

Data Visualization

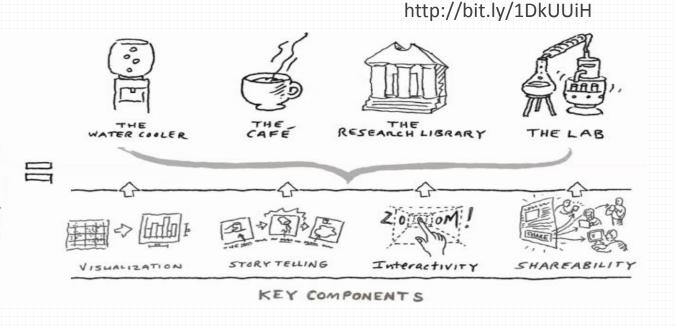
Agenda

- 1. Objective
- 2. Motivation
- 3. Approach & Risk Assessment

Objective

1. Objective

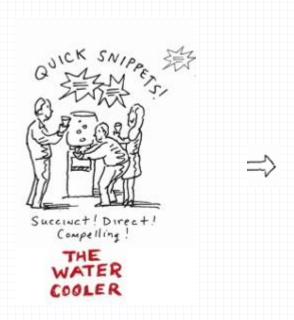
Is it possible to effectively make compelling stories from large amount of (possibly complex) data by means of visualization?


Motivation

2. Motivation

- Get the right people to the right content at the right time
 - 4x4 model for knowledge content
 - Good visualization is a key aspect
- What makes a good visualization

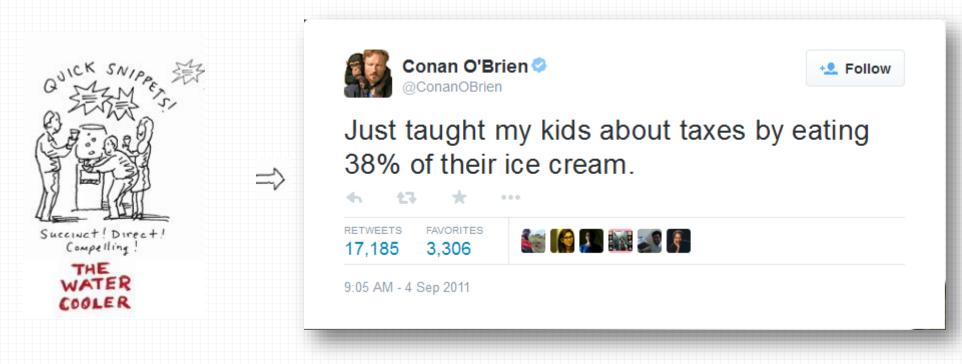
CONTENT


- Accuracy
- Story
- Knowledge

Approach & Risk Assessment

3. Approach & Risk Assessment 3.1 Getting the Big Idea

Get some ideas (about what to tell/explain/prove)



3. Approach & Risk Assessment 3.1 Getting the Big Idea

Get some ideas (about what to tell/explain/prove)

http://bit.ly/1tyBSWg

- Culture
- Level of expertise
- Accessibility
- Consumption context/channel
 - affects approach/level of standard
- True believers or skeptics?
 - affects acceptance, may lead to bias
- Action
 - What kind of conversation & interaction/reaction should this visualization evoke?

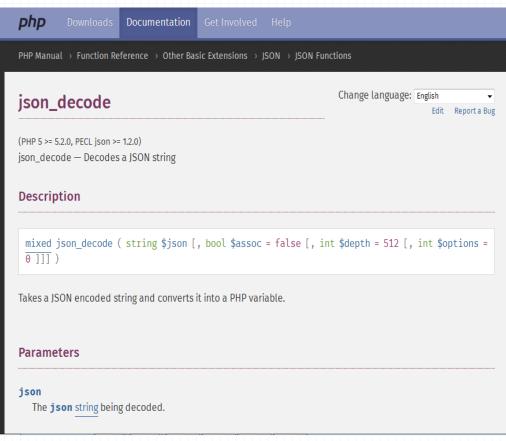
- Culture
 - affects language, perspective, color, narrative context...

- Level of expertise
 - affects language, context information, approach...

• ©Shutterstock.com

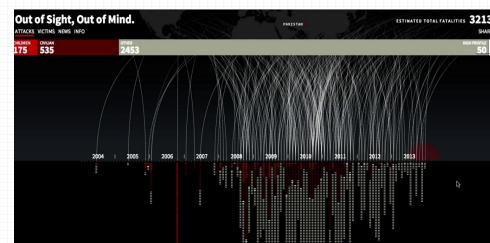
VS.

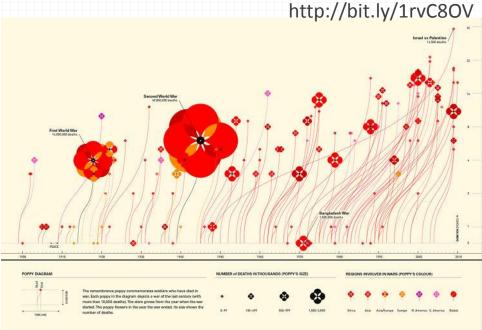
- Accessibility
 - Big issue: visual impairment (color blindness...)
 - affects visual element design (color, font size, contrast...)
 - http://www.color-blindness.com/coblis-color-blindness-simulator


3. Approach & Risk Assessment3.3 Sourcing & Preparing The Data

- Find, evaluate and select reliable data. Possible sources include:
 - Government & political data (Data.gov, Destatis.de, Socrata, Census.gov...)
 - Data aggregators (Programmable Web, Infochimps, Junar, Buzzdata...)
 - Social data (Twitter, Foursquare, Facebook...)
- Understand the data/data parameters
 - Mean, median, rank index, percentile, correlation, causation...
 - Sample size & methodology
 - Helps: sport mistakes, reduce bias
- Explore the data
 - Spreadsheet, visual analytic tools/softwares
 - Add more contextual data if necessary

3. Approach & Risk Assessment3.3 Sourcing & Preparing The Data


- Clean and get data into the right format
 - Data adjustments: calculate indexes, ratios, percentiles, aggregate/regroup data...
 - > Spreadsheet, Data Wrangler, Google Refine...
 - Data conversion: Excel/CSV/TSV... to JSON/XML/MySQL...
 - Online tools, programming language built-in functions...
- Associated risks include:
 - Data cleaning: complexity, time consuming.
 - Inability to find reliable data source.
 - Data requires extensive, deep knowledge to comprehend



- 3. Approach & Risk Assessment
 - 3.4 Experimenting with Visual Designs/Visual Elements

http://bit.ly/1fhDw3U

- Sketches & Wireframes
- Visual Elements
 - Illustration, iconography, typography
 - Position, size, shape, color, contrast...
- Finding the right paradigm
 - Basic forms (charts, diagrams, maps...) vs
 - Creativity & innovation
- Risks include
 - Lack of good design skill/artistry/time
 - Overuse of visual elements

Things to consider

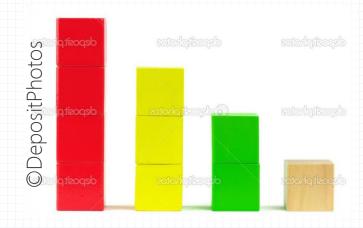
Platform vision

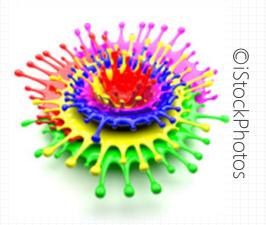
One-off Short-term Static

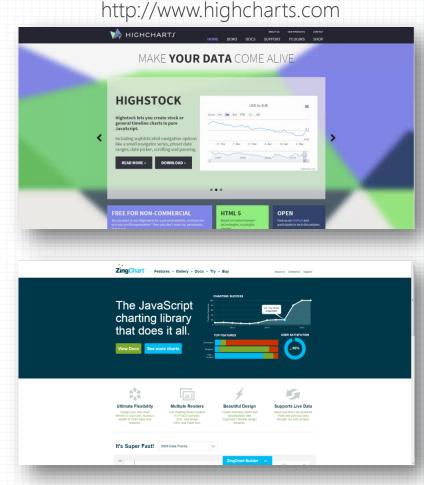
Reusable Permanent Evolving

Audience

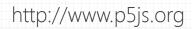
Technophobic
Old-fashioned
Under-gadgetized




Techno-driven Modern Gadget-laden


Visual/Conceptual goals

Simple Standard Complex Custom



- 3. Approach & Risk Assessment
 - 3.5 Finding the Right Technology & Start Visualizing
 - Software packages/Off-the-shelf solutions
 - Tableau, QlikView, Gephi, Highcharts, Zingchart, Pentaho...
 - + Quickly build complex, interactive visualizations
 - + Shorter learning curve
 - Few customizations, less flexibility
 - Cost

http://www.zingchart.com

- DIY: HTML5 vs. SVG libraries
- HTML5: raster-based, loss of details when resizing. Cannot add event-listeners to canvas shapes. Great for raster images & sprites...
 - Chart.js, Fabric.js, p5.js...
- SVG: XML-based, minimum loss of quality when resizing/porting to different devices.
 Not scale well in charts with large amounts of elements...
 - D3.js, Raphael.js, Snap.svg...

http://www.d3js.org

Associated risks include

Technical abilities

Got it

Needs help

3. Approach & Risk Assessment3.6 Sharing, Getting Feedbacks & Assessing Outcome

Survey methodology:

- Small poll (~ 5-10 questions, ~ 10-20 participants)
- Compare between visualization vs. visualization / visualization vs. raw data
- What to assess:
 - How fast a fact/an attribute of the data can be recognized
 - How compelling/credible the stories are, according to users' opinion
 - Overall user experience/usability

3. Approach & Risk Assessment3.6 Sharing, Getting Feedbacks & Assessing Outcome

Risks include

- Not enough survey respondents
- Not enough meaningful questions
- Feedbacks' quality
- Accuracy/Objectivity of result

Thank you for your attention.