

Präsentation AW1

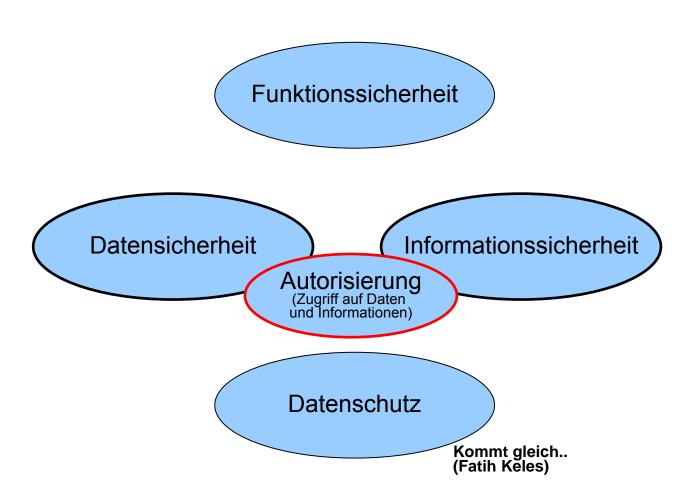
Sicherheit in Location-based Services durch Zugriffskontrolle

Thomas Schmidt

Hamburg, 08. Juni 2006

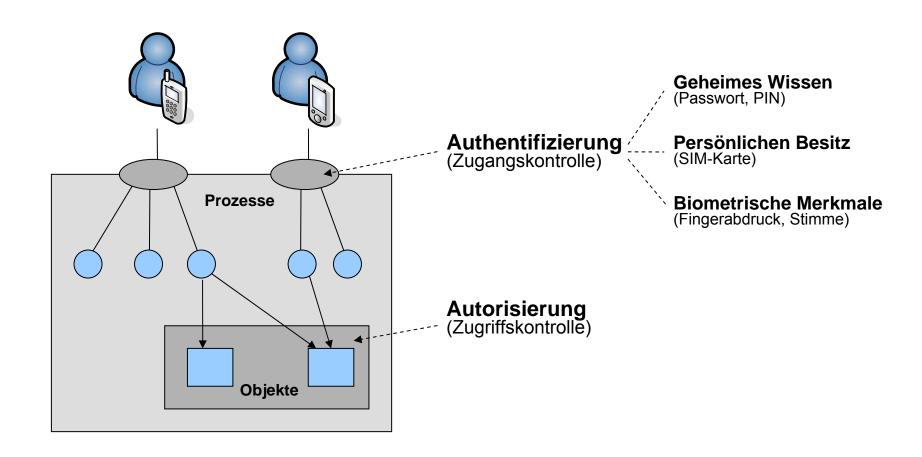
Gliederung

- Motivation
- Sicherheit
- Location-based Services
- Allgemeine Zugriffskontrollstrategien
- Zugriffskontrollstrategie f
 ür LBS
- Framework f
 ür mobile Ger
 äte
- Szenario
- Zusammenfassung
- Ausblick (3.Semester)



Motivation

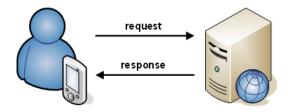
- Mobile Geräte werden immer leistungsfähiger
- Viele Einsatzmöglichkeiten in Unternehmen
- Durch Mobilität steigt Flexibilität
- Fragen:
 - Entstehen durch Kenntnis des Ortes neue Sicherheitsanforderungen?
 - Kann die Sicherheit durch Kenntnis des Ortes verbessert werden?


Sicherheit

[Eckert2001]

Sicherheit

[Eckert2001]



Location-based Services

 Unter 'Location Based Services' (LBS) sind standortbezogene Dienste zu verstehen. Diese stellen selektive Informationen mittels Zeit- und Positionsabhängiger Daten für den Nutzer zur Verfügung.

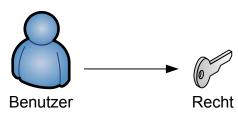
Kategorisierung:

Reaktive Dienste

Proaktive Dienste

[Schiller und Voisard, 2004] [Küpper, 2005]

Allgemeine Zugriffskontrollstrategien


- Jeder Zugriffsversuch soll kontrolliert werden und diese Kontrolle darf nicht umgangen werden. [Eckert2001]
- Bekannte Zugriffskontrollstrategien
 - DAC (Discretionary Access Control)
 - MAC (Mandatory Access Control)
 - RBAC (Role Based Access Control)

DAC (Discretionary Access Control)

- Benutzerbestimmbare Zugriffskontrollstrategie
- Jedem Objekt ist ein Subjekt als Besitzer zugeordnet. Dieser ist verantwortlich für Zugriffsrechtevergabe..

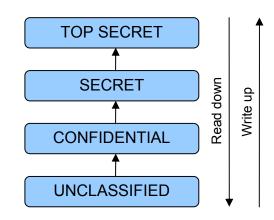
Zugriffskontrollisten

subjekt_name, zugriffsrechte

Nachteil:

Schlechte Skalierbarkeit

→In Umgebungen mit vielen Benutzern und verschiedenen Rechten problematisch (bei langen Listen aufwendiges, ineffizientes durchsuchen)


Allgemeine Zugriffskontrollstrategien

MAC (Mandatory Access Control)

- Systembestimmte Zugriffskontrollstrategie
- Zugriffsschutz über Vertraulichkeitsstufen (Jeder Benutzer erhält eine Freigabe für eine der Vertraulichkeitsstufen)
- (Basis = {Vertraulichkeitsstufen}

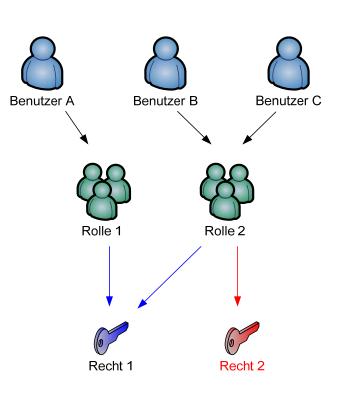
Regeln:

- Read-Down-Regel Vertraulichkeitsstufe[Objekt] <= Vertraulichkeitsstufe[Subjekt]
- Write-Up-Regel
 Vertraulichkeitsstufe[Objekt] >= Vertraulichkeitsstufe[Subjekt]

Nachteil:

Vertraulichkeitsstufen sind statisch

→ In Umgebungen mit häufig wechselnden Anforderungen zu unflexibel

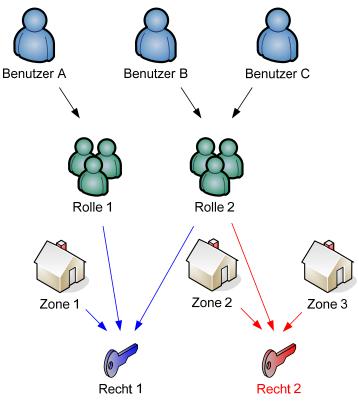

Allgemeine Zugriffskontrollstrategien

RBAC (Role Based Access Control)

- Rollenbasierte Zugriffskontrollstrategie
- Einem Subjekt werden (seinen Aufgaben entsprechend) Rollen zugewiesen
- Entkopplung der Benutzer von Rechten
- Rollenhierarchien sind möglich (geringerer Wartungsaufwand)
- Principle of Least Privilege nur so viele Rechte wie nötig

Vorteil: Bessere Skalierbarkeit

→ Sehr gut geeignet für Systeme mit einer großen Anzahl von Nutzern

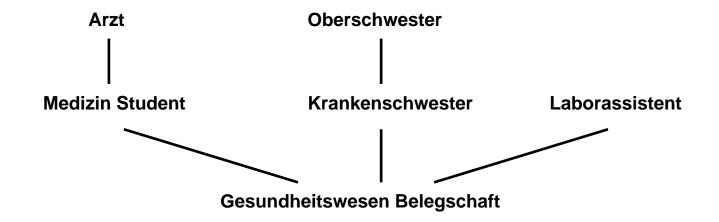


Zugriffskontrollstrategie für LBS

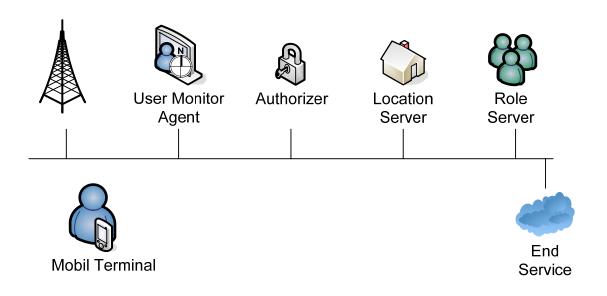
- SRBAC (Spatial Role Based Access Control)
 Ortsabhängige, rollenbasierte Zugriffskontrollstrategie
- Zugriffsbereichtigung zusätzlich zur Rolle noch vom Sicherheitskontext (Ort) abhängig
- Ort des Requests muss bekannt sein Verschiedene Orte müssen definiert werden

Vorteil: Bessere Skalierbarkeit

→ Sehr gut geeignet für Systeme mit einer großen Anzahl von Nutzern

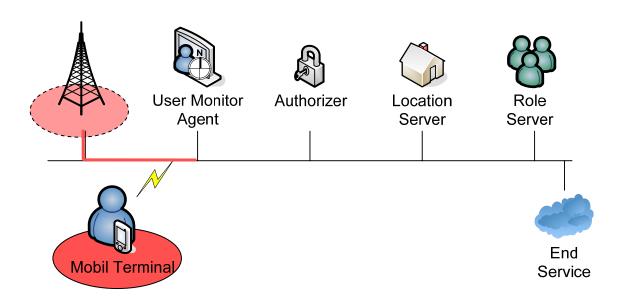


Zugriffskontrollstrategie für LBS

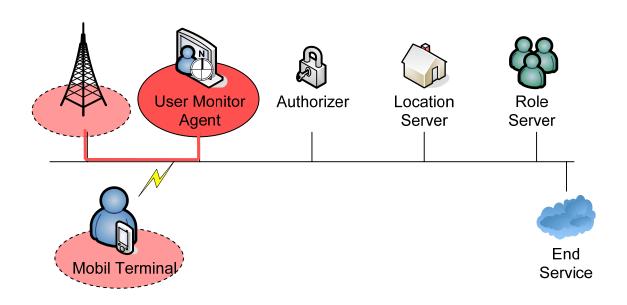

Beispiel: Ortsbezogene Rechtetabelle

Rollen	Orte	Rechte
Rolle1	Zone1	Recht1, Recht2, Recht3
Rolle1	Zone2	Recht4
Rolle1	Zone3	Ø

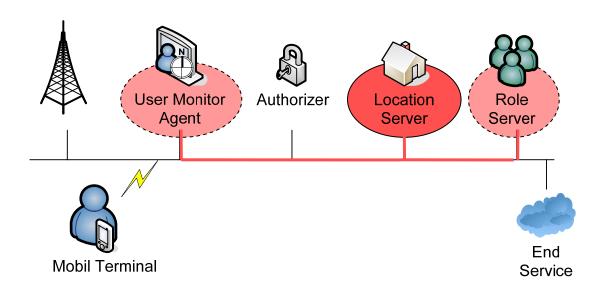
Beispiel: Rollenhierarchie



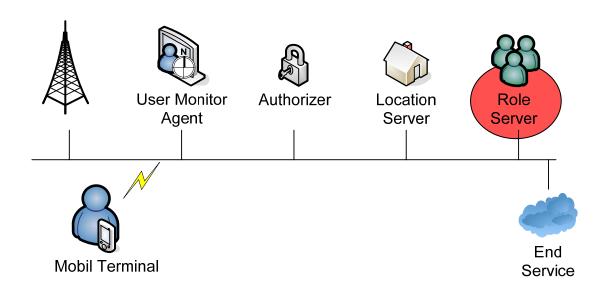
Framework für sicheren Zugriff auf Daten von mobilen Geräten


Mobile Termial

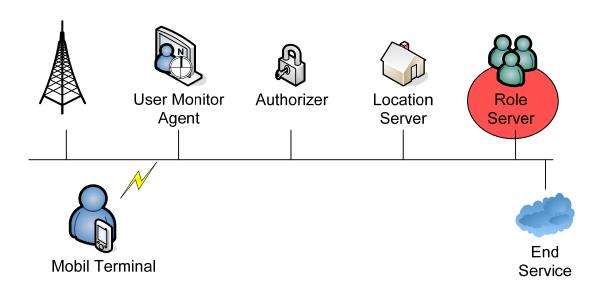
- Repräsentiert Benutzer des mobilen Gerätes
- Ausführungsumgebung kontrolliert laufende Dienste


User Monitor Agent

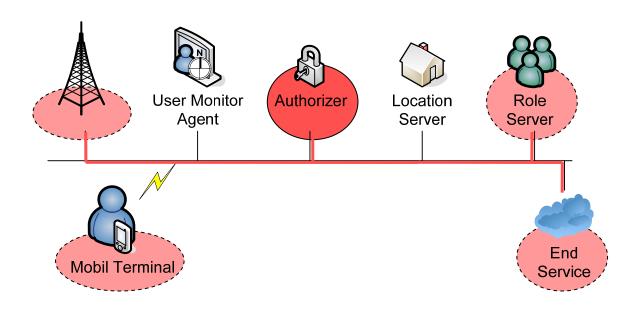
- Erfasst Position von aktiven Benutzern
- Daten werden von Locationssensoren der Geräte eingesammelt


Location Server

- Sammelt physikalische Positionsdaten von aktiven Benutzern vom ´User Monitor Agent`
- Informationen werden anschließend bei Änderung des Ortes an den `Role Server´ weitergegeben (location update message)

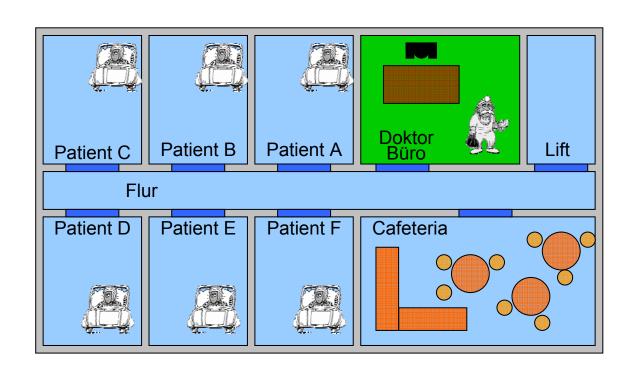

Role Server

- Beinhaltet Tabelle mit der Zuordnung der
 - Benutzer zu Rollen
 - Rechte zu Rollen
 - Einschränkungen der SRBAC-Komponente

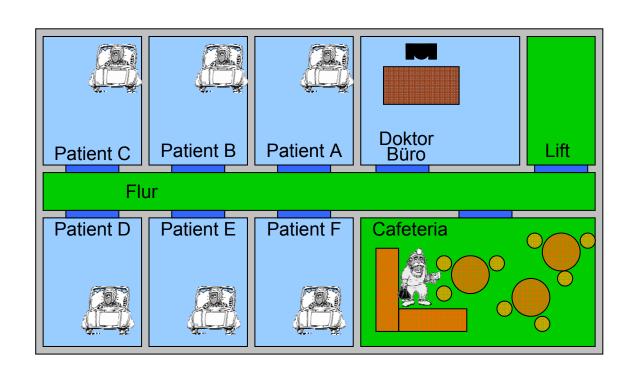

Authorizer

- Statusinformationen aktiver Rollen
- Empfängt die logischen Ortsinformationen vom `Location Server`
- Sendet einen aktuellen Rechtesatz an Authorizer

Authorizer

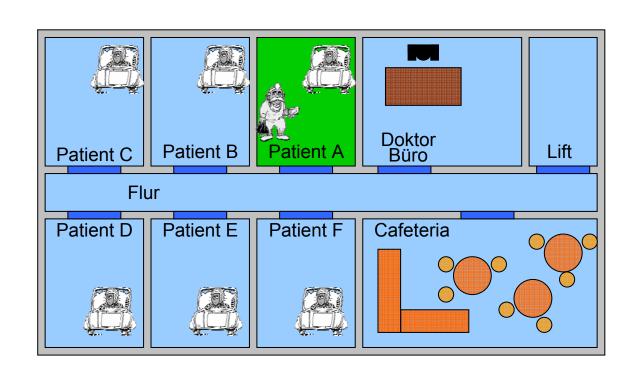

- Kümmert sich um Anfrage vom `Mobil Terminal`
- Fordert aktuellen Rechtesatz vom `Role Server` an
- Rechtesatz wird im Entscheidungsprozess verwendet

Doktor auf Visite



Doktor Büro

Zugriff auf alle Patientendaten - Daten lesen u. schreiben -



Flur / Cafeteria / Lift

Keine Patientendaten sichtbar

Raum Patient A

Teile der Patientendaten von Patient A - Daten lesen u. schreiben -

Zusammenfassung

 Entstehen durch Kenntnis des Ortes neue Sicherheitsanforderungen?

Nein. Bekannte Sicherungstechniken für Drahtlose Netzwerke können verwendet werden. (Eike) aber Im Bereich Privacy schon..

Kann die Sicherheit durch Kenntnis des Ortes verbessert werden?

Ja.

- Feingranularer (bestimmte Aktionen nur von bestimmten Orten)
- → nicht nur Identität / Gerät stehlen
- → Unschuldsnachweis wird erleichtert
- Im Beispiel Krankenhaus können Fehler vermieden werden (nicht versehentlich den falschen Patienten operieren..)

Ausblick (3.Semester)

- Projekt im 3. Semester
 - Mobiles mehrbenutzerfähiges tolles Spiel`
 - Vorläufiger Projektname: `Pervasive-Gaming Framework`
 - Spielidee: Schnitzeljagd

 Kompromiss aus verschiedenen Themenschwerpunkten (unter anderem Location Based Services)

Literatur

- [Eckert 2001] ECKERT, Claudia: IT-Sicherheit Konzepte-Verfahren-Protokolle. Oldenbourg Verlag München Wien, 2001
- [Küpper 2005] KÜPPER, Axel: Location-Based Services Fundamentals and Operation. John WILEY & Sons, Ltd., 2005
- [Hansen und Oleshchuk 2003] HANSEN, Frode; OLESHCHUK, Vladimir: Spatial Role-Based Access Control Model for Wireless Networks. In: IEEE (2003).
- [Hansen und Oleshchuk 2006] HANSEN, Frode; OLESHCHUK, Vladimir: Location-based Security Framework for use of Handheld Devices in Medical Information Systems. In: IEEE (2006).
- [Ferraiolo u. a. Apr. 2003] FERRAIOLO, David F.; KUHN, D R.; CHANDRAMOULI, Ramaswamy: Role-Based Access Controls. Artech House, Apr. 2003
- [Schiller und Voisard 2004] SCHILLER, Jochen; VOISARD, Agnés: Location-Based Services. Elsevier Inc. Morgan Kaufmann Publishers, 2004
- [Zhang u. a. June 2002] ZHANG, Longhua; AHN, Gail-Joon; CHU, Bei-Tseng: A Role-Based Delegation Framework for Healthcare Information Systems. In: ACM (June 2002)

• ...

Ende

Vielen Dank!

Fragen?