Hochschule fir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Fakultét Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Alexander Knauf

Thema der Ausarbeitung
Infrastrukturunabh&ngige Multimediakonferenzen

Stichworte
Peer-to-Peer, SIP, P2PSIP, Konferenzmanagement, Verteilte Systeme

Kurzzusammenfassung

Das Session Initiation Protocol (SIP) ist ein Signalisierungsprotokoll, welches zur Erstellung,
Modifikation und Terminierung von Multimediasitzungen verwendet wird. Um den Standort
des Kommunikationspartners zu ermitteln und die Mediendaten unter Konferenzteilnehmer
zu verteilen, bendtigt man eine dedizierte Serverinfrastruktur. In dieser Arbeit werden die
Methoden und Ablaufe bei der Erstellung von Multimediakonferenzen erklart, eine Einflhrung
in strukturierte P2P overlays gegeben und Alternativen zu der statischen Client-Server Ar-
chitektur in SIP vorgeschlagen.

Alexander Knauf

Title of the paper
Infrastructure independent conferencing

Keywords
Peer-to-Peer, SIP, P2PSIP, Tightly coupled conferences, Distributed Systems

Abstract
The Session Initiation Protocol (SIP) is an application layer signaling protocol for creating,

modifying and terminating multimedia sessions. To obtain the location of remote users and
distributing media data among the conference participants, a dedicated server infrastructure
is required. This paper gives an overview of how multimedia sessions with several participants
are created. It further introduces into structured p2p overlays and proposes alternatives to the
traditional client-server paradigm in SIP.

Contents

Contents

1 Introduction

2 Conferencing with SIP
2.1 SignalingwithSIP
2.2 Traditional Conferencing
2.3 Distributed Conference Control,

3 Peer-to-Peer Overlays
3.1 UnstructuredOverlays e
3.2 StructuredOverlays e
3.3 Proximity Aware Overlays e

4 Approaches towards Infrastructure Independence
4.1 VirtualizingaConference L o
4.2 Distributed Media Mixingand Routes

5 Conclusion and Outlook
References

List of Figures

[62 IS TN \C T (V)

© 0 0

11
11
11

13

14

16

1 Introduction 1

1 Introduction

Voice over IP (VolP) and Voice and Video over IP (VVoIP) gain more importance since the
capabilities of the end systems (CPU, Memory) and the connectivity to broadband Internet is
increasing continuously. These techniques offer an alternative to traditional wired telephony
for end users and telephone communications-providers, as well. Beside to point-to-point com-
munication, VVolIP applications often offer the option to create multiparty conversations. Some
of these conferencing applications are based on closed and proprietary protocols and limited
in the number of participating clients. To provide multi-party video conferences, a dedicated
media-mixer server called Multipoint Control Unit (MCU) [1] is required to distribute the media
data among the participants. These server systems are expensive and need maintenance,
thus service access may be costly. Because of the high complexity of processing multiple
media streams and dispatching them to the end systems, these MCU systems are of limited
scalability.

The Session Initiation Protocol (SIP) [2] is an open and standardized signaling protocol for cre-
ating, modifying and terminating multimedia sessions. It uses an infrastructure of SIP proxies
and redirect servers, to interconnect end systems called User Agents that are addressed by
SIP URIs. One model for conference with SIP uses a central point of control called focus [3]
that is responsible for interconnecting and managing the multimedia session. The focus is lo-
cated and identified by a conference specific URI, that must be globally unique and routable.
It is often located on a conference server, that provides MCU-type abilities by distributing the
media data among the participants.

The dependency of SIP on providers that offer proxy and redirect services motivated peer-
to-peer based resource location and discovery approaches. Such solutions are built upon
distributed hash table (DHT) algorithms, like Chord, Pastry or CAN [4, 5, 6]. DHTs provide scal-
able, flexible and robust lookup and routing functions. These approaches known as P2PSIP
are work in progress and not standardized, yet. An open challenge in this domain is the area
of highly scalable voice and video conferences. A dedicated conference server with MCU ca-
pabilities cannot be assumed in an P2P environment. Therefore, a distributed P2P-signaling
protocol scheme based on SIP could serve for a distributed media mixing topology, and man-
age large multimedia conferences. Such distributed concept requires an abstraction of the
conference URI that will be located by many peers instead of one conference focus in tradi-
tional SIP. These issues challenge for further research.

The remainder of this paper is structured as follows. An overview of traditional signaling and
conferencing with SIP is given in section 2, and an introduction to peer-to-peer overlay networks
in section 3. This paper presents an approach to a P2P-based virtual conference scheme in
section 4 and conclusion and outlook for future work in section 5.

2 Conferencing with SIP 2

2 Conferencing with SIP

2.1 Signaling with SIP

The Session Initiation Protocol is an application layer signaling protocol for establishing ses-
sions for point-to-point or multi-point communication. It is a text-based protocol with elements
similar to SMTP and HTTP. SIP is independent of the underlying transport protocol (UDP, TCP)
and can be used to carry session description information which allow communication end-
points to agree on a set of compatible media types. The media negotiation is often done by
sending Session Description Protocol (SDP) [7] data, informing the remote end-point about the
supported media types. A typical call flow for initiating a SIP session called Dialog in shown
in figure 1. The SIP INVITE request sent by the user agent Piggy (caller), initiates the dialog
establishment and could look like below:

INVITE sip:kermit@sesamestreet.com SIP/2.0
Call-ID: 0815@141.22.26.6

CSeq: 1 INVITE

From: "Piggy" <sip:piggy@muppets.com>;tag=134652
To: "Kermit" <sip:kermit@sesamestreet.com>

Via: SIP/2.0/UDP 141.22.26.6:5060;branch=z9hG4bKf1l
Max-Forwards: 70

Contact: <sip:piggy@l41.22.26.6>

Content-Length: 159

A SIP request message starts (request-line), that defines the desired SIP method (here
INVITE) and the requested callee. Communications end-points in SIP are called User
Agents and are addressed by SIP Uniform Resource Locator (URI). A SIP URI starts with
sip: followed by the composition of user name @ the related domain or IP address (here
sip:kermit@sesamestreet.com). After the request-line, a set of header fields are defining more
information to establish a communication session described in RFC-3261 [2].

The INVITE request in figure 1, is firstly forwarded to the user agent’s outbound proxy (mup-
pets.com). A SIP proxy is a provider maintained signaling server, that is responsible to find
the destination for the requested user agents. The outbound proxy informs the caller about the
pending request processing by sending a 100 trying response message. The session initiation
protocol uses DNS procedures to allow a client to resolve SIP URI into the IP address, port, and
transport protocol of the desired callee. In this sample call flow, the request will be forwarded
the requested user agent’s inbound proxy (sesamestreet.com). As the callee is available, the
end-point’s SIP application or IP-telephone firstly responds by sending 180 ringing messages.

2 Conferencing with SIP 3

muppets.com sesamestreet.com

i |
. ! ! .
Plagy i SIP Proxies ! Kermit

I I

| INVITE sip:Kermit | :

| | I

I

I

|

INVITE sip:Kermit

100 Trying INVITE sip:Kermit
100 Trying
180 Ringing
180 Ringing
180 Ringing 200 OK
200 OK

200 OK

ACK

Media Streams

N
o
=]
o
=

Figure 1: SIP dialog establishment via proxies

These will be interpreted as a ring tone at the callers side. If the callee answers the phone,
it sends a confirmative 200 OK response message, thus the caller is informed of a success-
fully established call. From here, both communication end-points have negotiated the media
parameters by exchanging SDP data and know the end systems locations from the data in the
contact header field. Hence, the final ACK message can be send directly to the callee and the
media session can be established. To end a communication session, a user agent sends a SIP
BYE request receipted by a 200 OK response.

2.2 Traditional Conferencing

Using the definitions of the Internet Engineering Task Force (IETF) [8], there are three different
models for multi-party communications. The so called loosely coupled model does not provide
a signaling relation between the multi-party participants. Participation can be done by joining
multicast groups and control information is learned from the used transport protocol (e.g. RTCP
[9]). In a fully distributed model each participant manages a signaling dialog to all other remote
participants in a full mesh. Finally, the tightly coupled model refers to a signaling relation
between all participants and one central point of control, that negotiates media parameters to

2 Conferencing with SIP 4

establish voice, video or application sessions. In SIP, this central point of control is called the
focus of a conference [10], displayed in figure 2.

It is identified and located by a conference
specific SIP URI (Conf-ID) and must be glob-
ally unique routable. The former two mod-
els are not suitable for large scaling con-
ferences, because of the complexity and
may tedious signaling efforts and are out
of scope of this paper. Regarding to the
latter approach, such a conference specific
URI needs to be created considering the
domain name the SIP user agent is con-
nected to. This can be done by query-
ing a dedicated conferencing server to al- Figyre 2: Tightly coupled conferencing model
locate and publish a conference URI (e.g.

sip:puppets.meet@conf.muppets.com) and its representation by a focus user agent.

Conferencing servers mainly provide four services [3] to their related clients as shown in figure
3. The focus in a conference server acts as contact interface to interested user agents to
join, modify and leave an active multi-party session. Participation can be achieved directly by
sending a SIP INVITE request to the conference URI. Alternatively, a conference member
can request the focus to invite an outstanding user agents by sending a SIP REFER requests.
The user agent to be invited is included in a refer-to header field, carrying the user agent’s URI.
SIP messages sent by the focus are identified as those by adding an isfocus tag to the contact
header field of SIP messages like shown below.

Contact: <sip:puppets.meet@conf.muppets.com>;isfocus

SIP applications that are aware of conferencing can use this indication to request notifica-
tion services, e.g. user presents information, by the server. Participants that are conference-
unaware just ignore this additional tag. Notifications services are supplied the Conference
Notification Server module, and can comprise presents or conference state notification mecha-
nisms. Notifications are sent about changes of membership or even changes of the conference
state (e.g. new media parameter) [11]. The Conference Policy Server enforces a predefined
policy, a set of conference rules (e.g. permitted participants), set up by one or more partici-
pants. The Media Mixer component is responsible for distributing requested media streams to
each conference member, for example by using the Real-Time transport Protocol (RTP) [12].

2 Conferencing with SIP 5

Conferencef]
Notification

Server
Conference Server

Conferencef] €] .
Policy o Focus o Mixer
Server

S~ 1
-~ - \
SIP _- - SIP \RTP
_~-"RTP \
-
P \
Participant Participant

Figure 3: Service modules in a conferencing server

2.3 Distributed Conference Control
A Distributed Approach

The scalable distributed conference (SDCON) [13] protocol scheme defines node behaviors,
operations and synchronization mechanisms for ad-hoc conferences in a peer-to-peer fashion.
The central point of control, the focus of a conference, can be distributed among several partici-
pating user agents supporting the SDCON scheme. The physical split of the controlling node is
done in a fully transparent way to non-SDCON able peers and appears as one entity. SDCON
defines two different roles in distributed conference control scenario. First, the user agent that
initially arranged and managed a multi-party conference is called the primary focus. Second, a
participating user agent that were requested by the primary focus to become a distributed con-
ference controller are called secondary focus. The only physical difference between primary
and secondary focus is accounted from the uniqueness routable conference URI pointing to
the primary focus. From the logical and administration, both roles provide equal behaviors.
Participants can be or either have a signaling relation to a primary or secondary focus, which
provide the same conferencing operations and notification services [11] and enforce the same
policies. Figure 4 displays the main functionalities supported by SDCON-able user agents.
The inter-focus communication is done mainly by two message flows. First, the synchroniza-
tion messages shown as focus states and, second, the call delegation request messages. Call
delegations happen when a focus is fully booked and needs to refer additional calls to less
loaded peers. This is done by sending standard SIP compliant REFER requests, carrying the
user agent’s URI. Because calls addressed to the conference URI will be routed to the primary
focus, call delegations are mainly done to a secondary focus peers. Synchronization messages
will be sent on every change of state in a single focus entity, e.g., announcing the arrival of a
new participant. These messages have to reach every controller to keep a consistent view to

2 Conferencing with SIP 6

Participants Participants

lons

Focus (discovery Focus|discovery

Join/Leave
Notifications
Join/Leave

Notificat

. «—>
Primary Synchronization Secondary
Focus Focus

Call delegation

Figure 4: SDCON functionality overview

the conference. Synchronizations are sent within SIP NOTIFY messages, carrying an XML
document describing the change event. Participants can join and leave a conference either by
the primary or a secondary focus and may retrieve conference notifications by subscribing to
these services. Another basic function consists in the ability to discover potential focuses with
SDCON capabilities among the conference members. The focus discovery procedure will be
executed before a focus is reaching its threshold for serving new clients. Further calls can be
delegated to secondary focus peers.

ID-Locator Split at SIP Layer

To achieve a transparent distribution of the conference focus in SIP, SDCON defines a source-
routing mechanism for conference participants related secondary focus peers. As the primary
focus delegates a call to a secondary focus, it also transfers all already negotiated signaling
and media parameter (e.g. Call-ID, SDP data). Using this information, a secondary focus peer
is able to send re-invite messages to the delegated user agent, that look like as they were

2 Conferencing with SIP 7

originated from the primary focus. Additionally, it inserts a Record-Route header field, carrying
the SIP URI of the secondary focus. An example SIP re-invite request is shown below:

INVITE sip:elmo@sesamestreet.com SIP/2.0

Call-ID: 0818@141.22.26.55

CSeqg: 1 INVITE

From: <sip:puppets.meet@conf.muppets.com>;tag=134652
To: "elmo" <sip:elmo@sesamestreet.com>z

Contact: <sip:puppets.meet@conf.muppets.com>;isfocus
Record-Route: <sip:kermit@sesamestreet.com>

The record-route header is usually added by SIP proxies, to force further request in a SIP
dialog to be routed through the proxy [2]. In this context, a conference secondary focus kermit
adds its own SIP URI into the record-route and forces the new participant e/mo to send further
SIP requests via sip:kermit@sesamestreet.com. Those requests, source-routed to secondary
focus peers will be intercepted and processed by them and, on change of the conference state,
send notification messages to the remote focus peers. Only conference focus peers are aware
of the distributed fashion of the conference control. Participants do not recognize the ID/Locator
split, thus the compatibility to standard compliant SIP implementations is achieved.

3 Peer-to-Peer Overlays 8

3 Peer-to-Peer Overlays

3.1 Unstructured Overlays

Peer-to-Peer (P2P) overlay networks can be divided into unstructured and structured peer-to-
peer systems [14]. Unstructured P2P systems like Gnutella 0.4, Freenet [15] have the charac-
teristics, that each peer is related directly to a small number of peers participating the overlay.
Resource discovery is done by flooding requests throughout the overlay network. Thus the
complexity of sent messages to find a resource is greater equal O(Nz). To avoid overloading
the overall network by flooding resource lookup requests, these messages have a time to live
value to reduce the the messaging load. This results in negative lookups, although the network
may provides the requested resource. That makes unstructured P2P-systems not scalable for
very large increasing networks and is out of scope of this paper.

3.2 Structured Overlays

Structured P2P overlay networks are using a distributed hash table (DHT) algorithms to pro-
vide resource location and storage. Participating nodes and the stored resources (e.g. files)
are mapped into a same flat address space. This typically consists of large integer value with
a range from 0 to 2'%° — 1 and could form a ring-like topology by performing a mathematical
modulo operation on addresses space like in Chord [4]. These overlay IDs are generated by
hash-function (e.g. SHA1) to obtain a unified and equally distributed identifier over the com-
plete address space. For example a data is hashed h(’Data’) = a51f2 or the IP of a participating
node is hashed h(23.119.37.77) = 1b542. The result from the hash-function is the key iden-
tifier for a specific value. Each node in the overlay network is responsible for subset of the
address space and providing an overlay routing table. They are storing the values whose keys
are matching to their responsible address range. The values stored are typically the location
for the requested resource, mostly the resource owner’s IP address. For example, a node n
interested in a data d, queries for h(d) to obtain the IP address of d’s owner 0. N then queries o
to transfer d directly. The very basic operations in structured P2P overlay networks are shown
below:

e Join: Node participating the overlay
e Put: Add a resource into the overlay
e Get: Retrieve a resource from the overlay

e Leave: Terminate connection to the overlay

3 Peer-to-Peer Overlays 9

A sample structured P2P overlay network, performing Put operation is displayed in figure 5.
The bottom of the figure displays the the underlying IPv4 topology, the top, an overlay network
with flat and ring-like address space (Chord-like). Each node in the underlay has a generated
it's overlay ID that is mapped at a specific position in the ring. Here, each node is responsible for
the address space that is lower equal to its own ID until its the preceding node. For example,
the node ns with the IP address 88.65.111.2 is responsible for the addresses 0Xa52e2 to
0Xa493f. The Put operation proceeds as follows; The node ng with IP address 23.719.11.2
wants to store a data, whose hash result is 0Xa57f2. Node ng’s routing table comprises only
a subset of next hop nodes clock-wise to the address space. In Chord for example the routing
table, the finger table, has | entries for a /-bit long identifier. On a node n, the j-th entry identifies
the first node that succeeds n by at least the next 2~! addresses, where 1 < i < . Assuming
that, the identifier length in the graphic is 2! bits, node ng’s the 19-th routing table entry is:

successor(ID(ng) +2"1) = successor(1b542 +2'71) = 5B542 (1)

The result is greater than node n,’s ID and less equal than node n3’s ID, thus node n3 be-
comes the next hop for the Put request. This routing proceeds recursive, until a node is
reached, that’s ID is greater equal to the key of the stored resource. In this example, node ns
is responsible for storing the value, the IP address of data’s location, of this storage request.
From a view of the routing effort, the result is an average of O(log(N)) routing hops for re-
quests in a Chord-like P2P overlay, where N is the number of the participating nodes [4]. This
makes it highly scalable for very large increasing overlays.

3.3 Proximity Aware Overlays

Overlay network identifier are typically generated from hash-functions (e.g. SHA1 in Chord)
to create unified long integer addresses for joining nodes. These IDs do normally not have
any relation to the geographical position of the end system. Like indicated in figure 5, the
node with IP address 23.119.37.77 is physically close to the node with IP address 88.65.111.2,
but the their overlay IDs are logically 'far away. Thus, numerical neighbors in the overlay
can physically be far apart. Advanced P2P overlays [16] therefore provide mechanisms for
proximity awareness. To determine a nodes relative position p, it measures round-trip times
(RTT) against a fixed set of well known landmarks ly,![y,..,/,. Like shown in figure 6, the
node A,B and C are determining their relative positions against the landmarks L; to L3. The
measurement results will be ordered along the landmarks index to obtain a landmark vector
<Ili,h,..,13 >. The next step is to divide the entire address space into chunks of equal-sized
regions. The definition of a region depends on the used DHT address structure. The ring-like
address space in Chord can be cut into equal slices; subtrees in Pastry can define a region
or n-dimensional spaces in CAN. Each landmark vector permutation forms exactly one related
region. A node then joins the overlay at a 'random’ point in the regions its’ landmark vector

3 Peer-to-Peer Overlays 10

PUT

129431.4.24323_119.37.77

88.65.111.2 90.66.69.145

91.237.47.178

Figure 5: Structured overlay network: Put operation

belongs to. A node’s relative position is then defined by its overlay ID, since every node has
build its ID using the same mechanism. A disadvantage of this ID construction is that the
address space is no longer unified diversified, resulting that some peers are responsible for
larger address ranges than others. Overlay load-balancing algorithms can handle this problem
by transferring parts of the space to less loaded peers.

<L1,L2,L3>
1 J

<L1,L2,13> |

C

<L1,L2,L3>

L2

Figure 6: Estimating round-trip times against landmark-nodes

4 Approaches towards Infrastructure Independence 11

4 Approaches towards Infrastructure Independence

4.1 Virtualizing a Conference

The SDCON protocol scheme described previews in section 2.3, could be consequentially
extended by using the routing and data storage functionalities of P2P networks based on dis-
tributed hash tables. Instead of registering the conference URI at a conference server, the
owner that acts as the primary focus publishes binding mappings in the P2P service overlay.
User agents attending to join the multi-party session can retrieve the contact information of the
conference from the overlay to establish a SIP session. In that way it accomplishes a complete
independence from server infrastructure. Means for a advanced focus discovery procedure,
finding potential secondary focus peers can be implemented on SDCON able nodes, by adver-
tising their capabilities in the P2P overlay. A possible way to represent such an announcement
can be achieved by storing this information under a well defined (key/value[]) strategy, depen-
dent on the conference URI. A focus searching for a peer willing to act as a secondary focus,
could retrieve the corresponding information about potential conference focuses from the over-
lay.

A typical problem of P2P-networks known as churn, is the fact that nodes are joining and leav-
ing frequently. In case of departure of a secondary focus, the remaining focuses re-invite the
now disconnected participants. As a primary focus leaves the conference or fails, an elec-
tion mechanism to select a new primary focus is executed. The selected focus than has to
re-register for the conference URI to be globally accessible. In a traditional conference server
environment this can cause problems in to obtain the requested SIP URI, because it could be
not permitted to register at the conference URI’s server. To resolve this issue, a way to reassign
the conference URI to the elected focus could be defined in P2P overlay.

Using a proximity-aware distributed hash table algorithm, a new participant joining a distributed
conference, could decide to participate by requesting the topologically closest focus peer, like
displayed in figure 7. It simply compares its overlay ID with those focus peers advertised in
the overlay network, a chooses the numerical closest. This results in topologically optimized
routes for the sent media streams.

4.2 Distributed Media Mixing and Routes

The SDCON approach is designed to serve as a base protocol scheme, to transparently dis-
tribute the conference management among multiple peers. The media streams could follow the
signaling routed between the focus peers. Therefore, it has to be estimated which node topol-
ogy can balance the computing and bandwidth effort at each focus, to provide highly scaling
voice and video conferencing service. An overview of the topologies to be examined in more

4 Approaches towards Infrastructure Independence 12

SDCON-Supporting Peers
- abde0: Secondary Focus
- ef5a2: Primary Focus

DHT

Primary Secondary N
Focus Focus New
Participant

Figure 7: Discovery of a secondary focus using proximity information

& o

O5—10

Figure 8: Examined focus topologies

detail are shown in figure 8. The examined topologies should be symmetric, of short diameter
and degree to equally distribute the load, or even not, if for example some nodes are of higher
computational capability. The latter approach takes the risk, that if a highly capable node fails,
the supposed focus topology could crash.

5 Conclusion and Outlook 13

5 Conclusion and Outlook

This paper presented an overview of techniques and architectures for establishing multimedia
conferences with SIP, a short introduction into structured p2p overlay networks and approaches
for an infrastructure-independent conferencing environment.

Signaling with SIP is based on an architecture of registrars and proxy servers, as application-
layer infrastructure to facilitate end-to-end connectivity. Conferencing in a tightly coupled
model, uses a central point of control, called focus in SIP. It represents the contact for a multi-
party session and negotiates media parameters among the participants. It is further responsi-
ble to assure media stream connectivity. Because of this central architecture, many solutions
foresee also a central, star-like media stream mixing, placed a the same physical device. A
decentralized signaling scheme was presented by the SDCON approach, that transparently
distributes the conference focus tasks onto multiple peers in a standard-compliant way.. This
could serve as a based implementation for a distributed media mixing as well.

Structured P2P overlay networks are highly scalable for a large number of participating nodes.
The underlying distributed hash tables, split the network maintenance equally onto all joining
peers, each acting as router and data storage point simultaneously. Nodes and stored re-
sources share the same flat identifier space, providing an abstract addressing scheme for to
the underlying address structure (IPv4, IPv6, strings for data).

By combining the conferences with SIP and structured p2p overlays, the scaling and user lo-
cation problems of conferencing with SIP can be compensated in a lean, infrastructureless
manner. Following this spirit, the paper presented first approaches for a virtualized conferenc-
ing scheme, supporting the functionalities of SDCON enabled peers. This approaches seems
to be interesting for further research and implementation.

References 14

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

ITU-T Recommendation H.323, “Infrastructure of audio-visual services - Systems and
terminal equipment for audio-visual services: Packet-based multimedia communications
systems,” ITU, Tech. Rep., 2000, draft Version 4.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler, “SIP: Session Initiation Protocol,” IETF, RFC 3261, Jun. 2002, up-
dated by RFCs 3265, 3853, 4320, 4916, 5393.

J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol (SIP),”
IETF, RFC 4353, Feb. 2006.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in SIGCOMM °01: Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for com-
puter communications. New York, NY, USA: ACM Press, 2001, pp. 149—-160.

S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Application-Level Multicast Using
Content-Addressable Networks,” in Networked Group Communication, Third International
COST264 Workshop, NGC 2001, London, UK, November 7-9, 2001, Proceedings, ser.
LNCS, J. Crowcroft and M. Hofmann, Eds., vol. 2233. London, UK: Springer—Verlag,
2001, pp. 14—-29.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” in IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), ser. LNCS, vol. 2218. Berlin Heidelberg: Springer—
Verlag, Nov. 2001, pp. 329-350.

M. Handley and V. Jacobson, “SDP: Session Description Protocol,” IETF, RFC 2327, Apr.
1998, obsoleted by RFC 4566, updated by RFC 3266.

“The Internet Engineering Task Force (IETF),” http://www.ietf.org/, 2010.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for
Real-Time Applications,” IETF, RFC 3550, Jul. 2003.

O. Levin and R. Even, “High-Level Requirements for Tightly Coupled SIP Conferencing,”
IETF, RFC 4245, Nov. 2005.

J. Rosenberg, H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event
Package for Conference State,” IETF, RFC 4575, Aug. 2006.

References 15

[12] A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” IETF, RFC 1889, Jan. 1996, obsoleted by
RFC 3550.

[13] A. Knauf, T. C. Schmidt, and M. Wahlisch, “Scalable, Distributed Conference Control in
Heterogeneous Peer-to-Peer Scenarios with SIP,” in Proc. of the 5th ACM/ICST Interna-
tional Mobile Multimedia Communications Conference (MobiMedia), M. Younis and C. T.
Chou, Eds. Brussels, Belgium: ICST, September 2009.

[14] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applications, ser. LNCS.
Berlin Heidelberg: Springer-Verlag, 2005, vol. 3485, ch. 2, pp. 12—-14.

[15] ——, Peer-to-Peer Systems and Applications, ser. LNCS. Berlin Heidelberg: Springer-
Verlag, 2005, vol. 3485, ch. 5, p. 36.

[16] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Topologically-aware overlay
construction and server selection,” in INFOCOM, 2002.

List of Figures 16

List of Figures
1 SIP dialog establishmentviaproxies 3
2 Tightly coupled conferencingmodel 4
3 Service modules in a conferencingserver 5
4 SDCON functionality overview oo 6
5 Structured overlay network: Putoperation 10
6 Estimating round-trip times against landmark-nodes 10
7 Discovery of a secondary focus using proximity information 12
8 Examined focustopologies L 12

	1 Introduction
	2 Conferencing with SIP
	2.1 Signaling with SIP
	2.2 Traditional Conferencing
	2.3 Distributed Conference Control

	3 Peer-to-Peer Overlays
	3.1 Unstructured Overlays
	3.2 Structured Overlays
	3.3 Proximity Aware Overlays

	4 Approaches towards Infrastructure Independence
	4.1 Virtualizing a Conference
	4.2 Distributed Media Mixing and Routes

	5 Conclusion and Outlook
	References
	List of Figures

