

Steuerungsoptimierung eines autonomen Fahrzeugs mittels Reinforcement Learning

AW2 Präsentation SS2010

Ivo Nikolov

ivo.nikolov@haw-hamburg.de

- Motivation
- Related Work
 - Learning to Drive a Real Car in 20 Minutes
 - High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning
 - An Application of RL to Aerobatic Helicopter Flight
- Zusammenfassung und Ausblick

Motivation

- Motivation
- Related Work
 - Learning to Drive a Real Car in 20 Minutes
 - High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning
 - An Application of RL to Aerobatic Helicopter Flight
- Zusammenfassung und Ausblick

Learning to Drive a Real Car in 20 Minutes

Autoren:

- Martin Riedmiller: Neuroinformatics Group, Univ. of Osnabrueck
- Mike Montemerlo und Hendrik Dahlkamp: Al Lab, Stanford University

Vorgestellt:

Proceedings of the FBIT 2007 conference, Jeju, Korea

Ziel:

 steer a real robot car employing Reinforcement Learning (based on Neural Fitted Q Iteration)

Learning to Drive a Real Car in 20 Minutes

Q Learning and Neural Networks pros

- approximate a Q-Function for continuous state spaces
- nonlinear functions can be better approximated

cons

- theoretical convergence do not hold any more, although a lot of successful applications have been reported
- each update for one state-action pair might induce unforeseeable changes at the Q-values for other state-action pairs

Learning to Drive a Real Car in 20 Minutes

Fitted Q Iteration

Inputs: a set of four-tuples \mathcal{F} and a regression algorithm.

Initialization:

Set N to 0.

Let \hat{Q}_N be a function equal to zero everywhere on $X \times U$.

Iterations:

Repeat until stopping conditions are reached

$$-N \leftarrow N+1$$
.

- Build the training set $\mathcal{TS} = \{(i^l, o^l), l = 1, \dots, \#\mathcal{F}\}$ based on the function \hat{Q}_{N-1} and on the full set of four-tuples \mathcal{F} :

$$i^{l} = (x_{t}^{l}, u_{t}^{l}),$$

 $o^{l} = r_{t}^{l} + \gamma \max_{u \in U} \hat{Q}_{N-1}(x_{t+1}^{l}, u).$

- Use the regression algorithm to induce from TS the function $\hat{Q}_N(x,u)$.

Learning to Drive a Real Car in 20 Minutes

- Neural Fitted Q Iteration (NFQ)
 - update the Q Function off-line considering the entire set of transition experiences
 - more advanced supervised learning techniques can be used
- Learning cycle
 - data is collected as (s, a, s`)
 - NFQ approximates a Q Function
 - greedy exploit the new Q Function (exploration can be added)

Learning to Drive a Real Car in 20 Minutes

- ▶ The RL Controller for Steering
 - costs

$$c(s,u) = \left\{ \begin{array}{rl} 0 & , & \text{if } |cte| < 0.05m \text{ (success)} \\ +1 & , & \text{if } |cte| > 0.5m \text{ (failure)} \\ 0.01 & , & else \end{array} \right.$$

- inputs: cross track error, velocity, heading error ...
- Q function and policy

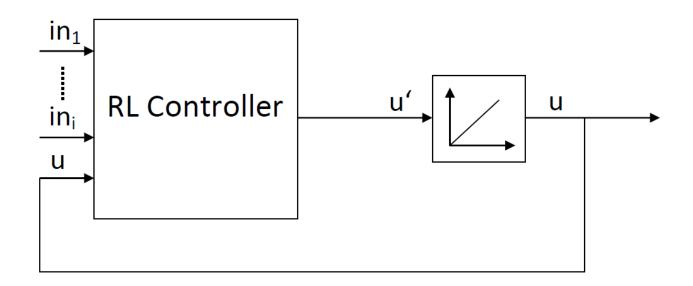
$$\pi(s) = \arg\min_{u} Q(s, u)$$

a discretisation of actions with I-DOE

$$U' = \{\pm 60^{\circ}, \pm 10^{\circ}, 0\}$$

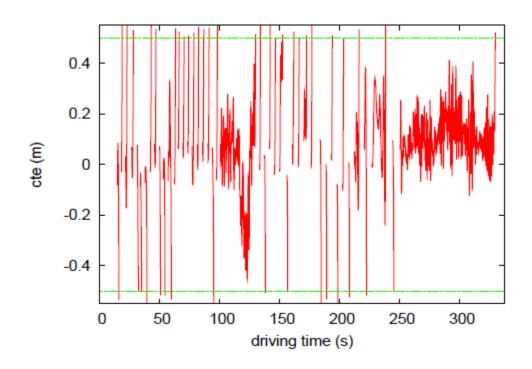
Learning to Drive a Real Car in 20 Minutes

I-DOE (dynamic output elements)



Learning to Drive a Real Car in 20 Minutes

▶ Results



- Motivation
- ▶ Related Work
 - Learning to Drive a Real Car in 20 Minutes
 - High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning
 - An Application of RL to Aerobatic Helicopter Flight
- ▶ Zusammenfassung und Ausblick

High Speed Obstacle Avoidance ...

Autoren:

▶ Jeff Michels, Ashutosh Saxena, Andrew Y. Ng: Computer Science Department, Stanford University, Stanford

Vorgestellt:

 Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005

Ziel:

 driving a remote control car at high speeds through unstructured outdoor environments

High Speed Obstacle Avoidance ...

model the RC car control problem as a Markov decision process (MDP) with

$$R(s) = -|v_{desired} - v_{actual}| - K.Crashed$$

 learn the parameters of the control policy using PEGASUS policy search algorithm

 θ_1 : σ of the Gaussian used for spatial smoothing of the predicted distances

 θ_2 : if $\hat{d}_i(\alpha_{chosen}) < \theta_2$, take evasive action rather than steering towards α_{chosen}

 θ_3 : the maximum change in steering angle at any given time step

 θ_4 , θ_5 : parameters used to choose which direction to turn if no location in the image is a good steering direction (using the current steering direction and the predicted distances of the left-most and right-most stripes of the image).

 θ_6 : the percent of max throttle to use during an evasive turn

14 Ivo Nikolov 02.06.2010

High Speed Obstacle Avoidance ...

PEGASUS

- transform a MDP into an "equivalent" one that has only deterministic transitions
- find a good policy π of a policy class \prod for the transformed MDP
- If the action space is continuous and \prod is a smoothly parameterized family of policies, a gradient ascent methods can be used to optimize π

15 Ivo Nikolov 02.06.2010

- Motivation
- ▶ Related Work
 - Learning to Drive a Real Car in 20 Minutes
 - High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning
 - An Application of RL to Aerobatic Helicopter Flight
- Zusammenfassung und Ausblick

An Application of RL to Aerobatic Helicopter Flight

Autoren:

Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng: Computer Science Department, Stanford University, Stanford

Ziel:

autonomous completion on a real RC helicopter of four aerobatic maneuvers

17 Ivo Nikolov 02.06.2010

An Application of RL to Aerobatic Helicopter Flight

Learning a Model

- Data Collection using the Apprenticeship Learning Algorithm
- Learn a Model that predicts accelerations as a function of the current state and inputs

Controller Design

- Linear quadratic regulator (LQR)
- Differential dynamic programming (DDP)

An Application of RL to Aerobatic Helicopter Flight

Linear quadratic regulator (LQR) control problem is a special class of MDPs(S, A, T, H, s(0), R) and a dynamics model is given by:

$$s(t+1) = A(t)s(t) + B(t)u(t) + w(t)$$

The reward for being in state s(t) and taking action/input u(t) is given by:

$$-s(t)^{T}Q(t)s(t) - u(t)^{T}R(t)u(t)$$

An Application of RL to Aerobatic Helicopter Flight

Differential dynamic programming (DDP) approximately solves general continuous state-space MDPs by iterating the following two steps:

- I. Compute a linear approximation to the dynamics and a quadratic approximation to the reward function around the trajectory obtained when using the current policy.
- 2. Compute the optimal policy for the LQR problem obtained in Step I and set the current policy equal to the optimal policy for the LQR problem.

- Motivation
- ▶ Related Work
 - Learning to Drive a Real Car in 20 Minutes
 - High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning
 - An Application of RL to Aerobatic Helicopter Flight
- Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

- Related Work
- Ausblick
 - Projekt I
 - Proekt 2

Vielen Dank für die Aufmerksamkeit!

23 Ivo Nikolov 02.06.2010

References

[1] Martin Riedmiller, Mike Montemerlo, Hendrik Dahlkamp: Learning to Drive a Real Car in 20 Minutes, Proccedings of the FBIT 2007 conference, Jeju, Korea [2] Damien Ernst, Pierre Geurts, Louis Wehenkel: Tree-Based Batch Mode Reinforcement Learning [3] Martin Riedmiller: Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method [4] Je Michels, Ashutosh Saxena, Andrew Y. Ng: High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning. Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005 Andrew Y. Ng, Michael Jordan: PEGASUS: A policy search method for large MDPs and **POMDPs** [5] [6] Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng: An Application of Reinforcement Learning to Aerobatic Helicopter Flight [7] Brian D. O. Anderson, John B. Moore: Optimal Control-Linear Quadratic Methods [8] Stanford University, Autonomous Helicopter Project: http://heli.stanford.edu/ [9] Carolo Cup 2010 Faust Videos: http://www.youtube.com/results?search_guery=carolo+cup+2010+faust&ag=f