

Fahrspurerkennung in Videoechtzeit mit SoC

Eike Jenning

INF-M3 - Seminar/Ringvorlesung - Wintersemester 2007/2008 30. November 2007

Agenda

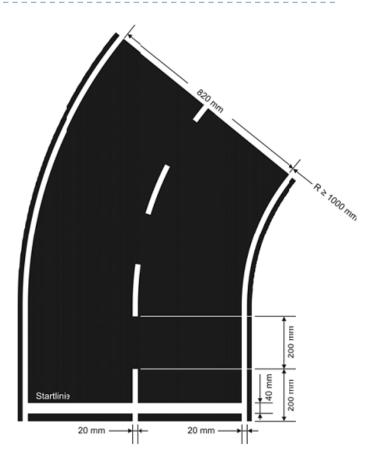
- Einleitung
- Algorithmus zur Fahrspurerkennung
- ▶ Fahrspurerkennung mit SoC
- Zusammenfassung
- Ausblick

Agenda

- Einleitung
- Algorithmus zur Fahrspurerkennung
- ► Fahrspurerkennung mit SoC
- Zusammenfassung
- Ausblick

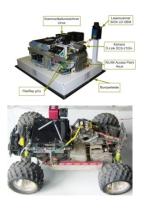
Motivation

- ▶ Teilnahme der HAW am CaroloCup
 - Jährlicher Wettbewerb für autonome Fahrzeuge
 - Vergleich zu anderen Teilnehmern
 - Industriekontakt


Wettbewerbscharakter soll Studenten motivieren

Anforderungen

- Fahrspurerkennung
- Hinderniserkennung
- Paralleles Einparken
- Modellmaßstab 1:10
- Minimaler Energieverbrauch
- Maximale Geschwindigkeit



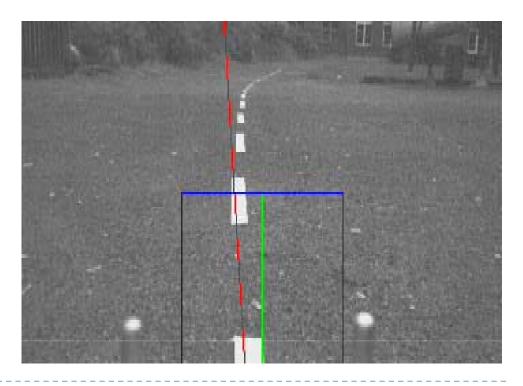
Faust-Plattform

- SCV und intelliTruck erfüllen andere Anforderungen
- ➤ Aufbau einer konformen Faust-Plattform
- Transfer vorhandener Funktionen
 - Andere Sensorik
 - Andere Rechenleistung



Thema

- ▶ Fahrspurerkennung → Seminar
- ▶ Hinderniserkennung
- Paralleles Einparken
- Projekt/Abschlussarbeit(en)
- Minimaler Energieverbrauch
- Maximale Geschwindigkeit



Fahrspurerkennung intelliTruck

- Kantenerkennung durch Houghtransformation
- ▶ 2,33Ghz DualCore CPU
- Zu verbessern:
 - Kurvenverhalten
 - Robustheit

Argumentation für SoC

- ▶ Entlastung der Hauptsteuereinheit
- Verbesserung der Regelung
- Verbesserung der Energiebilanz
- Industrierelevanz

Agenda

- Einleitung
- Algorithmus zur Fahrspurerkennung
- ► Fahrspurerkennung mit SoC
- Zusammenfassung
- Ausblick

Voraussetzungen

- Schatten
- ▶ Fehlende bzw. fehlerhafte Markierungen
- Feuchtigkeit

30.11.2007

Ablauf der Bildverarbeitung

- Vorverarbeitung
 - Datenreduktion durch ROI und Resampling
 - Kantenextraktion (z.B. Sobel, Prewitt)
 - ▶ Glättung (z.B. Gaussfilter)
- Merkmalsextraktion
- Merkmalsklassifikation
- → i.d.R. hohe Rechenleistung erforderlich

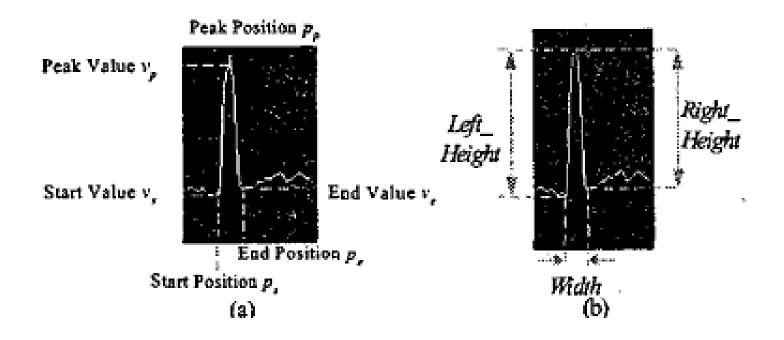
Beispiel Vorverarbeitung

▶ Glätten mit Binomialfilter

- Gauss-Näherung
- > 3x3 Faltungsmaske

1/16 x	1	2	1
	2	4	2
	1	2	1

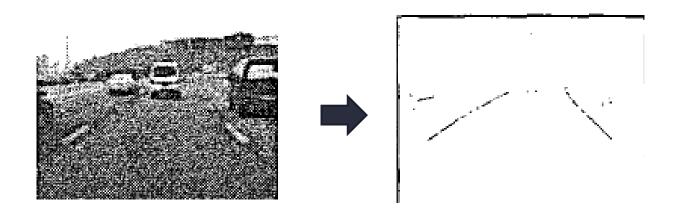
Peak-finding Algorithmus


- ▶ Idee: Extraktion von Maxima pro Bildzeile
 - Grundlage: Markierungseigenschaften
 - Helligkeit
 - Breite
 - Nachbarschaft
 - → Maxima müssen Anforderungen bezüglich Höhe und Breite erfüllen

Extraktion von Maxima

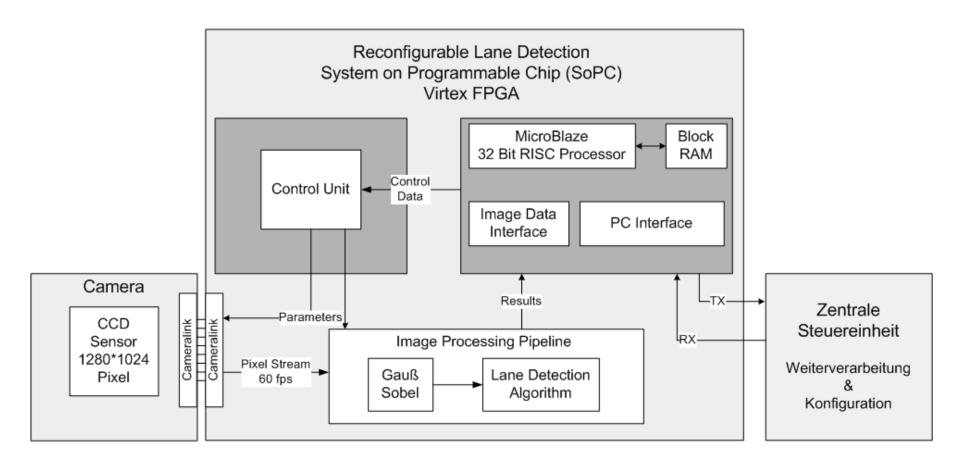
- Peak ohne Welle
- Glättung wichtig

Auswerten der Maxima


- ▶ Bilden von Geraden im Peak-Point-Image
 - kleinste Fehlerquadrat-Methode
- Zusammenfügen der Geraden

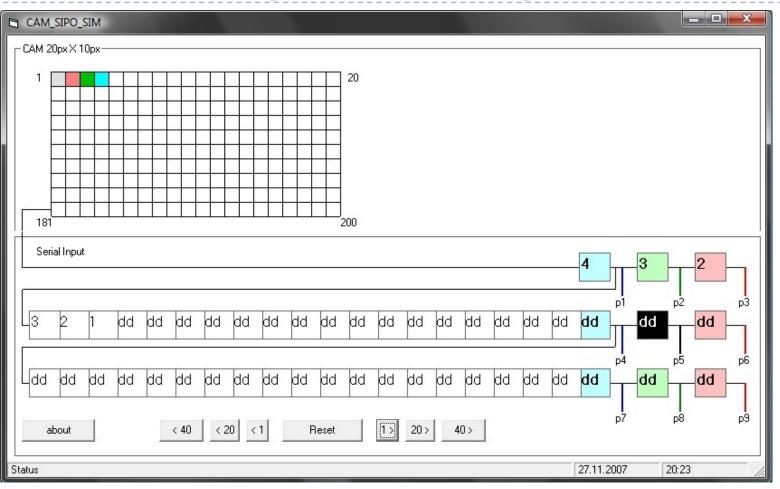
Ergebnis

- Robustheit wird nicht angegeben
- ▶ Geschwindigkeit: I5ms bei I,8GHz

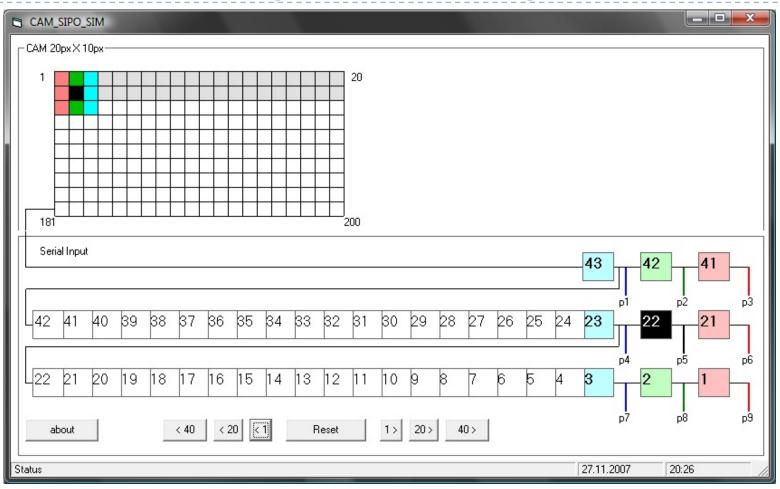

Agenda

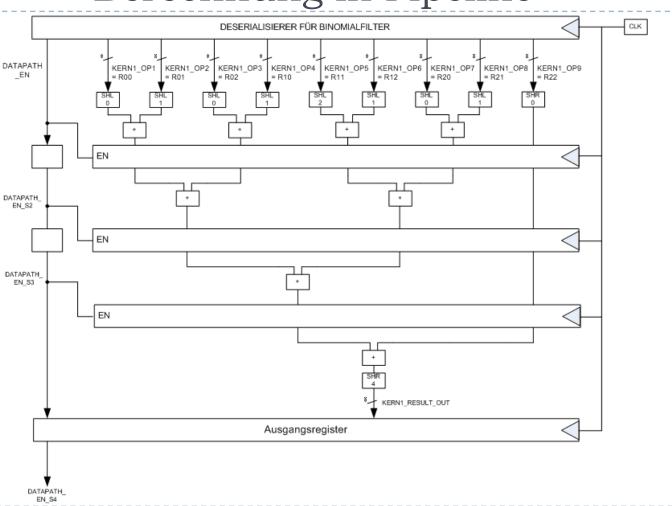
- Einleitung
- Algorithmus zur Fahrspurerkennung
- Fahrspurerkennung mit SoC
- Zusammenfassung
- Ausblick

Modulbasierte Architektur


Herausforderung

- ▶ Externen Speicherzugriff vermeiden
 - ▶ Bildgröße: I280xI024x8bit ≈ I,3MB
 - Speicherung von wenigen Bildzeilen im FPGA
 - Algorithmen im Datenstrom
 - Parallele OnChip-Speicherung extrahierter Merkmale


Anwendung: 3x3 Faltungsmaske


Anwendung: 3x3 Faltungsmaske

Berechnung in Pipeline

Peak-finding im Datenstrom

- Definition einer I-dimensionalen Maske
 - Breite und Höhe durch Maximaspezifikation
 - Zustandsautomat kontrolliert Pixelverlauf

→Information über Pixel 3 in nächste Verarbeitungsstufe

Agenda

- ▶ Einleitung
- Algorithmus zur Fahrspurerkennung
- ► Fahrspurerkennung mit SoC
- Zusammenfassung
- Ausblick

Zusammenfassung

- ▶ Rahmen: Teilnahme am CaroloCup
- Argumentation für SoC
- Fahrspurerkennung durch Peak-finding
- Algorithmen im Datenstrom
 - Deserialisierung
 - Parallele Berechnung
 - Pipelining

Ausblick

- Projekt: Fahrzeugplattform aufbauen
 - Sensorik
 - Kommunikation
 - Energieverbrauch
- Masterarbeit:
 - Algorithmus-Evaluation in Software
 - Architekturentwürfe für Hardware-Modellierung

Literatur

- S.Huang, C.Chen, P.Hsiao, L.Fu: On-board Vision System for Lane Recognition..., IEEE 2004
- P.Hsiao, H.Cheng, C.Yeh, L.Fu: Automobile Lane Detection System-on-Chip..., IEEE 2005
- ▶ L.Zhang:FPGA based CCD Camera with Bayer Filter Interpolation, 2006
- ▶ I.Birnbaum: Erweiterung eines FPGA-basierten CCD-Kamera-Prototypen mit Steuerungs-und Bildverarbeitungsmodulen, 2007
- ▶ F.Paulo: Bildvorverarbeitungsmodule für eine FPGA-basierte CCD-Kamera mit Optimierung einer 700 MBit Schnittstelle, 2007

Fahrspurerkennung in Videoechtzeit mit SoC

Eike Jenning

INF-M3 - Seminar/Ringvorlesung - Wintersemester 2007/2008 30. November 2007

Glossar

- ▶ FPGA Field Programmable Grid Array
 - Vielseitiger Hardwarebaustein aus Logikgattern
- ▶ ROI Region of Interest
 - Bildausschnitt mit den wesentlichen Informationen
- SCV Sensor Controlled Vehicle
 - Faust-Plattform zur Erforschung von zeitgesteuerten Systemen und Fahrassistenten
- ▶ SoC System on Chip
 - Hardwarebaustein mit verschiedenen logischen Modulen