
Loosely Coupled Communication
in Actor Systems

AW2 - Raphael Hiesgen

• Introduction

• Paper 1

• Paper 2

• Paper 3

• Next Steps

2

Introduction
• Loosely Coupled Communication

• Handle unreliable connections

• Non-hierarchical error-propagation model

• Implement secure communication

• Transparent breach of NATs and firewalls

• Use-cases

• Internet of Things (IoT) (Project 1)

• Internet-wide Systems

3

• Introduction

• Paper 1

• Paper 2

• Paper 3

• Next Steps

4

Why is the Web Loosely Coupled?
A Multi-Faceted Metric for Service Design

• C. Pautasso and E. Wilde

• ‘Loose coupling’ is often quoted as desirable

• Impact of change is limited

• Services can evolve independently

• Specific definition is missing

5

Origins
• First appeared in 1967

• Software engineering

• Principle of modularity

• Affects evolution of a system

• Distributed systems

• Shared memory vs. message passing

• Publish / subscribe paradigm

6

Facets
• Discovery

• Central registration vs. decentralized referral

• Web uses search engines

• Interaction

• Synchronous vs. asynchronous

• Interface Orientation

• Horizontal (API) vs. vertical (protocol)

7

Facets
• Model

• Specified data model vs. self contained messages

• State

• Requires management (establishment, recovery, …)

• Stateless design keeps ‘state’ in messages

• Conversation

• Predefined exchange vs. dynamic discovery

8

Facets

• Identification
• Central identification services vs.

specified identification scheme

• Binding
• Resolving names into identifiers

• Platform
• Programming language

requirement, …

9

• Granularity
• coarse-grained vs. fine-granular

interfaces

• Evolution
• compatibility vs. fragmentation

• Generated Code
• Code needs to be regenerated if

the description changes

Analysis

10

faceted definition also to measure the coupling implied by
this technology. We observe that ESB provides loose cou-
pling according to four facets: binding (Dynamic), interac-
tion (Asynchronous), state (Stateless) and platform (Inde-
pendent). However, the technology uses context-based iden-
tification (a tightly coupled solution) and requires central-
ized service registration to support service discovery. Also,
interactions based on multiple message exchanges are explic-
itly modeled using workflow and conversation models. The
development process of services connected by an ESB relies
on code generation techniques (thus, an ESB presents an
horizontal interface orientation). Therefore, according to all
of these other five facets, this kind of middleware technology
does not help to achieve loose coupling. Similar to the other
two alternatives, the choice of using an ESB does not con-
strain the evolution and granularity facets. Additionally, it
is also possible to choose between a shared model design, or
to leverage the ESB mediation capabilities to foster a more
loosely coupled design based on self-describing messages.

In more quantitative terms, the table counts the number
of facets for which a technology results in loose or tight cou-
pling. We also distinguish facets for which the degree of
coupling does not depend on the chosen technology but may
vary depending on more specific design decisions.

Coupling REST RPC WS-*/ESB

Loose 10 3 4
Tight 0 4 5
Design-Specific 2 5 3

Only in the best case (assuming that all design-specific
facets follow loosely coupled options) we can conclude that
using RESTful HTTP would provide a system architecture
featuring loose coupling according to all facets. Choosing
RPC over HTTP, instead, would not result in a completely
loosely coupled system, due to the 4 facets (interaction,
model, generated code, and conversation) which only present
a tightly coupled approach. This alternative also requires

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

Interface
Orientation

Generated
Code

WS-*/ESBRPC over HTTPRESTful HTTP

Figure 4: Comparing the degree of coupling implied
by different Web services technologies

more effort to achieve a loosely coupled system, as up to
5 facets are design-specific and are unconstrained by the
technology choice. This number is smaller in case of the
WS-*/ESB alternative, where only 3 facets are design-specific.
A more detailed, facet-by-facet comparison is visualized with
the radar chart of Figure 4. It is interesting to notice that the
curve indicating the degree of coupling implied by RESTful
HTTP is strictly bounded by both of the other curves. If we
do not consider the discovery and identification facets, the
same holds between the RPC and the ESB curves. Thus, our
multi-faceted metric can be used to establish a partial or-
dering between different Web services technologies in terms
of their degree of coupling.

6. CONCLUSIONS
SOAP-based Web services and the REST architectural

style have been and still are the topic of many debates.
Many of these debates are heated, often missing the point
that the more prescriptive style of the SOAP approach and
the more descriptive style of the REST approach have their
roots in different scenarios, the former assuming closed worlds
and contractual relationships, whereas the latter caters to
an open world with ad-hoc interactions [40]. So far, only
few attempts have been made to compare both approaches
as objectively as possible [31]. “Loose coupling” and “tight
coupling” are frequently used terms in such debates, given
the positive connotation of the former and the negative im-
plications of the latter. Reduced coupling is beneficial be-
cause interdependencies typically make complex IT applica-
tion systems brittle and slow to adapt to changes [32].

In terms of the goals which should be accomplished when
designing service systems, WS-* and REST can be described
by integration vs. cooperation (Fiedler et al. [11] make a sim-
ilar distinction for database systems). Both goals (as well
as “loose” and ‘tight” coupling) are not good or bad per-se.
They are the result of a strategic decision on how to de-
sign and implement IT architectures, and there can be valid
business objectives for both of these goals. These business
objectives should be the input for a decision how to design
a system, for example putting a higher emphasis of perfor-
mance optimization (usually easier with tight coupling) or
agility (usually easier with loose coupling).

The twelve facets described in this paper make it easier to
understand which approach is more appropriate for a given
problem, and for which facet of the system design a loose
or tight coupling approach should be preferred. In the end,
as we have shown in our evaluation, very few systems are
loosely or tightly coupled according to all facets. Instead,
they use a mix of both depending on the business objectives
and the constraints of the chosen Web technologies. Our
multi-faceted metric thus also defines a set of choices that
need to be made, giving system designers a more structured
approach for making better design decisions and comparing
alternative Web services technology options.

Acknowledgements
The authors would like to thank Domenico Bianculli for his
constructive feedback. This work is partially supported by
the EU-IST-FP7-215605 (RESERVOIR) project.

7. REFERENCES
[1] Tim Berners-Lee, Roy Thomas Fielding, and Larry

Masinter. Uniform Resource Identifier (URI): Generic
Syntax. Internet RFC 3986, January 2005.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

919Coupling in Web services [1].

WS-*/ESB

RPC over HTTP

RESTful HTTP

Degree of Coupling

Loose Coupling

Coupling Facet

Tight Coupling

Design-Specific Coupling

Discovery

Identification

Binding

Platform

Interaction

Interface
Orientation Interface

Orientation

Interface
Orientation

Model

Granularity

State

Evolution

Generated
Code

Generated
Code

Generated
Code

Conversation

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

Discovery

Identification

Binding

Platform

Interaction

Model

Granularity

State

Evolution

Conversation

(a) RESTful HTTP (b) RPC over HTTP (c) WS-*/ESB

Figure 3: Measuring the degree of coupling implied by different Web services technologies

RESTful HTTP RPC over HTTP WS-*/ESB

4.1 Discovery Referral Referral Registration
4.2 Identification Global Global Context-based
4.3 Binding Late Early/Late Late
4.4 Platform Independent Independent Independent
4.5 Interaction Asynchronous Synchronous Asynchronous
4.6 Interface Orientation Vertical Horizontal Horizontal
4.7 Model Self-Describing Messages Shared Model Self-D. Messages/Shared Model
4.8 Granularity Fine/Coarse Fine/Coarse Fine/Coarse
4.9 State Stateless Stateless/Shared, Stateful Stateless
4.10 Evolution Compatible/Breaking Compatible/Breaking Compatible/Breaking
4.11 Generated Code None/Dynamic Static Static
4.12 Conversation Reflective Explicit Explicit

Table 2: Web Services Technology Evaluation Summary

protocol. However, when it comes to the interaction facet,
some differences become apparent. RPC interactions are by
definition synchronous. RESTful interactions are instead
asynchronous, since services interact indirectly by updating
(with POST, PUT, or DELETE) the state of resources, which
can be later accessed by other services (with GET) [33]. Inter-
face orientation is vertical in REST, which only relies on the
protocol and resource representations, whereas RPC is often
based on the stub mechanism where the client of a remote
service accessed via RPC calls a local interface which then
handles the fact that the service is implemented remotely.
The two technologies also differ in terms of the model facet,
where RPC follows a shared model approach, where all ser-
vices must agree beforehand on the syntax and the semantics
of the exchanged messages, while REST promotes a “Self-
Describing Representations” solution. RESTful interactions
are also stateless, while RPC offers both options, as interact-
ing services may establish a session by sharing state among
them, but also may be designed to avoid such tight cou-
pling. RPC is also based on generated code stubs, while
REST does not require them as it follows a more dynamic
approach based on plugin extensibility. Also regarding con-
versations, REST promotes a dynamic, reflective approach,

while RPC-based Web services make the interaction con-
straints explicit at design-time.

It is worth noting that not all the facets are bound by
the properties of a given technology. For example, the gran-
ularity, state, and evolution facets depend on the concrete
design choice of a given service-oriented system architecture,
and are not constrained by the choice of the REST vs. RPC
styles. In other words, it is possible to design tightly cou-
pled RESTful Web services, which can be “chatty” in their
interactions, if their interfaces expose a large number of fine-
grained resources. The same can be said about RPC-based
services, which can either publish many fine-grained opera-
tions, or a few coarse-grained ones, depending on the cho-
sen design strategy. Also in terms of the evolution facet, a
service design needs to be evaluated at a more specific level.
For example, XML technology can support a loosely coupled
evolution facet only if it is used with additional guidelines
for versioning and the enforcement of mustUnderstand rules.

We have chosen to include in our evaluation the WS-*/ESB
technology (which is not Web/HTTP centric), because the
enterprise service bus family of middleware products is widely
perceived to be the foundation for loosely coupled SOA im-
plementations. Thus, it is interesting to apply our multi-

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

918

• Introduction

• Paper 1

• Paper 2

• Paper 3

• Next Steps

11

Constrained Application
Protocol (CoAP)

• Developed by the IETF (currently a draft)

• Designed for M2M communication

• Request-response model adapted from HTTP

• Works asynchronously over UDP

• Implements reliable messages

• ‘Confirmable’ message answered with ‘ACK’

12

Congestion Control in
Reliable CoAP

• A. Betzler, C. Gomez, I.Demirkol and J. Paradells

• Limited hardware and link capacities

• Basic CoAP vs. CoCoA

• Performance with parallel transactions

13

Basic CoAP vs CoCoA
• Retransmission after timeout

• Lossy links

• Congestion

• Long processing

• Default interval [2s, 3s]

• Counteract congestion:

• Binary exponential back-off
timer

14

• Two separate timeout values

• RTT until ACK is received

• Estimators

• Strong: no retransmission

• Weak: retransmission

• Weighted averages (init: 2s)

• Third approach uses the
strong estimator (CoCoA-S)

Parallel Transactions

• Defined through NSTART (default = 1)

• Parallel transactions lead to higher congestion

• Overhead through additional state

• Examined for four parallel transactions

15

Analysis

• Stack: 802.15.4, 6LoWPAN,
UDP and CoAP

• RPL Routing

• Different topologies

• Chain, grid and dumbbell

• Influenced by routing
characteristics

16

 1 10 100
0

200

400

600

800

1000

1200

Offered load (kbps)

D
ro

p
p

e
d

 M
A

C
 la

ye
r

p
a

ck
e

ts

CoAP (Default)
CoCoA
CoCoA−S

Figure 4: Dropped MAC layer packets for different offered
loads in the dumbbell topology with NSTART=1.

destination, i.e., NSTART parallel transactions, has been
reached for the destination of the packet.

MAC layer buffer overflows are a clear sign of conges-
tion, as they indicate that a high amount of packets are
created and intended to be forwarded throughout the net-
work, exceeding the capabilities of the network. The effect
of the RTO algorithm on the amount of dropped packets
is deducted for the dumbbell topology and Fig. 4 shows
the overall amount of dropped MAC layer packets for this
topology.

As seen in the figure, when applying the default RTO algo-
rithm, the number of MAC layer packet drops grows quickly
above 3 kbps of offered traffic load and reaches an asymp-
totic value at around 20 kbps. When using the alternative
RTO algorithms for CoAP congestion control, a slower in-
crement of the number of dropped packets and a much lower
asymptotic value are observed. This means that the CoCoA
algorithms are capable of effectively decreasing the conges-
tion in the network. The clear difference in the number of
dropped MAC layer packets between CoCoA and CoCoA-S
is a result of the different RTO estimations they apply. In
contrast to CoCoA-S, CoCoA additionally uses weak RTT
measurements from retransmissions that may lead to large
RTOs. This throttles the output of packets and leads to a
further reduction of buffer overflows in the network.

An asymptotic behavior of the amount of dropped MAC
layer packets is observable, because the actual amount of
traffic transmitted over the radio channel does not increase
significantly further with the offered load at high traffic
rates. On the other hand, due to the limitation given by
NSTART=1 and increasing packet generation frequencies
at each node, the probability of dropping newly generated
CoAP messages gets higher with the offered load. For offered
load beyond the threshold where the amount of dropped
MAC layer packets reaches its asymptotic value, the CoAP
packet drop rate is observed to increase almost linearly with
the amount of generated packets.

As mentioned before, the amount of hops between source
and sink nodes in the dumbbell topology is low, resulting in
small RTTs. How the congestion control algorithms perform
when larger RTTs are observed can be demonstrated in the
chain topology, where packets may have to travel along many
hops before reaching their destination. The radio links along
the chain are not utilized equally. The links closer to the sink
will be required more frequently for transmissions, as all the
packets from the other end of the chain need to traverse

 1 10 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered load (kbps)

C
a

rr
ie

d
 lo

a
d

 (
kb

p
s)

CoAP (Default)
CoCoA
CoCoA−S

Figure 5: Throughput achieved for different offered loads in
the chain topology with NSTART=1.

 1 10 100
0

200

400

600

800

1000

1200

Offered load (kbps)

D
ro

p
p

e
d

 M
A

C
 la

ye
r

p
a

ck
e

ts

CoAP (Default)
CoCoA
CoCoA−S

Figure 6: Dropped MAC layer packets for different offered
loads in the chain topology with NSTART=1.

them. On the other hand, due to spatial reuse, it is possible
for several nodes to transmit in parallel along the chain,
without interfering each other.

For this particular setup, the difference between the de-
fault CoAP and the CoCoA mechanisms becomes larger, as
can be seen in Fig. 5. This shows that the CoCoA mecha-
nisms are able to adapt to different RTT values and to the
traffic characteristics of the network. This observation can
be backed up by observing the amount of dropped MAC
layer packets (Fig. 6), showing a similar behavior as in
the dumbbell topology, where the drop rates for the CoCoA
mechanisms are much smaller than for default CoAP.

On the other hand, in the grid topology, the number of
hops between source and destination nodes varies a lot, since
many combinations of links for the connection of source and
sink nodes are possible. Therefore, RTTs of different scales
can be observed. Since within the transmission, and also
the interference range of a node there will be more nodes,
a congestion of the radio channel is more likely than in the
other analyzed topologies.

The performance comparison for the grid topology re-
veals that CoCoA mechanisms are able to perform signif-
icantly better than default CoAP. Fig. 7 shows that CoCoA
and CoCoA-S perform better than the default CoAP, even
when the offered load is small (starting at 4 kbps). How-
ever, the performance achieved by the two advanced con-
gestion control mechanisms is very similar for this topology.
For the intermediate traffic rates, CoCoA gets many weak
RTT measurements from retransmissions, increasing the es-

370

Dropped MAC layer packets in
the chain topology [2].

Throughput

17

 1 10 100
0

200

400

600

800

1000

1200

Offered load (kbps)

D
ro

p
p
e
d
 M

A
C

 la
ye

r
p
a
ck

e
ts

CoAP (Default)
CoCoA
CoCoA−S

Figure 4: Dropped MAC layer packets for different offered
loads in the dumbbell topology with NSTART=1.

destination, i.e., NSTART parallel transactions, has been
reached for the destination of the packet.

MAC layer buffer overflows are a clear sign of conges-
tion, as they indicate that a high amount of packets are
created and intended to be forwarded throughout the net-
work, exceeding the capabilities of the network. The effect
of the RTO algorithm on the amount of dropped packets
is deducted for the dumbbell topology and Fig. 4 shows
the overall amount of dropped MAC layer packets for this
topology.

As seen in the figure, when applying the default RTO algo-
rithm, the number of MAC layer packet drops grows quickly
above 3 kbps of offered traffic load and reaches an asymp-
totic value at around 20 kbps. When using the alternative
RTO algorithms for CoAP congestion control, a slower in-
crement of the number of dropped packets and a much lower
asymptotic value are observed. This means that the CoCoA
algorithms are capable of effectively decreasing the conges-
tion in the network. The clear difference in the number of
dropped MAC layer packets between CoCoA and CoCoA-S
is a result of the different RTO estimations they apply. In
contrast to CoCoA-S, CoCoA additionally uses weak RTT
measurements from retransmissions that may lead to large
RTOs. This throttles the output of packets and leads to a
further reduction of buffer overflows in the network.

An asymptotic behavior of the amount of dropped MAC
layer packets is observable, because the actual amount of
traffic transmitted over the radio channel does not increase
significantly further with the offered load at high traffic
rates. On the other hand, due to the limitation given by
NSTART=1 and increasing packet generation frequencies
at each node, the probability of dropping newly generated
CoAP messages gets higher with the offered load. For offered
load beyond the threshold where the amount of dropped
MAC layer packets reaches its asymptotic value, the CoAP
packet drop rate is observed to increase almost linearly with
the amount of generated packets.

As mentioned before, the amount of hops between source
and sink nodes in the dumbbell topology is low, resulting in
small RTTs. How the congestion control algorithms perform
when larger RTTs are observed can be demonstrated in the
chain topology, where packets may have to travel along many
hops before reaching their destination. The radio links along
the chain are not utilized equally. The links closer to the sink
will be required more frequently for transmissions, as all the
packets from the other end of the chain need to traverse

 1 10 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered load (kbps)

C
a

rr
ie

d
 lo

a
d

 (
kb

p
s)

CoAP (Default)
CoCoA
CoCoA−S

Figure 5: Throughput achieved for different offered loads in
the chain topology with NSTART=1.

 1 10 100
0

200

400

600

800

1000

1200

Offered load (kbps)

D
ro

p
p
e
d
 M

A
C

 la
ye

r
p
a
ck

e
ts

CoAP (Default)
CoCoA
CoCoA−S

Figure 6: Dropped MAC layer packets for different offered
loads in the chain topology with NSTART=1.

them. On the other hand, due to spatial reuse, it is possible
for several nodes to transmit in parallel along the chain,
without interfering each other.

For this particular setup, the difference between the de-
fault CoAP and the CoCoA mechanisms becomes larger, as
can be seen in Fig. 5. This shows that the CoCoA mecha-
nisms are able to adapt to different RTT values and to the
traffic characteristics of the network. This observation can
be backed up by observing the amount of dropped MAC
layer packets (Fig. 6), showing a similar behavior as in
the dumbbell topology, where the drop rates for the CoCoA
mechanisms are much smaller than for default CoAP.

On the other hand, in the grid topology, the number of
hops between source and destination nodes varies a lot, since
many combinations of links for the connection of source and
sink nodes are possible. Therefore, RTTs of different scales
can be observed. Since within the transmission, and also
the interference range of a node there will be more nodes,
a congestion of the radio channel is more likely than in the
other analyzed topologies.

The performance comparison for the grid topology re-
veals that CoCoA mechanisms are able to perform signif-
icantly better than default CoAP. Fig. 7 shows that CoCoA
and CoCoA-S perform better than the default CoAP, even
when the offered load is small (starting at 4 kbps). How-
ever, the performance achieved by the two advanced con-
gestion control mechanisms is very similar for this topology.
For the intermediate traffic rates, CoCoA gets many weak
RTT measurements from retransmissions, increasing the es-

370

Achieved throughput in the chain topology,
NSTART=1 (left) and NSTART=4 (right) [2].

 1 10 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Offered load (kbps)

D
ro

p
p

e
d

 M
A

C
 la

ye
r

p
a

ck
e

ts

CoAP (Default)
CoCoA
CoCoA−S

(a) Dropped MAC layer packets for different offered loads in
the dumbbell topology with NSTART=4.

 1 10 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered load (kbps)

C
a

rr
ie

d
 lo

a
d

 (
kb

p
s)

CoAP (Default)
CoCoA
CoCoA−S

 1 10 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered load (kbps)

C
a

rr
ie

d
 lo

a
d

 (
kb

p
s)

CoAP (Default)
CoCoA
CoCoA−S

(b) Throughput achieved for different offered loads in the
grid topology with NSTART=4.

 1 10 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered load (kbps)
C

a
rr

ie
d

 lo
a

d
 (

kb
p

s)

CoAP (Default)
CoCoA
CoCoA−S

(c) Throughput achieved for different offered loads in the
chain topology with NSTART=4.

Figure 9: Congestion control performances for NSTART=4.

to outperform the default CoAP congestion control mech-
anism, while not requiring as much state information as
CoCoA. With the results obtained in this paper, we can
confirm the relevance of advanced congestion control mech-
anisms and confirm that for this purpose CoCoA is an in-
teresting candidate.

As future work, the advanced congestion control mecha-
nisms will be tested in more network topologies, other per-
formance metrics will be evaluated and different traffic gen-
eration patterns will be applied.

�� $&.12:/('*0(176
This work has been supported by the Spanish Govern-

ment’s Ministerio de Economı́a y Competitividad through
project TEC2012-32531 and by MICINN through project
TEC2009-11453, as well as by the Comissionat per a Univer-
sitats i Recerca del DIUE from the Generalitat de Catalunya,
the Social European Budget (Fons Social Europeu), and
FEDER.

�� 5()(5(1&(6
[1] C. Bormann. CoAP Simple Congestion

Control/Advanced (work in progress), August 2012.
[2] C. Bormann and Z. Shelby. Blockwise transfers in

CoAP (work in progress), Feb. 2013.
[3] Crossbow Technology Inc. TelosB mote platform,

2009.
[4] D. S. J. De Couto, D. Aguayo, J. Bicket, and

R. Morris. A high-throughput path metric for
multi-hop wireless routing. In Proceedings of the 9th
annual international conference on Mobile computing
and networking, MobiCom ’03, pages 134–146, New
York, NY, USA, 2003. ACM.

[5] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
2000. AAI9980887.

[6] K. Hartke. Observing Resources in CoAP (work in
progress), Feb. 2013.

[7] M. Kovatsch, S. Duquennoy, and A. Dunkels. A
low-power coap for contiki. In Proceedings of the 8th
IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2011), Valencia, Spain, Oct.
2011.

[8] N. Kushalnagar, G. Montenegro, and C. Schumacher.
IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals. RFC 4919
(Informational), August 2007.

[9] Moteiv Corporation. TMote Sky: Ultra low power
IEEE 802.15.4 compliant wireless sensor module, June
2006.

[10] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. In Local Computer Networks, Proceedings 2006
31st IEEE Conference on, pages 641–648, 2006.

[11] C. Paxson, M. Allman, J. Chu, and M. Sargent.
Computing TCP’s Retransmission Timer (RFC 6298),
June 2011.

[12] Z. Shelby and C. Bormann. 6LoWPAN: The Wireless
Embedded Internet. Wiley Publishing, 2010.

[13] Z. Shelby, K. Hartke, and C. Bormann. Constrained
application protocol (CoAP), May 2013.

[14] Texas Instruments. Chipcon products: CC2420
Datasheet: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver, March 2013.

[15] T. Winter, P. Thubert, J. Hui, P. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander.
RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. Technical Report 6550, RFC Editor,
Fremont, CA, USA, Mar. 2012.

[16] Zolertia. Z1 low-power wireless sensor network
module, March 2010.

372

• Introduction

• Paper 1

• Paper 2

• Paper 3

• Next Steps

18

Drop the Phone and Talk to the Physical World:
Programming the Internet of Things with Erlang

• A. Sivieri, L. Mottola and G. Cugalo

• Most embedded systems are developed in low-
level languages, such as C

• Leaves a lot of responsibility to the developer

• Difficult to test, maintain and port

• Solution: a high-level programming model for the
IoT

19

Erlang

• Actor-like concurrency model (masking distribution)

• Functional core (dynamic typing, pattern-matching)

• Embedded system support (pattern-matching on
bit streams)

• Code can be hot-swapped

20

ELIoT
• Library for constrained, distributed environments

• Many-to-many syntax, not based on TCP

• Interpreter without unnecessary features

• Smaller memory requirements (few MB)

• Simulator to validate implementation

• Transparent migration to real hardware

21

Analysis
• Implementation of three

routing protocols

• Flooding, Tickle and
CTP

• 62 simulated devices
and 2 real ones

• Compare lines of code
to TinyOS and Contiki

22

• Few lines of code for
complex protocols

Figure 4. ELIOT processes monitor.

computes routing metrics to the closest sink and report
changes to the routing process. This, in turn, provides the
forwarding process with the most efficient route to use.
Splitting functionality results in more readable code, with
a correct separation of concerns, making the individual pro-
cesses more reusable. Moreover, the hot-swapping capability
can be used for changing only one part of the protocol, e.g.,
to replace the link estimation protocol with a different one.

Figure 4 is a snapshot of the processes monitor interface
while running CTP. The process monitor allows to inspect
each process, showing variable values and letting developers
insert breakpoints into the code. The screenshot refers to a
mixed network configuration, enabled by our simulator: we
use a laptop running 14 simulated nodes, a more powerful
desktop running 48 simulated nodes, and two real ARM
devices. The possibility of inspecting the state of simulated
nodes using the process monitor, while they interact with
the real devices allowed us to easily spot bugs.

Comparison. We were also interested in measuring to what
extent ELIOT reduces the programming effort. To this
end, we measure the uncommented lines of code as an
approximate measure of the coding effort and we compare
the ELIOT implementations of the aforementioned protocols
with their counterparts in TinyOS [10] and Contiki [11].

Figure I reports the values we measured. It shows that the
more complex is the protocol, the greater is the advantage
in using ELIOT. Indeed, while Contiki already provides a
(slight) advantage over TinyOS, ELIOT shows even greater
improvements, due to the functional and declarative model.
This, together with the powerful pattern matching and seri-
alization/deserialization features, results in implementations

Table I
PROTOCOL IMPLEMENTATIONS LINES OF CODE.

Algorithm TinyOS Contiki ELIOT
Opportunistic flooder 495 187 100
Trickle 219 194 61
CTP 2169 1470 303

up to seven times more compact than their TinyOS and
Contiki counterparts.

V. RELATED WORK

Solutions exist to develop applications spanning both
standard Internet devices and networks of embedded sensors
and actuators. As example, the CoAP framework provides a
RESTful interface on resource-poor devices [17]. Implemen-
tations of such framework exist for common sensor network
platforms [18]. Unlike our approach, however, the appli-
cation logic runs entirely outside the embedded network,
whereas sensor and actuators are essentially application-
agnostic. This spares the need for embedded system pro-
gramming at the price of reduced performance. Differently,
we design ELIOT to allow developers to deploy even the
entire application logic on embedded devices, while still
retaining a high-level programming model.

The operating system facilities are the most used program-
ming platform in sensor networks. However, the low level
of abstraction typically provided usually results in entangled
implementation that are difficult to debug and maintain [2].
In this setting, TinyOS [10] and Contiki [11], which we
use in the comparison of Section IV, are most often em-
ployed. Commercial products may also come with their own
platform-specific APIs [19]. Applications developed atop
these APIs, however, are often difficult to port to different
platforms.

Higher-level sensor network programming abstractions,
on the other hand, often sacrifice generality for simplic-
ity [2]. For example, Regiment [20] features a functional
programming model, providing primitives such as fold and
map to process data originating from subsets of nodes.
Flask [6] provides a data-flow programming model based on
discrete computational steps, akin to side effect-free function
calls. Snlog [21] is a rule-oriented approach inspired by
logical programming, where rules are recursively applied on
data available in a dedicated repository. Common to these
approaches—and in fact to most solutions in the field [2]—
is that the language constructs are compiled to TinyOS or
Contiki code before deployment. Thus, the code running on
the embedded device bears little resemblance to the hand-
written one, complicating testing and debugging.

ELIOT sits in the middle between an operating system
layer and higher-level programming solutions. It still allows
the implementation of both system- and application-level
functionality, yet it spares programmers from many low-
level details and the intricacies of OS-level scheduling. The
latter is mainly due to the actor-like concurrency model,

Lines of code comparison [3].

Further Questions

• Paper does not present the network stack

• Why is message passing limited to a single-hop?

• Code has not been published

• Author is still active!

23

• Introduction

• Paper 1

• Paper 2

• Paper 3

• Next Steps

24

Next Steps
• Implement a network stack

• Transaction based message
passing

• Use protocols for the IoT

• Future work

• Setup test environment

• Address Internet-wide
systems (HTTP, NATs, …)

• Encryption and authentication

IEEE 802.15.4

6LoWPAN

UDP

DTLS

CoAP

libcppa

Ethernet / WLAN

IPv4 / IPv6

TCP

Adapting the network stack
of libcppa to the IoT.

25

Thank you!
Questions?

26

References
[1] Pautasso, Cesare and Wilde, Erik (2009). Why is the Web Loosely Coupled?: A Multi-
faceted Metric for Service Design. In Proceedings of the 18th International Conference on
World Wide Web, WWW ’09, pages 911–920, New York, NY, USA. ACM.

[2] Betzler, August and Gomez, Carles and Demirkol, Ilker and Paradells, Josep (2013).
Congestion Control in Reliable CoAP Communication. In Proceedings of the 16th ACM
International Conference on Modeling, Analysis & Simulation of Wireless and Mobile
Systems, MSWiM ’13, pages 365–372, New York, NY, USA. ACM.

[3] Sivieri, A. and Mottola, L. and Cugola, G. (2012). Drop the phone and talk to the
physical world: Programming the internet of things with Erlang. In Software Engineering for
Sensor Network Applications (SESENA), 2012 Third International Workshop on, pages 8–
14.

[4] Shelby, Z., Hartke, K., and Bormann, C. (2013). Constrained Application Protocol
(CoAP). Internet-Draft – work in progress 18, IETF.

[5] Bormann, C. (2014). CoAP Simple Congestion Control/Advanced. Internet-Draft – work
in progress 01, IETF.

27

