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1 Introduction

The identified gap to build a scalable and yet accessible multi-agent system (Hiining et al., 2014),
still is very present, as it has moved into focus of several researchers at last years WinterSim
conference (Taylor et al., 2012, 2013; Tolk & Mittal, 2014). Especially the definition of MSaaS
(Modeling and Simulation as a Service) by Cayirci (2013) and first follow-up papers (Padilla,
2014) expresses the interest in and necessity of cloud-based simulation. It is whished for MSaaS
to deliver scalable simulation execution by means of a simple enough user interface suitable

for domain experts.

The MARS simulation framework is very well aligned with the trend to move large-scale
simulations into the cloud and offer a user friendly web interface for modelers, in that MARS
is conceptualized as a chain of processes. Theses processes are either user-centric and thus
integrated into a web application or part of the simulation runtime environment and thus

deployed into the distributed cloud environment.

To achieve fast, scalable cloud-based large-scale simulation execution the underlying dis-
tribution and communication mechanism is crucial. It requires an efficient way to send and
retrieve messages, allow to easily locate other entities (agents) and should address usability

issues like communication transparency.

This paper introduces the Agent Shadowing (AS) approach, which is used in the MARS frame-
work to achieve both, scalability and usability alike. Chapter 2 provides a brief conceptual and
technological overview, chapter 3 presents the simulation model and how it will be used as
the benchmark for the proposed solution. First results are presented in chapter 4, risks and
chances are discussed in chapter 5. Finally in chapter 6 a conclusion is drawn and an outlook

towards the author’s thesis is provided.



2 Concept & Technology

2.1 MARS LIFE Overview

The actual simulation component in the overall MARS architecture (see Hiining et al. (2014))
is called LIFE. It consists of two main processes which make up the distributed simulation
system. An exemplary deployment of the system’s components is shown in figure 2.1.

The SimulationManager is the controlling application for the simulation. It manages the model,
calculates the distribution and scheduling pattern, takes care of the distributed initialization
and finally controls the simulation run.

The LayerContainer houses layers and agents, which are the two primary components MARS
simulations are made of. A LIFE system may be composed of any number of LayerContainers

among which layers and agents are distributed.
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Figure 2.1: Exemplary deployment of MARS system
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2.2 Distribution

Distribution and thus communication are two key aspects of scalability. In a very early version
of the MARS system layers were only distributable as a whole, so each LayerContainer needed
to take care of one ore more complete layers. The author’s findings however have shown,
that one layer may be too complex for a single computer or there may be some rather slow
compute nodes involved. So the new approach will also allow to distribute each layer across
several LayerContainers, which resembles true horizontal scalability. Since distributing layers
has direct influence on the agents living on them, the approach for layer distribution is tightly
coupled with the distribution of agents and is meant to make the overall system scalable. That

approach is called Agent Shadowing (AS).

The problem of synchronization and communication between agents arises, especially when it
comes to agent interaction or movement across boundaries (Vigueras et al.,, 2013). Specifically
whenever an agent wants to communicate (that is: call a method) with another agent, it first
has to check whether the desired agent is present locally or remotely and, if remotely, obtain a
reference through which it may perform the actual communication. By that each method call

results in a (potentially slow) remote message.

2.3 Concept

Agent Shadowing is the depiction of an agent living on layer instance A having its shadow
cast onto layer instance B, where it is not actually instantiated, but instead is represented by a

stub-like object as in remote communication concepts like RPC/RML

2.3.1 Agents

In RPC/RMI each agent’s methods and properties are callable by third parties through its stub
object. Usually a stub just provides the capabilities to establish an interface-bound communi-
cation with the remote object. If the remote reference changes, in classic RPC/RMI the stub
simply becomes useless, since its reference is not updated. The protocol then has to notice the

broken link and re-establish a new one.

A shadow agent stub (SAS) is extended by the ability to hold cached attributes like its environ-
mental position or any other attribute. The real agent object updates both, the attributes and

the remote reference, whenever a change occurs. These updates are delivered via multicast
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when in LAN to reduce the amount of traffic. The initial remote references can be provided
when the overall system is initiated since some kind of distribution information has to be
provided at that state. This results in each container node containing the full environment
as well as all agents, but with the difference, that only numberOfAgents / numberOfNodes
(given an even partitioning) agents are really instantiated and thus have to be computed. The
remaining agents are only instantiated as SASs and do not contain any agent behavior logic.
An increase in container nodes would reduce the amount of agents per node that have to
be actively computed, while the memory footprint per node would also potentially decrease,

assuming that a SAS consumes less RAM than a full-fledged agent.

2.3.2 Layers

Calling or referencing another layer, works by the same pattern of either having a local
instance of that layer to address directly or a stub to communicate with a remote reference.
Environmentally it does not matter which remote reference to a layer is provided, since each

layer instance locally has a full view of its state, even if distributed.

2.4 Communication & Network

Each SAS requires a unique connection to the real agent. This results in a unique port and
socket being used on the client machine. Depending on which OS you are on, the maximum
number of simultaneous TCP connections is limited. For example on Windows 7 you could
theoretically create up to 16 million concurrent connections, but are limited by port restrictions
to something closer to several thousand connections 3. It thus is obvious that this is not a
suitable approach for a massive scale multi-agent simulation with possibly a million agents.

Other approaches towards the network implementation need to be taken.

An alternative is to change the communication technology from TCP Unicast to UDP Multicast.
A real agent would send its state update only one time per multicast to a group of potentially
interested listeners, who then all receive the message and decide individually whether or not
to consume it. This solution requires the creation of multicast groups, which could be created

either on a per agent, per agent type or per layer base.

A group per agent wouldn’t do much to the port problem mentioned above, since each mul-
ticast socket listener would still require its own port. Grouping by layer could result in too

many messages received by too many SAS which don’t need it (if a layer holds more than one
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agent type), or could create a bottleneck if the amount of agents is very high on each layer
instance. Possibly the best result can be achieved with a grouping based on agent type, since
the recipient group is narrowed down to those agents (and hosts) who can use the message.
Through that kind of interest management the bottleneck problem should directly scale with
further distribution of the layer itself.

As an additional side effect of the per agent type multicast messaging, updating the remote
references of stubs in case of cross-boundary movement of agents, will not be necessary
anymore. Since each individual agent can be reached by a multicast group uniquely generated
from the agent’s type and multicast messaging inherently does not care about endpoints, real

agents may be moved across nodes without regard to references.



3 A model to benchmark LIFE

To test-drive MARS LIFE including agent shadowing, a real-world scenario (Scholes et al.,
2001) from a model under active research in the MARS group has been selected. The model
incorporates a 4 km by 4 km area located in Skukuza, which is the administrative headquarters
of the Kruger National Park in South Africa. In a first iteration the model is populated with
4,000 tree agents representing the Marula tree species. The trees feature a complex life-cycle
which changes depending on the four seasons as well as the tree’s sex and will eventually lead
to fruiting and thus the creation of new trees (Helm et al., 2009, 2011; Helm & Witkowski, 2012).

In the first version of the model a simplified seed dispersal algorithm will be used, which
simulates the interaction of elephants and other herbivores with the trees and its fruits. The
animals eat the fruits and release them later somewhere alongside their trails. By that around
2 % of all seeds grow into seedlings and an even smaller fraction will become adult trees. Also
animals and especially elephants do - sometimes fatal - damage to the trees, thus decreasing

the overall biomass in the area.

This behavior will be added later by means of an elephant model simulating the effects of
water point closure in the Kruger National Park (Hilbers et al., 2014; Scheiter & Higgins, 2012),
which is currently under development with MARS LIFE at the Department of Agricultural and

Biological Engineering at the University of Florida in Gainesville.

Synthetic benchmarks are good to explore lower and upper limits as well as extreme se-
tups, but how LIFE performs in a real scenario is much more significant to the majority of
end-users. So once the elephant model is merged with the Marula model, complexity will have
reached a serious threshold, which makes it reasonable to properly parameterize, explore and
scale the model up to the whole Kruger National Park. That model will be tested both in single
instance runs as well as in multi-node distributed runs, where the scaling factor of adding

hardware can be measured.



4 First Results

Since the models described in section 3 are not yet finished, the author conducted some baseline
tests with a very basic version of the model. The model includes a simple tree implementation
containing equations for tree growth used in the Abdoulaye model (Pereki et al., 2013). The
tree agents are placed on random positions in the Kruger National Park (KNP) and perform a
spatial query on a KNP GIS elevation layer to fetch their height above sea-level, which is used
in the equations. The resolution of the GIS data is 3 arcseconds (90m). The model features no

interaction between the agents.
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Figure 4.1: Execution duration for 100 ticks
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4 First Results

The hardware used for this experiment consisted of one bare-metal node with an Intel Core
i7, 3,5 Ghz and 16 GB Ram as well as two virtual nodes with an Xeon 12 Core x 3,5 Ghz and
8 GB Ram each. Tests were conducted from 4,000 to 16,000,000 tree agents with logarithmic
distances in between. Each test was run for 100 ticks, which represents 100 weeks in wall
clock time, on one, two and three nodes. Figure 4.1 shows the execution duration in the upper
range from 256,000 to 16,000,000. The range from 4,000 up to 256,000 is spared here, since
the measured durations in that range would not be visible on the scale needed to show the
higher values. Figure 4.2 depicts the performance gain when two and three nodes were used

compared to the single node run and also highlights the lower range of agent amounts.

The results show that MARS LIFE is capable of running large amount of agents in a very
acceptable time and that this performance can even be significantly improved by more than 2
times if two or three nodes are used. Figure 4.2 specifically outlines the turning point at around

64,000 agents, where the performance advantage of distribution overcomes the overhead.

It also became evident that at around 1,000,000 agents the initialization of the SAS turns
into a very long (»1h) running task. Performance tracing with dotTrace revealed that the
NET event system seems to be responsible, since the time it takes to add a listener to events
in the SAS’s underlying implementation increases with each agent. Therefore it should be
considered to use full Agent Shadowing up to 1,000,000 agents per agent type and to switch

over to on-demand SAS creation if more agents are to be used.

The experiments showed as well that one has to be careful when using the AS caching feature.
Activating the cache in simulations which are executed completely locally or run distributed
but have very little interaction between agents, leads to worse execution performance de-
pending on the amount of agents (A) multiplied by the amount of changing properties (P).
Effectively this results in A x P messages being send without cause or little effect respectively.
Thus running the simulation with 100,000 agents on a single node takes around 14 seconds
with distribution features deactivated. When distribution features are activated, the same

simulation on a single node takes around 84 seconds.



5 Risks & Chances

5.1 Risks

5.1.1 Memory Consumption

Among the greatest risks for the distribution concept of MARS LIFE is the memory consump-
tion. The basic Agent Shadowing demands for every agent to become a proxy on every remote
host. So basically every remote host will have to create as many proxies as the layers it hosts
contains and are not present as real agents on these hosts. This limits the overall distribution ca-

pability to the smallest amount of RAM found on any of the host participating in the simulation.

However this only applies to the basic version of Agent Shadowing. Due to the way Agent
Shadowing is implemented, the memory consumption can be significantly reduced by means of
a garbage-collection like mechanism. Since MARS LIFE uses multicast messages to communi-
cate between its nodes, each agent can be uniquely addressed by its type and ID. So if memory
is becoming an issue, proxies can be spared by just storing agent types and corresponding IDs.
This approach could also be combined with some kind of real interest management, which
would result in only making those proxies available which are currently in use on a particular

node and removing unused stubs respectively.

5.1.2 UDP Multicast

Another risk is the possible loss of messages when using udp multicast as the transport solution
for agent communication, because no guarantees for message order or message arrival are
made with that protocol. Since MARS is meant to either be executed on local computers or in
cloud-like environments with a very controlled and capable network, this shouldn’t be too
much of an issue. In later version however there should be either a TCP based fallback option

or an implementation of one of the newer approaches towards reliable multicast messaging.



5 Risks & Chances

5.2 Chances

If the results of the author’s master thesis are satisfying, there is a good chance to make a
significant contribution to the world of MMAS. Given the demand for cloud-based systems,
large-scale models and distributed approaches by Taylor et al. (2013), Tolk & Mittal (2014)
and Padilla (2014) the MARS system is designed to provide a solution to them by covering all
major needs of simulation. The LIFE system is the central component performing the actual
simulation as depicted by figure 5.1.

Besides the academic chances, MARS has the ability to become a very supportive and useful
tool in ecological modeling, evacuation and urban risk simulations, enterprise architecture

analysis and many more fields.
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Figure 5.1: MARS System Overview
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6 Conclusion & Outlook

The presented concept for the distributed MMAS MARS LIFE is completely implemented and
ready to get tested. First results presented in section 4 showed that the system scales in the

no-interaction complexity category with more nodes added to the simulation cluster.

The next steps however include additional tests which benchmark the two higher complexity
classes of agent-to-environment and agent-to-agent interaction. Also simulation runs with
more than 3 nodes, a comparison between bare-metal and virtual nodes as well as monitoring

the memory consumption still need to be performed.

It also remains to further develop both the Skukuza and KNP model respectively. Those
finished models will include quite a lot of interaction, which is expected to really stress test
the Agent Shadowing mechanism. Also a couple of GIS layers will be used in the final models,
which imply additional complexity.

The following hypotheses are postulated so far for the author’s master thesis:

1. Traffic between agents is minimized by using multicast messaging on a per agent type

base.
2. Repeated lookup of remote references is not necessary anymore.

3. Lookup of remote agents only needs the agent’s type and ID, but no additional commu-

nication.
4. The system is limited by the maximum amount of RAM per node.

5. This limitation can be compensated by introducing on-demand creation of Shadow Agent
Stubs.
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