
Loosely Coupled Communication
in Actor Systems

Raphael Hiesgen
raphael.hiesgen@haw-hamburg.de

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

January 6, 2014

Motivation

Internet of Things (IoT)
Vulnerable
Low-powered & lossy connections

Internet-wide systems
Software should scale on demand
No downtime due to failure of subsystems
Dynamic, world-wide deployment

Unknown when the code is written

Raphael Hiesgen iNET – HAW Hamburg 2

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 3

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) new actors
Can monitor other actors

Raphael Hiesgen iNET – HAW Hamburg 4

Benefits
High-level, explicit communication: no locks, no implicit sharing
Applies to both concurrency and distribution

Divide workload by spawning actors
Interact via network-transparent messaging
Run transparently on heterogenous hardware

Failure semantics
Links / Monitors
Hierarchical error management
Re-deployment at runtime

alice

exit message
(non-normal exit reason)

link

bob

quit()

Raphael Hiesgen iNET – HAW Hamburg 5

Implementations

Erlang
Designed by Joe Armstrong at Ericsson in 1986
De-facto implementation of the actor model
Wide-spread use
Inspired other implementations

Akka
Library for Scala based on the actor model
Initiated by Jonas Bonér in 2009
Developed by Typesafe Inc.
Included in the standard library

libcppa

Raphael Hiesgen iNET – HAW Hamburg 6

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 7

Features

Developed by iNET working group at the HAW
libcppa is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing

Embedded HW, e.g., running (http://www.riot-os.org)
Large multi-core systems

Uses internal DSL for pattern matching of messages
Transparent integration of OpenCL-based actors

Raphael Hiesgen iNET – HAW Hamburg 8

Example
void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 return make_cow_tuple(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

Raphael Hiesgen iNET – HAW Hamburg 9

Linking Actors
void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

Raphael Hiesgen iNET – HAW Hamburg 10

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 11

Characteristics

No global state
Orchestration of independent systems
Highly scalable

Performance depends on cores / nodes
Dynamic acquisition of resources based on demand

Facade-like interfaces
Unknown implementation
Based on message content

Suitable for long-distance traffic
Unreliable connections
Changing topology
Tolerant to interference
Asynchronous

Raphael Hiesgen iNET – HAW Hamburg 12

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 13

Safest

Cooperation between:
France & Germany
Daviko, Forschungsforum Öffentliche Sicherheit, Fraunhofer
FOKUS, FU Berlin, HAW Hamburg, INRIA, SAGEM

Deployed at the airport Berlin Brandenburg

Raphael Hiesgen iNET – HAW Hamburg 14

Safest

Area surveillance system
Resilient against malfunctions of components
Respect privacy of citizens
Distributed collection of anonymized data
Stepwise evaluation towards central event processing
Alerts the operator and/or the general public

Nodes run & libcppa
High-Level modeling & development in the actor model
Development & tests on desktop systems
Seamless deployment to nodes

Raphael Hiesgen iNET – HAW Hamburg 15

Publish/Subscribe

Scalability
Decoupled in space / time
Easy way to deploy redundancy
Examples:

Multicast
Information Centric Networking
Key-value storage

Raphael Hiesgen iNET – HAW Hamburg 16

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 17

Challenges
Security

Verify identity of participants
Ensure integrity of received messages
Obtain robustness
Find solutions for a decentralized system
Changes have local impact

Raphael Hiesgen iNET – HAW Hamburg 18

Challenges
Fault-tolerance

Implement monitors/links for different scenarios
Multicast
Internet-wide systems
Low-powered & lossy connections

Handle unreliable connections
Deploy reliable services

Raphael Hiesgen iNET – HAW Hamburg 19

Challenges
Communication

Communicate with unknown systems
Rendezvous processes

Minimize communication overhead
Failures in pub/sub environments
Error propagation in non-hierarchical actor systems

Raphael Hiesgen iNET – HAW Hamburg 20

Agenda

1 The Actor Model

2 libcppa

3 Loosely Coupled Communication

4 Use Cases

5 Challenges

6 Conferences & Key Players

Raphael Hiesgen iNET – HAW Hamburg 21

Conferences
C++Now

Focused on C++
May 2014 in Aspen, Colorado

Splash → Agere!
Special Interest Group of ACM focused on Programming Languages
Actors, Agents, and Decentralized Control

ICDCS
International Conference on Distributed Computing Systems
June / July 2014 in Spain

PODC
ACM Symposium on Principles of Distributed Computing
July 2014 in Paris

USENIX OSDI
USENIX Symposium on Operating Systems Design and
Implementation
October 2014 in Broomfield, Colorado

Raphael Hiesgen iNET – HAW Hamburg 22

Key Players

Carl Hewitt
Initial paper on actors
Worked on actor model in 1973

Gul Agha
Doctoral student of Hewitt
University of Illinois
On the Steering committee of the Agere

Joe Armstrong
Developed Erlang in 1986

Raphael Hiesgen iNET – HAW Hamburg 23

Key Players
Scala / Akka

Martin Odersky
Professor at the École polytechnique fédérale de Lausanne (EPFL)
Developed Scala

Philipp Haller
PhD in Computer Science from EPFL
Developed original actor implementation for Scala

Jonas Bonér
Developed Akka

Viktor Klang
Technical lead for the Akka project

Odersky, Bonér and Klang are part of Typesafe, a company focused on
“Reactive Programming”.

Raphael Hiesgen iNET – HAW Hamburg 24

References I

Agha, G. (1986).
Actors: A Model Of Concurrent Computation In Distributed
Systems.
Technical Report 844, MIT, Cambridge, MA, USA.

Armstrong, J. (2003).
Making Reliable Distributed Systems in the Presence of Software
Errors.
PhD thesis, Department of Microelectronics and Information
Technology, KTH, Sweden.

Raphael Hiesgen iNET – HAW Hamburg 25

References II

Charousset, D., Schmidt, T. C., Hiesgen, R., and Wählisch, M.
(2013).
Native Actors – A Scalable Software Platform for Distributed,
Heterogeneous Environments.
In Proc. of the 4rd Annual Conference on Systems, Programming,
and Applications (SPLASH ’13), Workshop AGERE!, New York,
NY, USA. ACM.

Hewitt, C., Bishop, P., and Steiger, R. (1973).
A Universal Modular ACTOR Formalism for Artificial Intelligence.
In Proceedings of the 3rd IJCAI, pages 235–245, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Raphael Hiesgen iNET – HAW Hamburg 26

Thank you for your attention.
Questions?

iNET: http://inet.cpt.haw-hamburg.de

Raphael Hiesgen iNET – HAW Hamburg 27

http://inet.cpt.haw-hamburg.de

