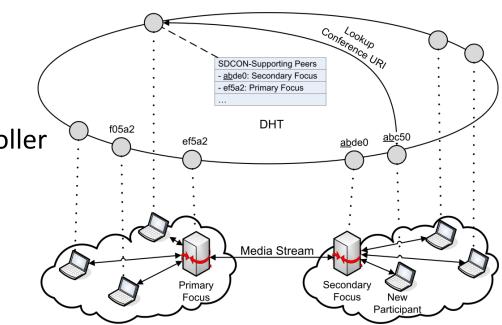


RELOAD – Usages for P2P Data Storage and Discovery

AW2-presentation from Alexander Knauf

Alexander.Knauf@Haw-Hamburg.de



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Review

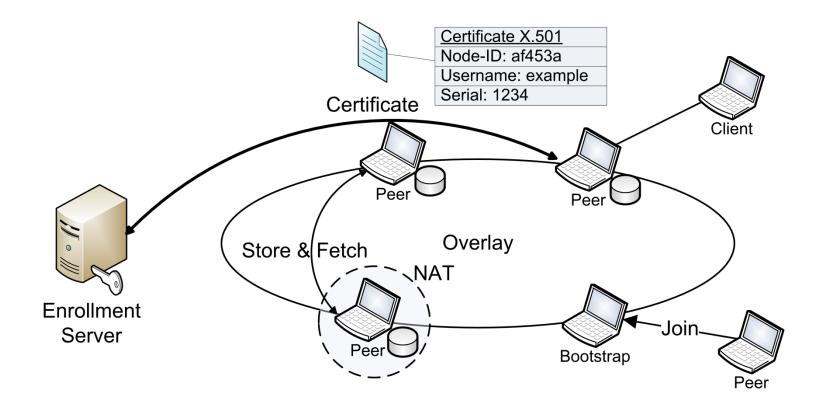
- Infrastructure Independent Conferencing:
 - Decentralized fashion
 - Multiple conference controller
 - Signaling with SIP
 - Connected through DHT
 - Proximity-aware
 - Mesh building

Outline

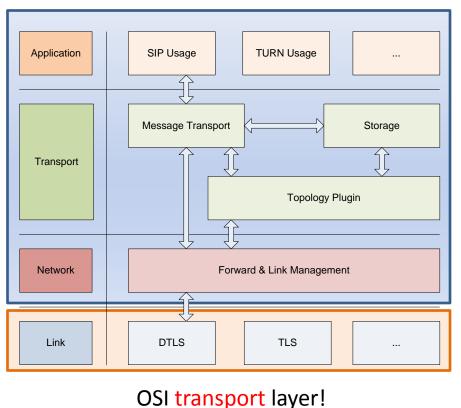
- Introduction into RELOAD
- RELOAD Usages
 - TURN advertisement
 - SIP Registration
 - Service Discovery
- Conclusion & Outlook

RELOAD Overview(1)

- RELOAD = REsource LOcation And Discovery
- (Defines)^{*} a signaling protocol for P2P networks
- Features:
 - Data storage and retrieval in a P2P network
 - Message and routing services
 - Designed for a variety of applications
 - Pluggable overlay algorithm
 - High security definitions
 - NAT and Firewall traversal


*Not a standard jet

RELOAD Overview(2)


RELOAD overlay instance: Functionality overview

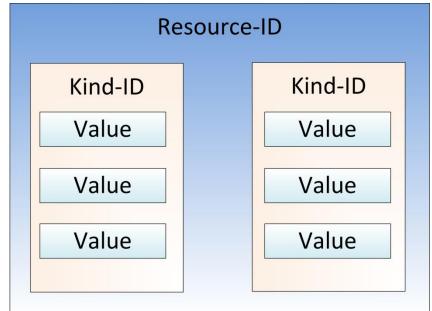
RELOAD Architecture

OSI application layer!

• Application:

- The application specific behaviors, called Usages
- Transport:
 - Defines messages(store, fetch, join, etc)
 - Defines storage types and permissions
 - Pluggable Overlay
- Network:
 - Creates, maintains and deletes connections

Link:


 Underlying secure transport protocols

Kind Definition

- Each stored data (called Resource) belongs to a Kind:
 - Resource-ID= Hash(Resource name), e.g. SIP URI
 - But: Other Resources with different Kinds may produce same Resource-ID!
 - Solution: Each Kind has its own Kind-ID
- Its up by the application to add new Kinds (data structures)

Usages

- "A usage is an application that wishes to use the overlay for some purpose" [1]
- A Usage must specify:
 - Kind-IDs registration
 - Kind data structure definition
 - Access Control Rule
 - How a Resource name is formed
 - Merge of data, if its partitioned on multiple nodes
 - Defines types of connections

TURN Usage(1)

- Problem: Many (if not most) peers behind NAT
- Solution: Communication through intermediate relay peer
 TURN = Traversal Using Relays around NAT)
- RELOAD Usage: Each overlay peer may act as TURN server

 After overlay join, a peer knows if it has an public IP
 if(IP==public):

for d in range('1', turnDensity)

store(TurnServerKind(hash(Node-ID+d)))

 Advertises this peer as TURN server "randomly" in the Overlay

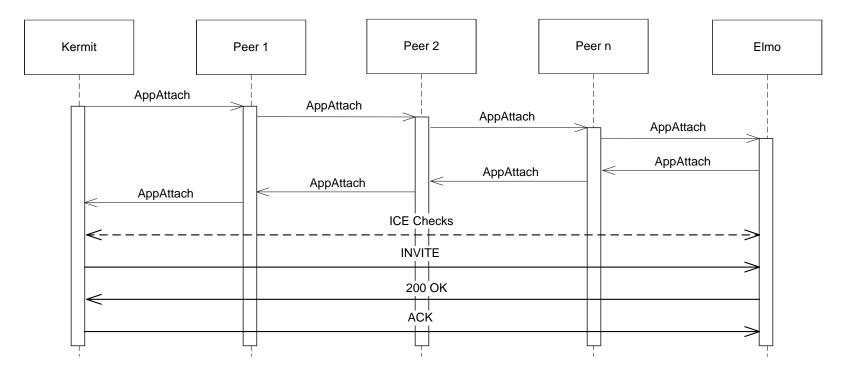
TURN Usage(2)

- Finding a TURN server (TS):
 - Peer uses a Find request messages
 - find(TURNServerKind (random (Resource-ID)))
 - Returns 0 if no TURN server is known
 - Returns the Resource-IDs for this Kind
 - Then a peer uses a Fetch request for the returned Resource-ID
- Because every peer with public IP will become TS, a random search will quickly succeed

SIP Usage(1)

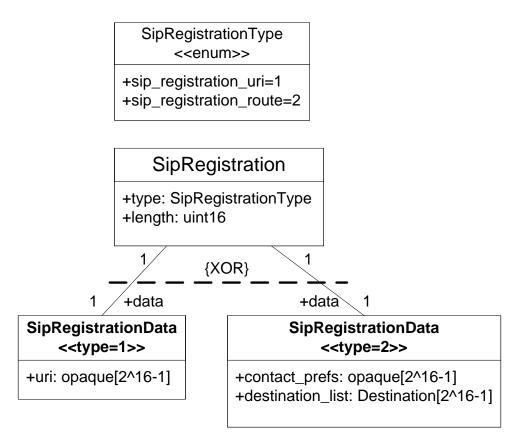
- Goal: Replace SIP registrars and proxies
- SIP Usage: Store mappings SIP URI → Node-ID
 - Example: *sip:elmo@muppets.com* → *e4f3a*
- User lookup:

fetch(SIPKind(hash('sip:elmo@muppets.com')))


- Returns: e4f3a
- Establishing a connection:
 - 1. Use RELOAD AppAttach request to set up a transport
 - 2. Establish SIP connection using this transport connection

SIP Usage(2)

- Establishing a SIP Dialog:
 - ICE Checks for NAT and Firewall traversal



SIP Usage(3)

- SIP Usage defines a new Kind data structure
- SipRegistration:
 - SIP URI as string

XOR

- Destination List with preferred contacts
- Note: a user can have multiple locations (Home, Office, etc..)

Service Discovery Usage(1)

- **Problem**: How to find a service in a RELOAD overlay?
 - Naive solution: Store all service-provider under well known Resource ID

 \rightarrow Scales linearly

 \rightarrow Owner of Resource ID may store an amount of data

 \rightarrow Requests could overload ID owner (\rightleftharpoons)

• Solution: Building service discover tree structures:

→Scales logarithmic

→Storage and requesting load distributed

Service Discovery Usage(2)

- Each service provided in the overlay is identified by its own namespace
- Service registration: hash(namespace, i, j), with i is the level (depth) of the tree and j Node-ID at this level
 - Example: hash('voice-mail', '1', 'ef3a1')
- Then, service provider stores mappings up and down the tree
 - Stops if: others IDs <= n.ID <= other IDs</p>

OR

- Stops if: its the only leaf in the tree
- Each leaf has its own peer responsible for a range of Node-IDs

Service Discovery Usage(3)

- Service lookup:
 - Fetch operation on hash('voice-mail', '1', '3af2b')
 - Analog: Queries the tree up and down
 - Repeat Fetch() until a node is found with the closest Node ID to the node searching for the service
- Then: Establish transport connection to this node and proceed application procedures

Conclusion & Outlook

- Conclusion:
 - RELOAD base protocol for P2P signaling
 - Ready to add new applications
 - Applications MUST define Usages, Kinds, etc..
 - Some Usages already defined
 - No Usage for conferencing
- Outlook:
 - RELOAD potential base for distributed conferencing
 - My draft writing had already begun \odot

Questions and Discussion

Thanks for your Attention!

RELOAD – Usages for P2P Data Storage and Discovery

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

References

- [1] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, "REsource Location And Discovery (RELOAD) Base Protocol", IETF, Internet-Draft work in progress 08, March 2010.
- [2] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, "A SIP Usage for RELOAD", IETF, Internet-Draft work in progress 04, March 2010.
- [3] J.Meanpe, G. Camarillo, "Service Discovery Usage for REsource LOcation And Discovery (RELOAD)" IETF, Internet-Draft work in progress 00, January 2010.

