

Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Project paper 1

SoSe2013

SW

W

Florian Johannßen

NAO in the cloud

1

Florian Johannßen

Florian.Johannssen@haw-hamburg.de

Thema

Nao in the cloud

Stichworte

 Knowledge sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System

Kurzzusammenfassung

Diese Projektausarbeitung berichtet über erste praktische Erfahrungen mit dem Thema

„Knowledge sharing for robots via cloud services“, welches im Rahmen der

Masterarbeit bearbeitet wird. Die Thesis verfolgt einen Wissensaustausch zwischen

den humanoiden Nao Robotern über cloud services, um deren Lernmeachanismen zu

verbessern. Damit die Nao Roboter mit der cloud kommunizieren können, wird im

Rahmen des Projektes eine Archtektur erarbeitet, welche von den Hardware-

Eigenschaften der Roboter abstrahiert und Mechanismen bereitstellt, um auf

Informationen des cloud service RoboEarth zuzugreifen. Diese Arbeit führt zwei

Experimente mit der Architektur durch, um erste Testergebnisse mit den

Komponenten, Schnittstellen und Abstraktionsschichten zu erzielen.

Florian Johannßen

Title of the paper

 Nao in the cloud

Keywords

 Knowledge sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System

Abstract

This paper presents the first practical experiences with the topic “Knowledge sharing

for robots via cloud services” which is part of the master thesis. The intention of the

thesis is to describe a knowledge sharing among several humanoid Nao robots for

improving their learning mechanism with the aid of cloud services. This project

introduces an architecture for providing a cloud-enabled Nao robot which is able to

access information from the cloud service RoboEarth. Besides, it shows some tests to

get experiences with the components and middlewares of the architecture.

mailto:Florian.Johannssen@haw-hamburg.de

2

Table of content
1 Introduction .. 3

1.1 Motivation ... 3

1.2 Vision ... 3

2 Infrastructure .. 4

2.1 Architecture ... 4

2.2 Operating system ... 5

2.3 Nao SDK .. 5

2.4 Middleware .. 6

2.5 Stacks ... 6

3 Experiments .. 9

3.1 Nao controlling via ROS-Wrapper .. 10

3.2 Definition of abstract plans with TurtleSim .. 11

4 Evaluation ... 12

5 Outlook ... 12

6 Conclusion .. 12

List of figures ... 13

List of tables ... 13

References .. 14

3

1 Introduction

1.1 Motivation

The Internet has become one of the most important communication media. It provides the

opportunity to publish and retrieve knowledge globally. We are able to solve unknown tasks

efficiently and share knowledge with other people. If you are involved in the research area of

robotics, it would be preferable to apply this paradigm to robots. Nowadays, companies like

Aldebaran Robotics
1
 and Willow Garage

2
 are able to deliver wireless capable and

programmable robots with abstract interfaces. The specific tasks, such as face recognition,

voice recognition and path planning are mostly solved. Thus the preconditions have been

created to connect robots with the internet. Kuffner [1] and Quintas et al. [2] have introduced

the topic Cloud Robotics. This idea provides a physical separation between the hardware and

software components of the robot. The conventional hardware devices of a robot, such as

sensors, actuators, cameras and speakers are still on the robot. The difference to the usual

approach, which designs the software on the robot, is that the brain of the robot is outsourced

to remote servers. This approach can be used as in Inaba [3] to outsource time consuming

tasks on powerful remote servers. In addition, it offers the possibility that robots communicate

with each other to improve their learning mechanism. The idea of knowledge sharing for

robots describes the problem how to exchange information between heterogeneous robots to

benefit from the experience of others.

1.2 Vision

The concrete target of my master thesis [4] deals with the realization of the still unexplored

approach of knowledge sharing for robots via cloud services. It explores how heterogeneous

robots are able to improve their learning behavior with exchanging knowledge via cloud

services and it presents the challenges which have to be solved. Firstly, the practical part of

the thesis will handle this topic with two homogenous robots which are connected with a

cloud service for downloading and executing robot plans. The Nao
3
 robot and the cloud

service RoboEarth will be used for the implementation. The master thesis will include the

implementation of an interface between the humanoid robot Nao and the RoboEarth
4
 cloud

service as well as the realization of a scenario in which several Nao robots download and

execute information from the cloud service.

1
 http://www.aldebaran-robotics.com

2
 http://www.willowgarage.com

3
 http://www.aldebaran-robotics.com/en/Discover-NAO/videos-gallery.html

4
 http://www.roboearth.org

http://www.aldebaran-robotics.com/
http://www.aldebaran-robotics.com/en/Discover-NAO/videos-gallery.html

4

This project realizes the preconditions to connect the Nao robot with the cloud. It explores

and evaluates the required components for implementing this approach.

2 Infrastructure

This chapter describes the components and interfaces which are needed to connect the Nao-

Platform with the cloud service RoboEarth.

2.1 Architecture

One of the main problems of the robots is, that they are limited in many ways. The computing

power and hardware resources are bounded by costs and their physical properties. Moreover,

robots are usually on one´s own and only programmed for one specific area. So the behavior

of the robot is greatly limited by inflexible programming. The standard SDK
5
 of a robot

doesn´t provide solutions for sharing executable information with heterogeneous robots. The

figures [1] and [2] present an architecture which provides a knowledge sharing among

different robot platforms with the aid of cloud services to solve this problem.

Figure 1: Robots in the cloud [5,6,7]

Firstly, we implement this scenario only with the Nao robot to avoid problems because of the

heterogeneity of the robots.

5
 Software Development Kit

5

The required components and middlewares which provide a cloud-enabled Nao are already

installed on each laptop. The robots communicate with the cloud by accessing this

infrastructure on a remote laptop. It is possible to install these components directly on the Nao

robot as well to avoid this extra node, but the remote connected approach is more secure.

The next figure shows the components and middlewares which are installed on the laptop and

it provides an architecture to connect the Nao robot with the cloud service RoboEarth. These

components and middlewares will be described in the following chapters.

Figure 2: Architecture

2.2 Operating system

The open source operating system Ubuntu 12.04 is already installed on the laptop for the

practical experiments, because it is superior compatible with the other components than other

operating systems like Windows or Mac OS X.

2.3 Nao SDK

The humanoid robot Nao by Aldebaran Robotics provides the NaoQi
6
 SDK. This includes a

programming interface to develop applications with different programming languages like

C++, Java or Python. With the aid of NaoQi, developers are able to control the Nao hardware

components. The experiments are executed using the NaoQi SDK 1.12.5. The core of the

NaoQi SDK represents the main broker which acts as a server on the robot.

6
 http://www.aldebaran-robotics.com/documentation/dev/naoqi/index.html

Ubuntu

ROS

KnowRob

CRAM-Core
RoboEarth

Nao

Wrapper

NaoQi

http://www.aldebaran-robotics.com/documentation/dev/naoqi/index.html

6

Aldebaran Robotics [8] presents this framework which includes several modules to access the

joints, face recognition and other functions. The main broker decides which modules should

be executed. Figure 3 shows the main broker with most of the Nao modules.

Figure 3: NaoQi [8]

2.4 Middleware

The first target of the master thesis deals with knowledge sharing among homogeneous Nao

robots. Furthermore, this approach should be applied on heterogeneous robots with different

capabilities and hardware resources. An abstraction layer over the robot specific hardware is

needed to satisfy this requirement. I have evaluated some middlewares like Microsoft

Robotics Developer
7
 Studio and ROS

8
 by Willow Garage. ROS has been chosen as preferred

abstraction layer because of the popularity and the support of many different robot platforms.

With the aid of ROS, it is possible to command the robot to walk from place A to place B

without thinking about which walking algorithm will be used. This meta operating system is

extendable with modules, called stacks. There are modules for many robots like Nao,

TurtleBot
9
 or PR2

10
.

2.5 Stacks

Due to the modularity of ROS we are able to install different stacks for our requirements. This

chapter describes the ROS-Stacks which are used and how they communicate with each other.

7
 http://www.microsoft.com/robotics

8
 Robot Operating System: http://www.ros.org

9
 http://turtlebot.com

10
 http://www.willowgarage.com/pages/pr2/overview

http://www.ros.org/
http://www.willowgarage.com/pages/pr2/overview

7

Nao-Wrapper

Firstly, we have installed an abstraction layer over the NaoQi SDK. This Stack is developed

by the University of Freiburg [9] and wraps the NaoQi API in Python to control the Nao robot

on an abstract level. The Nao-Stack provides access to the sensors, odometry, cameras,

teleoperation and speech recognition. Besides, it is possible to manipulate the joints of the

Nao. The Nao-Wrapper mainly includes the following packages:

Nao package Description

nao_robot Provides basic functionality to access odometry, cameras, sensors and joints

humanoid_msg Includes some basic services for humanoid robot navigation

nao_common Contains tools to run the Nao robot remotely on the PC. It provides mechanisms

to monitor the joints and odometry remotely.

Table 1: Nao-Wrapper packages

RoboEarth

Zweigle et al. [10] introduced RoboEarth which represents a World Wide Web for robots.

This cloud service can be used by heterogeneous robots to share information among each

other. Due to RoboEarth robots are able to share information and experiences about objects,

actions and environments. This work aims to realize a knowledge sharing among Nao robots

with the aid of the RoboEarth-Stack which is integrated in ROS, which is shown in figure 4.

Figure 4: RoboEarth-Stack [11]

8

It contains packages for object scanning, object detection and interfacing RoboEarth. Note,

that the packages re_comm and re_ontology are mainly relevant for the master thesis.

RoboEarth package Description

re_comm Provides an interface to download, upload, update and delete

action recipes, object models and environments.

re_ontology Contains the base RoboEarth ontology. The OWL ontology

extends KnowRob with detailed descriptions of actions and

objects which are required for RoboEarth.

re_object_recoder Provides a user interface to create, store and upload object

models using a Kinect camera.

re_object_detector_gui Represents a user interface to download object models from the

RoboEarth database.

Table 2: RoboEarth packages

KnowRob

This component is developed by Tenorth [12] and represents a robotic framework to acquire

and to reason about robot specific knowledge. With the aid of KnowRob, robots are able to

send semantic requests for a plan to the database. If a robot sends a request for a plan like

grasping a bottle to RoboEarth, KnowRob scans the database. Furthermore the KnowRob

component checks the capabilities of the robot against the requirements of the task and

generates the CRAM plan for the requested task. Besides, the KnowRob component reasons

for example that milk is drinkable and can be found in the fridge. If a robot doesn´t find milk

in the kitchen it can request KnowRob for assistance. The next table shows the most

important subpackages:

RoboEarth package Description

ros_prolog Represents a simple ROS-Wrapper around swi-prolog

ias_knowledge_base Includes the KnowRob ontology which is defined in the Ontology

Web Language (OWL)

knowrob_common Contains utilities to handle OWL-files

knowrob_objects/

actions/ enviroments

Provides basic functionality to access and to handle objects,

actions and environments

mod_vis Visualization

mod_srdl Includes descriptions of robot components and capabilities to

match these against requirements of actions

Table 3: KnowRob packages

http://www.ros.org/wiki/ias_knowledge_base?action=fullsearch&context=180&value=linkto%3A%22ias_knowledge_base%22

9

CRAM Plan Language

Beetz et al. [13] have developed the Cognitive Robotic Abstract Machine Plan Language

which extends the functional programming language Common Lisp to describe abstract robot

control programs. The KnowRob component is able to translate the abstract plan from the

RoboEarth database like grasp a bottle to the CRAM Plan Language. CRAM is also providing

a ROS-Stack by Mösenlechner [14] which is called cram_core. It includes the following

substacks:

RoboEarth package Description

cram_language Represents a Common Lisp extension to program abstract robot

plans

cram_reasoning Includes a full-featured Prolog interpreter which is implemented

in Common Lisp and provides algorithms for pattern recognition

cram_designators Provides meta information about objects and actions

cram_process_modules Represents the interface to a specific robot

Table 4: CRAM packages

3 Experiments

During the project I have processed some experiments to make the first experiences with the

ROS-middleware and the several stacks.

Figure 5: Roscore

The roscore is a standard process. It is launched by using the roscore command and includes a

collection of nodes and programs which are required for a ROS-based system. You have to

start the roscore before you execute the other stacks.

http://www.ros.org/wiki/Nodes

10

3.1 Nao controlling via ROS-Wrapper

The first experiment aims to connect and control a simulated Nao robot with the Nao-ROS-

Wrapper. Before we connect the Nao-Wrapper with the NaoQi broker, we have to start the

NaoQi process in figure 6.

Figure 6: NaoQi-Broker

When the main broker is started on port 9559, it also starts several modules which are listed in

figure 6. The next figure shows the output after starting the process Nao-Wrapper which joins

the main broker of the NaoQi framework.

Figure 7: Nao-Wrapper

11

After starting the Nao-Wrapper we are able to control the Nao robot with ROS commands.

We can move the Nao robot in the x-direction with the next command.

$ rostopic pub -1 /cmd_vel geometry_msgs/Twist

'{linear: {x: 1.0, y: 0.0, z: 0.0}'

The command rostopic pub is defined with the syntax: <topic-name> <topic-

type> data. So, the coordinates will be sent to the topic cmd_vel. Topics represents

named channels over which ROS-processes exchanging messages. You can monitor the

values of the torso and the joints with the echo package of the rostopic command.

$ rostopic echo /torso_odometry

$ rostopic echo /joint_states

3.2 Definition of abstract plans with TurtleSim

The second experiment deals with the definition of abstract plans in the CRAM plan language

for the simple robot simulator TurtleSim
11

. TurtleSim provides a simple simulator for

teaching ROS concepts. We have chosen rosemacs as REPL
12

 to implement CRAM plans.

This is an emacs extension for the ROS-middleware. So, it is possible to execute ROS-

commands like roscore or rosrun directly from emacs. We can start rosemacs with the

ROS-command rosrun roslisp_repl repl.

Firstly, I have created an ASDF
13

 project. ASDF provides mechanisms to organize and to

build a Lisp project. This project imports the packages roslisp, cram_language and

turtlesim_msg. The following command can be used to compile the project in the REPL

rosemacs.

(ros-load:load-system "cram_tutorial" :cram-tutorial)

Before we start the TurtleSim simulator, we have to start the roscore again. With aid of

rosemacs, we can start the TurtleSim ROS-process with the following command.

(start-ros-node "cram_tutorial_client")

The next step is to define a simple plan for moving the Turtlesim. This is implemented

directly in rosemacs as a top level plan which shows the next code lines.

(def-plan move-to (goal &optional)

 ...

Now, we are able to move the simulated robot TurtleSim with the CRAM Plan Language.

11

 http://www.ros.org/wiki/turtlesim
12

 Read-Eval-Print-Loop
13

 Another System Definition Facility

http://www.ros.org/wiki/turtlesim

12

4 Evaluation

The performed experiments generated first results to provide a cloud-enabled Nao. The first

test was designed for controlling the NaoQi SDK with ROS commands. The access of the

Nao specific programming interface was very comfortable with the abstract ROS commands

of the Nao-Wrapper. I was able to control the Nao to an exact position and I received the

coordinates of the torso and joints during the walk. On the other hand, with the added

middleware some latitude will be lost to program the Nao robot. Finally, the Nao-Wrapper is

well integrated in ROS and satisfies my requirements to provide a knowledge sharing.

The second experiment tested the compatibility of the CRAM Plan Language with the ROS

middleware. With the aid of the REPL rosemacs, it’s very easy to adapt top level plans to the

ROS abstraction layer.

5 Outlook

The experiments of this project have shown that it is possible to program abstract CRAM plan

for the ROS middleware. The next part of my work will include the implementation of an

interface between the Nao-Wrapper and the RoboEarth cloud service. In the next project [4] I

will implement a process module which provides an interface to receive CRAM plans from

RoboEarth and map these instructions to the Nao specific ROS commands. Besides, some

experiments will show the usability and correctness of the process module.

6 Conclusion

This work presented the first practical experiences with the topic “Knowledge sharing for

robots via cloud services”. The target of the master thesis is to realize this approach with the

aid of the humanoid robot Nao and the cloud service RoboEarth. This project introduced an

architecture which provides a cloud-enabled Nao robot. It described the robotic middleware

ROS which represents an abstract layer over the Nao specific hardware. Besides, it introduced

the required ROS-Stacks Nao-Wrapper, RoboEarth, CRAM-Core and KnowRob which are

needed to connect the Nao robot with RoboEarth. Furthermore, it included two experiments

which tested the compatibility of the Nao-ROS-Wrapper with the CRAM Plan Language.

This language will be used for the next project to download and to execute abstract plans from

RoboEarth on the Nao robot. Finally, it showed the next working steps in an outlook.

13

List of figures

Figure 1: Robots in the cloud ... 4

Figure 2: Architecture .. 5

Figure 3: NaoQi .. 6

Figure 4: RoboEarth-Stack ... 7

Figure 5: Roscore ... 9

Figure 6: NaoQi-Broker ... 10

Figure 7: Nao-Wrapper .. 10

List of tables

Table 1: Nao-Wrapper packages .. 7

Table 2: RoboEarth packages ... 8

Table 3: KnowRob packages .. 8

Table 4: CRAM packages .. 9

14

References

1. J. Kuffner. Robots with their Heads in the cloud. 2011

2. J. Quintas, P. Menezes, J. Dias. Cloud Robotics: Towards context aware Robotic Network.

2011

3. M. Inaba. Remote Brained Robots. Tokio. 1993

4. F. Johannßen. Knowledge sharing for robots. 2013

5. https://kforge.ros.org/turtlebot/trac/chrome/site/turtlebot320.png (Access on 10.05.2013)

6. http://ftp.isr.ist.utl.pt/pub/roswiki/attachments/Robots(2f)Husky/husky-a200-unmanned-

ground-vehicle-render.jpg (Access on 10.05.2013)

7. http://asep-championship.com/wp-content/uploads/2011/11/NAO-4_cutout.png

(Access on 10.05.2013)

8. http://www.aldebaran-robotics.com/documentation (Access on 10.05.2013)

9. http://www.ros.org/wiki/Robots/Nao (Access on 10.05.2013)

10. O. Zweigle, R. Molengraft, R. d´Andrea, K. Häussermann. RoboEarth – connecting

Robots worldwide

11. http://www.ros.org/wiki/roboearth_stack (Access on 10.05.2013)

12. http://www.ros.org/wiki/knowrob (Access on 10.05.2013)

13. M. Beetz, L. Mösenlechner, M. Tenorth. CRAM - A Cognitive Robot Abstract Machine

for Everday Manipulaiton in Human Enviroments. 2010.

14. http://www.ros.org/wiki/cram_core (Access on 10.05.2013)

15. M. Quigley et al. ROS: an open-source Robot Operating System. 2010

https://kforge.ros.org/turtlebot/trac/chrome/site/turtlebot320.png
http://asep-championship.com/wp-content/uploads/2011/11/NAO-4_cutout.png
http://www.ros.org/wiki/Robots/Nao
http://www.ros.org/wiki/roboearth_stack
http://www.ros.org/wiki/knowrob
http://www.ros.org/wiki/cram_core

