in
the software environment

6.5.2 Identified Challenges

This sub-section details the challenges identified in the interviews when working

with loosely coupled systems in general and especially in the research context.

6.5.2.1 System Complexity

The interviewees were asked to estimate the number of components in the system,

and further aspects were also explored that were assumed to have an influence on

the complexity of the system. These include the characteristics of the distributed

system, the handling of messages, and the use of sensor and context information.

Furthermore, it was asked whether simultaneous use by several researchers was

planned or was possible.

The size of the environments according to the number of components varies greatly.

The largest number of components was given as 500 to 1,000 for E3. In E1 and

Chapter 6. Expert Interviews 151

E5, an unspecified number of student projects run alongside the software platform.

Between 5 and 10 of these projects were mentioned during the interviews. For the

middleware in E6, a double-digit number of components was estimated. In all

environments, it can be assumed that an overview of the system is not trivial,

and it is likely that no team member knows all the components in detail. This

is assumed because the number of components for some of the projects was very

large, while in others it was stated that individual projects were carried out by

students under the supervision of only parts of the team.

In some cases, complex technologies were mentioned that are used in the envir-

onments. In E1, AI planning tools are used to determine how a certain state in

the environment can be produced automatically. In the mobile networking project

E2 Bob said they work "[...] with OpenFlow and it is a very complex protocol

[...]"’ and "sometimes these kind of protocols [...] [are] very complex uh you need

the uh for instance just to to be familiar with [...] Open vSwitch I needed uh

three or four weeks."For the self driving cars in E4, they use a custom version of

the Android operating system and Nvidia drivers with OpenCV in Python. The

resulting technical problems took one person about six months to solve.

In some environments, sensor data is evaluated. In particular, in the smart home

labs E1 and E5, this sensor data is used to control the behaviour of the system

and adapt it to the needs of the user depending on the context. Sensors include,

for example, the Microsoft Kinect, which can recognise people as skeletons to

detect their position and movements, which can be used, for example, to control

actors with gestures [Patsadu et al., 2012]. Other sensors mentioned in E1 are,

for example, temperature sensors and cameras for facial recognition. E5 also has

several cameras integrated in the lab that will be used in the future to interact

with users at home. Sensor data is also used in the other environments. In the

mobile networking projects E2 and E3, monitoring data is collected by the system.

Different solution strategies were indicated for operations with multiple simultan-

eous users. In E1, the smart home, the laboratory is reserved exclusively for one

Chapter 6. Expert Interviews 152

user if their work could affect others. This is also done in the mobile network-

ing working group in E2. If components have to be used exclusively, they are

reserved for the time period. Since the individual components are divided into

virtual machines in the project, only the affected virtual machines and not the

entire system must be reserved. In the smart home lab E5, the student groups

work mostly separately. The lab has two different, partially separated messaging

platforms that should allow work on the system without affecting the production

system. According to Frank, there are also plans to duplicate other central system

parts, such as the Node Red installation, for a test system.

In summary, all environments are complex software systems in which complex

technologies and sensors are used. In some cases, multi-user operations or the

exclusive use of system resources must be organised. This complexity is expected

to have a negative impact on any program comprehension and debugging tasks.

6.5.2.2 Team Composition

Team sizes in the environments studied range from one researcher with some as-

sistance to 18 researchers and students (see Table 6.4). Students work in all teams,

sometimes during practical courses at the university, for theses, or as part of the

paid staff. The teams in E1 and E5 are small and regularly supervise groups of

students working on parts of the project. In E2, E3, and E6 the team sizes are

between seven and 18 people and include some students working on the project.

In E4, there is currently one researcher, with assistance from several other people

including at least one student. Since all the teams are mainly composed up of

students, PhD students, and postdocs, it can be assumed that the average time a

person works in a team is between 0.5 and three years, depending on the degree. If

students work on the projects as part of their normal course of study, they are part

of the project for a maximum of one semester. In sum, all teams undergo frequent

changes, which means that knowledge about the project has to be imparted to

new members, and outgoing team members have to impart their knowledge to the

rest of the team frequently.

Chapter 6. Expert Interviews 153

During the interviews, training periods for new team members were reported to

be between a few days and up to six month (see Table 6.5). As stated by Adam,

training times can depend on the specific tasks of the new team member. There

are tasks that do not require extensive knowledge about the structure of the overall

system, such as the development of a stand-alone component that only accesses a

few well-documented interfaces of the system. In contrast, the development of a

component that builds on other parts of the system and offers its own interfaces can

require significantly more familiarisation time. Furthermore, the training period

depends on the scope of the planned sub-project and the previous knowledge of

the new team member. It is assumed that the reported training times are this far

apart for these reasons.

Given the frequent changes in the team and the non-negligible training periods, it is

assumed that measures to support knowledge transfer can be helpful. One measure

that was mentioned during the interviews is the creation of documentation, which

will be discussed in the next section. Another factor is the complexity of the system

and the way it can be interacted with. If there is insufficient documentation,

reverse engineering must be done to understand how the system works. The time

this process takes depends on the complexity of the system and how open it is

designed to be.

Environment Team Size Team Composition
E1 x + student groups Researchers, groups of students
E2 7 Researchers, students
E3 18 Researchers, students (8-9)
E4 1+ Researchers, students
E5 3 + student groups Researchers, paid students, student groups
E6 7-8 Researchers, a few students over time

Table 6.4: List of team sizes and composition mentioned during the interviews

6.5.2.3 Documentation

All interviewees were asked about the documentation in their working environ-

ment because it is assumed that this has a significant impact on their work with

Chapter 6. Expert Interviews 154

Environment Training Period
E1 depends on task, partially quite high
E2 6 months
E3 -
E4 two weeks
E5 a few days
E6 multiple months

Table 6.5: List of estimated training periods for new team members

the software system, especially in teams with frequently changing members, as is

common in the research context.

In the environments studied, different platforms and formats are used for docu-

mentation. In all environments except the middleware project E6, students are

involved in the documentation or, as in the smart home E5, are the most important

authors.

While analysing the interviews, it became apparent that in some environments, the

interfaces, messages, and possibly the topics were documented, but documentation

about the architecture or the interrelationships in the system was not mentioned.

This is the case, for example, in the smart homes E1 and E5. In all environments

except E6, documentation is kept informal and to a minimum. In the middle-

ware project E6, standardised documentation formats such as arc42 and Unified

Modelling Language (UML) were used.

Problems with the documentation were noted by several interviewees. In the

self-driving car project E4, the documentation is a work in progress and the archi-

tecture is still changing. Edward said that "as with any good software system, the

documentation is mediocre" (Edward, translated) in the smart home lab E5. Lack

of documentation was cited as the biggest problem with highly fluctuating teams.

Students reportedly write little documentation and consider little documentation

sufficient. Subsequent generations of students would complain about the lack of

documentation. Despite awareness of the problem, no solution has yet been found

in E5.

Chapter 6. Expert Interviews 155

Some of the interview results show gaps in the documentation. For example, only

the REST APIs are documented in the smart home E1 other documentation is

not present. Dave said the documentation was not finished and in the smart home

E5, Edward mentioned the lack of documentation as a big problem.

Dave and Frank highlighted the use of open-source software because it provides

good documentation in the cases mentioned. However, the self-created documenta-

tion was not mentioned positively at any point during the interviews. In summary,

it can be said that the documentation could be improved in all environments and

that the existing documentation is helpful in some places, but in some of the

environments, gaps in the documentation are already causing notable problems.

Environment Documentation Platform Documentation Format
E1 Interactive Website REST API
E2 Git Wiki / Repository Text
E3 Git Wiki / Repository Text
E4 Work in progress -
E5 Mediawiki Mediawiki
E6 Documents arc42, UML

Table 6.6: Overview of the documentation platforms and formats in the work-
ing environments of the interviewees.

6.5.3 Debugging, Testing and Program Comprehension

All participants were asked which software problems occur most frequently in the

projects and how they or others in the team deal with these problems. A number

of typical problems in distributed systems were mentioned, such as unreachable

components and lost messages. However, there were differences in where these

problems were located in the projects. Adam and Dave stated that communication

via the messaging system used in the projects was not a source of errors. Bob

reported that the main source of errors in the mobile networking project E2 is

the very complex protocols of the OpenFlow software used there. Edward, who

works in the E5 smart home environment, stated that the most common error is

miscoded messages. The second most common problem he reported was messages

Chapter 6. Expert Interviews 156

not arriving. This reflects problems on the part of both the sender and the receiver,

as well as with the order of the messages. Frank also reported that the most

common problem in E5 is undelivered messages. In his opinion, this is also due

to network problems, such as disruptions to the WiFi connection. Gabe also

mentioned addressing problems and misdirected messages that led to undefined

behaviour when agents did not know how to deal with unknown messages. The

most frequently mentioned method for finding errors in the system was to observe

the communication between the components.

A check of messages on the side of the sender or in the communication layer was

not part of the environments examined, except in the middleware project E6.

There, the messages were initially specified by XML and later in Java code. In

addition, in the mobile network visualisation project E3, components were used to

check the content of the JSON messages sent. However, Charlie only mentioned

the content of the JSON messages and not the structure of these messages. This

became most obvious in the smart home E5, where there is no common message

format but all messages are sent as unformatted strings, which makes a message

format check nearly impossible.

When asked how to proceed in case of a software error, no concrete methods were

described during the interviews. The most common answer was that the cause

of the error was found based on the accumulated experience with the software

system over time. For example, based on previous knowledge, it was assumed

that an error in the light control component is probably to blame if the light in

a Smart Home environment is no longer adjustable. In some cases, the option

of being able to observe the message traffic between components via the message

layer was mentioned.

But it was noticeable that in almost all environments tools were used to read

messages between components. For this purpose, small tools or scripts were built in

E3 and E4 that subscribe a group to the message system and output all messages.

These messages can then be checked and evaluated manually or with other tools

in the next step. According to Charlie and Dave, there is no component built

Chapter 6. Expert Interviews 157

into the system to do this automatically. A similar approach was also reported by

Gabe in the middleware project E6. In contrast, according to Frank, there is no

tool in smart home E5 to gain insight into communication.

Automatic tests were noted as another possibility to find errors in individual com-

ponents or in the system. In particular unit tests were mentioned. However, there

were major differences in how and whether testing is carried out. In the smart

home lab E1, testing is not carried out on the entire system, but only on individual

components where it seems necessary. This works similarly in the smart home lab

E5, where only selected individual components are tested. According to Gabe,

automatic testing is generally difficult in distributed systems, which is why very

little automatic testing was used in the E6 middleware project, and instead log

output and visualisation tools are used.

Visualisation tools are only used in the mobile networking project E4 and middle-

ware project E6. In both projects, the visualisation or the platform itself is the

part of research. In this context, the visualisation of network topologies was the

research goal of E4. In E6, the visualisation was part of the middleware to be

designed. In both cases, the visualisation includes the individual components and

communication relationships and it can be used to gain an overview of the system.

Dave stated during the interviews that the visualisation of the communication

relationships was actively used in the E6 project to localise errors.

Overall, it became clear during the interviews that no standardised or documented

steps for debugging in the event of a software error are used in the environments

studied. Debugging is mainly based on prior knowledge and is partially supported

by tools and scripts. This includes tools for message reading as well as tools for

visualising communication paths between components. Furthermore, it became

clear during the interviews that hardly any error prevention mechanisms are used„

including the checking of messages or the use of unit tests.

Chapter 6. Expert Interviews 158

6.5.4 Evaluation of the CEP Approach

When evaluating the CEP debugging approach, the goal of the interviews is not

a general evaluation by the interviewees, but to identify further use cases and

limitations for the application of this approach, to assess transferability to and

suitability for other environments. It is assumed that asking the experts directly

to evaluate the approach in a one-to-one interview setting may not be answered

honestly. But the experts should be able to provide a professional assessment of

potential use cases in environments they are familiar with. The aim is to find

out whether the experts generally consider the use of CEP for debugging in their

working environments to be useful and where there would be any possible problems

with the integration.

At the beginning of the presentation of the CEP debugging approach, all inter-

viewees were asked for prior knowledge about CEP, regardless of the specific use

case. This question was mainly asked in order to adapt the presentation to the

interviewee and to keep it as short as possible. It was also interesting to see

whether CEP was already being used in the environments and what goals were

being targeted with it. As shown in Table 6.7 only one participant had extensive

previous knowledge about CEP. Three participants had some experience or have

heard of it prior to the interviews and the three remaining participants did not

know the term. This means that 4 out of 7 participants where at least familiar

with the term CEP and had a basic understanding of the concepts behind CEP.

In all interviews, CEP was introduced during the short presentation. Previous

knowledge was compared, if available, in order to build a common understanding.

CEP has not been used in any of the environments yet. Only in E1 CEP was used

by a part the team in another research project as a rule-based machine.

CEP Experience Participants Percent
A lot 1 14.29
Some 3 42.86
None 3 42.86

Table 6.7: Participants’ previous experience with CEP

Chapter 6. Expert Interviews 159

6.5.4.1 Potential Use Cases

During the interviews, all participants were asked about the use cases the presented

approach of debugging and analysing the state of the system with CEP queries

could be used for in the systems they know. Table 6.8 presents an overview of all

the potential use cases mentioned during the interviews.

According to Adam, the smart home Lab E1 has an ontology-based reasoning

system that uses linear temporal logic to detect differences between the system

described with a process language and the measured state of the system at runtime.

This mechanism is used to automatically react to changes or errors in the system

but, according to Adam, is not used in E1 to diagnose errors during development.

The analysis is based on the synchronised state of the entire system, which is

kept in a database. However, according to Adam, it is not possible to use this

system with high-frequency sensor data, such as skeletal data from the Microsoft

Kinect, because the ontology mechanism is much too slow for this. Furthermore,

everything in the system that wants to communicate with each other and that is

to be analysed must be covered by the semantic ontology representation. This

is why, according to Adam, communication in E1 does not run via a broadcast

mechanism.

CEP could be used here to make statements about the system components at

runtime as well as during debugging by the staff. A CEP engine is also capable of

using logical expressions and temporal logic to recognise relationships and could

possibly implement similar functionality without the limitations mentioned. As

shown above, CEP is applicable to the processing of distributed event streams and

high-frequency sensor data. However, a comparison of the processing capabilities

or usefulness of the two systems is not possible based on the interview.

During the interview with Bob and Gabe, it was suggested that the CEP approach

could be used to create test settings for experiments. In addition, Bob said that

CEP queries could be used to configure and synchronise system components to

send specific messages. This is made possible by the seamless integration of the

Chapter 6. Expert Interviews 160

CEP Engine, which allows CEP queries to access the current system state and send

messages to agents for configuration. In addition, it is possible to start agents via

CEP queries to create any test settings and, if necessary, to check again via CEP

queries whether the setting is correct and the test is successful. Gabe added the

example of a production line in which status can be measured via monitoring

agents and evaluated via CEP queries to identify error states and detect failed

components.

Charlie described the challenge of processing metrics from all agents simultan-

eously in the mobile networking visualisation project E3. A distributed and scal-

able CEP approach could help process the metrics without producing bottlenecks

or negatively affecting the rest of the system. These metrics could then be used

for the system itself as well as during development. Using CEP queries, it would

be possible to control exactly at what point in time the evaluations of the metrics

must be carried out. In addition, ad hoc analyses could be started with the help

of CEP queries.

Dave envisioned many useful applications for the CEP approach presented. Among

other things, he stated that it would be helpful for his work to be able to see

which components are currently running and what they are currently doing in

order to compare this with his expectations of system behaviour. He emphasises

the possibility of dynamically analysing the systems’ behaviour during runtime

and reacting to it with defined rules. One example he gave was the dynamic

automatic starting and stopping of processes based on the system state. The CEP

approach could help keep track of the management of components in a loosely

coupled system.

Edward and Frank, who work the smart home Lab E5, and Gabe, who worked

on the middleware project E6, stated that the CEP approach could be used for

error detection. According to Edward, to write unit tests, one needs to know in

advance what errors are expected. This knowledge can be used with CEP queries

to detect irregularities in the system, such as to check whether a component really

only communicates with the components it is allowed to talk to. Especially in

Chapter 6. Expert Interviews 161

loosely coupled systems, it could be helpful to quickly detect components that

send messages that are not appropriate for the situation or even necessary. One

could set rules for the framework and intervals at which interactions are expected

to recognise deviations. Frank explains this using the example of a sensor that

regularly sends data in a certain form. With the help of a CEP query, one could

check this behaviour and detect deviations from it.

Frank mentions that it would be helpful for debugging tasks to record data streams

in order to be able to repeatedly examine processes from different perspectives in

the event of an error. CEP queries can be used to temporarily store event streams

and also to permanently store them in individual cases. For example, the last

messages to an agent could be saved when an error occurs. However, saving the

all messages in the system in order to examine any processes afterwards is not

part of the presented approach and would have to be investigated further.

In summary, interviewees proposed several use cases, that could help at runtime,

during debugging tasks, and when testing individual components or the entire

system. This supports that, based on the idea of the approach, the interviewees

see advantages to using it in the environments they know.

Use Case Interview Runtime Debugging Testing
Reasoning about system state 1 / Adam x x x
Processing of sensor data 1 / Adam x x x

Test settings 2 / Bob
7 / Gabe x

Metrics processing 3 / Charlie x x x
Dynamic system control 4 / Dave x x x

Error detection
5 / Edward
6 / Frank
7 / Gabe

x x

Unit tests 5 / Edward x
Event recording 5 / Edward x x

Table 6.8: Identified use cases mentioned during the interviews

Chapter 6. Expert Interviews 162

6.5.4.2 Possible Limitations

Limitation Aspect Interview
Increased practice time Complexity 1 / Adam
Needs structured messages Messaging 2 / Bob
Performance Performance 3 / Charlie
Invalid messages Messaging 5 / Edward
Messaging system compatibility Messaging 5 / Edward

Table 6.9: Limitations mentioned during the interviews

One aspect of the evaluation was to further investigate possible limitations of the

CEP approach. Multiple limitations were mentioned during the interviews, as

listed in Table 6.9.

Adam pointed out during the interviews that complex technologies, such as ontology-

based reasoning, can be a significant hurdle for students to work with, and there-

fore do not speed up development. Since the CEP approach also brings additional

complexity into the system and the work with CEP queries has to be learned, there

could be similar problems here. However, one reported advantage of the seamless

integration of an CEP engine into an agent-based system, which was presented in

this thesis, is that the complexity is not extended by an additional architecture

paradigm and everything can still be considered an agent.

The CEP approach assumes that messages follow a schema or have a structure

that can be processed automatically. Bob expressed concerns during the interview

that this might not be possible for low level network messages, such as in mobile

networking project E2. It is likely that this is due to the example chosen during

the interviews. Here, JSON messages were used, which, unlike the messages used

in project E2, are easily readable by humans. Further research could indicate

whether network packets are also compatible with the CEP approach. However,

since network packets also follow a fixed structure, for example, they probably

contain the IP address of the sender and the IP address of the recipient, it can be

assumed that they at least partially contain attributes that can be made accessible

for a CEP query. However, this would only be possible with an extension of the

Chapter 6. Expert Interviews 163

presented CEP engine, as it can currently only process JSON and other text

messages.

Charlie was concerned about the performance characteristics of the CEP approach.

He noted that the system must be able to process great deal of information in real

time and that there could be a bottleneck. These concerns are understandable

given how important message latency is in the systems being addressed. The

latency of messages and the scalability of the system, including the CEP engine,

are investigated in Chapter 7, to demonstrate that the architecture presented is

more than fast enough for its planned use in smart systems.

Edward noted during the interviews that coding errors in the messages cannot be

handled by CEP queries. Because they have an incorrect structure, or flipped bits

for example, the messages cannot be parsed and processed by the CEP engine.

While this is correct, the CEP engine is still able to mark the unprocessable

messages and make them available to the user. However, it is not possible to access

individual attributes of the message when it is not parsable. Nonetheless, there

are ways to deal with such errors. For example, as with the middleware presented

in this paper, frameworks can be used to create and check messages before they

are sent. In addition, such messages with an incorrect structure should also trigger

errors for the recipients of the message, which can then be found again via CEP

queries.

In addition, Edward observed that CEP queries can only work with messaging

systems that provide the necessary information, such as a sender and receiver.

According to Edward, this is not the case with a Controller Area Network (CAN)

bus. CAN is often used for communication between microcontrollers, such as in

the smart home lab E1. The messages sent through this would not be part of

the publish/subscribe system and therefore would not be visible to the rest of

the system or the CEP engine. It remains unanswered whether it is possible to

provide an adapter for this and to encode missing information within the messages

to make CAN compatible with the approach presented here.

Chapter 6. Expert Interviews 164

In addition, according to Edward, CEP queries are only worth using for envir-

onments with sufficient complexity, because otherwise the additional effort, such

as learning the query language, is not worth it. However, the identified use cases

for this approach suggest that it is worthwhile to use it for systems of similar

complexity to those examined here.

6.6 Conclusion

The expert interviews were conducted to provide insights into the following re-

search questions.

• QI1: Which software architectures are used in research laboratories for

loosely coupled systems and which requirements are to be met by them?

• QI2: What do program comprehension and debugging tasks look like in

research laboratories with loosely coupled software architectures?

• QI3: To what extend can the presented method support program compre-

hension and debugging tasks with the help of CEP in smart system research

laboratories?

Firstly, the software architectures used in the environments studied were analysed

for QI1. In the evaluation of the expert interviews, particular attention was paid

to the additional requirements for the software that resulted from the research

context. The software environments addressed during the interviews were very

different. Different message platforms and message formats were used. Overall,

the results are consistent with the expected heterogeneity of software in this type

of environment. This is not only noticeable in the comparison between the en-

vironments but is also evident within them. Especially in the two smart home

labs, many different technologies are in use. In some cases, several protocols are

even used for the communication layer within one environment in order to connect

everything.

Chapter 6. Expert Interviews 165

This is also reflected in the choice of software and protocols for communication.

Message brokers such as MQTT, RabbitMQ, and ZeroMQ were used most fre-

quently. These offer ready-made open source software libraries for connection with

different programming languages and technologies. MQTT is frequently used for

IoT applications, and can also be used for microcontrollers, for example. In the

choice of message formats, text-based formats predominated. JSON, XML, and

unformatted text were mentioned here. These results support the design decisions

made for the software architecture of the middleware in this thesis because it is

also based a on structured text format and, like the mentioned message broker,

on a publish/subscribe approach.

During the interviews, there were no statements that contradicted the general

requirements that emerged for middleware for loosely coupled systems in research

laboratories during the analysis of this thesis. These include requirements such

as scalability, message latencies, and flexibility. Agent management features were

not mentioned during the interviews, except in the middleware project E6.

The challenges identified in research environments with loosely coupled software

were confirmed by the interview results. The results of the interviews indicate

that finding errors and getting to know the existing system can be particular

challenges, which are further complicated by these system and environment char-

acteristics. This leads to two important requirements for the architecture in these

environments: support for debugging and program comprehension support.

The teams working on the projects are partly composed of undergraduate and

graduate students, who are likely to be involved in the project for only a few

semesters or a few years. In addition, the assumed issues with documentation

and maintenance of student projects were confirmed. It is therefore even more

important to support the transfer of knowledge and the introduction of new team

members, which are part of the analysed requirements as support for communica-

tion between developers and support for fast experiments.

Chapter 6. Expert Interviews 166

Requirement
5 Support for debugging
6 Program comprehension support
7 Support for fast experiments
10 Support of communication between developers

Table 6.10: List of requirements that were added based on the expert in-
terviews, with the corresponding numbers from the requirement analysis in

Table 3.1

As a result, the requirements for the architecture for laboratory environments

were extended by the four requirements in Table 6.10 resulting from the expert

interviews.

The experts gave many reasons for why the environments they work in can be

very complex. These include the use of complex software, working with multiple

platforms, and distributed applications over the network. The results of the expert

interviews regarding QI2 demonstrate, that program comprehension and debug-

ging tasks can be very challenging. It can therefore be assumed that tools will be

needed in these environments to support the work with these systems. Common

problems mentioned in relation to the loosely coupled system were faulty com-

ponents, messages not arriving, and formatting errors in messages. However, it is

noticeable that in most environments no software is used to support these tasks,

but individual developers help themselves with their own scripts to, for example,

read messages. A visualisation of system states was only offered where it was ex-

plicitly the subject of research. No documented or standardised procedures were

used in the project to search for errors. According to the experts, the proced-

ure and the localisation of errors are mainly based on experience. Additionally,

other methods to reduce software errors, like automatic testing or verification of

components or messages, were not part of the majority of the projects addressed.

The complexity of the systems, the reported problems, and the lack of software

support and documented procedures all indicate that it would be helpful to use a

middleware designed to address this challenge during the development phase.

Chapter 6. Expert Interviews 167

Regarding QI3, the results of the expert interviews indicate that the developed

approach to supporting Program Comprehension and debugging tasks with CEP

is suitable for the collected use cases in the development of software with loosely

coupled systems. This includes reasoning about system state, processing of sensor

data, dynamic control of the system, test setup preparations and unit tests, error

detection, processing of metrics, and event recording. The use of the query lan-

guage is similar to other approaches to do context processing and can also be used

for this purpose. This reduces the necessary training time because the query lan-

guage can be used equally for both tasks, further supporting the argument that it

is worthwhile for these environments to use CEP for development tasks to support

the use cases.

Several limitations were noted during the interviews. In addition to the initial

requirement that it be a loosely coupled system, limitations include the need to

work with structured messages and the need for information about the commu-

nication to be provided by the messaging platform. The former is already present

in a large majority of the systems mentioned during the interviews. The use

of structured messages is often necessary to enable the automatic processing of

contextual information and to check messages for correctness. The latter, the

messaging platform capabilities, are missing in some of the systems analysed. The

use cases demonstrate here demonstrates that it can be helpful to use platforms

that are able to provide information about the agents and their communication

relationships. This is one reason why a separate middleware layer for the com-

munication layer was built into the presented architecture. The architecture is

designed to connect other messaging systems as easily as possible in order to use

the CEP layer for as many other loosely coupled systems as possible. For this,

however, either the message layer or the individual agents themselves must be able

to provide information about the agents’ status.

It was also noted that the system is expected to be slowed down by this approach,

and the training time could be negatively affected by the additional complexity.

The former is addressed in the following chapter with the evaluation of message

latency and scalability to showcase that the system’s performance is more than

Chapter 6. Expert Interviews 168

fast enough for the targeted environments. The training time required is an im-

portant aspect in deciding whether the CEP approach is worthwhile for a specific

environment and team. But testing this is beyond the scope of this thesis. It

is assumed here that the benefits demonstrated are worth the additional training

time.

The implications of these findings for the research questions are discussed in the

following conclusion of the thesis.

Chapter 7

Experimental Evaluation

Several experiments were conducted to evaluate the requirements for message

latency and scalability of the system. The experimental set-up and the exact

procedures are explained first, and then the results are presented and evaluated

in relation to the requirements. The procedure for the evaluation through the

latency measurements is based on Eichler et al. [2017], in which an earlier version

of the messaging layer of the architecture presented here was tested.

7.1 Experimental Set-up

For the experimental setup, seven virtual machines with the same configuration

were used, which were connected via a 10 gigabit host network. Each machine was

assigned eight CPU cores and four gigabytes of RAM. The host system had an

AMD EPYC 7542 32-core processor. The virtual machines were installed based

on the same pre-built Centos 8 stream template. A script was then used to install

JVM 11 and the software presented in this thesis.

After installation, the software was started via a script on all virtual machines

involved in the measurement. First, the middleware was started on all machines,

followed by the runtime environments, including an agent for managing the local

runtime environment. As soon as all these runtime control agents are ready and

169

Chapter 7. Experimental Evaluation 170

Middleware-
NodeMiddleware-

Node
Reply
Agent

Middleware-
Nodes

Fr
am

ew
or

k

Request
Agent

Runtime Control
Agent

Runtime Environments

Fr
am

ew
or

k

1.

4.

2.

3.

5.

Figure 7.1: Experiment setup for the latency and scalability measurements

report that the connection to the middleware has been successfully established,

the necessary number of agents are started. After about 10 seconds, the agents

start sending test messages, and the measurement can be started. After each

measurement, all runtime environments and middleware nodes are restarted to

ensure that the individual measurements do not influence each other.

Each virtual machine runs a middleware node and a runtime environment. The

middleware nodes form a cluster and thus allow the communication of agents

within and between the runtime environments. All communication between the

agents runs via the middleware. This experimental setup was chosen because it

follows the recommendations of the architecture presented. All agents are executed

in runtime environments, allowing the libraries to be shared in memory and many

agents to run on one host. Each runtime environment is assigned to a middleware

node. In this way, communication between the agents running inside the runtime

environments and the middleware node have low latency because it runs over the

local network.

Figure 7.1 offers a simplified representation of the experiment setup and the se-

quence of messages during an experiment. Two types of agents are used for the

Chapter 7. Experimental Evaluation 171

experiments: a request agent and a reply agent. Both agents are programmed in

Scala and use the provided JVM framework for their implementation. The request

agent sends messages with a current local timestamp at a configured interval. This

message is serialised by the framework into a JSON message and published via the

group communication of the middleware. Each request agent is assigned a reply

agent that listens to the group in which the request agent sends. Therefore, each

request sent is received, deserialised and processed by a reply agent. The reply

agent copies the received timestamp into a new message and sends it back to the

sender via another group. It does not contain any additional logic that could im-

pact the performance of the experiment. The response is also serialised in JSON

and deserialised again by the receiving agent, the request agent. The timestamp

contained in the message is then compared with the current system time and the

difference is written to a file locally in the runtime environment of the agent.

A measured value therefore contains the complete round trip, two times via the

framework through the network, two serialisations, and two deserialisations.

This procedure creates a file with all measured values per runtime environment for

each experiment, which are merged for the evaluation of the latency values. The

results of the evaluation of the measured values are presented below.

7.2 Messaging Layer Latency

Two experiments were conducted with the described setup to measure the message

latencies in the system.

The first experiment tested the single node performance of the middleware. As

the system is also designed for development and test environments, it is important

that it can run on single workstations and servers.

Chapter 7. Experimental Evaluation 172

200 400 600 800 1,000 1,200 1,400

2

4

6

8

10

Number of agents

La
te

nc
y

[m
s]

Figure 7.2: Latency measurements including the 10th and 90th percentiles
with different numbers of agents and one middleware node

For the test, a server with 8 CPU cores and 4 gigabits of RAM, as described

above, was used, which should provide a realistic representation of an average

development computer. Figure 7.2 shows the latencies for different numbers of

agents in the same runtime environment together with a single middleware node.

With 200 to 800 agents, the average message latency is less than 4 ms. Even

with 1,400 agents, the latencies are still around 10 ms. As the number of agents

and messages increases, so does the average message latency and the scatter of

the measurements. In the figure, the 10th (at the bottom) and 90th percentile

(at the top) are shown for each measured value. Since the middleware tries to

deliver all messages as quickly as possible, under load many messages arrive with

a latency comparable to that of a few agents, but some are delayed, which leads

to the illustrated distribution.

In all tests, less than 1 gigabyte of Random-Access Memory (RAM) was used.

After starting all agents at the beginning of the measurement, the amount of

Chapter 7. Experimental Evaluation 173

memory used by the processes was determined via the task manager of the op-

erating system. Figure 7.3 provides an approximately linear progression of the

memory requirements of the middleware node and the runtime environment with

a simultaneous increase in the number of agents, groups, and messages per second.

The required memory of approximately 500 to 800 MB should be available on cur-

rent development systems. Since the application, tested here was programmed in

Scala and runs on the JVM, there are fluctuations in the measured values. The

JVM reserves memory, manages it for the application and releases freed memory

areas via the garbage collector. The application itself has no direct control over

the exact amount of reserved memory.

200 400 600 800 1,000 1,200 1,400
500

550

600

650

700

750

800

850

Number of agents

R
A

M
[M

B]

Figure 7.3: Main memory with different numbers of agents on one middleware
node

The results from the expert interviews include research environments with up to

1,000 agents, and it can be assumed that the entire system does not have to

be run on the development computer. For example, many hardware sensors and

actuators will not be able to run on the development computer or will have to be

simulated. Therefore, the implementation tested here is more than fast enough to

Chapter 7. Experimental Evaluation 174

run simulations during the development process of new agents and even to test

the entire laboratory environment on a single computer if necessary.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
·104

0

10

20

30

40

50

Number of agents

La
te

nc
y

[m
s]

Figure 7.4: Latency measurements including the 10th and 90th percentiles
with different numbers of agents and seven middleware nodes

In the second test, the system performance was tested with seven middleware nodes

and seven runtime environments, which represents the recommended configuration

of the installation in a laboratory environment. Due to the fault tolerance of the

middleware, a failure of a total of three nodes can be tolerated in this configuration

without impairing the functioning of the system.

Figure 7.4 presents the results of the measurements. With seven nodes, the average

message latency is less than 6.5 ms for up to 12,000 agents and groups sending a

total of 12,000 messages per second. With higher numbers of agents, the latency

increases averaging around 20 ms for 18,000 agents. With increasing load in the

system, the scatter of the measured values increases, and from 14,000 agents,

groups, and messages per second, the number of messages that are slower than

the average increases significantly. With a high number of messages, the CPU of

the test machines is near maximum capacity, and delays can occur during message

Chapter 7. Experimental Evaluation 175

handling. It is assumed that this is caused, among other things, by the garbage

collection of the JVM. Therefore, it is advisable to use more nodes in case of high

CPU loads, which can also be done automatically, based on the average load of

the individual nodes.

To interpret these results, it is important to consider that the numbers of agents

tested here are extremely high for smart systems, especially for laboratory envir-

onments. The environments tested during this work and in the expert interviews

consisted of about 100 agents, and the largest system had a maximum of 1,000

agents. Furthermore, in the tests conducted, one group was set up for each agent,

and one message per second was sent. These message numbers should also have

very high values on average for a smart system, since many components, such as

sensors and actuators, communicate much less frequently.

7.3 Scalability

The variable requirements of the system in terms of the required number of agents

and groups in a smart system should allow the system to scale with the require-

ments. This was tested with the next experiment. Latency measurements are

made analogously to the previous tests, but this time have a fixed number of

agents on a variable number of middleware nodes.

Figure 7.5 shows the average message latencies with 10,000 agents and the same

number of groups and messages per second, using two to seven middleware nodes

and an equal number of runtime environments. It can be seen that with two and

three nodes the average latency is still very high, and 90th quantile is still at more

than 500 to 600 ms. However, with four nodes, these values go down significantly,

and at five nodes the average message latency is about 15 ms. At seven nodes, it

decreases further to about 4 ms.

Chapter 7. Experimental Evaluation 176

For this load on the system, an installation with five or seven nodes would therefore

make sense in order to have a low latency and an error tolerance of two or three

nodes.

2 3 4 5 6 7

0

100

200

300

400

500

600

Number of middleware nodes with runtime environment

La
te

nc
y

[m
s]

Figure 7.5: Latency measurements with 10,000 agents and different numbers
of middleware nodes

For the test carried out here, very high numbers of agents were tested to measure

the behaviour of the system under load. With the determined requirements of up

to 1,000 agents in laboratory environments, a system with five or seven middleware

nodes is more than sufficient, even with high message volumes per second. The

expert interviews revealed that some systems have less than 100 agents, which

could start with one node and increase the number of nodes if necessary or if

failure tolerance is required. This test illustrates that the middleware can be

scaled flexibly to the needs of the environments in which it is to be used and can

be used for development on one computer as well as for testing system parts in

small laboratories and in larger installations.

Chapter 7. Experimental Evaluation 177

7.4 CEP Integration Overhead

Since all CEP queries are processed by agents communicating via the messaging

layer, the latency of messages resulting from CEP queries depends on the perform-

ance of the messaging layer. Each step in the processing chain that results from a

CEP query publishes the message, and the next agent then receives it through its

subscription. Thus, when lb is the latency of the base system and n is the number

of processing steps, the latency of a message is lb ∗ n + c, where c is the sum of the

overall processing time a message takes inside each agent in the processing chain.

The number of agents needed for a CEP query depends on the query and can be

influenced by the CEP query manager. Depending on the configuration of the

system, it is attempted to split the processing of messages into several agents to

increase modularity and reuse of agents or to execute as much as possible in one

agent to keep the latency as low as possible.

Regardless, the system creates only a few agents for each CEP query. Because of

this, and because multiple queries share agents depending on the configuration,

the number of agents remains in the hundreds, not thousands, when using CEP

queries.

Multiple queries can share parts of the agent processing chain to reduce the number

of components. The results of the previous experiments support that this can be

easily processed by the system with low latencies.

7.5 Conclusion

The results of the latency and scalability experiments support that the messaging

layer is more than sufficient for the targeted use cases and the architectures’ iden-

tified requirements of low message latency and high scalability are met. This

concerns both the number of agents and groups and the number of messages that

Chapter 7. Experimental Evaluation 178

the system can process. It must be emphasised that the design of this architec-

ture focuses on supporting the development process and not on the performance

of the system. It can be assumed that by omitting the registration and monitor-

ing of agents and exchanging the message format, latencies could be significantly

improved at the expense of these development support features.

User interaction within a smart environment can have different characteristics and

thus different latency requirements. Arapakis et al. [2014] studied the impact of

latency on user behaviour during web searches. They found that with response

times of less than 500 ms, users were unable to distinguish whether the response

was normal or artificially delayed. This would be comparable, for example, to a

question about the current weather via an intelligent table in a smart home.

Claypool [2005] measured the effect of latency on performance in real-time strategy

games, discovering that there was no significant effect on player performance at

latencies of less than hundreds of milliseconds to several seconds. This use case

could be compared to game-based approaches to intelligent surfaces.

Deber et al. [2015] research on the user perception of latency on touch surfaces

demonstrates that the detectable threshold for dragging is between 11 ms, when

the reaction is visible on the same screen that is touched, and 55 ms, when the

reaction is visible in another place, and for tapping these times are 69 ms to 96 ms,

respectively. Improvements in latency could be perceived in dragging from 8.3 ms,

depending on the baseline latency. These latency values are comparable to the tar-

geted latency times for interaction on touch surfaces, such as a smart bathroom

mirror in a smart home. It can be assumed that, in order to reduce latency, drag-

ging operations are processed locally in the application, and actions are triggered

when they are released or remain at a certain position for a longer period of time.

This means that only the touch interaction time is relevant for the messages over

the network. Compared to the values measured here at approximately 3 to 5 ms

with heavy utilisation, these use cases can be implemented without restrictions

via the architecture presented.

Chapter 7. Experimental Evaluation 179

An evaluation of the performance of different MQTT implementations by Bender

et al. [2021] shows a message latency of about 20 ms to about 50 ms, depending

on the implementation, in a measurement with 2,000 clients who each publish

20 messages on a topic and subscribe to it. Compared to the values measured

here, this is faster when using one middleware node but is still in a similar order

of magnitude. The nearest comparable measurement is 1,400 agents and groups,

where the average message latency is 10 ms. In this measurement, the test VM is

already close to its CPU limit, so a measurement with 2,000 agents will be slower.

The higher message latency is to be expected and can be explained by the fact

that the middleware does additional work, such as for monitoring the agents and

counting of the messages.

It is difficult to make a good comparison of message latencies with similar public-

ations that support developers in their work on smart systems. The latencies of

the messages depend on the hardware used, the network technology, and the test

setting. Of the four comparable works with performance measurements listed in

Table 2.2, only Pahl and Liebald [2019] include latency and scalability measure-

ments, with approximately 10 ms latency over the network for a single request.

The scalability was tested only for up to 48 simultaneously running IoT services.

The other publications only measure the latencies of certain elements of the ar-

chitecture, such as the retrieval of data from the database or the rendering time

of ontologies. Gu et al. [2005] and Elhabbash et al. [2020] measure the duration

of requests to the ontology system. While this is not comparable to the latency of

messages between two agents, it shows that for certain requests it is acceptable to

wait several seconds for a response. For example, with 100 simultaneous requests,

a requests lasts more than 25 seconds in Gu et al. [2005] and approximately 20

seconds in Elhabbash et al. [2020]. The overhead of the architecture presented

here of a few milliseconds would therefore be negligible for such approaches.

The other requirements for the architecture identified in Chapter 3 are evaluated in

the following chapter. Since these are requirements that do not concern perform-

ance in the sense of the speed of processing messages by the system but are mainly

Chapter 7. Experimental Evaluation 180

focused on usability, they are evaluated separately in a scenario-based evaluation

and are not tested quantitatively via further experiments.

Chapter 8

Scenario-based Evaluation

In the following, a scenario-based architecture analysis is carried out as described

in Chapter 5 to show that the software architecture presented here fulfils the

identified requirements and is suitable for use in smart systems. For this purpose,

the preparations and the procedure of the architecture analysis are described first,

including the identification of architectural approaches and scenarios as a basis

for the ATAM workshop. The results of the workshop are then presented and

evaluated.

8.1 Architecture Analysis

The analysis of the architecture with the help of the scenarios starts with the

identification of the architectural approaches and the selection of the scenarios.

This is followed by the ATAM workshop, in which the actual evaluation takes

place.

8.1.1 Architectural Approaches

In the following, the architectural approaches of the architecture presented here

are listed and briefly explained. All aspects of the architecture addressed here are

181

Chapter 8. Scenario-based Evaluation 182

described in detail in Chapter 4.

• A1 - Agent-based Design - An agent-based architecture is used strictly for

the whole system. All components have dedicated tasks and communicate

with each other exclusively via messages. The only exception to this are the

middleware nodes, which provide the communication interface for the other

components.

• A2 - Open Design - The architecture is designed so that all components

and their communication are easy for developers to inspect. Therefore, all

messages are routed through the middleware’s messaging layer. Furthermore,

all messages are in a format that can be converted to JSON so that they

can be easily read by humans. The interfaces to the middleware are based

on open-source libraries and standardised protocols to facilitate adaptation

to other systems and increase the system’s integrability.

• A3 - Publish/Subscribe Communication - All communication between

agents is sent via publish/subscribe. A direct message between two agents is

not allowed. This ensures that all communication channels are visible to the

middleware, and developers can view the exchanged messages at any time.

• A4 - Open Middleware API - The interface of the middleware for con-

necting agents is designed in such a way that it can be easily connected from

as many programming languages as possible. To make this possible, there

are three entry points. Firstly, the optimised interface is based on SCTP

and Protobuf, which is used by the frameworks. In addition, there is the

possibility to connect via TCP, UDP, and WebSockets with a simplified in-

terface and JSON messages. It is assumed that every modern programming

language supports at least one of these protocols and that JSON can be

used everywhere as simple strings, if necessary. As part of the middleware

API, all available middleware nodes are regularly transmitted to the agents

to enable a failover should one of the middleware nodes fail.

Chapter 8. Scenario-based Evaluation 183

• A5 - Agent Framework - For the simple connection of frequently used pro-

gramming languages, a framework is provided that can be integrated into an

agent project as a library and that can control the life cycle of the compon-

ent as well as management of the communication with the middleware and

serialisation of the messages. The main goal of the framework is to acceler-

ate the development of new components and further reduce the complexity

of connecting new agents.

• A6 - API Libraries - All agent interfaces are defined via a uniform descrip-

tion language. This makes it possible to check the validity of messages in

groups. In addition, the middleware can specify at any time which messages

are permitted where, which is helpful in understanding the system.

• A7 - Runtime Environments - Agents can be programmed, for example

via the provided framework, in such a way that they can be operated in

the runtime environments of the middleware. This enables full control of

the agent lifecycle via a runtime management agent interface. Agents can

migrate between runtime environments, which provides failure tolerance in

case of an error. However, the agent must be either stateless (e.g., external

database) or programmed in such a way that the state can be restored after

the migration (e.g. via the event sourcing mechanism of the framework).

• A8 - Integration of CEP - The architecture contains a fully functional,

seamlessly integrated CEP engine consisting entirely of agents. This engine

allows descriptive queries to be executed by developers and by agents that

provide dynamically updating results. All messages can be queried, as well

as the state of the system as maintained by the middleware.

• A9 - Distributed Middleware Nodes - The middleware messaging layer

is provided by the middleware nodes. Several middleware nodes can be

operated in a cluster. The nodes monitor each other and automatically dis-

connect unreachable nodes from the cluster. Decisions about unreachability

are determined by a chosen leader, which is automatically determined by the

cluster. This allows the processing of messages from connected agents to be

Chapter 8. Scenario-based Evaluation 184

shared between the middleware nodes and provides fault tolerance. In case

of failure of one of the middleware nodes, the agents affected automatically

connect to one of the remaining nodes. The system remains operational as

long as more than half of the original nodes are running.

• A10 - Layer Design - The middleware consists of three layers that build on

each other. The publish/subscribe communication is provided by the lowest

layer, the messaging layer. Based on this, the CEP layer processes the CEP

queries from agents and users and makes the system status information of

the lower layer accessible. The top layer is the interaction layer, which

contains the interface for the developer. Here, the status information of the

messaging layer is further processed and prepared for display to the user. In

addition, the control of the user over the runtime environments and ad hoc

CEP queries is managed in this layer.

• A11 - Monitoring and Logging - All agents are registered with the mid-

dleware during the initial connection. The middleware regularly checks the

availability of agents and manages the subscriptions of all agents. At the re-

quest of an agent or by a user request, messages can be stored in one or more

groups for a specified time interval. For this task, another agent is started

by the middleware, which subscribes to the specified groups and saves all

received messages ordered by their time stamp. These messages can then be

replayed at a later time, for example for testing purposes.

8.1.2 Quality Attribute Utility Tree

As usual, according to the ATAM, the scenarios are compiled in two steps [Cle-

ments et al., 2009]. In the first step, the quality attribute utility tree is created.

This contains all scenarios that result from the requirements for the architecture

determined so far. Since the architecture presented here has already been in use

for several years at the time of writing, the experiences from various tests are

included. This includes the experiences from operation in the two research labor-

atories, the Living Place Hamburg and the CSTI, the use of the architecture in

Chapter 8. Scenario-based Evaluation 185

several research projects, and experiences from the use of the architecture for a

total of five university courses with students.

8.1.3 Scenario Prioritisation

Questionnaires are used to collect further scenarios and to subsequently evaluate

the importance of these scenarios. In the first step, all available stakeholders are

asked to rate the scenarios from the Quality Attribute Utility Tree according to

their importance. They are also asked about other scenarios that they think are

missing. The newly collected scenarios are then evaluated by the participants of

the ATAM in a second questionnaire.

The first questionnaire asked about the importance of the 15 scenarios from the

quality attribute utility tree. The complete questionnaire can be found in Sec-

tion B.1. All participants were asked to describe the professional role they pre-

dominantly had at the time they worked at Living Place Hamburg or CSTI and

could select multiple answers. This was useful, for example, for students or PhD

students who were also employed as staff. The questionnaire was sent to all current

and former staff and students of Living Place Hamburg and CSTI who were avail-

able. The prerequisite for participation was that they have experience working

with the software architecture in the labs, for example in the context of a project,

a thesis, student supervision, or working on the infrastructure of the labs. When

specifying the role in the questionnaire, there were several questions because it

was not clearly defined what time it was and what employment as a staff member

meant in connection with the work on the architecture. It was ensured that only

people who worked with the system as such were counted as employees. A parallel

job in another project was not sufficient.

A total of 18 people were surveyed. All but one of the questionnaires were com-

pleted in full. One of the questionnaires was missing an evaluation of one of the

scenarios. Figure 8.1 shows the distribution of roles. Twelve of the participants

were students, five were staff, three were PhD students and three were professors.

Chapter 8. Scenario-based Evaluation 186

Quality Attribute Refinement Scenario

Performance Message Latency Developers can use the system to implement user
interaction with reasonable message latencies.

Scalability
The performance of the system scales with the
addition of more middleware nodes up to
at least 1,000 agents.

Availability Node Failures System functions are available as long as
more than half of all middleware nodes are available.

Agent Failures Uncontrolled sending of messages from an
agent does not affect the functioning of the system.

Modifiability
Add Technologies

Developers can connect additional technologies,
like other messaging systems or previously
unsupported but compatible protocols, to the
middleware within a day.

Descriptive
Programming

Developers can create simple full-featured
agents via a descriptive language.

Change Messaging
Format

Developers can add or change message
formats within a day.

Variability Heterogeneity

Developers can connect new components
written in commonly used programming languages
(such as Java, C, and JavaScript) to the middleware
in a matter of hours.

Modularity Reusability of
system components

Administrators can exchange system components
and use them independently of each other.

Functionality

Context Processing
The system offers developers the possibility
to subscribe to, edit, filter and forward
context information from agents via queries,

Program
Comprehension

The system can show developers the current
communication graph, filtered on demand, with all
agents and groups.

Debugging
Developers can search for specific agents and
messages with specific properties via queries
and thus localise errors in the system.

Adhoc Queries

Developers can query the system state and
messages of agents ad hoc via queries to
interactively learn about the structure of
a running system.

Test Settings
Developers can generate test settings and test
data with the help of the system without having
to write their own components.

Conceptual integrity Agent-based Developers can view all components of the
system as agents with dedicated tasks.

Table 8.1: Quality attribute utility tree

Chapter 8. Scenario-based Evaluation 187

The comparatively high number of students can be explained by the composition

of the lab teams. It is common in such environments in the research sector that

there are several students for every staff member and professor.

12

5

3 3

0

2

4

6

8

10

12

14

Participant Roles

Participant Roles

Student Staff Member PhD Student Professor

Figure 8.1: Distribution of professional roles among the participants of the
first questionnaire

The evaluation of the 15 scenarios can be found in Table 8.2. Overall, all scenarios

were considered at least moderately important on average. This indicates that the

selected scenarios for the applications in the research laboratory are suitable for

the target groups surveyed. Only one scenario was rated as very important, with

a score of 4.5 (rounded up). This was the scenario of integrating new compon-

ents written with different programming languages into the system. This result

supports existing literature, according to which support for heterogeneity is an

important factor for all forms of smart systems.

Most scenarios were rated as important. Among the higher-rated features are the

search for faulty components, the possibility to process context information with

CEP queries, and the system’s ability to tolerate single faulty agents. In addition,

message latencies suitable for user interaction and the ability to exchange message

formats quickly were rated as important. Interestingly, the possibility of simply

searching for errors was rated higher than both performance-relevant scenarios.

Chapter 8. Scenario-based Evaluation 188

Two scenarios were assessed as only moderately important the scalability of the

system to up to 1,000 agents and the possibility of agents with CEP queries.

Regarding scalability, based on feedback after the questionnaires and during the

workshop, it is assumed that 1,000 agents was perceived as very high as many

students and staff are normally confronted with only a few components at a time.

When analysing the questionnaires, it became apparent that the different stake-

holders voted differently depending on their roles. To illustrate this, the voting

results of two groups were compared. The first group comprised all the students,

and the second group comprised the all staff and professors. The differences in the

average voting results are outlined in Figure 8.2. The group of staff and professors

rated all scenarios in the functionality category higher than the group of students.

The differences range from about half a level of importance to almost a whole level

of importance. In contrast, students rated the performance scenarios as more than

half level higher. This difference is even higher for modification scenario 7 (change

of message format) and conceptual integrity. Here, the group of students rated

the scenarios almost one importance level higher.

It could be assumed that, in comparison, staff and professors value the functionalit-

ies of the architecture that are designed to improve debugging and support program

comprehension more because they potentially work with more team members, for

example when supervising student projects, and are potentially part of the team

for a longer period of time. In contrast, students in these environments are pre-

dominantly involved in the practical work on the system, where the performance

and the simple modification of components are important.

This cannot be definitively deduced on the basis of the data, but it does indicate

that it could be interesting to do another survey that focuses on such differences.

This could also be done independently of the architecture and could therefore

include other laboratory environments to achieve a higher number of participants.

Chapter 8. Scenario-based Evaluation 189

Category Refinement Scenario Eval
8 Variability Heterogeneity Developers can connect new components

written in commonly used programming
languages (such as Java, C, and JavaS-
cript) to the middleware in a matter of
hours.

4,50

12 Functionality System entity search Developers can search for specific agents
and messages with specific properties via
queries and thus localise errors in the sys-
tem.

4,33

4 Availability Agent failure toler-
ance

Uncontrolled sending of messages from an
agent does not affect the functioning of the
system.

4,22

1 Performance Message latency Developers can use the system to imple-
ment user interaction with reasonable mes-
sage latencies.

4,17

10 Functionality Context processing The system offers developers the possibil-
ity to subscribe to, edit, filter and forward
messages from agents via queries.

4,17

7 Modifiability Change message
format

Developers can add or change message
formats within a day.

4,06

9 Modularity Reusability of system
components

Administrators can exchange system com-
ponents and use them independently of
each other.

3,83

3 Availability Node failure toler-
ance

System functions are available as long as
more than half of all of the middleware
nodes are available.

3,78

5 Modifiability Add new technolo-
gies

Developers can connect additional techno-
logies, like other messaging systems or pre-
viously unsupported but compatible pro-
tocols, to the middleware within a day.

3,72

14 Functionality Test settings Developers can generate test settings and
test data with a descriptive language
without having to write their own compon-
ents.

3,72

15 Conceptual integrity Agent-based Developers can think about all compon-
ents of the system as agents with dedicated
tasks.

3,72

11 Functionality System status visual-
isation

The system can show developers the cur-
rent communication graph, filtered on de-
mand, with all agents and groups.

3,67

13 Functionality Ad-hoc queries Developers can query the system state and
messages of agents ad hoc via queries to
interactively learn about the structure of
a running system.

3,67

2 Performance Scalability The performance of the system scales with
the addition of more middleware nodes up
to at least 1,000 agents.

3,22

6 Modifiability Descriptive program-
ming

Developers can create simple full-featured
agents via a descriptive language.

3,06

Table 8.2: Rating of the 15 scenarios from the quality attribute utility tree
based on the first questionnaire from 5 (very important) to 1 (not important),

sorted by importance.

Chapter 8. Scenario-based Evaluation 190

-1,5

-1

-0,5

0

0,5

1

1,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performance Availability Modifiability Variability Modularity Functionality Conceptual
integrity

Difference in rating between students and supervisors

Figure 8.2: Differences in the average evaluation of the scenarios by students
and staff. Positive values (in blue) show a higher average importance from the

group of students negative values (in orange) from staff and professors.

8.1.4 ATAM Workshop

The ATAM workshop was conducted with five people. Besides the software archi-

tect and author of this thesis, four other people were present during the workshop.

All identified stakeholders of the labs were represented, as at least one student,

one staff member, and one professor were part of the workshop. All participants

were or are part of the team of the laboratories studied here. This is common

with ATAM, and it means they have worked with the architecture over a period

of at least multiple semesters. To avoid conflicts of interest, participation in the

workshop was entirely voluntary, and none of the participants was in any way de-

pendent on the outcome of the workshop, for example through grades or something

similar.

The workshop consisted of two appointments. In the first appointment an intro-

duction to ATAM was given, the outputs of the workshop were explained, and the

architecture was presented in detail. Then, evaluation of the architecture started

and the process continued in the second workshop. In this way, all scenarios could

Chapter 8. Scenario-based Evaluation 191

be addressed. The exact procedure of the workshop follwed the ATAM described

at the beginning of the chapter.

The further procedures of the workshop and the results are presented below.

8.1.5 Scenario Brainstorming

In the second part of the first questionnaire, the participants were asked to add

further scenarios that they felt were missing from the first list. All scenarios were

collected, merged where necessary, edited, and completed. This procedure was

necessary because, firstly, some scenarios were given in German and had to be

translated. Secondly, some scenarios were incomplete or only given in keywords,

and thirdly, some scenarios were given by several participants. Based on the

responses, a total of 11 further scenarios, numbered 16 to 26, were added.

With these 11 new scenarios from the first questionnaire, a second questionnaire

was created and completed by all participants in the workshop. The questionnaire

can be found in the Appendix in Section B.2. All new scenarios, sorted by their

scores, are listed in Figure 8.3.

As a result of the first survey, additional functionality scenarios have been added

that describe different use cases from the stakeholders’ point of view. These in-

clude scenarios in which agent interfaces are examined and scenarios that describe

the work of and with students. In addition, various scenarios were mentioned that

involve recording and replaying messages, such as to carry out tests. In addition,

two new scenarios were added, namely message integrity and message prioritisa-

tion.

All but one of the new functionality scenarios were rated as high as important.

Only the realisation of projects with students scenario was rated as moderately im-

portant. Message integrity and prioritisation were rated the lowest of all scenarios

and were considered only slightly important.

Chapter 8. Scenario-based Evaluation 192

Category Refinement Scenario Eval
24 Functionality Display agent activa-

tion conditions
Developers can use the system to find out
which interfaces an agent supports and
which messages it expects, to be able to
estimate which conditions (such as sensor
data) the agent is waiting for.

4.40

19 Variability Freedom in the
choice of attributes

Developers can encode any JSON-
compatible attributes in messages sent to
and from agents. These attributes can be
searched for using queries to track these
messages in the system.

4.20

20 Functionality Simple message tra-
cing

The system offers developers the option to
trace messages and their responses for de-
bug purposes.

4.20

22 Functionality Project handover to
following semester
groups

A new group of students who wants to ad-
apt or replace parts of the system can use
the user interface to see which components
are involved and what dependencies they
have on the rest of the system.

4.20

16 Functionality Checking interfaces
of agents

Developers can see in the user interface
whether agents implement the correct in-
terfaces, which ones are missing, and
which ones are not supported by the cur-
rent communication partners.

3.80

17 Testing Message recording
and replay

Developers can save the communication
between agents in a part of the system and
replay it later for testing purposes. The
display and processing via queries are pos-
sible in the same way as for all messages.
These messages are additionally marked
with an attribute to enable filtering.

3.60

21 Functionality Cooperation between
student groups

Student groups in a semester, each work-
ing on their agents, can use the system to
exchange information about interfaces and
dependencies of their agents.

3.60

23 Functionality Realisation of pro-
jects with students

Teachers can see via the user interface
which agents are integrated into the sys-
tem by their students and which other
agents are potentially influenced by them.
If necessary, the exact information ex-
change of these new agents can be analysed
in detail.

3.40

18 Variability Freedom in the
choice of name

Developers can freely choose group names
and, if necessary, define their own naming
conventions.

2.80

26 Performance Message prioritisa-
tion

Messages from agents can be prioritised. If
possible, a message with a higher priority
is forwarded by the middleware before a
message with a lower priority.

2.40

25 Security Message integrity Developers can be sure that the messages
are not altered by other users and have to
possibility to validate the integrity.

2.00

Table 8.3: Rating of the 11 additional scenarios from the second questionnaire
from 5 (very important) to 1 (not important), sorted by importance.

Chapter 8. Scenario-based Evaluation 193

Overall, it can be seen that performance and security aspects are far behind func-

tionalities that make it easier for developers to work with the system.

8.1.6 Architectural Approaches Analysis

Now that all scenarios have been determined and evaluated, the second part of

the ATAM workshop continues with an analysis of whether the architecture to be

investigated is suitable for all scenarios. During the remaining part of the ATAM

workshop, all scenarios were analysed one after the other, and the appropriate

architectural approaches were assigned to each of them. Each of these mappings

was described with Sensitivity Points, tradeoff points, risks and nonrisks.

• Sensitivity Points - A sensitivity point is a property of one or more com-

ponents or the relationship between components that is important for the

satisfaction of a quality attribute described by a scenario [Clements et al.,

2009]. Sensitivity points show which system parts are important for the

fulfilment of a quality characteristic. They show which system parts are im-

portant for the fulfilment of a quality characteristic and serve as an indication

of what must be observed if certain system parts are to be changed.

• Tradeoff Points - A tradeoff point is a sensitivity point that affects more

than one quality attribute [Clements et al., 2009]. For example, this is the

case when a change to the architecture improves one quality attribute but

simultaneously worsens another quality attribute.

• Risks - Risks indicate problems in the architectural decisions with regard

to the scenarios. Risks can come from architectural sources, such as certain

components or interfaces, as well as from non-architectural sources, such

as too little communication between certain stakeholders [Clements et al.,

2009].

• Nonrisks - Nonrisks document good architectural decisions [Clements et al.,

2009]. Conclusions are drawn from the architectural approaches as to whether

the decisions are appropriate based on the scenarios.

Chapter 8. Scenario-based Evaluation 194

During the analysis, further architectural approaches can be identified in accord-

ance with the methodology used, if this seems appropriate to describe the scen-

arios. This manifested itself during the workshop as questions to the architects

on how a scenario would be implemented in the architecture under investigation.

These were often based on the information given during the presentation at the

beginning of the workshop. If a scenario could not be answered with the list of

approaches provided before the workshop, the list had to be extended. In the first

part of the workshop, A9 (Distributed Middleware Nodes) and A10 (Layer Design)

were added, and in the second part, A11 (Monitoring and Logging) was added to

the list of architectural approaches in Section 8.1.1.

To document the process of the architectural approach analysis, a form was filled

out for each scenario during the workshop. Keywords were used to describe the

four properties. After the workshop, these forms were then transferred into a

digital format. The numbering of the properties was corrected and standardised

between the two workshop dates. The results are described in the following section

and can be found in the appendix in Section B.3.

8.2 Results

In the following, the further results of the ATAM Workshop are presented. These

consist of the sensitivity points, tradeoff points, risks and nonrisks of the mappings

of cenarios and architectural approaches.

8.2.1 Sensitivity Points

Sensitivity points show which entities in the software architecture are particularly

important for the realisation of the scenarios examined. A total of 13 sensitivity

points were documented during the workshop.

Notably, the interface between agents, or the agent framework, and middleware,

or the middleware API, is one of the most sensitive points of the architecture. The

Chapter 8. Scenario-based Evaluation 195

protocol support of this interface and the agent framework are directly related to

the support of heterogeneity (S1, S2). In addition, it is important for the monit-

oring functions of the middleware that agents correctly implement the registration

process in the interface (S8).

It was also highlighted during the workshop that the message latency in the system

depends on both the number of messages and the number of middleware nodes

(S5, S6), as was also confirmed in the latency and scalability measurements in

this thesis. This results in recommendations for the administrators of middleware

installations: at least three, preferably five nodes should be deployed so that there

is fault tolerance and the system does not suffer any performance losses even under

very high load.

The results also demonstrate that compliance with the design decisions in the

system could have an impact on the scenarios. These include open design and

agent-based design in particular. All components should be implemented in such

a way that inspection is easily possible (S7) and agent-based design principles

(S3) should be followed. Adherence to both design decisions makes it easier to

understand the system and debug errors.

Finally, the integration of CEP functions was identified as a particularly sensitive

part of the architecture (S4, S10). The CEP engine as a component is very import-

ant for the implementation of many of the scenarios, and the type of integration

influences the comprehensibility of system processes.

8.2.2 Tradeoff Points

During the workshop, a total of 23 tradeoff points were identified. Tradeoff points

show the dependencies of entities in the software architecture on two or more

quality attributes. Compared to the sensitivity points, additional care must be

taken with the entities highlighted here because potentially conflicting properties

could be affected.

Chapter 8. Scenario-based Evaluation 196

When analysing the trade-off points, it is noticeable that the possibility of sending

CEP queries to the system has a positive influence on many other scenarios (T4,

T6, T9, T19). These include the exchange of developers for handovers (T19),

the induction of new team members, and the identification and localisation of

errors in the system (T4). CEP queries can also support the monitoring, testing,

and acceptance of student projects (T19), which is similar for the visualisation

functions of the middleware. These support debugging scenarios and make it

easier to find components and identify dependencies.

An important point is that scaling the middleware nodes can affect the perform-

ance and fault tolerance of the system. Administrators should pay special attention

to the requirements of the system in the environment and configure the software

accordingly. The number of agents can affect several other factors (T12), including

the minimum number of middleware nodes (T11, T15), message latency, and the

clarity of the visualisation (T14) of the system state. Although filtering functions

can help improve the overview of the latter, a smaller system is often easier to

understand.

One design decision that influences many scenarios is that of open design. The

possibility of freely accessing groups and the decision to give developers as much

freedom as possible (T3, T8) when programming components leads, on the one

hand, to ready support for heterogeneous components. On the other hand, these

freedoms can also lead to components being programmed incompatibly with ar-

chitectural decisions (T23), which can negatively affect the maintainability and

comprehensibility of the system.

8.2.3 Risks

The risks describe potential problems with certain properties of the architecture

or external influences. A total of 29 risks were identified during the workshop.

In Clements et al. [2009] it is recommended when presenting risks to group them

Chapter 8. Scenario-based Evaluation 197

into themes if possible. These themes are presented one after the other in the

following.

Risks are not necessarily negative and, in some cases, cannot be avoided. It is

important to keep an eye on risk factors to be able to take appropriate measures

to mitigate or avoid potentially negative impacts.

The vast majority of the risks identified during the workshop are dependent on

the system programmers. For example, key elements of the architecture, such

as agent-based design (R14) or CEP queries (R8, R22), need to be understood

by the programmers in order to be used correctly. In addition, it is important

that all developers adhere to the design choices of the architecture as much as

possible and do not intentionally violate them (R23). In this context, several risks

were introduced based on the workshop participants’ experiences with student

projects. These include incidents where existing systems were deliberately ignored

and "improved" new implementations were made, or the opinion that the system

could also work differently as in another project, leading to components being

integrated that do not fit with the rest of the system (R21).

Several points were raised to counteract these risks. On the one hand, all de-

velopers should learn the key elements of architecture in courses or workshops and

refresh them regularly. On the other hand, new projects should be accompanied by

lecturers or staff to ensure that they do not have a negative impact on the system

and can integrate well in the future. The aim of this is to prevent deliberate viola-

tions of design decisions in the system to operate the system in the long term at a

reasonable cost. Working with students in such laboratory environments is one of

the challenges that has been incorporated into the design of the architecture. The

functions of the architecture with CEP queries and visualisation can help here to

quickly check whether certain preconditions are fulfilled, as is also represented in

several of the scenarios studied. The open design of the architecture means that

all freedom in implementation is in the hands of the programmer. This has the

advantage that the architecture is very flexible and easy to inspect, but it also

facilitates the violation of central design principles.

Chapter 8. Scenario-based Evaluation 198

Another group of risks arises from the complexity (e.g., R7, R10) and distribution

of components in the system across the network (R20, R29), which create con-

currency and can lead to errors that are difficult to identify. These risks cannot

be completely avoided because of the environment and smart systems. Still, the

architecture can mitigate the complexity and contribute to error prevention and

it is therefore important to identify the parts of the architecture that are partic-

ularly critical here. During the workshop, the guarantees for message sequences

were mentioned in this context. These can potentially be affected by a failure of

the middleware nodes, for example.

A third area of risk is that individual components in the system can affect the

performance of the overall system. Attention should be paid to the fact that

the connection of further message systems or fully implemented components can

have an influence on the behaviour and performance of the overall system (R11).

Furthermore, the hardware used is also a potential cause of problems, such as if the

network hardware is too slow (R7). In addition, errors in individual components

can also have negative effects, for example if a component floods the system with

messages or actively sends faulty messages (R6). In both cases, the visualisation

of the middleware can help to estimate which parts of the system are potentially

affected by new components.

8.2.4 Nonrisks

Nonrisks describe good architectural choices for the scenarios studied. Document-

ing nonrisks can therefore help to record these decisions so that they can be taken

into account in any subsequent changes. Furthermore, nonrisks can provide in-

formation about how suitable the architecture is for the implementation of the

scenarios. A total of 51 nonrisks were identified during the workshop, making

nonrisks the most frequently described feature during the workshop.

The nonrisks are not only the most frequent properties in the workshop results, but

all scenarios were also assigned at least one nonrisk, indicating that the scenarios

Chapter 8. Scenario-based Evaluation 199

are supported by at least one architecture decision. In the following paragraphs,

the most important nonrisks are presented in the order of the architectural ap-

proaches. A list of all nonrisks can be found in the Appendix in Section B.3.5.

The agent-based design (A1) of the architecture ensures, among other things,

that each component has its own separate task and only communicates with other

components via messages. This supports program comprehension and debugging

tasks because all communication between components is accessible for inspection

(N3). As long as this is respected, it is also easier to find the component responsible

for a particular task and to see which other components may be affected by it

(N24). This can be helpful when training new team members, like new student

groups (N38).

The open design (A2) principle of the architecture allows easy access to all

messages in the system. This makes it possible to read all messages (N9, N33) as

well as to publish additional messages everywhere (N19).

The publish/subscribe layer (A3) of the middleware ensures that all messages

in the system can be subscribed to (N11) by all components at any time. In

addition, external systems can be connected via this layer as long as they send

JSON-based messages (N11). By distributing the messages to different groups,

the load on the messaging layer can be distributed to several middleware nodes

(N5).

The open middleware API (A4) ensures the easy connection of new compon-

ents with a wide range of technologies and protocols (N1), handles the handover

process in case of node failure (N15) and ensures that all agents adhere to the

messaging protocols (N41).

The agent framework (A5) accelerates the development of new components and,

among other things, manages the connection of new components to the middleware

(N17).

The API libraries (A6) ensure that it is always known which interfaces an agent

implements. This allows the middleware to check whether agents communicate

Chapter 8. Scenario-based Evaluation 200

with compatible messages (N40). It can manage multiple versions of interfaces

(N12). In addition, the API promotes documentation about the given DSL and

makes it possible to query it via the middleware (N43).

The runtime environments (A7) that can be controlled by the middleware

ensure that agents can be migrated between different environments. This can

increase availability in the event of a failure and possibly reduce latency if agents

can be run closer to their communication partners.

The integration of CEP (A8) positively influences the largest number of scen-

arios of all architectural approaches. It enables filtered access to all messages (N2,

N10) and thus the search for error messages (N4) and the checking of expectations

(N44). In addition, CEP queries can be used to generate time-controlled messages,

which can be used, for example, to play back test data and scenarios (N10). In

addition, the visualisation can be filtered with CEP queries to increase clarity in

larger systems (N25). Furthermore, the type of CEP integration ensures that all

components continue to appear as agents in the visualisation, which increases the

comprehensibility of the system (N39).

The distribution of the middleware nodes (A9) is the basis for the system’s

failure tolerance and scalability. By adding more middleware nodes, it is possible

to distribute the load in the messaging layer to several nodes (N28), which can have

a positive influence on message latency (N7). Since the system remains available

as long as more than half of all nodes are reachable, the use of multiple nodes

provides fault tolerance (N14).

The layer design (A10) of the architecture ensures that individual parts of

the middleware can be exchanged (N13). This can help integrate the system into

other environments or connect existing software with the middleware. In addition,

special requirements can be met that are not provided for in the current imple-

mentation, such as prioritising individual messages without affecting the other

layers (N50).

Chapter 8. Scenario-based Evaluation 201

The monitoring and logging (A11) components of the middleware ensure that

the state of agents and their message traffic can be inspected (N13). In addition,

these components make it possible to record message traffic in parts of the system

if desired and replay it at a later time (N50).

In summary, it can be stated that all architectural approaches are at least necessary

for the implementation of at least one of the scenarios. Hence, the architectural

approaches and thus the architecture fit the scenarios of the stakeholders and thus

implement the necessary quality features.

8.3 Conclusion

A full scenario-based architecture analysis using the Architecture Trade-off Ana-

lysis Method (ATAM) was carried out and produced several outputs: a priorit-

ised list of scenarios and quality attributes, a list of architectural approaches, the

mapping of approaches to quality attributes and the associated sensitivity points,

tradeoff points, risks and nonrisks. The ATAM workshop additionally contributed

to the improvement of the presentation and documentation of the architecture and

improved the understanding of the details of the architecture of all stakeholders

involved. This is evident from the feedback of the workshop participants.

By collecting scenarios based on the literature and from all stakeholders and evalu-

ating them via the questionnaires, it was shown that the important quality attrib-

utes were taken into account when evaluating the architecture. The assessment of

the importance of the scenarios support that the functionality quality attributes

have a high importance in the studied laboratory context compared to other at-

tributes. The orientation of the architecture presented here therefore fits the needs

of the environments studied. It can be assumed that these results are transferable

to other similar laboratory environments. The expert interviews demonstrate that

similar requirements and problems prevail in these other environments.

Chapter 8. Scenario-based Evaluation 202

The analysis of the nonrisks shows that the architecture examined here is suitable

for the scenarios and thus fulfils the desired quality characteristics and require-

ments from the literature and the surveyed stakeholders. It also indicates that all

architectural approaches are important for the fulfilment of the scenarios.

The identified tradeoff points and risks do not show any major problems in the

use of the architecture. However, they show that attention should be paid to

the correct configuration of the system, such as the number of nodes, the correct

training of the programmers, and comprehensive documentation.

Another aspect of the analysis of the identified risks is that in the operation of the

laboratory environments for smart systems studied here, it is important to train

all stakeholders and especially students in the technologies and paradigms used

for the architecture and, if necessary, to check new components for compatibility

with the existing architecture before they are integrated in the long term. This

is necessary to ensure long-term operation, to keep maintenance low, and to keep

the system understandable for new team members. In this regard, the results

of the expert interviews indicate that this conclusion con be transferred to other

environments

In contrast to the studies conducted in publications with comparable architectures

(see Section 2.3.4), the procedure according to ATAM can be repeated, reviewed,

and used for comparison with other architectures without additional information.

All the steps required to perform an ATAM workshop to evaluate the architecture

published here can be found in this thesis or in the literature cited. As such, the

workshop can be repeated with other participants in the future. It is possible

to include another architecture during this workshop to compare it with the one

presented here.

Quantitative simulations and measurements are often implementation-dependent

and cannot be verified or compared to other approaches without publishing the im-

plementation. In addition, only performance and similar attributes can be tested,

an evaluation of usability does not make sense with simulations because it is about

interaction with humans. The latter is often evaluated in comparable works with

Chapter 8. Scenario-based Evaluation 203

case studies, but this evaluation is not structured and does not follow any pub-

lished method. Therefore, it is difficult to verify the evaluation or reproduce the

used application example to compare it with new approaches. Furthermore, a case

study as conducted in comparable publications does not involve stakeholders or

persons other than the authors of the paper, which can limit the validity of the

research.

The scenario-based evaluation was conducted to answer research questions Q3 and

Q4. With respect to Q3, the results of the scenario-based evaluation show that

the presented seamless CEP integration meets the identified requirements and is

therefore suitable for this and probably similar architectures. Furthermore, the

results of this scenario-based evaluation together with the expert interview results

show, related to Q4 that the developed architecture is suitable to support de-

velopers in laboratory environments with program comprehension and debugging

tasks.

With the scenario-based analysis and the experimental evaluation, all identified

requirements for the software architecture have now been investigated. In the

following conclusion of the thesis, an overview of the evaluation of the requirements

is given.

Chapter 9

Conclusions and Future Work

This chapter summarises the results of this work, the contributions, and implica-

tions for future research.

9.1 Summary

This thesis presented a software architecture for smart systems that supports the

development of software and fast experiments in research laboratories. The main

component of this architecture is a middleware, which provides publish/subscribe

communication. The middleware contains a framework that facilitates the devel-

opment of new components as well as supports the inspection of the system by

collecting and processing status information about all components, for example

about the active agents and groups. A seamless integration of CEP queries allows

for processing of context information as well as exploring the state of the system.

In this way, it is possible to perform debugging and program comprehension tasks

on the running system.

Based on this and the research objectives stated in the introduction, the following

four research questions (Q1 -Q4) were formulated.

204

Chapter 9. Conclusions and Future Work 205

Method Expert Interviews
Latency and
Scalability
Measurements

Scenario-based
Architecture
Analysis

Questions Q1 / Q4 Q2 Q3 / Q4
Methodological
Choices

qualitative
interview study

quantitative
experiment

qualitative
scenario-based analysis

Reference Chapter 6 Chapter 7 Chapter 8

Results

The presented architecture
is suitable for different
use cases in smart system
laboratories, which have
additional requirements
compared to normal smart
systems due to the
research context.

The measurements show
low latencies and a high
scalability suitable for
intended environments and
for user interaction.

The scenario-based analysis
shows that the architecture
implements the necessary
requirements and is well
suited for use in smart
systems research laboratories.

Table 9.1: Overview of the studies conducted in this thesis

• Q1: What are the requirements for a software architecture in research labs,

that uses loosely coupled distributed applications in smart systems?

• Q2: How is it possible to create a software architecture to support devel-

opment tasks in research labs without compromising the performance of the

system?

• Q3: How can CEP be integrated into a middleware for smart systems

without increasing the complexity of the system for developers?

• Q4: How can such a middleware with an integrated CEP engine support

program comprehension and debugging tasks in smart systems?

To investigate these research questions, three separate studies were conducted. An

overview of these three studies is provided in Table 9.1.

Firstly, expert interviews (see Chapter 6) were conducted to analyse the require-

ments for software in smart system laboratory environments (Q1) and to evaluate

the transferability of the CEP tools presented (Q4) in this thesis. Based on the

analysis of the expert interviews, further requirements were formulated that apply

specifically to software in smart systems laboratory environments. These include a

strong requirement for support of the software development process. The reasons

for this are, changing team compositions, working with students, short project

Chapter 9. Conclusions and Future Work 206

durations, and problems with the documentation. The results of the interviews

also support that the architecture presented here can also be used in other labor-

atory environments with loosely coupled systems, and the experts see use cases

for the systems they are working with (Q4), incuding the evaluation of system

states, the evaluation of sensor data, the creation of test settings, the automatic

detection of errors, and the targeted recording of events. All these use cases help

to support development tasks in different phases of software development.

Secondly, the performance of the middleware presented here was evaluated to

ensure that the additional logging and system state analysis of the software, which

serve to support development processes, do not slow down the system. The latency

measurements based on the middleware show that the architecture presented here

can handle a very large number of agents and high message rates (see Section 7.2).

Tests were conducted with numbers of up to 18,000 agents, which is an extremely

large number compared to most of the systems analysed in the literature and all

comparable environments mentioned during the expert interviews. In addition, the

scalability of the middleware was tested with two to seven middleware nodes and

10,000 agents (see Section 7.3). This answers Q2 and shows that the middleware

is scalable and that by adding more middleware nodes, the load on the system

can be reduced, thereby reducing latency. A measurement with 10,000 agents

showed an average message latency of 4.5 milliseconds with seven middleware

nodes. This is more than sufficient for the intended use cases. Based on this, the

scalability of CEP integration in Section 7.4 was confirmed. Since the CEP layer

was implemented entirely based on the messaging layer, it shares its performance

characteristics.

Finally, in Chapter 8 the ATAM illustrated that the presented architecture is well

suited for the intended use cases in smart systems and supports the development of

new components, debugging of errors, and program comprehension. Hence, with

regard to Q4, the frameworks and tools developed in this thesis have to possibility

of improving the development process of smart systems. This is also supported by

the two case studies presented in Section 4.4.4. The results of the ATAM workshop

also indicate that a integration of a CEP engine is possible without hindering the

Chapter 9. Conclusions and Future Work 207

Requirement Scenarios Architectural Approaches
Scalability and latency 1, 2, 26 Middleware and framework are multi-threaded and

use actor programming. Tested by the latency and
scalability measurements

Support for heterogeneity 8 Open middleware API that supports various network
protocols

Support for mobility 15 Agent-based architecture with event sourcing and
runtime environments

Tolerance for component
failures

3, 4 Middleware nodes and, optionally, agents are redund-
ant

Support for debugging 10, 11, 13,
14, 16, 17,
20, 24

Open design, CEP queries, middleware web interface

Program comprehension
support

10, 11, 12,
13, 24

Open design, CEP queries, middleware web interface

Support for fast experi-
ments

6, 13, 14 Fast creation of agents through CEP queries and the
frameworks

Deployment and configur-
ation

13, 14, 15 Runtime environments and CEP queries allow dy-
namic configuration and deployment

Flexibility 5, 6, 7, 18,
19

The open design allows the integration of anything
that can communicate via JSON messages

Support of communication
between developers

21, 23 Agent group graph and dynamic result lists of CEP
queries

Table 9.2: Overview of the evaluation of the requirements for the presented
architecture

development processes by increasing complexity and that the work of developers

can even be supported by using the CEP queries (Q3). Table 9.2 contains an

overview of all requirements and the scenarios through which they were evaluated

in this thesis.

9.2 Contributions

This PhD thesis provides three research contributions:

• C1: A smart system software architecture and middleware with low message

latency and a high scalability designed for research laboratories (see Eichler

et al. [2017]).

Chapter 9. Conclusions and Future Work 208

• C2: A seamless integration of CEP into an agent-based distributed system

(see Eichler et al. [2020]).

• C3: Improvement of program comprehension and debugging in smart sys-

tems with CEP queries evaluated by expert interviews and a scenario-based

evaluation.

Smart systems are an active research topic [Laghari et al., 2022, Fang, 2021, Santos

et al., 2022]. One of the challenges continues to be how to manage the complexity of

these systems due to various factors, including context dependency, heterogeneity

of components, and the integration of sensors and actors. Tools are needed to

help developers build and better understand these systems, as traditional software

engineering methods face limits [Fang, 2021]. The literature review in this thesis

revealed a lack of research on middleware, frameworks, and tools for smart systems

research environments and architectures that focus on supporting developing tasks.

The contribution C1 is an architecture, including middleware, tailored to the needs

of research environments in smart systems. This includes support for program

comprehension and debugging through tools for analysing the state of the system

at runtime. A prior version of the architecture, including a middleware and latency

and scalability measurements, was published in Eichler et al. [2017].

Part of the architecture presented in this thesis is a seamlessly integrated CEP

engine (C2), which allows for the processing of messages and context information

and helps to analyse the system state. The advantage of this seamless integration

over the approaches known in the literature (see Section 2.4.3) is that it allows

developers to reason about the CEP engine as an agent-based system. There

is no need to switch between two different paradigms, agent-based and event-

based, during development tasks, which reduces complexity. The entire software

architecture presented here, including the integration of the CEP engine, was

evaluated with the ATAM (see Chapter 8). This new way of integrating a CEP

engine into an agent-based system for smart systems, including an evaluation using

the two case studies presented in this thesis, was published in Eichler et al. [2020].

Chapter 9. Conclusions and Future Work 209

The seamless integration of a CEP engine allows one to analyse the state of the

system with the help of descriptive CEP queries. As the scenario-based evaluation

shows, debugging and program comprehension tasks can be implemented with

CEP queries during runtime. In this way, errors can be detected and localised, test

scenarios prepared, and the state of the entire system analysed. This contributes to

the open question of how the complexity of smart systems can be made manageable

in the future. The approach of using CEP for development support (C3) was

evaluated with the help of the ATAM. Furthermore, the expert interviews support

that the approach can be transferred to other laboratory environments.

9.3 Limitations

The research design, methods and external conditions may impose limitations on

the results.

Possible limitations arise from the research design and the choice of research meth-

ods. There might be limitations to the results of the expert interviews because,

as usual for this method, they come from from a small number of participants.

It cannot be ruled out that additional participants with different experiences in

smart environments would have changed the results. They are always based only

on the environments analysed during the evaluation. The qualitative evaluation

is also affected by limitations because the coding frame, which was designed by

the author, has a direct impact on the result. To mitigate this, the complete

evaluation process was documented in this thesis to ensure reproducibility.

The measurements carried out may also be affected by limitations. The results

of the latency and scalability measurements depend on the described test setup,

such as the specific machines and network components. Influences on the results

due to the use of virtualised machines and the specific hardware are not ruled out.

The development of the software architecture presented here took place in two

research labs, the Living Place Hamburg and the CSTI. The case studies used for

Chapter 9. Conclusions and Future Work 210

the evaluation and the workshop for the scenario-based analysis also took place

in these labs. The availability of these laboratories was the primary selection

criteria. In general, the research conducted here is aimed at research laboratories

in the field of smart systems, but the choice of laboratory environment could

have directly influenced the results, because the implementation was only tested

in these environments. Based on the expert interviews, transferability to other

environments is assumed but can not be ensured for all possible environments.

There are also limitations due to external influences and circumstances. The re-

search conducted in this thesis was impacted by the restrictions imposed during the

COVID-19 pandemic. Due to the temporary closure of the laboratories as a result

of contact restrictions, no long-term studies could be carried out. The collected

results from the interviews are based on the experiences of the participants at the

time of the studies and the architecture presented during the interviews and the

workshop. This limitation could be improved for the interviews through a future

long-term study including practical sessions with the interviewees. However, this

would have required a significantly longer time commitment and multiple trips for

a face-to-face meeting in a research lab for the demonstrations.

Based on the literature review in Chapter 2 there is a lack of similar studies on

the requirements of middleware for research labs in smart systems for fast exper-

imentation and rapid prototyping. However, the literature review is dependent

on the limitations of the literature analysis and particularly the procedure for the

literature analysis and the selection criteria for comparable work. Future studies

are needed to confirm the requirements, possibly complete them, and, if necessary,

bring them into line with other requirements for smart systems in production en-

vironments.

Furthermore, limitations arise due to the delimitation of certain research topics

during the literature search. Some topics were deliberately left out to distinguish

this thesis from other works. Loosely coupled agent-based systems, especially with

Chapter 9. Conclusions and Future Work 211

publish/subscribe-based messaging, which are prevalent in smart system architec-

tures, are considered. Transferability to other types of systems, for example, based

on tuple spaces, is not considered.

Security and privacy are important topics in the field of smart systems, because

sensitive information and communication are often handled via unsecured net-

works. This thesis does not consider these topics; only basic security functions to

protect data integrity on the network level are included, because the focus here

is on rapid prototyping in a laboratory environment, as described in Chapter 3.2

during the requirement analysis. This is a limitation for the transferability of the

results to other environments that may depend on security and privacy require-

ments. There are already approaches in the literature regarding how to encrypt

and authenticate multi-agent and publish/subscribe systems that could be applied

to the architecture presented here [Foner, 1997, Sulaiman et al., 2009, Thangam

and Chandrasekaran, 2016].

Debugging and program comprehension tasks are considered in this thesis at de-

velopment time and runtime, and as well as with respect to distributed systems,

where the complexity lies primarily in the interaction between the components.

Verifications and proofs of the correctness of programmes are are not always pos-

sible in this area and not considered here because they conflict with the goal of

allowing fast experimentation.

9.4 Research Implications

The results of the expert interviews support that there are further requirements

for the software used in research environments in the field of smart systems. These

include requirements that arise from the research environment and team compos-

ition. Rapidly changing projects and teams with high turnover make software

reusability and knowledge transfer more difficult, which should be taken into ac-

count in research environments. The results of this thesis show that one way to

Chapter 9. Conclusions and Future Work 212

address these additional requirements is to use a middleware, which should be eas-

ily inspectable and offer frameworks for development support and tools for easy

debugging.

The architecture developed in this thesis aims to enable rapid experimentation in

a research context to help future research projects and research laboratories to

explore topics in the field of smart systems. Furthermore, the architecture demon-

strates that it is possible to seamlessly integrate the functionalities of CEP engines

into an agent-based middleware. This should be considered and further investig-

ated in future research. The advantages in terms of system comprehensibility and

complexity could also be useful in future approaches.

Finally, this thesis shows the possibility of reproducibly evaluating architectures

in the field of smart systems. The use of a scenario-based analysis method al-

lows the evaluation of performance requirements as well as usability aspects and

interactions between these requirements. The description of the methods used in

this thesis, including adaptations for evaluation over a longer period of time in a

research context, could contribute to improving future research in this area.

9.5 Future Research

It is planned to extend the architecture presented in this thesis with further func-

tions in the future to continue to improve the development process in smart sys-

tems. To this end, more information about the system and the agents will be made

available to the CEP engine. For example, this could be more meta-information

about individual agents and groups as well as historical data about the system.

For this, the CEP engine would have to be extended by a persistent database,

and it would have to be investigated how this could be accessed via CEP queries

without impairing the existing functions. In addition, the question is open as to

how this integration could be implemented without negatively affecting overall

scalability.

Chapter 9. Conclusions and Future Work 213

Since this thesis is primarily concerned with the development of software in labor-

atory environments, security was not a focus of this work. The architecture presen-

ted in this thesis and the CEP query approaches were designed without security

or privacy requirements, as mentioned in Chapter 3.2 during the requirement ana-

lysis. However, the communication protocols between the agents and the middle-

ware were designed to be interchangeable and to allow different protocols to be

used simultaneously by different agents, which could help during the implementa-

tion of message encryption. Publish/Subscribe systems are widely used, and there

are approaches for encryption and authentication in these systems. A unification

of these approaches with an architecture designed to support the development

process, as in this thesis, can be the subject of future research.

To better assess the impact of smart systems middleware with development sup-

port and debugging tools on projects in general and research projects in particular,

long-term studies are needed to accompany these projects and the teams over a

longer period of time. The approaches presented here were also used in teaching

to develop projects during several semester courses with students. An evaluation

of the impact on teaching in this area is planned for the future.

In addition, the approaches presented in this thesis for using CEP queries for

program comprehension and debugging could be transferred to other environments

in the field of smart systems or even to other distributed, loosely coupled systems

in the future.

Bibliography

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,

and Pete Steggles. Towards a better understanding of context and context-

awareness. In Proceedings of the 1st International Symposium on Handheld

and Ubiquitous Computing // Proceedings of the 1st international symposium

on Handheld and Ubiquitous Computing, HUC ’99, pages 304–307, London, UK,

UK, 1999. Springer-Verlag. ISBN 3-540-66550-1. URL http://dl.acm.org/

citation.cfm?id=647985.743843.

Adnan Akbar, Francois Carrez, Klaus Moessner, Juan Sancho, and Juan Rico.

Context-aware stream processing for distributed iot applications. In 2015 IEEE

2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015. doi: 10.1109/

wf-iot.2015.7389133.

Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. Model-free fault detec-

tion and isolation in large-scale cyber-physical systems. IEEE Transactions on

Emerging Topics in Computational Intelligence, 1(1):61–71, 2017. ISSN 2471-

285X. doi: 10.1109/TETCI.2016.2641452.

Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. Internet of things: A

survey on the security of iot frameworks. Journal of Information Security and

Applications, 38:8–27, 2018. ISSN 22142126. doi: 10.1016/j.jisa.2017.11.002.

Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic,

and Rudi Studer. A rule-based language for complex event processing and

reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors, Web reasoning

214

http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843

BIBLIOGRAPHY 215

and rule systems, volume 6333 of Lecture notes in computer science, pages 42–

57. Springer, Berlin and Heidelberg, 2010. ISBN 9783642159176. doi: 10.1007/

978-3-642-15918-3_5.

Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. Impact of response latency

on user behavior in web search. In Shlomo Geva, editor, Proceedings of the 37th

international ACM SIGIR conference on Research & development in informa-

tion retrieval, ACM Digital Library, pages 103–112, New York, NY, 2014. ACM.

ISBN 9781450322577. doi: 10.1145/2600428.2609627.

Ross D. Arnold and Jon P. Wade. A definition of systems thinking: A systems

approach. Procedia Computer Science, 44:669–678, 2015. ISSN 18770509. doi:

10.1016/j.procs.2015.03.050.

Kevin Ashton. That ‘internet of things’ thing. RFID journal, 22(7):97–114, 2009.

Juan C. Augusto and Chris D. Nugent. The use of temporal reasoning and man-

agement of complex events in smart homes. Proceedings of the 16th European

Conference on Artificial Intelligence, 2004. doi: 10.5555/3000001.3000165.

Juan Carlos Augusto and Chris D. Nugent, editors. Designing smart homes: The

role of artificial intelligence, volume 4008 of Lecture notes in computer science.

Springer and Springer-Verlag, Berlin and New York // Berlin, Heidelberg, 2006.

ISBN 354035994X // 3-540-35994-X.

M. A. Babar and I. Gorton. Comparison of scenario-based software architecture

evaluation methods. In Proceedings / 11th Asia-Pacific Software Engineering

Conference, pages 600–607, Los Alamitos, Calif., 2004. IEEE Computer Society.

ISBN 0-7695-2245-9. doi: 10.1109/APSEC.2004.38.

M. A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and comparing

software architecture evaluation methods. In Paul Strooper, editor, Proceedings

/ 2004 Australian Software Engineering Conference, ASWEC 2004, 13 - 16

April 2004, Melbourne, Australia, pages 309–318, Los Alamitos, Calif., 2004.

IEEE Computer Society. ISBN 0-7695-2089-8. doi: 10.1109/ASWEC.2004.

1290484.

BIBLIOGRAPHY 216

Sebastian Bader, Gernot Ruscher, and Thomas Kirste. A middleware for rapid

prototyping smart environments. In Jakob E. Bardram, editor, Proceedings of

the 12th ACM international conference adjunct papers on Ubiquitous computing

- Adjunct, page 355, New York, NY, 2010. ACM. ISBN 9781450302838. doi:

10.1145/1864431.1864433.

Sarah Elsie Baker and Rosalind Edwards. How many qualitative interviews is

enough? expert voices and early career reflections on sampling and cases in

qualitative research. National Centre for Research Methods, 2012.

R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito. Modeling pub-

lish/subscribe communication systems: towards a formal approach. In Proceed-

ings / the Eighth IEEE International Workshop on Object-Oriented Real-Time

Dependable Systems, pages 304–311, Los Alamitos, Calif., 2003. IEEE Computer

Society. ISBN 0-7695-1929-6. doi: 10.1109/WORDS.2003.1218097.

Simonetta Balsamo and Moreno Marzolla. A simulation-based approach to soft-

ware performance modeling. SIGSOFT Softw. Eng. Notes, 28(5):363–366, 2003.

ISSN 0163-5948. doi: 10.1145/949952.940122.

Luciano Baresi and Carlo Ghezzi. The disappearing boundary between

development-time and run-time. In Gruia-Catalin Roman, editor, Proceedings

of the FSESDP workshop on Future of software engineering research, New York,

NY, 2010. ACM. ISBN 9781450304276. doi: 10.1145/1882362.1882367.

John Bates, Jean Bacon, Ken Moody, and Mark Spiteri. Using events for the

scalable federation of heterogeneous components. In Paulo Guedes and Jean

Bacon, editors, Proceedings of the 8th ACM SIGOPS European workshop on

Support for composing distributed applications - EW 8, pages 58–65, New York,

New York, USA, 1998. ACM Press. doi: 10.1145/319195.319205.

Joseph Bates, A. Bryan Loyall, and W. Scott Reilly. An architecture for action,

emotion, and social behavior. In Cristiano Castelfranchi, editor, Artificial so-

cial systems, volume 830 of Lecture notes in computer science Lecture notes in

BIBLIOGRAPHY 217

artificial intelligence, pages 55–68. Springer, Berlin and Heidelberg, 1994. ISBN

978-3-540-58266-3. doi: 10.1007/3-540-58266-5_4.

Samuel Beck, Sebastian Frank, Alireza Hakamian, and André van Hoorn. How

is transient behavior addressed in practice? In Dan Feng, editor, Compan-

ion of the 2022 ACM/SPEC International Conference on Performance En-

gineering, ACM Digital Library, pages 105–112, New York,NY,United States,

2022. Association for Computing Machinery. ISBN 9781450391597. doi:

10.1145/3491204.3527483.

Jonathan Becker, Uli Meyer, Tobias Eichler, and Susanne Draheim. A super-

natural vr environment for spatial user rotation. In 2019 IEEE Conference

on Virtual Reality and 3D User Interfaces (VR), pages 850–851, 2019. doi:

10.1109/VR.2019.8798290.

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi–agent

systems with a fipa–compliant agent framework. Software: Practice and Experi-

ence, 31(2):103–128, 2001. ISSN 00380644. doi: 10.1002/1097-024X(200102)31:

2<103::AID-SPE358>3.0.CO;2-O.

Melvin Bender, Erkin Kirdan, Marc-Oliver Pahl, and Georg Carle. Open-source

mqtt evaluation. In CCNC 2021: 2021 IEEE 18th Annual Consumer Commu-

nications & Networking Conference (CCNC), pages 1–4, Piscataway, NJ, 2021.

IEEE. ISBN 978-1-7281-9794-4. doi: 10.1109/CCNC49032.2021.9369499.

Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. Debugging

distributed systems. Communications of the ACM, 59(8):32–37, 2016. ISSN

0001-0782. doi: 10.1145/2909480.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela

Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of context mod-

elling and reasoning techniques. Pervasive Mob. Comput., 6(2):161–180, 2010.

ISSN 1574-1192. doi: 10.1016/j.pmcj.2009.06.002.

Anol Bhattacherjee. Social Science Research: Principles, Methods, and Practices.

Textbooks Collection. 3, 2012.

BIBLIOGRAPHY 218

J. Boardman and B. Sauser. System of systems - the meaning of of. In Proceedings

/ 2006 IEEE/SMC International Conference on System of Systems Engineering,

pages 118–123, Piscataway, NJ, 2006. IEEE Operations Center. ISBN 1-4244-

0188-7. doi: 10.1109/SYSOSE.2006.1652284.

Alexander Bogner, Beate Littig, and Wolfgang Menz, editors. Interviewing experts.

Research methods series. Palgrave Macmillan, Basingstoke England and New

York, 2009. ISBN 978-0-230-24427-6. doi: 10.1057/9780230244276.

Pedro Victor Borges, Chantal Taconet, Sophie Chabridon, Denis Conan, Everton

Cavalcante, and Thais Batista. Taming internet of things application develop-

ment with the iotvar middleware. ACM Transactions on Internet Technology,

23(2):1–21, 2023. ISSN 1533-5399. doi: 10.1145/3586010.

J. Bosch and P. Molin. Software architecture design: evaluation and transforma-

tion. In Proceedings / ECBS ’99, IEEE Conference and Workshop Engineering

of Computer-Based Systems, March 7 - 12, 1999, Nashville, Tennessee, pages

4–10, Los Alamitos, Calif., 1999. IEEE Computer Society. ISBN 0-7695-0028-5.

doi: 10.1109/ECBS.1999.755855.

Tibor Bosse, Dung N. Lam, and K. Suzanne Barber. Tools for analyzing intelligent

agent systems. Web Intelligence and Agent Systems: An International Journal,

6(4):355–371, 2008. ISSN 15701263. doi: 10.3233/WIA-2008-0145.

Pyrros Bratskas, Nearchos Paspallis, and George A. Papadopoulos. An evaluation

of the state of the art in context-aware architectures. In Chris Barry, Michael

Lang, Wita Wojtkowski, Kieran Conboy, and Gregory Wojtkowski, editors, In-

formation Systems Development, pages 1117–1128. Springer US and Springer,

Boston, MA, 2009. ISBN 978-0-387-78577-6. doi: 10.1007/978-0-387-78578-3_

42.

Melanie Brinkschulte, Christian Becker, and Christian Krupitzer. Towards a qos-

aware cyber physical networking middleware architecture. In Unknown, editor,

Proceedings of the 1st International Workshop on Middleware for Lightweight,

BIBLIOGRAPHY 219

Spontaneous Environments - MISE ’19, pages 7–12, New York, New York, USA,

2019. ACM Press. ISBN 9781450370349. doi: 10.1145/3366616.3368149.

Jessica Broscheit. Livingplace gallery, 2022. URL https://livingplace.

haw-hamburg.de/gallery/. 2022-06-26.

Christian Bühler. Ambient intelligence in working environments. In In-

ternational Conference on Universal Access in Human-Computer Interac-

tion, pages 143–149. Springer, Berlin, Heidelberg, 2009. doi: 10.1007/

978-3-642-02710-9_17. URL https://link.springer.com/chapter/

10.1007/978-3-642-02710-9_17.

C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W. Feng. Complex

event processing for the internet of things and its applications. In 2014 IEEE In-

ternational Conference on Automation Science and Engineering (CASE), pages

1144–1149, 2014.

Hong Chen. Applications of cyber-physical system: A literature review. Journal of

Industrial Integration and Management, 02(03):1750012, 2017. ISSN 2424-8622.

doi: 10.1142/S2424862217500129.

E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: a

taxonomy. IEEE Software, 7(1):13–17, 1990. ISSN 07407459. doi: 10.1109/52.

43044.

Mark Claypool. The effect of latency on user performance in real-time strategy

games. Computer Networks, 49(1):52–70, 2005. ISSN 13891286. doi: 10.1016/

j.comnet.2005.04.008.

Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures:

Methods and case studies. SEI series in software engineering. Addison-Wesley,

Boston, 8. printing edition, 2009. ISBN 9780201704822.

https://livingplace.haw-hamburg.de/gallery/
https://livingplace.haw-hamburg.de/gallery/
https://link.springer.com/chapter/10.1007/978-3-642-02710-9_17
https://link.springer.com/chapter/10.1007/978-3-642-02710-9_17

BIBLIOGRAPHY 220

I. Cobeanu and V. Comnac. Embedding of event processing into multi-agent sys-

tems decision mechanism. In 2011 6th IEEE International Symposium on Ap-

plied Computational Intelligence and Informatics (SACI), pages 105–109, 2011.

doi: 10.1109/SACI.2011.5872981.

Michael H. Coen et al. Design principles for intelligent environments. In AAAI/I-

AAI, pages 547–554, 1998.

Diane Cook and Sajal Das. Smart Environments: Technology, Protocols and

Applications (Wiley Series on Parallel and Distributed Computing) // Smart

Environments: Technologies, Protocols, and Applications. Wiley-interscience

series in discrete mathematics and optimization. Wiley-Interscience and s.n,

New York, NY, USA, 1st ed. edition, 2004. ISBN 978-0-471-68659-0. doi:

10.1002/047168659X.

Diane J. Cook. Multi-agent smart environments. J. Ambient Intell. Smart En-

viron., 1(1):51–55, 2009. ISSN 1876-1364.

Diane J. Cook and Sajal K. Das. How smart are our environments? an updated

look at the state of the art. Pervasive Mob. Comput., 3(2):53–73, 2007. ISSN

1574-1192. doi: 10.1016/j.pmcj.2006.12.001.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A

systematic survey of program comprehension through dynamic analysis. IEEE

Transactions on Software Engineering, 35(5):684–702, 2009. ISSN 0098-5589.

doi: 10.1109/TSE.2009.28.

Ricardo Costa, Davide Carneiro, Paulo Novais, Luís Lima, José Machado, Al-

berto Marques, and José Neves. Ambient assisted living. In Juan M. Corchado,

Dante I. Tapia, and José Bravo, editors, 3rd Symposium of Ubiquitous Com-

puting and Ambient Intelligence 2008, pages 86–94, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg. ISBN 978-3-540-85867-6.

CSTI. Csti website. URL https://csti.haw-hamburg.de. 2022-06-26.

https://csti.haw-hamburg.de

BIBLIOGRAPHY 221

Gianpaolo Cugola and Alessandro Margara. Deployment strategies for distributed

complex event processing. Computing, 95(2):129–156, 2013. ISSN 1436-5057.

doi: 10.1007/s00607-012-0217-9.

Miyuru Dayarathna and Srinath Perera. Recent advancements in event processing.

ACM Computing Surveys, 51(2):1–36, 2018. ISSN 0360-0300. doi: 10.1145/

3170432.

Jonathan Deber, Ricardo Jota, Clifton Forlines, and Daniel Wigdor. How much

faster is fast enough? In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, pages 1827–1836. ACM, 2015. doi:

10.1145/2702123.2702300.

Ankita Deohate and Dinesh Rojatkar. Middleware challenges and platform for iot-

a survey. In Proceedings of the 5th International Conference on Trends in Elec-

tronics and Informatics (ICOEI 2021), pages 463–467, Piscataway, NJ, 2021.

IEEE. ISBN 978-1-6654-1571-2. doi: 10.1109/ICOEI51242.2021.9452923.

L. Dobrica and E. Niemela. A survey on software architecture analysis methods.

IEEE Transactions on Software Engineering, 28(7):638–653, 2002. ISSN 0098-

5589. doi: 10.1109/TSE.2002.1019479.

Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-agent systems: A survey.

IEEE Access, 6:28573–28593, 2018. doi: 10.1109/ACCESS.2018.2831228.

Jürgen Dunkel. On complex event processing for sensor networks. In 2009 In-

ternational Symposium on Autonomous Decentralized Systems, pages 1–6, 2009.

doi: 10.1109/ISADS.2009.5207376.

Jürgen Dunkel. Towards a multiagent-based software architecture for sensor net-

works. In 2011 Tenth International Symposium on Autonomous Decentralized

Systems, pages 441–448, 2011. doi: 10.1109/ISADS.2011.64.

Bruce Edmonds and Joanna J. Bryson. The insufficiency of formal design methods

" the necessity of an experimental approach - for the understanding and control

of complex mas. In Proceedings of the Third International Joint Conference on

BIBLIOGRAPHY 222

Autonomous Agents and Multiagent Systems - Volume 2 // Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent

Systems, AAMAS ’04, pages 938–945, USA, 2004. IEEE Computer Society.

ISBN 1581138644.

Tobias Eichler. Agentenbasierte Middleware zur Entwicklerunterstützung in einem

Smart-Home-Labor. PhD thesis, HAW Hamburg, 2014.

Tobias Eichler, Susanne Draheim, Christos Grecos, Qi Wang, and Kai von Luck.

Scalable context-aware development infrastructure for interactive systems in

smart environments. In 2017 IEEE 13th International Conference on Wireless

and Mobile Computing, Networking and Communications (WiMob), pages 147–

150, 2017. doi: 10.1109/WiMOB.2017.8115848.

Tobias Eichler, Susanne Draheim, Kai von Luck, Christos Grecos, and Qi Wang.

Integration of complex event processing into multi-agent systems: two use cases

for distributed software development support. Thirteenth International Tools

and Methods of Competitive Engineering Symposium, 2020.

R. Elchaama, B. Dafflon, R. K. Chamoun, and Y. Ouzrout. Toward a traffic

regulation based on event processing agent system. In 2017 International Con-

ference on Engineering, Technology and Innovation (ICE/ITMC), pages 1350–

1356, 2017. doi: 10.1109/ICE.2017.8280038.

Abdessalam Elhabbash, Vatsala Nundloll, Yehia Elkhatib, Gordon S. Blair, and

Vicent Sanz Marco. An ontological architecture for principled and automated

system of systems composition. In Shinichi Honiden, Elisabetta Di Nitto,

and Radu Calinescu, editors, Proceedings of the IEEE/ACM 15th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems,

pages 85–95, New York, NY, USA, 2020. ACM. ISBN 9781450379625. doi:

10.1145/3387939.3391602.

Abdessalam Elhabbash, Yehia Elkhatib, Georgios Bouloukakis, and Maria Salama.

A middleware for automatic composition and mediation in iot systems. In Evan-

gelos Niforatos, Gerd Kortuem, Nirvana Meratnia, Josh Siegel, and Florian

BIBLIOGRAPHY 223

Michahelles, editors, Proceedings of the 12th International Conference on the

Internet of Things, pages 127–134, New York, NY, USA, 2022. ACM. ISBN

9781450396653. doi: 10.1145/3567445.3567451.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. The

hearsay-ii speech-understanding system: Integrating knowledge to resolve un-

certainty. ACM Computing Surveys, 12(2):213–253, 1980. ISSN 0360-0300. doi:

10.1145/356810.356816.

EsperTech. Esper - espertech: http://www.espertech.com/esper/, 2021. URL

http://www.espertech.com/esper/.

Zhemei Fang. System-of-systems architecture selection: A survey of issues, meth-

ods, and opportunities. IEEE Systems Journal, pages 1–12, 2021. ISSN 2373-

7816. doi: 10.1109/jsyst.2021.3119294.

Robert Farrow, Francisco Iniesto, Martin Weller, and Rebecca Pitt. GO-GN Re-

search Methods Handbook. Open Education Research Hub, 2020. URL https:

//go-gn.net/gogn_outputs/research-methods-handbook/.

Ludger Fiege, Gero Mühl, and FELIX C. GÄRTNER. Modular event-based sys-

tems. The Knowledge Engineering Review, 17(4):359–388, 2002. ISSN 0269-

8889. doi: 10.1017/S0269888903000559.

David Flater. Debugging agent interactions: A case study. In G. B. Lamont, editor,

Proceedings of the 2001 ACM symposium on Applied computing - SAC ’01 //

Proceedings of the 2001 ACM symposium on Applied computing, pages 107–114,

New York, New York, USA, 2001. ACM Press and ACM. ISBN 1581132875.

doi: 10.1145/372202.372288.

Leonard N. Foner. Yenta: A multi-agent, referral-based matchmaking system. In

W. Lewis Johnson, editor, Proceedings of the first international conference on

Autonomous agents, ACM Conferences, pages 301–307, New York, NY, 1997.

ACM. ISBN 0897918770. doi: 10.1145/267658.267732.

http://www.espertech.com/esper/
https://go-gn.net/gogn_outputs/research-methods-handbook/
https://go-gn.net/gogn_outputs/research-methods-handbook/

BIBLIOGRAPHY 224

Giancarlo Fortino, Antonio Guerrieri, Michelangelo Lacopo, Matteo Lucia, and

Wilma Russo. An agent-based middleware for cooperating smart objects. In

Juan Manuel Corchado, editor, Highlights on Practical Applications of Agents

and Multi-Agent Systems // Highlights on practical applications of agents and

multi-agent systems, Communications in Computer and Information Science,

pages 387–398. Springer, Berlin, 2013. ISBN 978-3-642-38061-7.

Giancarlo Fortino, Antonio Guerrieri, Wilma Russo, and Claudio Savaglio. Mid-

dlewares for smart objects and smart environments: Overview and comparison.

In Giancarlo Fortino and Paolo Trunfio, editors, Internet of Things Based on

Smart Objects // Internet of things based on smart objects, Internet of Things,

pages 1–27. Springer International Publishing and Springer, Cham, 2014. ISBN

978-3-319-00490-7. doi: 10.1007/978-3-319-00491-4_1.

Giancarlo Fortino, Claudio Savaglio, Giandomenico Spezzano, and MengChu

Zhou. Internet of things as system of systems: A review of methodologies,

frameworks, platforms, and tools. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 51(1):223–236, 2021. ISSN 2168-2216. doi: 10.1109/

TSMC.2020.3042898.

Cristian González García, Daniel Meana-Llorián, Juan Manuel Cueva Lovelle,

et al. A review about smart objects, sensors, and actuators. International

Journal of Interactive Multimedia & Artificial Intelligence, 4(3), 2017.

Alexandros Gazis and Eleftheria Katsiri. Middleware 101. Queue, 20(1):10–23,

2022. ISSN 1542-7730. doi: 10.1145/3526211.

Jochen Gläser and Grit Laudel. On interviewing “good” and “bad” experts.

In Alexander Bogner, Beate Littig, and Wolfgang Menz, editors, Interview-

ing experts, Research methods series, pages 117–137. Palgrave Macmillan,

Basingstoke England and New York, 2009. ISBN 978-0-230-24427-6. doi:

10.1057/9780230244276_6.

BIBLIOGRAPHY 225

Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. Introduction to iot. Inter-

national Advanced Research Journal in Science, Engineering and Technology, 5

(1):41–44, 2018.

Tao Gu, Hung Keng Pung, and Qing Da Zhang. Toward an osgi-based infrastruc-

ture for context-aware applications. IEEE Pervasive Computing, 3(4):66–74,

2004. ISSN 1536-1268. doi: 10.1109/MPRV.2004.19.

Tao Gu, Hung Keng Pung, and Qing Da Zhang. A service-oriented middleware

for building context-aware services. J. Netw. Comput. Appl., 28(1):1–18, 2005.

ISSN 1084-8045. doi: 10.1016/j.jnca.2004.06.002.

Sylvain Hallé, Sébastien Gaboury, and Bruno Bouchard. Activity recognition

through complex event processing: First findings. In AAAI Workshop on

artificial intelligence applied to assistive technologies and smart environments

(ATSE-16). Association for the Advancement of Artificial Intelligence, 2016.

Glenda Hannibal. Focusing on the vulnerabilities of robots through expert in-

terviews for trust in human-robot interaction. In Cindy Bethel, editor, Com-

panion of the 2021 ACM/IEEE International Conference on Human-Robot In-

teraction, ACM Digital Library, pages 288–293, New York,NY,United States,

2021. Association for Computing Machinery. ISBN 9781450382908. doi:

10.1145/3434074.3447178.

Stefan Haselbock, Rainer Weinreich, and Georg Buchgeher. An expert interview

study on areas of microservice design. In IEEE 11th International Conference

on Service-Oriented Computing and Applications, pages 137–144, Piscataway,

NJ, 2018. IEEE. ISBN 978-1-5386-9133-5. doi: 10.1109/SOCA.2018.00028.

Klaus Havelund. Rule-based runtime verification revisited. International Journal

on Software Tools for Technology Transfer, 17(2):143–170, 2015. ISSN 1433-

2779. doi: 10.1007/s10009-014-0309-2.

K. Henricksen and J. Indulska. Modelling and using imperfect context informa-

tion. In Proceedings, Second IEEE Annual Conference on Pervasive Comput-

ing and Communications workshops, pages 33–37, Los Alamitos, Calif., 2004.

BIBLIOGRAPHY 226

IEEE Computer Society. ISBN 0-7695-2106-1. doi: 10.1109/PERCOMW.2004.

1276901.

Karen Henricksen, Jadwiga Indulska, and Ted Mcfadden. Middleware for distrib-

uted context-aware systems. In Proceedings of the 2005 Confederated interna-

tional conference on On the Move to Meaningful Internet Systems - Volume /

Part I, pages 846–863, 2005.

C. Hewitt and H. G. Baker. Actors and continuous functionals. Technical report,

USA, 1978. URL https://dl.acm.org/doi/book/10.5555/889802.

Carl Hewitt. Actor model of computation: Scalable robust information systems.

Technical Report v32, 2010.

Masayuki Higashino, Shin Osaki, Shinya Otagaki, Kenichi Takahashi, Takao

Kawamura, and Kazunori Sugahara. Debugging mobile agent systems. In Pro-

ceedings of International Conference on Information Integration and Web-based

Applications & Services, IIWAS ’13, pages 667:667–667:670, New York, NY,

USA, 2013. ACM. ISBN 978-1-4503-2113-6. doi: 10.1145/2539150.2539261.

URL http://doi.acm.org/10.1145/2539150.2539261.

Jens Ellenberg, Bastian Karstaedt, Sören Voskuhl, Kai von Luck, and Birgit Wend-

holt. An environment for context-aware applications in smart homes. In Interna-

tional Conference on Indoor Positioning and Indoor Navigation (IPIN) // 2011

International Conference on Indoor Positioning and Indoor Navigation (IPIN

2011), Piscataway, NJ, 2011. IEEE. ISBN 978-1-4577-1804-5.

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. The

architecture tradeoff analysis method. In Proceedings / Fourth IEEE Interna-

tional Conference on Engineering of Complex Computer Systems, August 10 -

14, 1998, Monterey, California, pages 68–78, Los Alamitos, Calif., 1998. IEEE

Computer Soc. Press. ISBN 0-8186-8597-2. doi: 10.1109/ICECCS.1998.706657.

Matthias Koch. New re dimensions for digital ecosystems - initial results from an

expert interview study. In Daniela Damian, Anna Perini, and Seok-Won Lee,

https://dl.acm.org/doi/book/10.5555/889802
http://doi.acm.org/10.1145/2539150.2539261

BIBLIOGRAPHY 227

editors, 2019 IEEE 27th International Requirements Engineering Conference,

pages 398–403, Piscataway, NJ, 2019. IEEE. ISBN 978-1-7281-3912-8. doi:

10.1109/RE.2019.00052.

Ilya Kolchinsky and Assaf Schuster. Join query optimization techniques for

complex event processing applications. Technical Report 11, 2018. URL

https://arxiv.org/pdf/1801.09413.

Klaus Krippendorff. Content analysis: An introduction to its methodology. SAGE,

Thousand Oaks Calif., 2nd ed. edition, 2004. ISBN 0761915443.

Udo Kuckartz. Qualitative Inhaltsanalyse: Methoden, Praxis, Computer-

unterstützung. Grundlagentexte Methoden. Beltz Juventa, Weinheim

and Basel, 4. auflage edition, 2018. ISBN 3779936828. URL http:

//www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.

html?isbn=978-3-7799-3682-4.

Fadwa Lachhab, Mohammed Essaaidi, Mohamed Bakhouya, and Radouane

Ouladsine. Towards a context-aware platform for complex and stream event

processing. In 2016 International Conference on High Performance Computing

& Simulation (HPCS). IEEE, 2016. doi: 10.1109/hpcsim.2016.7568438.

Asif Ali Laghari, Kaishan Wu, Rashid Ali Laghari, Mureed Ali, and Abdul-

lah Ayub Khan. A review and state of art of internet of things (iot). Archives

of Computational Methods in Engineering, 29(3):1395–1413, 2022. ISSN 1134-

3060. doi: 10.1007/s11831-021-09622-6.

D. N. Lam and K. S. Barber. Comprehending agent software. In Proceedings

of the Fourth International Joint Conference on Autonomous Agents and Mul-

tiagent Systems // Proceedings of the fourth international joint conference on

Autonomous agents and multiagent systems, AAMAS ’05, pages 586–593, New

York, NY, USA, 2005. Association for Computing Machinery and ACM. ISBN

1595930930 // 1-59593-093-0. doi: 10.1145/1082473.1082562.

Eike Langbehn, Tobias Eichler, Sobin Ghose, Kai von Luck, Gerd Bruder, and

Frank Steinicke. Evaluation of an omnidirectional walking-in-place user interface

https://arxiv.org/pdf/1801.09413
http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-7799-3682-4
http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-7799-3682-4
http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-7799-3682-4

BIBLIOGRAPHY 228

with virtual locomotion speed scaled by forward leaning angle. In Proceedings

of the GI Workshop on Virtual and Augmented Reality (GI VR/AR), pages

149–160, 2015.

Youn Kyu Lee, Jae young Bang, Joshua Garcia, and Nenad Medvidovic. Viva: a

visualization and analysis tool for distributed event-based systems. In Pankaj

Jalote, editor, Companion Proceedings of the 36th International Conference on

Software Engineering, ACM Digital Library, pages 580–583, New York, NY,

2014. ACM. ISBN 978-1-4503-2768-8. doi: 10.1145/2591062.2591074. URL

http://doi.acm.org/10.1145/2591062.2591074.

Leopold Lehner, Johannes Magenheim, Wolfgang Nelles, Thomas Rhode, Niclas

Schaper, Sigrid Schubert, and Peer Stechert. Informatics systems and mod-

elling – case studies of expert interviews. In Nicolas Reynolds and Márta

Turcsányi-Szabó, editors, Key competencies in the knowledge society, volume

324 of IFIP Advances in Information and Communication Technology, pages

222–233. Springer, Berlin and Heidelberg, 2010. ISBN 978-3-642-15377-8. doi:

10.1007/978-3-642-15378-5_22.

Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a survey.

Information Systems Frontiers, 17(2):243–259, 2015. ISSN 1387-3326. doi: 10.

1007/s10796-014-9492-7.

Lightbend. Akka. URL https://akka.io/. 2022-08-16.

Stanley Lima, Jaime Correia, Filipe Araujo, and Jorge Cardoso. Improving ob-

servability in event sourcing systems. Journal of Systems and Software, 181:

111015, 2021. ISSN 01641212. doi: 10.1016/j.jss.2021.111015.

Jinfeng Lin, Yalin Liu, and Jane Cleland-Huang. Supporting program comprehen-

sion through fast query response in large-scale systems. In Proceedings of the

28th International Conference on Program Comprehension, ICPC ’20, pages

285–295, New York, NY, USA, 2020. Association for Computing Machinery.

ISBN 9781450379588. doi: 10.1145/3387904.3389260.

http://doi.acm.org/10.1145/2591062.2591074
https://akka.io/

BIBLIOGRAPHY 229

Livingplace. Livingplace website: https://livingplace.haw-hamburg.de/. URL

https://livingplace.haw-hamburg.de/. 2022-06-26.

David C. Luckham. The power of events: An introduction to complex event pro-

cessing in distributed enterprise systems. Addison-Wesley, Boston and San Fran-

cisco and New York and Toronto and Montreal and London and Munich and

Paris and Madrid and Capetown and Sydney and Tokyo and Singapore and

Mexico City, 6. printing edition, 2002. ISBN 9780321951830.

David C. Luckham and Frasca Brian. Complex event processing in distributed

systems. Technical report, Stanford University, 1998.

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the com-

prehension of program comprehension. ACM Transactions on Software En-

gineering and Methodology, 23(4):1–37, 2014. ISSN 1557-7392. doi: 10.1145/

2622669.

Cristiano Maciel, Patricia Cristiane de Souza, José Viterbo, Fabiana Freitas

Mendes, and Amal El Fallah Seghrouchni. A multi-agent architecture to sup-

port ubiquitous applications in smart environments. In Fernando Koch, Felipe

Meneguzzi, and Kiran Lakkaraju, editors, Agent Technology for Intelligent Mo-

bile Services and Smart Societies, volume 498 of Communications in Computer

and Information Science, pages 106–116. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2015. ISBN 978-3-662-46240-9. doi: 10.1007/978-3-662-46241-6_9.

Stefano Mariani and Andrea Omicini. Coordinating activities and change. Eng.

Appl. Artif. Intell., 41(C):298–309, 2015. ISSN 0952-1976. doi: 10.1016/j.

engappai.2014.10.006.

Mark Mason. Sample size and saturation in phd studies using qualitative inter-

views. Forum qualitative Sozialforschung/Forum: qualitative social research,

2010, 2010.

https://livingplace.haw-hamburg.de/

BIBLIOGRAPHY 230

Stan McClellan, Jesus A. Jimenez, and George Koutitas, editors. Smart Cit-

ies: Applications, Technologies, Standards, and Driving Factors. Springer In-

ternational Publishing, Cham, 2018. ISBN 9783319593814. doi: 10.1007/

978-3-319-59381-4.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop

domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005. ISSN

0360-0300. doi: 10.1145/1118890.1118892.

A. Meslin, N. Rodriguez, and M. Endler. A scalable multilayer middleware for

distributed monitoring and complex event processing for smart cities. In 2018

IEEE International Smart Cities Conference (ISC2), pages 1–8, 2018.

Michael Meuser and Ulrike Nagel. Expertlnneninterviews: vielfach erprobt, wenig

bedacht. In Detlef Garz and Klaus Kraimer, editors, Qualitativ-empirische

Sozialforschung, Springer eBook Collection, pages 441–471. VS Verlag für Sozi-

alwissenschaften, Wiesbaden, 1991. ISBN 978-3-322-97024-4. doi: 10.1007/

978-3-322-97024-4_14.

Michael Meuser and Ulrike Nagel. The expert interview and changes in knowledge

production. In Alexander Bogner, Beate Littig, and Wolfgang Menz, editors,

Interviewing experts, Research methods series, pages 17–42. Palgrave Macmillan,

Basingstoke England and New York, 2009. ISBN 978-0-230-24427-6. doi: 10.

1057/9780230244276_2.

Sven Meyer and Andry Rakotonirainy. A survey of research on context-aware

homes. In Proceedings of the Australasian Information Security Workshop Con-

ference on ACSW Frontiers 2003 - Volume 21, ACSW Frontiers ’03, pages

159–168, Darlinghurst, Australia, Australia, 2003. Australian Computer Soci-

ety, Inc. ISBN 1-920682-00-7. URL http://dl.acm.org/citation.cfm?

id=827987.828005.

Peter Mikulecky. User adaptivity in smart workplaces. In Jeng-Shyang Pan, editor,

Intelligent information and database systems, volume 7197 of Lecture notes in

computer science Lecture notes in artificial intelligence, pages 401–410. Springer,

http://dl.acm.org/citation.cfm?id=827987.828005
http://dl.acm.org/citation.cfm?id=827987.828005

BIBLIOGRAPHY 231

Heidelberg, 2012. ISBN 978-3-642-28489-2. doi: 10.1007/978-3-642-28490-8_

42.

Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and iot systems:

A survey. IEEE Access, 8:201071–201086, 2020. doi: 10.1109/ACCESS.2020.

3035849.

National Science Foundation. Cyber-physical systems (cps). Technical report,

National Science Foundation, 2021. URL https://www.nsf.gov/pubs/

2021/nsf21551/nsf21551.htm.

Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock,

and Jan Peleska. Systems of systems engineering: Basic concepts, model-based

techniques, and research directions. ACM Computing Surveys, 48(2):1–41, 2015.

ISSN 0360-0300. doi: 10.1145/2794381.

Stavros Nousias, Nikos Piperigkos, Gerasimos Arvanitis, Apostolos Fournaris,

Aris S. Lalos, and Konstantinos Moustakas. Empowering cyberphysical systems

of systems with intelligence. arXiv, 2021. doi: 10.48550/arXiv.2107.02264.

OASIS. Mqtt version 5.0, 2019-03-07. URL https://docs.oasis-open.

org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.

Andrea Omicini, Giancarlo Fortino, and Stefano Mariani. Blending event-based

and multi-agent systems around coordination abstractions. In Tom Holvoet

and Mirko Viroli, editors, Coordination Models and Languages // Coordination

models and languages, Lecture notes in computer science, pages 186–193, Cham,

2015. Springer International Publishing and Springer. ISBN 978-3-319-19282-6.

Shin Osaki, Masayuki Higashino, Kenichi Takahashi, Takao Kawamura, and

Kazunori Sugahara. A framework to mitigate debugging difficulty on agent

migration. In Stephane Loiseau, editor, Proceedings of the International Con-

ference on Agents and Artificial Intelligence, pages 190–197, S.l., 2015. SCITE-

PRESS. ISBN 978-989-758-073-4. doi: 10.5220/0005224401900197.

https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm
https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

BIBLIOGRAPHY 232

Marc-Oliver Pahl and Stefan Liebald. Designing a data-centric internet of things.

In 2019 International Conference on Networked Systems (NetSys) (NetSys’19),

2019.

F. Paraiso, G. Hermosillo, R. Rouvoy, P. Merle, and L. Seinturier. A middleware

platform to federate complex event processing. In 2012 IEEE 16th International

Enterprise Distributed Object Computing Conference, pages 113–122, 2012. doi:

10.1109/EDOC.2012.22.

Juan Marcelo Parra-Ullauri, Antonio García-Domínguez, Juan Boubeta-Puig,

Nelly Bencomo, and Guadalupe Ortiz. Towards an architecture integrating

complex event processing and temporal graphs for service monitoring. In Chih-

Cheng Hung, editor, Proceedings of the 36th Annual ACM Symposium on Ap-

plied Computing, ACM Digital Library, pages 427–435, New York,NY,United

States, 2021. Association for Computing Machinery. ISBN 9781450381048. doi:

10.1145/3412841.3441923.

Adrian Paschke and Paul Vincent. A reference architecture for event processing. In

Proceedings of the Third ACM International Conference on Distributed Event-

Based Systems, DEBS ’09, pages 25:1–25:4, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-665-6. doi: 10.1145/1619258.1619291. URL http://doi.

acm.org/10.1145/1619258.1619291.

Pankesh Patel and Damien Cassou. Enabling high-level application development

for the internet of things. Journal of Systems and Software, 103:62–84, 2015.

ISSN 01641212. doi: 10.1016/j.jss.2015.01.027.

Anil Patidar and Ugrasen Suman. A survey on software architecture evaluation

methods. Proceedings of the 9th INDIACom, 2015.

Orasa Patsadu, Chakarida Nukoolkit, and Bunthit Watanapa. Human gesture

recognition using kinect camera. In Boonserm Kijsirikul, editor, 2012 Interna-

tional Joint Conference on Computer Science and Software Engineering (JCSSE

2012), pages 28–32, Piscataway, NJ, 2012. IEEE. ISBN 978-1-4673-1921-8. doi:

10.1109/JCSSE.2012.6261920.

http://doi.acm.org/10.1145/1619258.1619291
http://doi.acm.org/10.1145/1619258.1619291

BIBLIOGRAPHY 233

Richard Plate. Assessing individuals’ understanding of nonlinear causal struc-

tures in complex systems. System Dynamics Review, 26(1):19–33, 2010. ISSN

08837066. doi: 10.1002/sdr.432.

Johanna Plattner, Elena Oberrauner, Daniela Elisabeth Ströckl, and Johannes

Oberzaucher. Using iot middleware solutions in interdisciplinary research pro-

jects in the context of aal. In Fillia Makedon, editor, Proceedings of the

13th ACM International Conference on PErvasive Technologies Related to As-

sistive Environments, ACM Digital Library, pages 1–6, New York,NY,United

States, 2020. Association for Computing Machinery. ISBN 9781450377737. doi:

10.1145/3389189.3397986.

Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments and In-

teractions. John Wiley & Sons Ltd, Hoboken, 2nd ed. edition, 2009. ISBN

9780470035603. URL http://gbv.eblib.com/patron/FullRecord.

aspx?p=427911.

David Poutakidis, Lin Padgham, and Michael Winikoff, editors. Debugging multi-

agent systems using design artifacts: Proceedings of the First International Joint

Conference on Autonomous Agents and Multiagent Systems ; July 15 - 19, 2002,

Palazzo de Enzo, Bologna, Italy ; featuring 6th International Conference on

Autonomous Agents, 5th International Conference on Multiagent Systems, 9th

International Workshop on Agent Theories, Architectures, and Languages. ACM

Press, New York, NY, 2002. ISBN 1581134800. doi: 10.1145/544862.544966.

Ella Rabinovich, Opher Etzion, Sitvanit Ruah, and Sarit Archushin. Analyzing the

behavior of event processing applications. In Jean Bacon, editor, Proceedings of

the Fourth ACM International Conference on Distributed Event-Based Systems,

DEBS ’10, pages 223–234, New York, NY, 2010. ACM. ISBN 9781605589275.

doi: 10.1145/1827418.1827465.

Randall R. Stewart. Stream control transmission protocol, 2007. URL https:

//www.rfc-editor.org/info/rfc4960.

http://gbv.eblib.com/patron/FullRecord.aspx?p=427911
http://gbv.eblib.com/patron/FullRecord.aspx?p=427911
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960

BIBLIOGRAPHY 234

Anand Ranganathan and Roy H. Campbell. A middleware for context-aware

agents in ubiquitous computing environments. In Proceedings of the ACM/I-

FIP/USENIX 2003 International Conference on Middleware, pages 143–

161. Springer-Verlag New York, Inc, 2003. URL http://dl.acm.org/

citation.cfm?id=1515915.1515926.

Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and

Siobhan Clarke. Middleware for internet of things: A survey. IEEE Internet of

Things Journal, 3(1):70–95, 2016. doi: 10.1109/JIOT.2015.2498900.

Mitchel Resnick. All i really need to know (about creative thinking) i learned (by

studying how children learn) in kindergarten. In Proceedings of the 6th ACM

SIGCHI Conference on Creativity &Amp; Cognition, C&C ’07, pages 1–6, New

York, NY, USA, 2007. ACM. ISBN 978-1-59593-712-4. doi: 10.1145/1254960.

1254961.

Ralf H. Reussner, Heinz W. Schmidt, and Iman H. Poernomo. Reliability pre-

diction for component-based software architectures. Journal of Systems and

Software, 66(3):241–252, 2003. ISSN 01641212. doi: 10.1016/S0164-1212(02)

00080-8.

Alessandro Ricci. From actor event-loop to agent control-loop. In Elisa Gonzalez

Boix, editor, Proceedings of the 4th International Workshop on Programming

based on Actors Agents & Decentralized Control, ACM Digital Library, pages

121–132, New York, NY, 2014. ACM. ISBN 9781450321891. doi: 10.1145/

2687357.2687361.

Stuart Russell and Peter Norvig. Artificial intelligence: A modern ap-

proach. Always learning. Pearson, Boston, third edition edition, 2016. ISBN

9781292153971. doi: Stuart. URL https://ebookcentral.proquest.

com/lib/kxp/detail.action?docID=5831883.

Daniel S. Santos, Brauner R. N. Oliveira, Rick Kazman, and Elisa Y. Nakagawa.

Evaluation of systems-of-systems software architectures: State of the art and

http://dl.acm.org/citation.cfm?id=1515915.1515926
http://dl.acm.org/citation.cfm?id=1515915.1515926
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5831883
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5831883

BIBLIOGRAPHY 235

future perspectives. ACM Computing Surveys, 2022. ISSN 0360-0300. doi:

10.1145/3519020.

Sathish and S. Smys. A survey on internet of things (iot) based smart systems.

Journal of ISMAC, 2(4):181–189, 2020. doi: 10.36548/jismac.2020.4.001.

Mark Saunders. Research methods for business students. Pearson, Harlow, United

Kingdom, eigth edition edition, 2019. ISBN 9781292208794. URL https:

//elibrary.pearson.de/book/99.150005/9781292208794.

Claudio Savaglio, Giancarlo Fortino, Maria Ganzha, Marcin Paprzycki, Costin

BÄƒdicÄƒ, and Mirjana Ivanović. Agent-based computing in the internet of

things: A survey. Studies in Computational Intelligence, 737:307–320, 2017.

doi: 10.1007/978-3-319-66379-1_27.

B. N. Schilit and M. M. Theimer. Disseminating active map information to mobile

hosts. IEEE Network, 8(5):22–32, 1994. ISSN 0890-8044. doi: 10.1109/65.

313011.

Margrit Schreier. Qualitative content analysis in practice. SAGE, Los Angeles

and London and New Delhi and Singapore and Washington DC, 2012. ISBN

9781849205924.

Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distrib-

uted complex event processing with query rewriting. In Aniruddha Gokhale,

editor, Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, page 1, New York, NY, 2009. ACM. ISBN 9781605586656.

doi: 10.1145/1619258.1619264.

P. Shanmugapriya and R. M. Suresh. Software architecture evaluation methods

a survey. International Journal of Computer Applications, 49(16):19–26, 2012.

ISSN 0975-8887. doi: 10.5120/7711-1107.

Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber-physical

systems. In 2011 International Conference on Wireless Communications and

https://elibrary.pearson.de/book/99.150005/9781292208794
https://elibrary.pearson.de/book/99.150005/9781292208794

BIBLIOGRAPHY 236

Signal Processing (WCSP 2011), pages 1–6, Piscataway, NJ, 2011. IEEE. ISBN

978-1-4577-1010-0. doi: 10.1109/WCSP.2011.6096958.

Yoav Shoham. Agent-oriented programming. Artif. Intell., 60(1):51–92, 1993.

ISSN 0004-3702. doi: 10.1016/0004-3702(93)90034-9.

Janet Siegmund. Program comprehension: Past, present, and future. In 2016

IEEE 23rd International Conference on Software Analysis, Evolution, and Reen-

gineering (SANER). IEEE, 2016. doi: 10.1109/SANER.2016.35.

John Soldatos, Ippokratis Pandis, Kostas Stamatis, Lazaros Polymenakos, and

James L. Crowley. Agent based middleware infrastructure for autonomous

context-aware ubiquitous computing services. Comput. Commun., 30(3):577–

591, 2007. ISSN 0140-3664. doi: 10.1016/j.comcom.2005.11.018.

John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul

Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady

Zaslavsky, Ivana Podnar Žarko, Lea Skorin-Kapov, and Reinhard Herzog.

Openiot: Open source internet-of-things in the cloud. In Ivana Podnar Žarko,

Krešimir Pripužić, and Martin Serrano, editors, Interoperability and open-source

solutions for the internet of things, volume 9001 of Lecture notes in computer

science, pages 13–25. Springer, Cham, 2015. ISBN 978-3-319-16545-5. doi:

10.1007/978-3-319-16546-2_3.

Eleni Stroulia and Tarja Systä. Dynamic analysis for reverse engineering and

program understanding. ACM SIGAPP Applied Computing Review, 10(1):8–17,

2002. ISSN 1559-6915. doi: 10.1145/568235.568237.

Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash

Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A second look

at complex event processing architectures. In Proceedings of the 2011 ACM

Workshop on Gateway Computing Environments, GCE ’11, pages 43–50, New

York, NY, USA, 2011. ACM. ISBN 978-1-4503-1123-6. doi: 10.1145/2110486.

2110493.

BIBLIOGRAPHY 237

Rossilawati Sulaiman, Dharmendra Sharma, Wanli Ma, and Dat Tran. A multi-

agent security architecture. In 2009 Third International Conference on Network

and System Security. IEEE, 2009. doi: 10.1109/nss.2009.78.

Nagender Kumar Suryadevara and Subhas Chandra Mukhopadhyay. Smart

Homes, volume 14. Springer International Publishing, Cham, 2015. ISBN 978-

3-319-13556-4. doi: 10.1007/978-3-319-13557-1.

H. Takahashi, T. Suganuma, and N. Shiratori. Amuse: an agent-based middleware

for context-aware ubiquitous services. In Parallel and Distributed Systems, 2005.

Proceedings. 11th International Conference on // Proceedings / 11th Interna-

tional Conference on Parallel and Distributed Systems, volume 1, pages 743–749

Vol. 1, Los Alamitos, Calif., 2005. IEEE Computer Society. ISBN 0-7695-2281-5.

doi: 10.1109/ICPADS.2005.66.

Andre L.C. Tavares and Marco Tulio Valente. A gentle introduction to osgi. ACM

SIGSOFT Software Engineering Notes, 33(5):1–5, 2008. ISSN 0163-5948. doi:

10.1145/1402521.1402526.

Kerry Taylor and Lucas Leidinger. Ontology-driven complex event processing in

heterogeneous sensor networks. In Grigoris Antoniou, editor, The semantic web:

research and applications, Lecture notes in computer science, pages 285–299,

Heidelberg, 2011. Springer. ISBN 9783642210631.

V. Thangam and K. Chandrasekaran. Elliptic curve based proxy re-encryption.

In Unknown, editor, Proceedings of the Second International Conference on In-

formation and Communication Technology for Competitive Strategies, ACM Di-

gital Library, pages 1–6, New York, NY, 2016. ACM. ISBN 9781450339629. doi:

10.1145/2905055.2905337.

Marc H. van Liedekerke and Nicholas M. Avouris. Debugging multi-agent systems.

Information and Software Technology, 37(2):103–112, 1995. ISSN 0950-5849.

doi: 10.1016/0950-5849(95)93487-Y.

VERBI Software. Maxqda 2022. computer program, 2019. URL https://www.

maxqda.com.

https://www.maxqda.com
https://www.maxqda.com

BIBLIOGRAPHY 238

Chao Wang, Christopher Gill, and Chenyang Lu. Real-time middleware for cyber-

physical event processing. ACM Trans. Cyber-Phys. Syst., 3(3), 2019. ISSN

2378-962X. doi: 10.1145/3218816.

Yongheng Wang and Kening Cao. Context-aware complex event processing for

event cloud in internet of things. In 2012 International Conference on Wireless

Communications and Signal Processing (WCSP). IEEE, 2012. doi: 10.1109/

wcsp.2012.6542861.

M. Weiser, R. Gold, and J. S. Brown. The origins of ubiquitous computing research

at parc in the late 1980s. IBM Syst. J., 38(4):693–696, 1999. ISSN 0018-8670.

doi: 10.1147/sj.384.0693.

Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.

Commun. Rev., 3(3):3–11, 1991. ISSN 1559-1662. doi: 10.1145/329124.329126.

URL http://doi.acm.org/10.1145/329124.329126.

V. Williams, S. Terence J., and J. Immaculate. Survey on internet of things

based smart home. In 2019 International Conference on Intelligent Sustainable

Systems (ICISS), pages 460–464, 2019. doi: 10.1109/ISS1.2019.8908112.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and

practice. The Knowledge Engineering Review, 10(2):115–152, 1995. ISSN 0269-

8889. doi: 10.1017/S0269888900008122.

World Wide Web Consortium. Owl 2 web ontology language, 2012. URL https:

//www.w3.org/TR/owl2-overview/.

Chao-Lin Wu, Chun-Feng Chun-Feng Liao, and Li-Chen Li-Chen Fu. Service-

oriented smart-home architecture based on osgi and mobile-agent technology.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-

actions on, 37(2):193–205, 2007. ISSN 1094-6977. doi: 10.1109/TSMCC.2006.

886997.

Muneer Bani Yassein, Mohammed Q. Shatnawi, Shadi Aljwarneh, and Razan Al-

Hatmi. Internet of things: Survey and open issues of mqtt protocol. In 2017

http://doi.acm.org/10.1145/329124.329126
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/

BIBLIOGRAPHY 239

International Conference on Engineering & MIS (ICEMIS’2017), pages 1–6,

Piscataway, NJ, 2017. IEEE. ISBN 978-1-5090-6778-7. doi: 10.1109/ICEMIS.

2017.8273112.

Robert K. Yin. Case study research: Design and methods, volume 5 of Applied

social research methods series. SAGE, Los Angeles, Calif., 4. ed., [nachdr.]

edition, 2010. ISBN 9781412960991.

G. Michael Youngblood, Edwin O. Heierman, Lawrence B. Holder, and Diane J.

Cook. Automation intelligence for the smart environment. In Proceedings of the

19th International Joint Conference on Artificial Intelligence, IJCAI’05, pages

1513–1514, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

A. A. Zaidan and B. B. Zaidan. A review on intelligent process for smart home

applications based on iot: coherent taxonomy, motivation, open challenges, and

recommendations. Artificial Intelligence Review, 53(1):141–165, 2020. ISSN

0269-2821. doi: 10.1007/s10462-018-9648-9.

Ariane Ziehn. Complex event processing for the internet of things. In International

Conference on Very Large Data Bases. International Conference on Very Large

Data Bases (VLDB-2020), PhD Workshop, befindet sich VLDB, August 31-

September 4, Tokio, Japan. CEUR-WS, 2020.

Xiangrong Zu, Yan Bai, and Xu Yao. Data-centric publish-subscribe approach

for distributed complex event processing deployment in smart grid internet of

things. In 2016 7th IEEE International Conference on Software Engineering

and Service Science (ICSESS), pages 710–713, 2016. doi: 10.1109/ICSESS.

2016.7883166.

Sotiris Zygiaris. Smart city reference model: Assisting planners to conceptualize

the building of smart city innovation ecosystems. Journal of the Knowledge

Economy, 4(2):217–231, 2013. ISSN 1868-7873. doi: 10.1007/s13132-012-0089-4.

Appendix A

Expert Interview Details

A.1 Expert Interview Guideline

The interview guideline contains key questions for each of the three topics. Each

key question is accompanied by multiple sub-questions that can be used during

the interview to find out more details about important aspects.

A.1.1 Middleware and Software Development in Smart Sys-

tem Laboratory Environments

• In which software laboratories do you have worked so far?

– What is/was your role inside this laboratory?

– What is/was the goal of this environment?

– How is/was the rough software architecture?

• What are the main requirements to the software in the laboratory?

– What software platform or middleware is used?

– Are there any special characteristics regarding the environment?

240

Chapter A. Expert Interview Details 241

– What are the differences to software environments in a business con-

text?

– Are students involved in the team? How are they supervised?

– How are changes documented?

• What are according to you the biggest challenges during the operation of

this environment?

– How are changes to the architecture are made? Who is responsible?

– How high is perceived complexity of the system?

∗ Does the provided documentation help?

∗ How fast are program comprehension tasks?

∗ What are the difficulties in working with students?

A.1.2 Program Comprehension and Debugging in Smart

System Laboratory Environments

• In your experience, what problems occurred most often in these environments

or with this type of software?

– Problems with message delivery

– Integration

– Faulty agents

– External data / sensors

– Documentation

• What solution strategies have you used to solve these problems?

– How can components be localised in the event of an error?

– How can you find out which messages are involved in the error?

– How can it be determined whether a message has really been delivered

in case of doubt?

Chapter A. Expert Interview Details 242

– How is complex sensors (e.g. Skeleton Tracking Sensor) handled in the

event of a problem?

– Are these strategies applicable at runtime?

• What software has been used for debugging in the lab environments you are

familiar with?

– During development?

– During testing?

– In the production system?

A.1.3 Evaluation of Program Comprehension and Debug-

ging with CEP

• What experience do you have with CEP so far?

– No: Show an example with an event processing pipeline that combines

multiple events

– Yes: Have you used CEP in your lab environments so far?

– Can you see possible use cases of CEP inside your work environment?

• 1. Demo CEP Queries Agent Development

– CEP query for sensor testing/verification

– CEP query for ad hoc visualisation of message data

• What is your opinion about using CEP queries for agent development?

– Would agent development with CEP Queries be helpful for the lab

environments you know?

– What about ad hoc agents for event generation/message verification/etc.?

– What agents could be replaced by this development method?

• 2. Demo CEP Queries Debugging

Chapter A. Expert Interview Details 243

– Visualisation of agent/group graphs

– Selection of involved agents and groups of an incident

• What is your opinion regarding debugging with CEP queries?

– Would the type of debugging be helpful for the lab environments you

know?

– Can it improve the localisation of messages and agents?

– Is the selection of subsystems meaningful?

A.2 Coding Frame

• Personal Information

– Role

– Experiences

• Software Laboratories

– Goals

– Software Architecture

∗ Complexity

∗ Messaging API

∗ Messaging Format

∗ Messaging Software

∗ Security

∗ Architecture Change Management

• Challenges due to the environment

– Team Size

– Training Process

Chapter A. Expert Interview Details 244

– Documentation Process

• Challenges

– Perceived Complexity

– Multi User Application

– Working with Students

• Problem Fields

– Complexity

– Distributed Systems

– Faulty Agents

– Messaging

– Documentation

– Sensors

• Approaches

– Message Validation

– Debugging Strategies

– Debugging and Testing Software

• Experience with CEP

– A lot of experience - CEP used in own projects or used in research.

– Some experience - Heard from CEP but only superficial experience with

the use

– No experience - No knowledge about CEP

• Feedback

– Temporal logic

– Speed up processes

Chapter A. Expert Interview Details 245

– Detection of complex events

– Query language

– Topic for further research

• Potential Use Cases

– Detection of complex events

– Monitoring

– Program Comprehension

– Message debugging

– Replay of messages

• Limitations

– Needs ACK messages

– Technical limitations

– Training time

– Low level errors

– Performance

A.3 Interview Information Sheet and Consent

Form

The following 2 pages contain the interview information sheet and then the consent

form. Both documents were used to conduct the expert interviews in Chapter 6.

Interview - Software Development in Smart Environment Research Laboratories
Researcher: Tobias Eichler (tobias.eichler@haw-hamburg.de)

Thank you for your interest in participating in this user study. The purpose of this research is to get
insights on how we work with software in smart environment laboratories to improve software
development and debugging tasks in these challenging environments.

Do I have to take part?
It is up to you to decide whether to take part. If you do decide to take part you will be asked to sign a
consent form. You are free to withdraw at any time and without giving a reason. A decision not to
participate will not affect you in anyway.

What will happen if I take part?
I will invite you to participate in a online 30-45 minutes long interview and ask you different questions
about your experiences and opinions about working with smart environment or distributed loosely
coupled software.

Will my participation in this study be kept confidential?
All the information which is collected about you during the course of the research will be kept strictly
confidential. Any published information will have your name, address and all other identifiable details
removed so that you cannot be recognised from it.

What will happen to the results of the research study?
Results obtained using the data in these experiments may be used in research publications such as
conference papers, research journals and dissertations.

Who is organising the research?
This PhD research study is organised by the University of Applied Sciences Hamburg and the School
of Computing, Engineering and Physical Sciences at the University of the West of Scotland.

Who has reviewed the study?
The research proposal has been reviewed by the PhD supervisors and the University of the West of
Scotland’s Ethics committee.

Further Information

Please contact:
Principle Investigator:
Tobias Eichler: Tobias.Eichler@haw-hamburg.de

Supervisor Team:
Qi Wang: qi.wang@uws.ac.uk
Kai von Luck: kai.vonluck@haw-hamburg.de
Susanne Draheim: susanne.draheim@haw-hamburg.de

Participant Consent Form

Interview - Software Development in Smart Environment Research Laboratories
Researcher: Tobias Eichler (tobias.eichler@haw-hamburg.de)

I voluntarily agree to participate in this research study.

I confirm that I have read and understand the plain language statement for the above study and have
had the opportunity to ask questions.

I understand that even if I agree to participate now, I can withdraw at any time or refuse to answer
any question without any consequences of any kind.

I understand that I can withdraw permission to use data from my interview within two weeks after
the interview, in which case the material will be deleted.

I understand that I will be asked questions and my responses will be video- and audio-recorded, but that
I will not be identified by name in any resulting published work. All information I provide for this
study will be treated confidentially.

I agree that my answers can be published anonymised as part of scientific papers and dissertations.

Name of Participant: Researcher:

Date: Date:

Signature: Signature:

Appendix B

Scenario-based Analysis

B.1 Questionnaire 1

The following 3 pages contain the questionnaire used for the assessment and collec-

tion of additional scenarios for the scenario-based evaluation in Chapter 8.

248

1 / 3

Questionnaire: Scenario-based Architecture Evaluation of Smart

System Research Labs

Living Place Hamburg / CSTI

In both the Living Place Hamburg (LP) and the Creative Space for Technical Innovations (CSTI) we use a

software architecture based on a loose coupling of software components via a publish/subscribe system. The

following questionnaire is intended to further investigate the requirements of different stakeholders for the

software architecture in these laboratories. The questions are aimed at evaluating known scenarios and

identifying new ones that are of interest to the stakeholders of the laboratories. The results of this survey will

be compiled into a list of scenarios sorted by importance, which will be used as a basis for further research on

the suitability of architectures.

Consent

Participation in this survey is voluntary and anonymous. All data will be stored locally and processed in

accordance with the DSGVO (in particular articles 6 and 16). This ensured that at no time an identification of

specific individuals is possible based on the collected data.

The results of the questionnaires will be used as part of my PhD thesis and future publications.

By submitting the questionnaire, you agree to the above conditions.

Definitions

Agent - Component in the system that communicates via messages.

Group - Communication channel (also often called topic) to which all agents in the system can send messages.

Messages are then delivered to all agents who have previously subscribed to the selected group.

Middleware Node - Distributed software component that provides the publish/subscribe communication layer

for the agents.

Queries - Queries in a descriptive language (e.g. similar to SQL) about messages from agents and system states,

optionally filtered by logical and temporal logical expressions, aggregated or joined with other message

channels.

Contact

If you have any questions, please contact tobias.eichler@haw-hamburg.de

__

Questions

1.) How would you describe your professional role? (Multiple selections possible)

☐ Bachelor / Master Student

☐ PhD Student

☐ Postdoc

☐ Professor

☐ Staff Member

other:

2 / 3

2.) Please rate the following scenarios from not important to very important from your perspective

and experience of working with past or current architectures in the Living Place and/or CSTI.

Please mark (x) one cell per line.

 Category Scenario
Not
Important

Slightly
Important

Moderately
Important Important

Very
Important

1 Performance

Developers can use the system to implement
user interaction with reasonable message
latencies

2 Performance

The performance of the system scales with the
addition of more middleware nodes up to at
least 1000 agents

3 Availability

System functions are available as long as more
than half of all of the middleware nodes are
available

4 Availability

Uncontrolled sending of messages from an
agent does not affect the functioning of the
system

5 Modifiability

Developers can connect additional
technologies, like other messaging systems or
previously unsupported but compatible
protocols, to the middleware within a day

6 Modifiability
Developers can create simple full-featured
agents via a descriptive language

7 Modifiability
Developers can add or change message
formats within a day

8 Variability

Developers can connect new components
written in commonly used programming
languages (such as Java, C and Javascript) to
the middleware in a matter of hours.

9 Modularity

Administrators can exchange system
components and use them independently of
each other

10 Functionality

The system offers developers the possibility to
subscribe to, edit, filter and forward messages
from agents via queries

11 Functionality

The system can show developers the current
communication graph, filtered on demand,
with all agents and groups

12 Functionality

Developers can search for specific agents and
messages with specific properties via queries
and thus localise errors in the system

13 Functionality

Developers can query the system state and
messages of agents ad hoc via queries to
interactively learn about the structure of a
running system

14 Functionality

Developers can generate test settings and test
data with a descriptive language without
having to write their own components

15
Conceptual
integrity

Developers can think about all components of
the system as agents with dedicated tasks

3 / 3

3.) Please add any other scenarios you can think of that are not listed above. The Category column is

optional, and all fields can be completed in either English or German.

 Category Scenario
Not
Important

Slightly
Important

Moderately
Important Important

Very
Important

16

17

18

19

20

21

22

23

Thank you for participating in this survey!

Please send the completed form to tobias.eichler@haw-hamburg.de

Chapter B. Scenario-based Analysis 252

B.2 Questionnaire 2 and Consent Form

1 / 2

Questionnaire: Scenario-based Architecture Evaluation of Smart

System Research Labs / Second survey

Living Place Hamburg / CSTI

In both the Living Place Hamburg (LP) and the Creative Space for Technical Innovations (CSTI) we use a

software architecture based on a loose coupling of software components via a publish/subscribe system. The

following questionnaire is intended to further investigate the requirements of different stakeholders for the

software architecture in these laboratories. The questions are aimed at evaluating known scenarios and

identifying new ones that are of interest to the stakeholders of the laboratories. The results of this survey will

be compiled into a list of scenarios sorted by importance, which will be used as a basis for further research on

the suitability of architectures.

This second questionnaire is used to evaluate the scenarios given in the first questionnaire.

Consent

Participation in this survey is voluntary and anonymous. All data will be stored locally and processed in

accordance with the DSGVO (in particular articles 6 and 16). This ensured that at no time an identification of

specific individuals is possible based on the collected data.

The results of the questionnaires will be used as part of my PhD thesis and future publications.

By submitting the questionnaire, you agree to the above conditions.

Definitions

Agent - Component in the system that communicates via messages.

Group - Communication channel (also often called topic) to which all agents in the system can send messages.

Messages are then delivered to all agents who have previously subscribed to the selected group.

Queries - Queries in a descriptive language (e.g. similar to SQL) about messages from agents and system states,

optionally filtered by logical and temporal logical expressions, aggregated or joined with other message

channels.

Contact

If you have any questions, please contact tobias.eichler@haw-hamburg.de

__

Questions

1.) How would you describe your professional role? (Multiple selections possible)

☐ Bachelor / Master Student

☐ PhD Student

☐ Postdoc

☐ Professor

☐ Staff Member

other:

2 / 2

2.) Please rate the following scenarios from not important to very important from your perspective

and experience of working with past or current architectures in the Living Place and/or CSTI.

Please mark (x) one cell per line.

Category Scenario
Not
Important

Slightly
Important

Moderately
Important Important

Very
Important

16 Functionality

Developers can see in the user interface whether
agents implement the correct interfaces, which
ones are missing and which ones are not supported
by the current communication partners.

17 Testing

Developers can save the communication between
agents in a part of the system and replay it later for
testing purposes. The display and processing via
queries are possible in the same way as for all
messages. These messages are additionally marked
with an attribute to enable filtering.

18 Variability
Developers can freely choose group names and, if
necessary, define their own naming conventions.

19 Variability

Developers can encode any JSON-compatible
attributes in messages sent to and from agents.
These attributes can be searched for using queries
to track these messages in the system.

20 Functionality
The system offers developers the option to trace
messages and their responses for debug purposes.

21 Functionality

Student groups in a semester, each working on
their agents, can use the system to exchange
information about interfaces and dependencies of
their agents.

22 Functionality

A new group of students who wants to adapt or
replace parts of the system can use the GUI to see
which components are involved and what
dependencies they have on the rest of the system.

23 Functionality

Teachers can see via the GUI which agents are
integrated into the system by their students and
which other agents are potentially influenced by
them. If necessary, the exact information exchange
of these new agents can be analysed in detail.

24 Functionality

Developers can use the system to find out which
interfaces an agent supports and which messages it
expects, to be able to estimate which conditions
(such as sensor data) the agent is waiting for.

25 Security

Developers can be sure that the messages are not
altered by other users and have to possibility to
validate the integrity.

26 Performance

Messages from agents can be prioritised. If
possible, a message with a higher priority is
forwarded by the middleware before a message
with a lower priority.

Thank you for participating in this survey!

Please send the completed form to tobias.eichler@haw-hamburg.de

Participant Consent Form

ATAM Workshop – Scenario-based Evaluation of an Architecture for Smart
System Research Laboratories
Researcher: Tobias Eichler (tobias.eichler@haw-hamburg.de)

I voluntarily agree to participate in this research study and I confirm having had the opportunity to ask
all questions I had about the study conducted here.

I understand that even if I agree to participate now, I can withdraw at any time during the workshop or
refuse to answer any questions without any consequences of any kind.

I agree that the workshop will be documented with photos and that my contributions to the discussion
during the workshop will be transcribed, but that I will not be identified by name in any resulting
published work. All data is stored and processed in compliance with the EU-General Data Protection
Regulation (GDPR).

I agree that the results of the workshop can be published anonymised as part of scientific papers and
dissertations.

Name of Participant: Researcher:

Date: Date:

Signature: Signature:

Chapter B. Scenario-based Analysis 256

B.3 ATAM Workshop Results

B.3.1 Analysis of Architectural Approaches

Analysis of Architectural Approach

Scenario ID: 8 - Heterogeneity

Scenario:

Developers can connect new components written in
commonly used programming languages (such as Java, C
and Javascript) to the middleware in a matter of hours.

Attributes: Variability

Environment: Normal operations

Stimulus: Need of a new component

Response: Successful connection of the new component

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

 A4 – Open Middleware API S1 R3 N1

 A6 – API Libraries S2 R2

 A7 – Runtime Environments R1

Reasoning / Diagram

Middleware API

Middleware

Node

(Agent Framework)

New Component

Analysis of Architectural Approach

Scenario ID: 12 – System entity search

Scenario:

Developers can search for specific agents and messages
with specific properties via queries and thus localise errors
in the system

Attributes: Variability

Environment: Normal operations

Stimulus: New CEP search query

Response: Dynamically updated list of relevant agents and messages

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

 A1 – Agent-based Design S3 R5 N3

 A8 – Integration of CEP S4 T1, T2 R4 N2, N4

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 4 – Agent failure tolerance

Scenario:
Uncontrolled sending of messages from an agent does not
affect the functioning of the system.

Attributes: Availability

Environment: Normal operations

Stimulus: An agent starts to send messages uncontrollably

Response: Normal operation

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

 A3 – Publish/Subscribe communication T4 R6 N5

 A1 – Agent-based Design S5 T3 N6

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 1 – Message latency

Scenario:
Developers can use the system to implement user
interaction with reasonable message latencies.

Attributes: Performance

Environment: Normal operations

Stimulus: Agent sends a message

Response: Message is received with appropriate latency

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A9 – Distributed Middleware Nodes S6 T5 N7

A7 – Runtime Environments N8

A1 – Agent-based Design R7

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 10 – Context processing

Scenario:

The system offers developers the possibility to subscribe
to, edit, filter and forward messages from agents via
queries.

Attributes: Functionality

Environment: Normal operations

Stimulus: New CEP query

Response: Dynamically updated list of relevant messages

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design S7 R9 N9

A8 – Integration of CEP R8 N10

A1 – Agent-based Design T6

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 7 – Change of message format

Scenario:
Developers can add or change message formats within a
day.

Attributes: Modifiability

Environment: Normal operations

Stimulus: A new message format is needed

Response:
Communication with other components via the
middleware

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A3 – Publish/Subscribe Communication T7 R10 N11

A6 – API Libraries T8, T9 N12

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 9 – Reusability of system components

Scenario:
Administrators can exchange system components and use
them independently of each other.

Attributes: Modularity

Environment: Normal operations

Stimulus: Parts of the system are to be reused

Response: Normal operations in the new system

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A10 – Layer Design R11 N13

A2 – Open Design T10

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 3 – Node failure tolerance

Scenario:
System functions are available as long as more than half of
all of the middleware nodes are available.

Attributes: Availability

Environment: Normal operations

Stimulus: A middleware node fails

Response: Normal operations

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A9 – Distributed Middleware Nodes N14

A4 – Open Middleware API T11, T12 R12 N15

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 5 – Add new technologies

Scenario:

Developers can connect additional technologies, like other
messaging systems or previously unsupported but
compatible protocols, to the middleware within a day.

Attributes: Functionality

Environment: Normal operations

Stimulus: Connection of a separate messaging system

Response: Normal operations

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design N16

A4 – Open Middleware API T13

A1 – Agent-based Design R13 N18

A5 – Agent Framework N17

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 14 – Test settings

Scenario:

Developers can generate test settings and test data with a
descriptive language without having to write their own
components.

Attributes: Functionality

Environment: Testing or production environment

Stimulus: New CEP query

Response: Test messages are sent

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design N19

A8 – Integration of CEP N20

A6 – API Libraries N21

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 15 – Agent-based

Scenario:
Developers can think about all components of the system
as agents with dedicated tasks.

Attributes: Conceptual integrity

Environment: Normal operations

Stimulus: Developer works with the system

Response: Everything behaves like an agent

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A1 – Agent-based Design T1 R14 N22

A8 – Integration of CEP N23

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 11 – System status visualization

Scenario:

The system can show developers the current
communication graph, filtered on demand, with all agents
and groups.

Attributes: Functionality

Environment: Normal operations

Stimulus: Visualization request

Response: Dynamically updated graph of agents and groups

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A1 – Agent-based Design S9 T14 N24

A8 – Integration of CEP N25

A4 – Open Middleware API S8

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 13 – Ad hoc queries

Scenario:

Developers can query the system state and messages of
agents ad hoc via queries to interactively learn about the
structure of a running system.

Attributes: Functionality

Environment: Normal operations

Stimulus: New CEP query

Response: Dynamically updated list of messages

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A8 – Integration of CEP R15 N26

A2 – Open Design N27

A1 – Agent-based Design R16

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 2 - Scalability

Scenario:
The performance of the system scales with the addition of
more middleware nodes up to at least 1000 agents.

Attributes: Performance

Environment: Normal operations

Stimulus: New agents join the system

Response: System scales with added middleware nodes

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A9 – Distributed Middleware Nodes T15 N28

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 6 – Descriptive programming

Scenario:
Developers can create simple full-featured agents via a
descriptive language.

Attributes: Modifiability

Environment: Normal operations

Stimulus: New CEP query

Response: Query runs and behaves like an agent

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A8 – Integration of CEP R15 N30

A1 – Agent-based Design R17

A2 – Open Design N29

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 24 – Display agent activation conditions

Scenario:

Developers can use the system to find out which interfaces
an agent supports and which messages it expects, to be
able to estimate which conditions (such as sensor data) the
agent is waiting for.

Attributes: Functionality

Environment: Normal operations

Stimulus: Developer opens Web GUI

Response: Agent activation conditions

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A1 – Agent-based design R18 N32

A6 – API Libraries N31, N32

A2 – Open Design N33

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 19 – Freedom in the choice of attributes

Scenario:

Developers can encode any JSON-compatible attributes in
messages sent to and from agents. These attributes can be
searched for using queries to track these messages in the
system.

Attributes: Variability

Environment: Normal operations

Stimulus: Message is sent

Response: No error

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A6 – API Libraries R19 N34

A2 – Open Design R18, R20

A8 – Integration of CEP S10 N35

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 20 – Simple message tracing

Scenario:
The system offers developers the option to trace messages
and their responses for debug purposes.

Attributes: Functionality

Environment: Normal operations

Stimulus: Message is sent

Response: Response message from Agent

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A11 – Monitoring and Logging T16, T17 N36, N37

A9 – Distributed Middleware Nodes R20

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 22 – Project handover to following semester groups

Scenario:

A new group of students who wants to adapt or replace
parts of the system can use the GUI to see which
components are involved and what dependencies they
have on the rest of the system.

Attributes: Functionality

Environment: Normal operations

Stimulus: Student group opens web GUI graph view

Response: Dependency graph

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design R21 N33

A11 – Monitoring and Logging T18

A1 – Agent-based Design N38

A3 – Publish/Subscribe Communication N38

A8 – Integration of CEP R22 N39

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 16 – Checking interfaces of agents

Scenario:

Developers can see in the user interface whether agents
implement the correct interfaces, which ones are missing
and which ones are not supported by the current
communication partners.

Attributes: Functionality

Environment: Normal operations

Stimulus: Developer opens web GUI

Response: List of incompatible APIs

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A6 – API Libraries N40

A4 – Open Middleware API R23 N41

A1 – Agent-based Design R24

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 17 – Message recording and replay

Scenario:

Developers can save the communication between agents
in a part of the system and replay it later for testing
purposes. The display and processing via queries are
possible in the same way as for all messages. These
messages are additionally marked with an attribute to
enable filtering.

Attributes: Testing

Environment: Normal operations

Stimulus: Developer starts message recording

Response: Recording of all messages from selected components

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A11 – Monitoring and Logging T16, T17 N36, N37

A9 – Distributed Middleware Nodes R20

Reasoning / Diagram
- During the analysis, it was found that the implementation of this scenario is very similar to S20.

Analysis of Architectural Approach

Scenario ID: 21 – Cooperation between student groups

Scenario:

Student groups in a semester, each working on their
agents, can use the system to exchange information about
interfaces and dependencies of their agents.

Attributes: Functionality

Environment: Normal operations

Stimulus: Student group starts working, opens web GUI

Response: Dependency graph

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A1 – Agent-based Design R25

A3 – Publish/Subscribe Communication R25

A6 – API Libraries R26 N43

A8 – Integration of CEP N44

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 23 – Realisation of projects with students

Scenario:

Teachers can see via the GUI which agents are integrated
into the system by their students and which other agents
are potentially influenced by them. If necessary, the exact
information exchange of these new agents can be analysed
in detail.

Attributes: Functionality

Environment: Normal operations

Stimulus:
Teacher opens web GUI to collect information about
student projects

Response: Dependency graph, Interaction graph, Message recordings

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design N42

A1 – Agent-based Design R25

A3 – Publish/Subscribe Communication R25 N45

A8 – Integration of CEP T19 N44

A11 – Monitoring and Logging N42

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 18 – Freedom in the choice of group names

Scenario:
Developers can freely choose group names and, if
necessary, define their own naming conventions.

Attributes: Variability

Environment: Normal operations

Stimulus: Message is sent to arbitrary group name

Response: Message is delivered to all subscribers

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design R27, R28 N47

A3 – Publish/Subscribe Communication N46

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 26 – Message prioritisation

Scenario:

Messages from agents can be prioritised. If possible, a
message with a higher priority is forwarded by the
middleware before a message with a lower priority.

Attributes: Performance

Environment: Normal operations

Stimulus: Message is sent with high priority

Response: Message is delivered before message with lower priority

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A4 – Open Middleware API N48

A3 – Publish/Subscribe Communication S11 T20 R29

A11 – Monitoring and Logging T21

A1 – Agent-based Design N49

A5 – Agent Framework S12

A10 – Layer Design N50

Reasoning / Diagram

Analysis of Architectural Approach

Scenario ID: 25 – Message integrity

Scenario:

Developers can be sure that the messages are not altered
by other users and have to possibility to validate the
integrity.

Attributes: Security

Environment: Normal operations

Stimulus: Message is sent

Response:
Agent receives messages and detects whether it was
compromised

Architectural Decisions Sensitivity Tradeoff Risk Nonrisk

A2 – Open Design T22, T23

A4 – Open Middleware API S13

A6 – API Libraries N51

Reasoning / Diagram
- A key management system would be necessary for all agents
- Not really necessary in research context when all participants can be trusted

Chapter B. Scenario-based Analysis 283

B.3.2 Sensitivity Points

Reference Description

S1 The connection of new components is influenced by the number

of supported protocols in the middleware API.

S2 The time required to connect a new component depends on

whether a compatible agent framework is available for the pro-

gramming language used. An implementation for Java, Javscript

and C is available.

S3 Identifying components that trigger errors is easier if all compon-

ents adhere to the agent-based design, because this implies that

they have separate tasks.

S4 The performance of CEP integration directly influences the ability

to perform CEP queries. This concerns the possible functional

elements in a query and the speed of execution.

S5 Additional messages can potentially influence the message laten-

cies (S1).

S6 The number of middleware nodes influences the message latency.

S7 The open design of the system is necessary to access all groups to

process contextual information.

S8 For a complete visualisation, it is necessary that all agents adhere

to the registration process provided in the middleware API.

S9 The clarity of the visualisation depends on the graph layout al-

gorithm used. Here it is important that the position of the nodes

is maintained when changes are made to the graph.

S10 CEP queries must be adapted to the custom attributes.

S11 The prioritisation of messages affects the order of delivery of mes-

sages, which affects the message ordering guarantees of the mid-

dleware.

Chapter B. Scenario-based Analysis 284

Reference Description

S12 The prioritisation of messages must be considered in the agent

framework. This concerns both the specification of a priority

when sending a message and the prioritised handling of incom-

ing messages, if needed.

S13 In order for the middleware to check message integrity, the mid-

dleware API would have to be adapted. This could affect other

features and make the work on the system more difficult.

B.3.3 Tradeoff Points

Reference Description

T1 The scenario S23 (Realisation of projects with students) supports

the testing of components in the system by a lecturer or super-

visor. This can ensure the correct naming and description of com-

ponents, which improves the likelihood of finding individual com-

ponents via search terms.

T2 To start a search for a faulty component, a developer must at

least partially understand the structure of the system. This can

be improved by scenario S11 (System status visualisation).

T3 The free choice of message attributes (S19), together with uncon-

trolled sending for messages, can cause high loads in the system.

T4 The identification of faulty agents via CEP queries (S12) can help

to quickly switch off faulty agents.

T5 The uncontrolled sending of messages can affect the scalability of

the system (S2) because it increases the load disproportionately.

Chapter B. Scenario-based Analysis 285

Reference Description

T6 The more tasks in the system are performed by CEP queries, the

less the system can be conventionally described as an agent-based

system (S15). This is mitigated by the fact that all CEP queries

are realised with the help of agents and thus have a representation

in the agent-based view.

T7 The effort required for the connection of other message formats is

influenced by the protocol support of the middleware API (S8).

T8 The free choice of message attributes (S19) may affect the ability

to support other message formats.

T9 The ability to find obsolete or inappropriate agent interfaces via

CEP queries (S16) makes it easier to change an interface over

time.

T10 When replacing a system component, it is likely that the open

design aspect of the architecture will be compromised. This could

limit the ability to freely access the groups and thus flexibly pro-

cess contextual information (S10).

T11 The failure of middleware nodes can increase the load in the sys-

tem and thus affect the message latency (S1).

T12 The number of agents can affect the time it takes to perform a

handover from agent to another node. This can affect the message

latency (S1).

T13 The connection of external systems can have an influence on the

message latencies in the system (S1).

T14 If the number of agents is very high (S2), the visualisation could

become cluttered. The filter functions can help here, but require

that the user knows what he is looking for.

T15 The scaling of the system (i.e. the number of middleware nodes)

can influence the error tolerance of the middleware (S3) and the

message latency (S1).

Chapter B. Scenario-based Analysis 286

Reference Description

T16 The ability to save messages and resend them later may conflict

with the message integrity scenario (S25).

T17 The possibility of saving messages and sending them again later

could be made more difficult by prioritising messages (S26), be-

cause the order of the messages then also depends on the priority

of the messages.

T18 The visualisation of the system state (S11) can help in the ex-

change of information between developers.

T19 When testing student projects, testing with the help of CEP quer-

ies (S14) can be helpful.

T20 Prioritisation of messages could conflict with message latency

(S1). Firstly, because prioritising all messages could produce ad-

ditional administrative overhead and secondly, because lower pri-

oritised messages would potentially have to wait longer.

T21 Message prioritisation must be taken into account when recording

messages (S17) and may make the process more complicated.

T22 The introduction of a signature in messages would not allow mes-

sages to be sent freely into the system and could cause problems

with the record and replay feature (S17).

T23 The free choice of attributes (S19) could cause problems together

with message integrity.

B.3.4 Risks

Reference Description

R1 A connection in a short time is only guaranteed for languages

for which the agent framework exists. This is the case for all

languages mentioned in the scenario, but in the future further

requirements could be added.

Chapter B. Scenario-based Analysis 287

Reference Description

R2 For other languages not covered by the Agent Framework, the

serialisation of JSON messages has to be implemented with the

help of an external library or by yourself. This could be an error-

prone task.

R3 Low-powered components, such as microcontrollers, may have

performance problems with message serialisation.

R4 Only the communication of agents via the middleware can be ex-

amined. If an agent communicates via other channels, this cannot

be found out via CEP queries.

R5 In order for agents and messages to be found via CEP queries,

they must be provided with suitable names and, in the case of

agents, with a complete description if possible.

R6 If incorrect messages are published to a group that another agent

has subscribed to, the function and performance of that other

agent may be affected.

R7 The network performance (for example switches) influences the

message latency.

R8 The CEP query language must be understood by the users in

order to use this function.

R9 The ability to simply generate contextual messages can be ex-

ploited by users to cause malicious effects or confusion. However,

this is controllable because only known persons work with the

system or are supervised by lecturers or superiors.

R10 Changing the message format may affect other agents. All sub-

scribers of the groups to which messages are sent in the new format

are potentially affected.

R11 Despite defined interfaces between the layers, performance dif-

ferences could cause problems in the system when replacing a

component.

Chapter B. Scenario-based Analysis 288

Reference Description

R12 Agents that do not use one of the agent frameworks may have

faulty implementations of the handover to another node and lose

the connection to the middleware.

R13 Care must be taken that the connected system has comparable

performance characteristics so that all messages can be delivered.

R14 All developers must be able to think agent-based and follow the

rules.

R15 The CEP request language must be understood by the developer.

Unnecessarily complex queries can potentially generate longer

agent chains that can make the system seem more complicated.

R16 There is a risk that an agent’s behaviour cannot be read from its

messages because it has been programmed not to communicate

status changes.

R17 CEP queries represent a different programming paradigm than

conventional procedural programming languages. It is possible

that some features desired by programmers are not easy to imple-

ment.

R18 Agents are autonomous and independent. There is a risk that they

may not implement the API correctly without being noticed.

R19 If custom attributes are encoded in JSON values, care must be

taken to ensure that all agents implementing the associated API

can also process this attribute.

R20 The use of multiple nodes may affect the order in which mes-

sages are recorded and played back. For example, in the case of

connection errors and agent handover operations between nodes.

R21 There is a risk that students do not want to deal with existing com-

ponents in the system and directly implement everything them-

selves.

Chapter B. Scenario-based Analysis 289

Reference Description

R22 Students need to understand how CEP integration works in order

to understand how a component works when CEP queries are

involved.

R23 All developers must adhere to the specification and make correct

claims when using APIs.

R24 When studying APIs, it must be understood that it is a distrib-

uted system and agents can change their specifications at any

time.

R25 Architecture must be understood so that it can be implemented

by all students.

R26 Student documentation is often non-existent, incorrect or incom-

plete. Must be checked by the supervisor.

R27 A free choice of names could lead to misleading names that make

the system harder to understand.

R28 Special characters and characters from other alphabets could

cause technical problems. Extra test cases should be introduced

here.

R29 With prioritisation of messages, it would be unclear to agents

when a message would arrive. This could cause more effort in

programming.

B.3.5 Nonrisks

Chapter B. Scenario-based Analysis 290

Reference Description

N1 If the programming language supports the corresponding proto-

cols of the middleware API, a connection is possible. This is

the case for the programming languages specified in the scenario

(Java, Javascript and C) because the languages support at least

one protocol from TCP, UDP and Websockets as well as JSON

serialisation (possibly via extra libraries).

N2 The nature of the CEP engine integration allows access to all

messages from agents.

N3 If the system is agent-based and all components communicate via

messages, then the complete communication between the agents

is also available for analysis via CEP queries.

N4 A mistake is the failure to meet expectations. If the expectations

of an agent are known and can be checked via the agent’s mes-

sages, then the error can also be identified via the CEP engine

(see N2 and N3).

N5 As the system can handle a very high message load and is scalable,

no negative effects on the rest of the system are to be expected.

N6 By separating tasks between agents, only a small part of the sys-

tem should be directly affected by the false messages. Transitive

effects can be reduced by correct error handling.

N7 As long as more middleware nodes can be added, the latency of

messages can be reduced if necessary, provided the message load

is spread over several groups.

N8 The runtime environments could run the agents in controlled en-

vironments, offsetting negative effects on message latency. For

example, agents can be migrated to another runtime environment

when CPU utilisation is high.

N9 The open design of the system allows access to all messages. This

means that all contextual information can also be evaluated in

this way.

Chapter B. Scenario-based Analysis 291

Reference Description

N10 As the CEP integration also supports temporal logic and timings,

it is possible to send timed messages. This is necessary, for ex-

ample, to deliver control messages for actuators at the right time.

N11 If the new message format is JSON compatible, then it is possible

to integrate this format without making major changes to the

system. The middleware already contains functions to convert

such messages into a supported format.

N12 The versioning of the APIs allows the message format to be

changed without having to adapt all agents at the same time.

N13 The design of the system in several layers enables the exchange of

individual layers and increases reusability.

N14 As long as more than half of the middleware nodes are active, the

system can continue to run.

N15 The middleware API regulates the handover of agents to another

middleware node in the event of an error.

N16 The open design approach allows external systems to be connected

and all groups to be accessed.

N17 The middleware API provides various network protocols (TCP,

SCTP, UDP) to allow the connection of external systems.

N18 The agent-based design allows external systems to be encapsu-

lated as agents and thus integrated into the system.

N19 The open design approach makes it possible to send test data to

all groups.

N20 The integration of CEP makes it possible to read messages from

agents, modify them if necessary and send them to other agents.

N21 By using API libraries, the middleware can help create test set-

tings and ensure that messages are sent that match the API.

N22 The system intends that all components are agents and commu-

nicate via messages.

Chapter B. Scenario-based Analysis 292

Reference Description

N23 Since the CEP integration itself is implemented with the help of

agents and all requests are realised with the help of agents, the

entire system remains agent-based.

N24 Since all components of the system are agents, all parts of the

system are visible in the visualisation

N25 As long as the user knows what they are looking for in the system,

the graph can be filtered to that part of the system.

N26 As the CEP integration allows access to all groups in the system,

it is also possible to read, edit and forward all messages in the

system to any group via the CEP requests.

N27 The open design supports this function. All groups are accessible

and the messages generated by a CEP request are treated like all

other messages and are therefore also visible to the developer.

N28 The scalability of the system is ensured by the possibility of adding

further middleware nodes. The load in the system is distributed

among all middleware nodes as long as the messages are divided

among several groups.

N29 As long as the agent has simple functions and is a context inter-

preter, the agent can most likely be implemented as a CEP query.

However, sensors and actors can only be simulated because the

CEP engine has no possibility to access the outside world.

N30 The seamless integration of the CEP engine allows CEP queries

to act as agents in the system. All agents that realise CEP quer-

ies are registered with the middleware and are able to provide

information about their status via the CEP Manager Agent.

N31 This is possible because the APIs are defined and the messages

are JSON formatted and therefore easily readable.

Chapter B. Scenario-based Analysis 293

Reference Description

N32 Possible as long as all agents know about their interfaces anc com-

municate them, which is specified according to the agent-based

design and the API libraries, which contain all messages specified

in the provided DSL.

N33 The open design approach allows access to all information and

messages of all agents.

N34 According to the DSL specification for the API libraries, attrib-

ute names are freely selectable. However, reserved words such as

"type" must be escaped, which is done automatically by the API

generator.

N35 As long as only JSON compatible names and attributes are used

as specified in the scenario, this can also be processed by the CEP

engine.

N36 As long as the messages are logged via the middleware, requests

and responses from agents can also be displayed for the developers.

N37 When the messages from the selected part of the system are recor-

ded by an agent and later resent in the order they were received,

they arrive at other agents in the order.

N38 If students are able to think agent-based and understand pub-

lish/subscribe communication, they will be able to navigate the

system through the given functions. If the students are able to

think in an agent-based way, they can find their way around the

system using the given functions.

N39 Since all CEP queries are visible as agents in the system, N38 also

applies to them.

N40 If all agents adhere to the API specification, the identification of

an API mismatch is possible.

N41 The middleware API ensures that all agents specify which API

agents expect messages from when they perform a subscribe.

Chapter B. Scenario-based Analysis 294

Reference Description

N42 The open design and logging features of the architecture allow a

supervisor to see and inspect the components and their commu-

nication built by students at any time.

N43 If the documentation is complete, it is easy to find via the mid-

dleware API and can help with the handover of projects.

N44 CEP queries can be used to check the preconditions and side ef-

fects of agents, which facilitates the handover and inspection of

projects.

N45 Messages can be read via groups without interfering with students’

work.

N46 The group names are freely selectable in the Publish/Subscribe

system.

N47 It is good that the names are freely selectable, otherwise this

would be very difficult to realise in a research context because the

necessary stuctures might be missing.

N48 The middleware API would have to be adapted in order to specify

the priority when publishing a message. This would be unprob-

lematic by adding an optional parameter.

N49 Prioritising entire agents would be easier to implement than pri-

oritising individual messages because it would be easier to respect

the message ordering guarantees.

N50 If necessary, it would be possible to exchange the message layer

to allow prioritisation of messages.

N51 The introduction of a signature in the message API would be eas-

ily possible. For this, another attribute would have to be reserved.

	Declaration
	Abstract
	Contents
	List of Publications
	List of Figures
	List of Tables
	Listings
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research Aim and Objectives
	1.3 Research Questions
	1.4 Thesis Outline

	2 Related Research
	2.1 Process of Literature Review
	2.2 Smart Systems
	2.2.1 Smart Environments
	2.2.1.1 Context-awareness

	2.2.2 Cyber-Physical Systems
	2.2.3 Internet of Things
	2.2.4 System of Systems

	2.3 Smart Systems Middleware
	2.3.1 Generic Middleware Architecture
	2.3.2 Agents and Actors
	2.3.3 Publish/Subscribe
	2.3.4 Middleware Architectures

	2.4 Complex Event Processing
	2.4.1 Event Processing Reference Architecture
	2.4.1.1 Event Producers
	2.4.1.2 Event Modeller
	2.4.1.3 Event Processing Medium
	2.4.1.4 Event Consumer

	2.4.2 Integration of event-based and agent-based systems
	2.4.3 CEP in Smart Systems

	2.5 Program Comprehension in Complex Distributed Systems
	2.6 Conclusion

	3 Requirement Analysis
	3.1 Interdisciplinary Research Laboratories
	3.1.1 Living Place Hamburg
	3.1.2 Creative Space for Technical Innovations

	3.2 Requirements for Smart System Architectures
	3.3 Conclusion

	4 System Design and Implementation
	4.1 Architecture Layer Outline
	4.2 Messaging Layer
	4.2.1 Layer Architecture
	4.2.2 Messaging
	4.2.3 Message Format
	4.2.4 Programming Toolkit
	4.2.5 Interface Libraries
	4.2.6 Runtimes and Agent Migration
	4.2.7 Integration with other messaging platforms

	4.3 Complex Event Processing Layer
	4.3.1 Query Language
	4.3.2 Query Parser and Optimiser
	4.3.3 CEP Element Agents
	4.3.4 Creation of Agent Graphs

	4.4 User Interaction Layer
	4.4.1 Agent and Group Status Information
	4.4.2 Agent Communication Graph
	4.4.3 Complex Event Processing Queries
	4.4.4 Case Studies
	4.4.4.1 Omnidirectional walking-in-place detection
	4.4.4.2 Processing environmental sensor data

	4.5 Conclusion

	5 Evaluation Methodologies
	5.1 Methodological Outline
	5.2 Expert Interviews
	5.3 Qualitative Content Analysis
	5.3.1 Coding

	5.4 Scenario-based Analysis Method
	5.4.1 Architecture Tradeoff Analysis Method
	5.4.2 Adjustments to the procedure

	6 Expert Interviews
	6.1 Interview Research Questions
	6.2 Interview Guideline
	6.2.1 Procedure and General Conditions
	6.2.2 Middleware and CEP Interaction Demonstration

	6.3 Participants
	6.4 Interview Evaluation
	6.4.1 Coding
	6.4.1.1 Main Categories
	6.4.1.2 Coding Process
	6.4.1.3 Subcategories

	6.4.2 Evaluation of the Coding Frame

	6.5 Results
	6.5.1 Software Environments
	6.5.2 Identified Challenges
	6.5.2.1 System Complexity
	6.5.2.2 Team Composition
	6.5.2.3 Documentation

	6.5.3 Debugging, Testing and Program Comprehension
	6.5.4 Evaluation of the CEP Approach
	6.5.4.1 Potential Use Cases
	6.5.4.2 Possible Limitations

	6.6 Conclusion

	7 Experimental Evaluation
	7.1 Experimental Set-up
	7.2 Messaging Layer Latency
	7.3 Scalability
	7.4 CEP Integration Overhead
	7.5 Conclusion

	8 Scenario-based Evaluation
	8.1 Architecture Analysis
	8.1.1 Architectural Approaches
	8.1.2 Quality Attribute Utility Tree
	8.1.3 Scenario Prioritisation
	8.1.4 ATAM Workshop
	8.1.5 Scenario Brainstorming
	8.1.6 Architectural Approaches Analysis

	8.2 Results
	8.2.1 Sensitivity Points
	8.2.2 Tradeoff Points
	8.2.3 Risks
	8.2.4 Nonrisks

	8.3 Conclusion

	9 Conclusions and Future Work
	9.1 Summary
	9.2 Contributions
	9.3 Limitations
	9.4 Research Implications
	9.5 Future Research

	Bibliography
	A Expert Interview Details
	A.1 Expert Interview Guideline
	A.1.1 Middleware and Software Development in Smart System Laboratory Environments
	A.1.2 Program Comprehension and Debugging in Smart System Laboratory Environments
	A.1.3 Evaluation of Program Comprehension and Debugging with CEP

	A.2 Coding Frame
	A.3 Interview Information Sheet and Consent Form

	B Scenario-based Analysis
	B.1 Questionnaire 1
	B.2 Questionnaire 2 and Consent Form
	B.3 ATAM Workshop Results
	B.3.1 Analysis of Architectural Approaches
	B.3.2 Sensitivity Points
	B.3.3 Tradeoff Points
	B.3.4 Risks
	B.3.5 Nonrisks

