An Approach to Quantify Reconfiguration Methods for PIM-SM Trees

- A Network Complexity Perspective -

Nora Berg

HAW Hamburg - Master Seminar WS 14/15

November 11, 2014

- 1 Introduction
- 2 Networks and Trees
- 3 Next Steps
- 4 Summary

Introduction

Motivation

- low predictability in network algorithms
- complete state space not transparent
- network algorithms also interact with underlying layers

Complexity

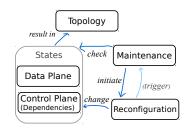
- some complexity is needed for robust networks
- stability decreases at a certain level of complexity

Aspects of Complexity

Efficiency

classical measurement of effort for specified task

Robustness


ability to persist despite changes

Resilience

ability to adapt to changed conditions

Control Loop

- behavior specification of a local node
- abstract view provides categorization of functions
- complexity arises from reconfiguration functions

Related Work

Stability of a Multicast Tree [1]

- quantifies the change of links in a multicast tree
- shows that the change follows a Poisson distribution
- formula to approximate the change of the tree depending on network size and number of receiver

Percolation Thresholds in Network Decay [2, 3]

- · describes characteristics of network stability
- high stability until a network decays completely
- exist in several network scenarios.

Current Work

Goal

- estimate the range of change initiated by link failures
- · estimate the ability of a network to adjust to failures

PR 1 (work in progress)

- quantify effects of reconfiguration methods on distribution trees
- case study for PIM-SM [4]
 - join
 - · reconfiguration at link failure
 - · calculation based on expected state changes

PIM-SM Protocol Overview

- IP layer multicast protocol
- independent of underlying routing protocol
- PIM routers maintain a variety of states
 - e.g. joins(*,*,RP(G)), prunes(S,G), lost_assert(S,G), ...
- within two kinds of trees:
 - shared tree
 - source specific tree
- · well known rendezvous point (RP) is root of the shared tree
- protocol consist of three main procedures (phases)

PIM-SM Phases

Phase One: RP Tree

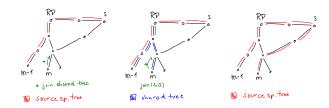
- Receiver joins shared tree (join(*,G))
- Sender packages are encapsulated sent to RP by DR

Phase Two: Register Stop

- RP joins source specific tree (join(S,G))
- When RP receives Packages via SST, send register_stop(S,G) to the sources DR

Phase Three: Shortest Path Tree

- Receiver sends join(S,G) to source
- Receiver sends prune(S,G,RPT) to RP

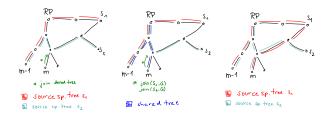

Approach

- Given: approximation of the expected amount of new links in a multicast distribution tree $E[\Delta_N(m)]$
 - if the m^{th} member joins (or leaves)
 - in a random network with N nodes
 - for big N and small m

Idea

Consider the reconfiguration operations, e.g. following a link failure, as a sum of several $E[\Delta_N(m)]$ -like tree operations

Join Group with One Source



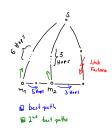
 m_{rp}

number of members in shared tree number of members in source specific tree

1 source: $E[\Delta_N(m_{rD}, m_s)] \approx E[\Delta_N(m_{rD})] + E[\Delta_N(m_s)]$

Join Group with Multiple Sources

k sources:


$$E[\Delta_N(m_{rp}, m_s)] \approx E[\Delta_N(m_{rp})] + k \cdot E[\Delta_N(m_s)] + \underbrace{k \cdot E[\Delta_N(m_{rp})]}_{\text{source specific prune}}$$

Problem

- source specific prune within the join procedure cannot be approximated with $E[\Delta_N(m_{\mathcal{D}})]$
- number of the receivers, which did not already prune a source, differs from m_{rp}

Effects of Link Failure

- link failure repaired by multiple rejoins
- How many nodes may be affected?
 - best case: 1
 - · worst case: all nodes in the subtree

Influencing Factors

- size and shape of the downstream subtree
- node degree of the upstream node

Approach to Rejoin I

Provisional Assumption

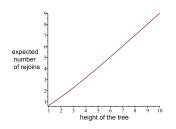
The existing distribution tree is a perfect k-ary tree.

Assuming a uniform link stability, the expected level of a link failure, can be calculated as

$$E(\ell) = \sum_{i=1}^{n} \frac{k^{i}}{N} \cdot i$$

 $(\ell = \text{level}, N = \text{number of links}, k = \text{downstream node degree}, h = \text{height of the tree})$

A first idea how to approach such a problem analytically!


Approach to Rejoin II

Therefore the number of nodes which have to rejoin (avg. worst case) is:

$$E_{join}(h) = \sum_{i=1}^{n} \frac{k^{i}}{N(h) - 1} \cdot N(h - i)$$

- $\frac{k^i}{N(h)-1}$: probability to choose a link from level i from all links in the tree
- N(x): calculates the number of nodes from the number of levels x

Next Steps

- use a more realistic models to estimate the reach of reconfiguration methods (e.g. uniform recursive trees)
- add a time parameter to the calculations
- quantify the number of failing links per time, until the rejoin becomes ineffective
- · check if the decay has a percolation threshold
- · validate formulas against test results
 - e.g. from simulation or measurements

Chances

- mathematical description for the effect of reconfiguration methods
- finding environments under which the algorithm will produce suboptimal results without bruteforce testing
- staying abstract enough to do similar calculation for other algorithms

Risks

- interesting factors can be too difficult to model analytically
- too many expectancy values generalize the behavior to meaningless statements
- results do not validate in tests

Summary

- reconfiguration methods are assumed to be strongly responsible for robustness
- framework of specified trees and $E[\Delta_N(m)]$ -like operations enables to approximate affected nodes
- approach to quantify the robustness and effects of reconfigurations methods of PIM-SM
 - join
 - rejoin after link failure

Future Work

- use of internet measurements for more detailed information on existing network structures
- check, how far analytical methods comply with measurements
- search for reasons why they would not comply
- consider not only multicast trees but tree creating algorithms in general (e.g. routing)

Thank you for your attention! Questions?

References I

- [1] P. Van Mieghem and M. Janic, "Stability of a Multicast Tree," in INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2. IEEE, 2002, pp. 1099–1108.
- [2] R. Albert and A.-L. Barabási, "Statistical mechanics of complex networks," Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.
- [3] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, "Catastrophic cascade of failures in interdependent networks," *Nature*, vol. 464, no. 7291, pp. 1025–1028, 2010.
- [4] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, "Protocol Independent Multicast -Sparse Mode (PIM-SM): Protocol Specification (Revised)," IETF, RFC 4601, August 2006.