Aktive Messverfahren zur Topologievalidierung im Routing-Atlas

Vortrag: Ringvorlesung Seminar

Andreas Krohn

Hochschule für Angewandte Wissenschaften Hamburg

14. November 2012

Agenda

- 1 Intro
- 2 Rückblick
- 3 Work in Progress
- 4 Ausblick

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Motivation I

- Internet ist kritische Infrastruktur
- Bestrebungen zur Kontrolle (Gesetzgeber, Contentindustrie,...)
- Topologie nicht komplett bekannt
- Beteiligte nicht komplett bekannt

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sci

Motivation II

Entwicklung eines Werkzeugs

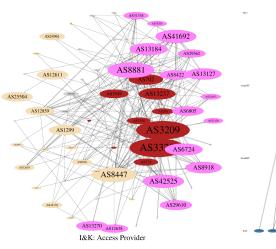
- Zuordnung von Akteuren zu Ländern
- Modellierung der Topologie
- Visualisierung
- Weitere Analysen...

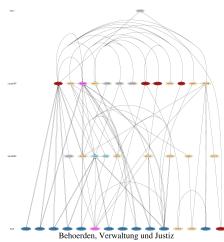
Hochschule für Angewandte Wissenschaften Hamburg

Routing-Atlas 1

Ein Projekt der inet AG in Kooperation mit dem BSI

- Zusammenführung, Validierung und Analyse mehrerer Datenquellen
- Identifikation der Autonomen Systeme eines Landes
- Klassifikation der Autonomen Systeme nach Branche und Hierarchie
- Bildung des verbindenden Routinggraphen
- Visualisierung von Subgraphen


"Exposing a Nation-Centric View on the German Internet – A Change in Perspective on the AS Level"


Matthias Wählisch, Thomas C. Schmidt, Markus de Brün, Thomas Häberlen In Proc. of the 13th Passive and Active Measurement Conference (PAM), volume 7192 of LNCS, page 200–210, Berlin Heidelberg, 2012.

Springer-Verlag.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Routing-Atlas II

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Rückblick

Anwendungen 1 [Krohn, 2010]

Vorstellung des Projekts Routing-Atlas

Aktueller Stand

- Identifikation des "deutschen Internets"
- Bildung des verbindenden AS Graphen über shortest path matrix
- Visualisierung

Problemstellung

- Als Datenquelle verwendetes Projekt eingestellt
- Teils noch manuelle Schritte erforderlich

Ziel

- Ersatz für shortest path matrix [Winter, 2009]
- Regelmäßige Bereitstellung aktueller Analysen

Anwendungen 2 Krohn, 2012

Vorstellung vergleichbarer Arbeiten

Datensammlung, Topologieinferenz und -analyse

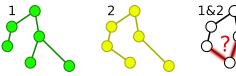
- Sammlung von BGP Tabellen und -Updates und Nutzung der IRR-Datenbanken [Zhang et al., 2005]
- Inferenz von AS Linktypen und Einteilung in tier1, non-tier1-transit und stub [Gao, 2001]
- Berechnung einer möglichst umfassenden Topologie [Winter, 2009]
- Entdeckung weiterer Peerings mittels traceroute [Augustin et al., 2009]

Projekt1 l

Ursprüngliches Ziel: Aktualisierung der Topologiemodellierung

- Versuchsweise Implementierung von single- und all-pair-shortest-path Algorithmen
- Untersuchung zu Laufzeitverhalten und Speicherverbrauch
- Fazit: Es gibt Tools, die das besser k\u00f6nnen z.B. http://www.r-project.org/

Nebenbei:


Validierung der Länderzuordnung mittels GeoIP Datenbank

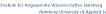


Projekt1 II

Jetzt: Validierung und Ergänzung der Topologiemodellierung

- Passive Daten abhängig vom Standort & oft wenig Informationen über Rückweg
- Über Kontakte Topologieausschnitt verifizieren (nachfragen)
- Mittels aktiver Verfahren diesen Ausschnitt nachvollziehen
- Vergleich mit modellierter Topologie
- Topologie um Ergebnisse aktiver Messungen ergänzen, sofern sich diese als brauchbar erweisen

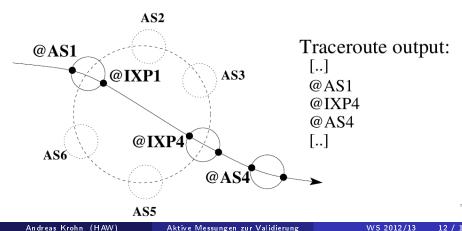
Aktives Messen


Vorhanden

- Peering am BCIX
- Wissen über Peerings einiger Mitglieder
- Modellierte Topologie aus BGP Tabellen und Updates

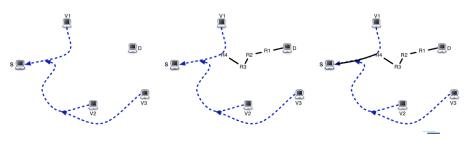
7iel

- Nachweis möglichst vieler Peerings mittels aktivem Messen
- Vergleich der Peerings in modellierter Topologie, Messergebnis und Realität
- Integration der Messergebnisse in den Routing-Atlas



traceroute ..durch" IXPs

Angelehnt an "IXPs: Mapped?" [Augustin et al., 2009]


- Mitglieder und Präfixe am BCIX ermitteln
- traceroute in die Umgebung
- Peerings nachweisen

reverse-traceroute

Angelehnt an "Reverse traceroute" [Katz-Bassett et al., 2010]

- traceroute in Gegenrichtung
- Mehrere Sonden benötigt → Planetlab
- record-route option
- Pfade finden, wenn in ASen keine Looking Glasses etc. verfügbar

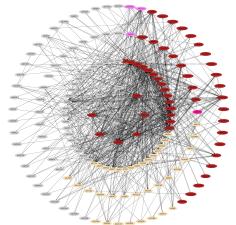
Ausblick

Projekt 2

■ in Projekt 1 entwickelte Messergebnisse in Routing-Atlas integrieren

Außerdem

- zunächst Projekt 1 abschließen
- Thema der Masterarbeit konkretisieren



Hochschule für Angewandte Wissenschaften Hamburg

Ende

Vielen Dank für die Aufmerksamkeit

Fragen...?

I&K: ISPs (ohne Endkunden-Access), Internet Infrastruktur

Literatur I

Augustin, B., Krishnamurthy, B., and Willinger, W. (2009). IXPs: mapped?

In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC '09, page 336–349, New York, NY, USA. ACM.

Gao, L. (2001).

On inferring autonomous system relationships in the internet.

IEEE/ACM Trans. Netw., 9:733-745.

Katz-Bassett, E., Madhyastha, H. V., Adhikari, V. K., Scott, C., Sherry, J., Van Wesep, P., Anderson, T., and Krishnamurthy, A. (2010).

Reverse traceroute.

In Proceedings of the 7th USENIX conference on Networked systems design and implementation, NSDI'10, page 15–15, Berkeley, CA, USA. USENIX Association.

Krohn, A. (2010).

Ausarbeitung Anwendung 1 - Erweiterung des Routing-Atlas.

http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master10-11-aw1/krohn/bericht.pdf.

Krohn, A. (2012).

Ausarbeitung Anwendung 2 - Erweiterung des Routing-Atlas.

http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2012-aw2/krohn/bericht.pdf.

Literatur II

Winter, R. (2009).

 $Modeling\ the\ Internet\ Routing\ Topology\ -\ In\ Less\ than\ 24h.$

In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation, PADS '09, page 72–79, Washington, DC, USA. IEEE Computer Society.

Wählisch, M., Schmidt, T. C., de Brün, M., and Häberlen, T. (2012). Exposing a Nation-Centric View on the German Internet – A Change in Perspective on the AS Level.

In Proc. of the 13th Passive and Active Measurement Conference (PAM), volume 7192 of LNCS, page 200–210, Berlin Heidelberg. Springer-Verlag.

Zhang, B., Liu, R., Massey, D., and Zhang, L. (2005).

Collecting the internet as-level topology.

SIGCOMM Comput. Commun. Rev., 35:53-61.

Bildquellen

Seite	Quelle
6, 15	http://inet.cpt.haw-hamburg.de/projects/routing-atlas/
12	http://www-rp.lip6.fr/~augustin/ixp/imc2009.pdf
13	http://homes.cs.washington.edu/~ethan/papers/reverse_
	traceroute-nsdi10.pdf