

Rich Internet Applications

Leif Hartmann

INF-M3 - Seminar/Ringvorlesung - Wintersemester 2007/2008 07. Dezember 2007

Inhalt

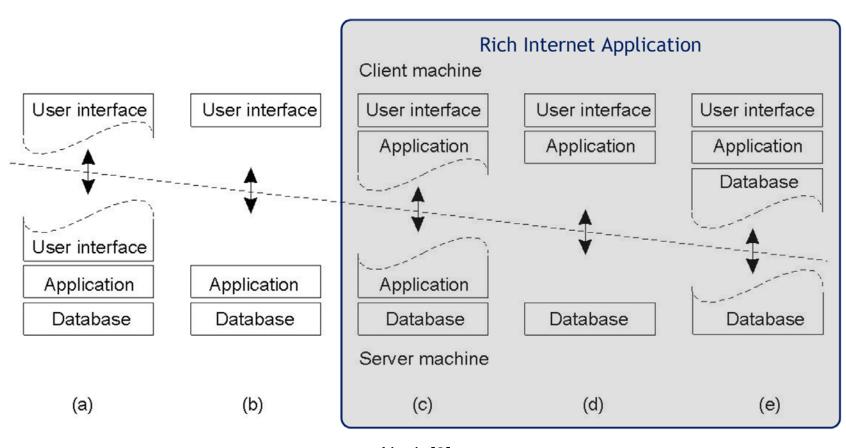
- Einleitung
- Problemstellungen
 - Daten
 - Anwendungslogik
 - Präsentation
 - Kommunikation
 - Sicherheit
 - Testen

2

- Anforderungen
- Fazit / Risiken

Was sind Rich Internet Applications?

"Macromedia defines RIAs as combining the best user interface functionality of desktop software applications with the broad reach and low-cost deployment of Web applications and the best of interactive, multimedia communication. The end result: an application providing a more intuitive, responsive, and effective user experience." [3]



Kompetenzverteilung

Nach [9]

Vorteile ...

gegenüber klassischen Web-Anwendungen

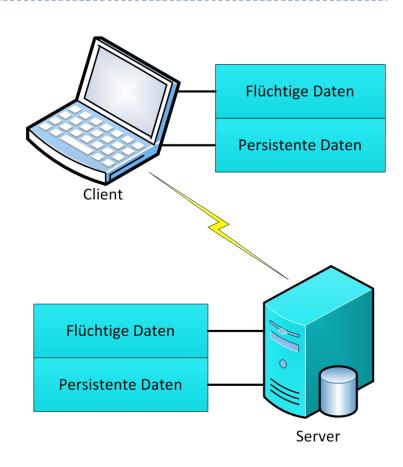
- ▶ Flüssigere Bedienung
 - Schnellere Antwortzeiten
 - Erweiterte GUI
- Weniger Netzwerkverkehr
- Bekannte Benutzerschittstelle
 - Angelehnt an Desktop-Anwendungen
- Mehr Daten und Logik auf Clientseite nutzbar
- Online und offline benutzbar

Vorteile ...

gegenüber Desktop-Anwendungen

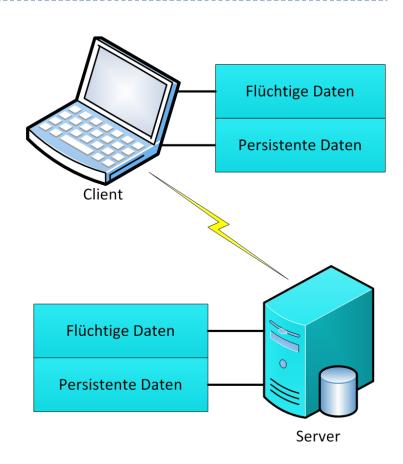
- Geringer Administrationsaufwand
 - ▶ (Fast) kein Installationsaufwand auf Clientseite
- Plattformübergreifend
- Einfacher Zugriff

Problemstellungen


- Komplexität
- Kompatibilitätsprobleme
- Accessibility
- Modellierung
- ▶ Entwicklungstools (CASE-Tools, IDEs, Code-Generatoren)
- Testen

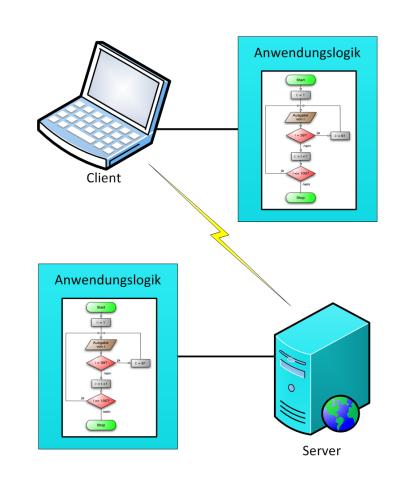
Hamburg University of Applied Sciences

Daten


- Klassisch:
 - Persistente Daten nur auf Serverseite
 - ► Ausnahme: Cookies
 - Nur Formulardaten werden übertragen
- ► RIA:
 - Flüchtige und persistenteDaten auf Client und Server

Daten

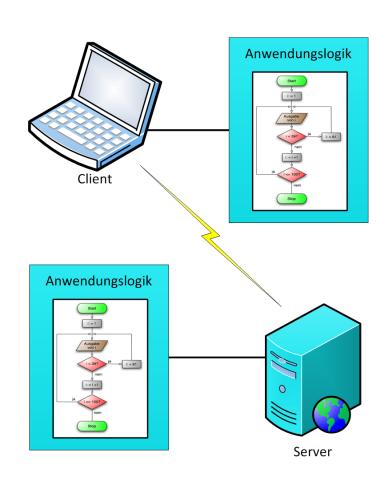
- Datenobjekte serialisieren und übertragen
- Datenintegrität
- Validierung
- Modellierung:
 - Persistenzebenen mit einbeziehen

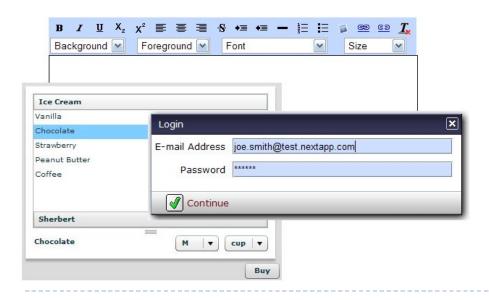


Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

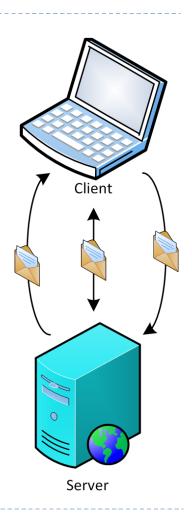
Anwendungslogik


- Klassisch:
 - Nur auf Serverseite
- ► RIA:
 - Clientseitig
 - Serverseitig
 - "Gemischt"

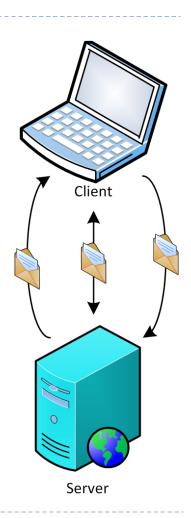

- Nicht zu viel Clientlogik
 - Kein Zugriff auf Serverdaten
- Modellierung:
 - Verteilungsunabhängige Sicht
 - VerteilungsabhängigeSicht

Präsentation

- Klassisch:
 - HTML, einfacheBedienelemente
 - Viele Page-Refreshes


- ▶ RIA:
 - Vielfältige Bedienelemente
 - ErweitertesBenutzerinteraktion
 - Drag and Drop
 - Animationen
 - UnterschiedlicheFunktionalitäten des Clients
 - Bildschirmgröße
 - ► Multimedia-Unterstützung

Kommunikation


- Klassisch:
 - Synchron
 - Serverantworten in Form von kompletten Seiten
- ► RIA:
 - Synchron oder asynchron
 - I.d.R. keine kompletten Seiten als Serverantwort
 - Geringere Datenübertragung
 - Pulling, Pushing möglich

- Offline-Funktionalität
- Verschiedene Kommunikationsmodelle:
 - Message-based
 - State replication
 - Method replay
- Clients werden "von außen" benachrichtigt
- GUI und Logik kann komplett beim Start oder zur Laufzeit (nach)geladen werden

Testen

Beispiel: WebTest

Testen

Beispiel: WebTest

#	Result	Name	Parameter
1	~	invoke	url http://localhost:8080/dwr/simpletext
		Resulting page	
	~	verifyXPath	text
2			xpath //*[@id= 'demoReply']
3	~	clickButton	label Send
4	~	sleep Wait for completion of async call	seconds 2
5	~	verifyXPath	text Hello, Joe
			xpath //*[@id= 'demoReply']

Sicherheit

- Wenig Unterschiede zu klassischen Webanwendungen
 - ► Kommunikation, Authentifizierung etc.
- Daten und Anwendungslogik
 - Client darf nicht auf alle Daten Zugriff haben
- Client und Server müssen "Aufräum-Mechanismen" zur Verfügung stellen
 - Nicht nur Cookies

Anforderungen

- Modellierung
 - Sowohl Client- als auch Serverseite
 - Technologie unabhängig
 - Code-Generierung
- Entwicklungswerkzeuge
 - CASE-Tool
 - IDE
- Wartbarer Code (Refactoring)
- Testmöglichkeiten
- GUI-Beschreibungssprache

Anforderungen

- Offline-Funktionalität
 - Anwendungscode offline
 - Persistente Daten auf Clientseite
- Robuste Clientplattform (Kompatibilität)
- Möglichst hohe Verbreitung der Clientplattform

Fazit

Mögliche Thematik für Masterarbeit:

- Was ändert sich für Entwickler im Hinblick auf die vorgestellten Problemstellungen?
- Untersuchung der Problemstellung anhand einer mittelgroßen Anwendung

Risiken

- Viele Technologien
- Viele Methodiken und Modellierungssprachen
- Kaum Erfahrung mit großen Softwaresystemen
- ▶ Daher: Eingrenzung auf Schwerpunkte
 - Modellierung
 - Code-Generierung
 - Offline-Funktionalität
 - Sicherheit
 - ...

Quellen

- [1] J.C. Preciado, M. Linaje, F. Sánchez, S. Comai *Necessity of methodologies to model Rich Internet Applications* In Proceedings of the 2005 Seventh IEEE International Symposium on Web Site Evolution (WSE'05) 2005
- [2] J.C Preciado, M. Linaje, S. Comai, F. Sánchez-Figueroa *Designing Rich Internet Applications with Web Engineering Methodologies* In 9th IEEE International Workshop on Web Site Evolution (WSE 2007) 2007
- [3] J. Duhl White paper: Rich Internet Applications IDC, 2003
- [4] A. Bozzon, S. Comai, P. Fraternali, G. T. Carughi *Conceptual modeling and code generation for rich internet applications* Proceedings of the 6th international conference on Web engineering ACM 2006
- [5] A. Bozzon, S. Comai, P. Fraternali, G. T. Carughi *Capturing RIA Concepts in a Web Modeling Language* Proceedings of the 15th international conference on World Wide Web ACM -2006

Quellen

- [6] J. Farell, G. S. Nezlek *Rich Internet Applications: The Next Stage of Application Development* In Proceedings of the ITI 2007 29 Int. Conf. on Information Technology Interfaces 2007
- [7] A. Leff, J. Rayfield *Programming Model Alternatives for Disconnected Business Applications* In Internet Computing, IEEE 2006
- [8] M. Guillemot, D. König *Web Testing Made Easy* OOPSLA '06: Companion to the 21st ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications 2006
- [9] A. Tanenbaum, M. van Steen *Verteilte Systeme* Pearson Studium 2003 ISBN 3-8273-7057-4

Fragen?

Leif Hartmann

INF-M3 - Seminar/Ringvorlesung - Wintersemester 2007/2008 07. Dezember 2007