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The Internet of Things (IoT)

• Network of nodes 

• Connected through Internet standards 

• Perform machine-to-machine communication 

• Built from often constrained embedded devices 

• Sensors and actuators 

• Platform for distributed applications
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Problem Statement

• Highly distributed applications design 

• Development requires specialized knowledge 

• Communication, synchronization and scalability 

• Usually in low-level languages (such as C) 

• Error-prone & hard to debug 

• Deployment is platform-specific
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Approach

• Actors as base entities 

• Run concurrently & in isolation 

• Can spawn new actors 

• Distributed runtime environment 

• Network transparent message passing 

• Distributed error-handling 

• Network of actors as a design candidate for the IoT 

• Programm distributed applications

5



General Relevance

• The IoT is everywhere 

• Fitness trackers (FitBit, Health Kit, Google Fit, …) 

• Smart watches (Pebble, Android Wear, …) 

• Home automation (Home Kit, Nest, …) 

• Emerging development tools (ARM mbed [3], …) 

• Number of participating devices increases
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Relevance of the Research 

• Ease application development 

• Reduce the development overhead 

• Professionalization, generalization and standardization 

• Reusability 

• Robustness 

• Portability 

• Provide tools to test and deploy software
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Research Question

• Can we efficiently link low-level protocols to an abstract 
communication between actors? 

• Can we meet efficiency expectations regarding hardware 
resources? 

• Is the actor model suitable to design and develop 
applications for the IoT? 

• Is the actor model well suited to express typical 
application scenarios?
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The C++ Actor Framework

• Open source implementation of the actor model [1] 

• Native development in C++ 

• Small memory footprint 

• Different runtime implementations 

• Memory management & scheduler 

• Static type-checking 

• Runtime inspection tools 
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Adaption to the IoT

• Communication protocols 

• Lossy links are common 

• Handle infrastructure failure 

• Nodes may contain private data 

• Secure wireless communication 

• Requires suitable messaging layer
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802.15.4 / Bluetooth LE

6LoWPAN

UDP

DTLS

CoAP

C++ Actor Framework

Ethernet / WLAN

IPv4 / IPv6

TCP

TLS

HTTP

Network Stack Built upon open Standards
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Proof-of-Concept

• Data collection at source


• Based on Ethernet, UDP and 
CoAP


• Compared to TCP-based impl.


• Findings


• Fewer packets send


• Lower bandwidth used
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Transactional Layer
• 6LoWPAN 

• IPv6 compatibility 

• Header compression 

• CoAP 

• Duplicate message detection 

• Reliable message transfer (transactions) 

• Fragmentation of large messages 

• CAF 

• Message header compression 

• Error propagation
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Security

• Authentication, authorization and encryption 

• Challenges 

• Constrained power & energy 

• Nodes physically acquired 

• Crypto is hard to do right
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Runtime Environment Runtime Environment
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Support for Embedded OSs

• The friendly Operating System for the IoT [2] 

• POSIX compliance 

• Energy efficient 

• Real-time capable 

• Development in C or C++
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Validation

• Protocol correctness 

• Packet loss  & message sizes 

• Application performance 

• Reproducibility  

• Environment heavily impacts results (e.g., interference) 

• Unpredictable behavior in networks 

• Requires experimentally driven design and testing
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Test Environments

• From comfortable and fast to realistic and slow 

• RIOT offers a native port 

• Quick tests, not a realistic environment 

• Few nodes in our lab 

• 7 Raspberry Pis running Linux 

• USB dongles enable 802.15.4 

• Useful for a proof-of-concept
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Raspberry Pi Our local test-hardware.
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However …

• Pis are not our target platform 

• Have lots of power and memory 

• Run Linux (like desktops) 

• Only a few number of nodes 

• Link interference hardly a problem 

• Applications may have more nodes
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Larger Testbeds

• FU Berlin 

• 60 nodes distributed in several rooms and floors 

• CC1100 radio chips, 868 MHz CPU 

• INRIA Technology Institute in France [4] 

• Connected through RIOT and Safest 

• 2700 nodes distributed through France

24



Agenda

Introduction 

Where We Are 

Next Steps 

Risks and Conclusion

25



Risks

• We ask too much of the hardware 

• Power & energy consumption 

• Memory usage 

• Message sizes 

• Security scheme 

• Community adoption (CAF & RIOT are doing well)
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Conclusion

• Development in the IoT required on specialized knowledge 

• Network communication and synchronization 

• Porting software to new hardware 

• The actor model abstracts over distributed systems 

• Adapt CAF to the characteristics of the IoT 

• A transactional layer built from open standards 

• Authentication, authorization and encryption 

• Support for RIOT-OS 

• Requires experimentally driven testing
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