

Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Project paper 2

WeSe2013

SW

W

Florian Johannßen

NAO Robots in the Cloud

An Interface to Execute Abstract Plans

1

Florian Johannßen

Florian.Johannssen@haw-hamburg.de

Thema

Nao Robot in the Cloud – An Interface to Execute Abstract Plans

Stichworte

 Knowledge sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System

Kurzzusammenfassung

Diese Projektausarbeitung ist Teil einer Masterarbeit, die sich mit dem

Wissensaustausch zwischen Robotern beschäftigt, um deren Lernmechanismen zu

verbessern. Das Projekt realisiert eine abstrakte Schnittstelle, sogenannte Prozess-

Module, um auf dem humanoiden Roboter Nao abstrakte Pläne auszuführen. Es

werden drei Prozess-Module präsentiert, um den Nao Roboter auf einer abstrakten

Ebene zu manipulieren, zu navigieren und dessen Sprachkomponente zu steuern. Dazu

wurden mehrere Experimente durchgeführt, welche die Benutzbarkeit und Flexibilität

dieser abstrakten Schnittstelle demonstrieren. Mithilfe dieser Abstraktionsschicht soll

es möglich sein, abstrakte Pläne vom RoboEarth Webservice herunterzuladen und

auszuführen.

Florian Johannßen

Title of the paper

Nao Robot in the Cloud – An Interface to Execute Abstract Plans

Keywords

 Knowledge sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System

Abstract

This project is part of the master thesis which investigates knowledge sharing among

robots to improve their learning mechanism. This work creates an abstraction layer,

called process modules, to execute high-level plans on the humanoid Nao robots. It

implements process modules to manipulate the actuators of the Nao as well as to

navigate the robot to a specific position. Besides, it develops an interface to control the

speech module of the Nao robot via abstract commands. Through this approach it

should be possible to download and execute high-level plans from the RoboEarth web

service on the Nao platform.

mailto:Florian.Johannssen@haw-hamburg.de

2

Table of contents
List of figures ... 2

1 Introduction .. 3

1.1 Motivation ... 3

1.2 Objective Target .. 3

2 Design ... 5

3 Experiments .. 9

3.1 Manipulation Process Module ... 10

3.2 Navigation Process Module ... 11

3.3 Speech Process Module ... 12

4 Evaluation ... 13

5 Outlook ... 14

6 Conclusion .. 14

References .. 15

List of figures

Figure 1: Robots in the cloud [5,6,7] ... 4

Figure 2: Cloud-enabled Nao architecture ... 6

Figure 3: Process Module as black box .. 6

Figure 4: ROS-Nodes for manipulation ... 8

Figure 5: ROS-Nodes for navigation ... 8

Figure 6: ROS-Nodes for text to speech .. 9

Figure 7: High-level control of the manipulation process module ... 11

Figure 8: Output after navigating the Nao robot .. 12

Figure 9: High-level control of the speech process module ... 13

3

1 Introduction

1.1 Motivation

The Internet has become one of the most important communication media. It provides the

opportunity to publish and retrieve knowledge globally. We are able to solve unknown tasks

efficiently and share knowledge with other people. This area of research has been most

recently related to robotics, enabling researchers to apply this paradigm to robots. Nowadays,

companies like Aldebaran Robotics
1
 and Willow Garage

2
 are able to deliver wireless capable

and programmable robots with abstract interfaces. The specific tasks, such as face

recognition, voice recognition and path planning are mostly solved. Thus the preconditions

have been created to connect robots with the internet. Kuffner [1] and Quintas et al. [2] have

introduced the topic Cloud Robotics. This idea provides a physical separation between the

hardware and software components of the robot. The brain of the robot is outsourced to

remote servers. This approach can be used as in Inaba [3] to outsource time consuming tasks

on powerful remote servers. In addition, it offers the possibility that robots communicate with

each other to improve their learning mechanism. The idea of knowledge sharing for robots

describes the problem how to exchange information between heterogeneous robots to benefit

from the experience of others.

1.2 Objective Target

The concrete target of my master thesis [4] deals with the realization of the still unexplored

approach of knowledge sharing for robots via cloud services. Figure 1 delineates the approach

of cloud robotics. The robots communicate with the cloud by accessing a remote laptop which

provides the needed components and middlewares. It is possible to install all components

directly on the robot as well to improve the performance, but the remote connected approach

is more secure.

1
 http://www.aldebaran-robotics.com

2
 http://www.willowgarage.com

http://www.aldebaran-robotics.com/

4

Figure 1 presents an architecture to share knowledge among different robot platforms with the

aid of cloud services.

Figure 1: Robots in the cloud [5, 6, 7]

Firstly, the practical part of the thesis will handle this topic with two homogenous robots

which are connected with a cloud service to download and execute abstract plans. The Nao

robot and the cloud service RoboEarth will be used for the implementation. The research

hypothesis of this work describes the problem of how a Nao robot is able to transform and

execute high-level plans from the cloud service RoboEarth. This includes the challenge of

how it is possible to control a robot on an abstract level without thinking about low-level

tasks. Besides, the master thesis introduces another way to give robots the possibility to share

information among each other.

This thesis will include the implementation of an interface between the humanoid robot Nao

and the RoboEarth
3
 cloud service as well as the execution of a scenario in which several Nao

robots download and execute information from the cloud service.

The project carried out by Johannßen [8] realized the preconditions to connect the Nao robot

with the cloud. It introduces an architecture which provides a cloud-enabled Nao robot and

evaluates the main components ROS
4
, RoboEarth

5
, CRAM

6
 plan language, Nao-Wrapper

7

and NaoQi
8
. With the aid of this architecture a Nao robot is able to be controlled in an abstract

way. This project builds upon [8] and aims to implement an interface between the Nao robot

and the RoboEarth cloud service. This interface which is called process module will be used

to transform abstract plans from RoboEarth to low-level Nao specific commands.

4
Robotic Operating System [9]

5
www.roboearth.org

6
 Cognitive Robotic Abstract Machine [10]

7
 ROS stack for the Nao robot [11]

8
 Software Developer Kit for the Nao robot

http://www.roboearth.org/

5

 Every robot which wants to process information from RoboEarth needs to provide process

modules for the robot specific low-level tasks, like manipulation, navigation, perception and

speech processing.

Through process modules it is possible to develop abstract plans, which are robot

independent. Process modules offer actions to grasp an object, to move to a position or to

pronounce a sentence. If someone develops an abstract plan, it is insignificant to know how a

process module navigates the robot as well as it is unimportant to know which path planning

algorithm or face detection policy will be used. Abstract plans can be executed on

heterogeneous robot platforms by substitution of the process modules. The project [8]

described that it is possible to download plans which are implemented in the CRAM plan

language from RoboEarth. This project implements the needed process modules for the Nao

robot to execute such plans.

2 Design

This section introduces a design of the process modules for the Nao robot to execute abstract

plans. It describes the functionality as well as the internal mechanisms of the process

modules.

Process Module

This component presents an abstraction layer over the robot-specific hardware. Generally, this

approach aims to execute the same high level plan, like serve-a-drink on heterogeneous robot

platforms. A process module is part of the CRAM system which is described in the project by

Johannßen [8]. The Cognitive Robotic Abstract Machine Plan Language, developed by

Lorenz Mösenlechner [10], extends the functional programming language Common Lisp with

the help of domain specific functions and will be used to describe abstract control programs

for robots. This language is based on the concepts of the reactive plan language by Drew

McDermott [12].

A process module triggers the required hardware actions to control the robot if an abstract

task should be executed. The number of process modules depends on the robot and its

application domain. A household robot has to provide at least process modules for

manipulation, navigation, perception and speech output. A high-level plan interacts only with

the robot through these modules. This project implements process modules to manipulate and

navigate the Nao robot as well to process text to speech. A perception process module could

be integrated as well during the master thesis. With the aid of this interface a high-level plan

would be able to access face detection and speech recognition. The main requirement of a

process module is to map high-level commands to low-level instructions as well as the

encapsulation of the robot specific hardware components.

6

Figure 2 shows the integration of the process modules into the architecture of the project [8].

They are built on top of the Nao-CRAM-ROS environment which are already implemented

and explained in the project [8].

Figure 2: Cloud-enabled Nao architecture

This project uses the CRAM plan language which provides features to implement process

modules. A process module acts as a black box as shown in figure 3. The input is always a

designator
9
 which contains the meta information from the environment like a target position

to navigate the robot or the location of an object which should be grasped via the

manipulation interface. The designators concept will be used for dynamic plan

parameterization. There are three kinds of designators in the CRAM system, especially for

objects, locations and actions. An object designator specifies the physical information of a

cup, table or chair. A location designator describes positions of objects. Action designators

contain all needed information to execute a task successfully.

 Figure 3: Process Module as black box

With the aid of the designator concept robots are able to handle dynamic and flexible plans.

The execution of a plan can be changed at runtime without restarting the plan. A process

module receives a designator as parameter and resolves these high-level descriptions to

numeric control values. Furthermore, these resolved values will be forwarded to the

9
 http://wiki.ros.org/cram_designators

http://wiki.ros.org/cram_designators

7

specialized low-level routines for execution. These low-level routines are centered in ROS-

Nodes, which represent own processes. The Nao-Wrapper created by the University of

Freiburg [11] provides several ROS-Nodes, like nao_controller, nao_walker, nao_sensors,

nao_speech and nao_path_follower. More information about the Nao-Wrapper can be found

in [8]. These nodes communicate among each other via ROS-Topics. These message streams

represent a URL
10

-like approach to transfer information among nodes. Nodes are able to send

messages via the publish/subscribe method, ROS-Services or via the ActionLib
11

 interface.

The process modules use these three communication approaches to call the low-level

controllers of the Nao robot.

After executing the action, the process module creates events to influence the belief state of

the robot. The belief state of the robot includes all information about the execution

environment which the robot assumes they are correct. This internal state contains also the set

of known object as well as its locations and properties. A successfully executed action of the

navigation module creates a event like moveTo(position) and will be archived.

Manipulation Process Module

This interface should provide the following actions to manipulate the low-level components

of the robot:

 Moving the arms

 Ranging the torso

 Turning the head

 Opening and closing the grippers

Firstly, the process module should be able to receive an action designator which describes

what kind of action can be executed as well as how this action should be performed.

Moreover, prolog rules have to be defined to resolve the meta information to numeric values.

The next step describes to access the corresponding Nao actuator by calling a ROS-Action

including the resolved plan parameter. To solve this challenge the ActionLib interface will be

used which is part of the ROS middleware. Every ROS-enabled robot has to implement the

ActionLib interface to map abstract commands to low-level instructions. The manipulation

process module is using the nao_controller ROS-Node, which is part of the Nao-Wrapper.

This node provides a Joint-Trajectory-Action-Server to control the Nao joints.

The resolved meta information will be wrapped into a ROS-Action-Goal. Action-Client and

Action-Server communicate via the ROS Action Protocol with each other, which specifies the

messages: goal, result, feedback, cancel and status. The nao_manipulation_node acts as an

Action-Client by sending an Action-Goal to the Action-Server. The nao_controller receives

the goal and executes the requested task like moving the arm or opening the gripper.

Note that the ActionLib calls are working asynchronously. This is well-founded, because

many computations are long-running. Hence, it is advantageous to control another component

of the robot while the Action-Server is calculating the result.

10

 Uniform Resource Locator
11

 http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib

8

The next figure provides an overview of the communication between the

nao_manipulation_node and the nao_controller via ROS-Action-Messages. During the

execution a server is able to send feedback messages to the client. After the execution the

client receives the result from the server which contains the target positions of the Nao joints.

Furthermore, the client is able to subscribe status information related to the execution.

Figure 4: ROS-Nodes for manipulation

Using this concept it is possible to create Action-Clients in LISP or Java and on the other side

Action-Severs in a different programming language like C++ or Python. This process module

includes one corresponding Action-Client which delegates the resolved meta information to

the Joint-Trajectory-Action-Server by sending an Action-Goal for every manipulation task.

Navigation Process Module

With this interface it is possible to move the Nao robot to an explicit position via high-level

functions. It receives a localization designator which contains all needed meta information for

the target position and resolves it to numeric values. Besides, this module delegates these

values to the Nao control layer for their execution. The ROS-Node nao_path_follower is used,

which implements an Action-Server to navigate the robot. This process module contains only

one Action-Client. The client wraps the resolved location designator to an Action-Goal and

sends this message to the Action-Server which is provided by the nao_path_follower.

Furthermore, this ROS-Node commands the Nao to walk to the target position. The following

figure shows the communication via ROS-messages between the ROS-Nodes

nao_path_follower and nao_navigation_client.

Figure 5: ROS-Nodes for navigation

The navigation process module creates a nao_navigation_client. This ROS-Node receives the

temporary position through the /walk_target/feedback topic. After reaching the target position

the nao_path_follower sends the result back to the nao_navigation_client.

9

Speech Process Module

This module has the responsibility to translate text to speech. The next ROS graph shows how

a nao_speech_client sends a sentence, which is wrapped in a ROS-Goal to the nao_speech

node. This process module uses the publish/subscribe pattern to realize the communication

between the ROS-Nodes. The nao_speech_client publishes the sentence to the nao_speech

node which has already a subscription on this topic. Finally, the nao_speech node delegates

the message to the speech component of the NaoQi SDK.

Figure 6: ROS-Nodes for text to speech

3 Experiments

This part of the paper shows some practical experiences with the implemented process

modules for the Nao robot. All experiments are performed on the infrastructure described in

figure 2. This chapter shows practice tests for the implemented process modules. The

simulation tool Choregraphe by Aldebaran Robotics [13] is used to display the behavior of the

Nao robot. The following trials use the Emacs
12

 environment to develop and execute abstract

plans in the CRAM plan language. The experiments aim to investigate the possibility to

access the Nao process modules (:manipulation, :navigation, : speech) by high-level plans.

These experiments are used to analyze the internal steps of the process modules and to show a

detailed understanding how a process module works.

Setup

A special setup is needed to perform the experiments. Before we are able to access the process

modules, we need to start these separately in an own thread.

(par

 (cpm:pm-run 'nao-manipulation-process-module :manipulation)

 (cpm:pm-run 'nao-navigation-process-module :navigation)

 (cpm:pm-run 'nao-speech-process-module :speech))

Therefore, we are using the utility methods which are implemented in the ROS-Package

cram-process-modules by the University of Munich [14]. Now, we can use the process

modules known as manipulation, navigation and speech.

12

 http://www.gnu.org/software/emacs/

http://www.gnu.org/software/emacs/

10

3.1 Manipulation Process Module

This experiment shows some practical experiments to control the Nao robot with the aid of

the process module. The idea of the process module is explained in the design chapter before.

High level plans should be able to call actions like moving the arm or opening the gripper by

accessing this interface. This experiment tests the usability of the manipulation process by

execution of some actions which are specified in the design chapter.

Meta information

Note that the meta information about where to turn the head has to be provided by the

environment and will be forwarded to the process module. The following variable defines the

input for the action turning the head. Both values are radians. The first one describes a

rotation around the y-axis about 57.29°. The second value represents a rotation around the x-

axis about -114.59°.

(defvar head-position vector (1 -2))

The target position of the Nao left arm defines a 6D vector of radians to control the joints

(LshoulderPitch, LshoulderRoll, LelbowYaw, LelbowRoll, LwristYaw, LHand) separately.

(defvar arm-position vector (0.9 -0.5 -0.5 -1.4 -0.01 0.8))

These definitions will be wrapped in an action designator which represents the input of the

manipulation process module. After resolving the designator these values will be forwarded to

parameterize the low-level actuators of the Nao robot.

Abstract plan

Now, it’s possible to implement abstract control programs. The following code lines

demonstrate how to manipulate the Nao on an abstract way. The CRAM plan language is

detailed documented in [14] and [15] and provides macros and functions, like def-top-level-

cram-function to define abstract plans. The manipulation-test() function represents a high-

level plan which executes the tasks open-gripper, move-arm and turn-head.

(def-top-level-cram-function manipulation-test ()

 (par (achieve `(open-gripper :left))

 (achieve `(open-gripper :right))

 (achieve `(move-arm :left arm-position))

 (achieve `(turn-head head-position))))

The achieve keyword is conduced to execute the actions. The CRAM plan language also

provides support for parallel execution.

11

The following picture presents the output of the Nao manipulation. It shows how the head is

rotated to the defined target position. Besides, this picture demonstrates the result after

moving the left arm and opening both grippers.

Figure 7: High-level control of the manipulation process module

3.2 Navigation Process Module

This test aims to send abstract commands to the Nao like walking to a specific position. The

next code listing initializes a setup.

Meta information

(defvar point (make-msg "Point" x 2.0 y 1.5 z 0.8))

(defvar quaternion (make-msg "Quaternion" x 2.2 y 2.1 z 1.0 w 0.5))

(defvar p (make-msg "Pose" position p orientation q))

(defvar h (make-msg "Header" frame_id "base_link"))

(defvar posestamp (make-msg "PoseStamped" header h pose p))

The posestamp represents the target position and contains the location as well as the frame_id.

This identifier describes that the target position is relative to the coordination system of the

torso. This information is important because the several components are equipped with its

own coordination system.

12

Abstract plan

The following plan demonstrates how to navigate the Nao robot to a special position.

(def-top-level-cram-function navigation-test () (achieve `(walk-to posestamp)))

The result of the execution is shown in the next figure. It commands the Nao robot to walk to

the defined location.

 Figure 8: Output after navigating the Nao robot

This test client receives the MoveBaseFeedback message from the Action-Server which

contains the current location of the Nao robot.

3.3 Speech Process Module

The next test sends in English formulated sentences to the speech process module. The output

is displayed by the Choregraphe simulator.

Meta information

(defvar sentence ”Hi I am Nao Let’s Rock `n Roll”)

This sentence is used to test the speech process module of the Nao robot.

13

Abstract plan

The following high-level plan commands the Nao robot to translate the defined variable

sentence to speech.

(def-top-level-cram-function speech-test ()

 (achieve `(speak sentence)))

The output of the execution is shown in the next figure. The Choregraphe simulator receives

the sentence from the speech module and displays the result.

Figure 9: High-level control of the speech process module

4 Evaluation

The processed tests have shown first experiences how to control the Nao robot with high-level

plans via process modules. Firstly, they demonstrated how to start the three process modules

manipulation, navigation and speech separately in their own thread. Thus, it’s possible to

access these modules in parallel. Some of the specified actions in section 2 were tested. The

experiments investigated the possibility to manipulate the actuators of the Nao as well as to

navigate the robot to a specific position. Furthermore, another trial tested the speech process

module to translate text to speech. The power of this approach lies definitely on the flexibility

of the robot programs. The trials showed the possibility to execute abstract commands which

aren´t Nao specific. So, it’s potential to execute the same abstract plan on a different robot

platform by exchanging the process modules. Through the Choregraphe simulator, the results

of the experiments could be displayed in a comfortable way.

14

5 Outlook

This study developed process modules for the Nao robot to hide the robot specific hardware

components. So, it´s possible to define high-level plans in the CRAM plan language. One of

the following steps is to implement a mechanism to download abstract plans from RoboEarth.

The preconditions are already done to execute such plans on the robot. It should be possible to

request the RoboEarth web service for an abstract plan. The process module delegates the

request to the KnowRob component which is described in the last project [8]. KnowRob

explores the RoboEarth database for an existing plan. After matching the capabilities of the

robot against the requirements of the requested plan KnowRob generates also a CRAM plan

which should be executed on the Nao platform with the aid of the process modules. Besides,

the implementation of a perception interface will provide face detection and speech

recognition to extend the functionality of the Nao interface. Finally, some scenarios will show

how Nao robots download and perform high-level plans, like grasping an object, from

RoboEarth.

6 Conclusion

This paper described the implementation of the process module approach for the Nao robot

platform. The design section introduced an interface to manipulate, navigate as well as to

access the speech module of the Nao on an abstract way without thinking about how the robot

solves these tasks. This project demonstrated how to map high-level plans to low-level

commands via the ROS middleware. Furthermore, it showed the communication between the

process modules and the Nao-Wrapper via ROS-Nodes. It also described which ROS-Nodes

were used from the Nao-Wrapper to forward commands to the low-level control layer of the

robot. Besides, some experiments presented how to use the three process modules for the Nao

platform by abstract plans. The evaluation of these trials showed that using the process

module approach for the robot provides definitely the possibility to execute programs which

aren´t Nao-specific. Finally, the outlook described the following next steps.

15

References

1. J. Kuffner. Robots with their Heads in the cloud. 2011

2. J. Quintas, P. Menezes, J. Dias. Cloud Robotics: Towards context aware Robotic Network.

2011

3. M. Inaba. Remote Brained Robots. Tokio. 1993

4. F. Johannßen. Knowledge sharing for robots. 2013

5. https://kforge.ros.org/turtlebot/trac/chrome/site/turtlebot320.png (Access on 10.05.2013)

6. http://ftp.isr.ist.utl.pt/pub/roswiki/attachments/Robots(2f)Husky/husky-a200-unmanned-

ground-vehicle-render.jpg (Access on 10.05.2013)

7. http://asep-championship.com/wp-content/uploads/2011/11/NAO-4_cutout.png

(Access on 10.05.2013)

8. F. Johannßen. Nao in the Cloud. 2013

9. M. Quigley et al. ROS: an open-source Robot Operating System. 2010

10. M. Beetz, L. Mösenlechner, M. Tenorth. CRAM - A Cognitive Robot Abstract Machine

for Everday Manipulaiton in Human Enviroments. 2010

11. http://wiki.ros.org/nao

12. Drew McDermott. A Reactive Plan Language. 1991

13. http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html

14. L. Mösenlechner, N. Demmel, M. Beetz. Becoming Action-aware through

Reasoning about Logged Plan Execution Traces. 2010

15. T. Rittweiler. CRAM Design & Implementation of a Reactive Plan Language. 2010

https://kforge.ros.org/turtlebot/trac/chrome/site/turtlebot320.png
http://asep-championship.com/wp-content/uploads/2011/11/NAO-4_cutout.png
http://wiki.ros.org/nao
http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html

