Safety & Security

Thomas Jäger

Betreuerin: Bettina Buth

Agenda

- Motivation
- Einführung in das Thema
 - Begriffe und Abgrenzung
 - Verschmelzung
- Beispiel
- Probleme und Herausforderungen
- Forschungsstand Lösungsansätze
- Mögliche Projekte / Zielsetzung
- Konferenzen
- Quellen

Motivation

- Bachelorarbeit im Bereich Security
 - "Implementierung eines Intrusion Detection Systems auf einem Single Board Computer"

- Nebenjob: Softwaretester in FinTech-Unternehmen
 - Safety-kritische Bestandteile

=> Safety + Security

Einführung in das Thema: Begriffe und Abgrenzung

Safety-kritische Systeme

- Traditionell von der Umwelt isolierte Einheit
- Beispiele:
 - Autos
 - Produktionsmaschinen

Security-kritische Systeme

- Nicht-isoliertes System
- Beispiele:
 - Clouds
 - Firmennetzwerke
 - Software für Finanzdienstleistungen

Einführung in das Thema: Begriffe und Abgrenzung

Safety Systeme

Gefahren

- Finanzieller Schaden
- Personenschäden
- Umweltschäden

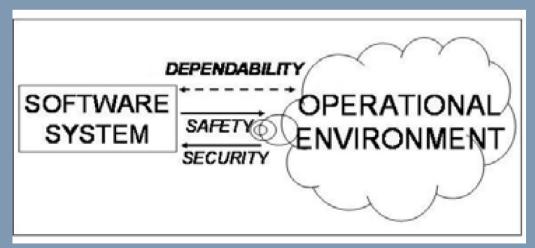
Schutz der Umwelt vor System:

- Isolation
- Gegen zufällig auftretende, systeminterne Fehlfunktionen/Ausfälle
- Security-Maßnahmen oft auf Offline-Datenschutz beschränkt

Security Systeme

Gefahren

- Datenverlust
- Datenmanipulation
- Datendiebstahl



Schutz des Systems vor Umwelt:

- Isolation
- Kryptographische Methoden
- Authentifizierung

Einführung in das Thema: Verschmelzung

- Ausbreitung des Internets/Digitalisierung
- Verbreitung vernetzter Komponenten in Safety-kritischen Systemen
- Schnittstellen bieten Angriffsfläche
 - => Angriff führt kann zu Fehlfunktion/Ausfall in kritischem System führen

Andrew J. Kornecki and Janusz Zalewsky "Safety and Security in Industrial Control"[1]

Beispiel: Automobilindustrie[3]

Wachsende Anzahl safety-kritischer Komponenten in Fahrzeugen

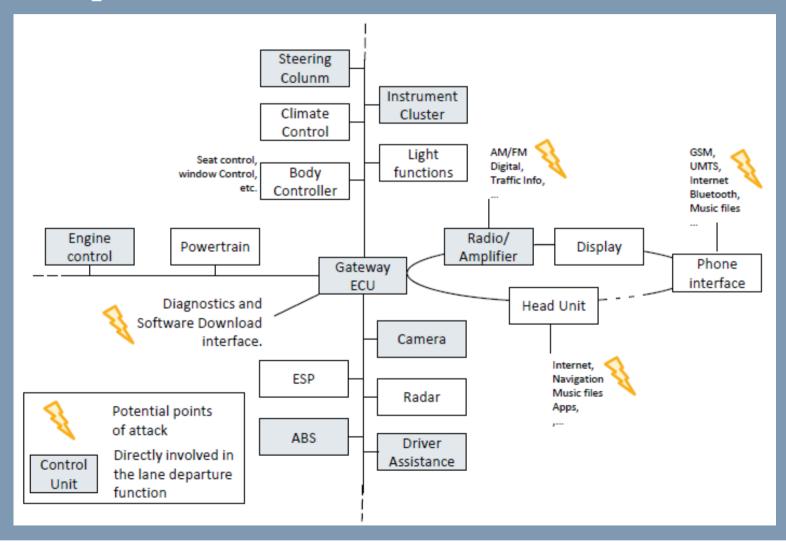
- Steigende Komplexität und Grad der Interaktion der Komponenten
 - Untereinander
 - Mit anderen Systemen
- Steigende kabellose Kommunikation der Komponenten

Beispiel: Automobilindustrie[3]

Beispiel: Spurhalteassistent

- Löst aus, wenn Fahrzeug ungewollt die Spur verlässt
- · Sendet Warnung an Fahrer und korrigiert die Richtung

Potentielle Gefahrenquellen:


- Verwendet verschiedene, zusammenwirkende Komponenten (z.B. visuelle Quellen, wie Kamera)
- Viele Schnittstellen, mögliche Angriffspunkte

=> Einschleusen von falschen Nachrichten (z.B. Kamera, falsche Vorfälle)

Mögliche Folgen:

- Ungewollte Warnungen
- Ungewollte Steuerung
- · Verhinderte Ausweichmanöver

Beispiel: Automobilindustrie[3]

Simon Burton, Jürgen Likkei, Marko Wolf "Automotive Functional Safety = Safety + Security" [3]

Probleme und Herausforderungen"Safety and Security in Industrial Control"[1]

Andrew J. Kornecki: Electrical, Computer, Software & System Eng., Embry Riddle Aeronautical University

Janusz Zalewski: Computer Science, Florida Gulf State University

Probleme und Herausforderungen[1]

- Safety und Security werden als zwei getrennte Bereiche betrachtet
- Bisherige Safety Systeme sind nicht gegen Attacken von Außen konzipiert
 - Bei Integration entstehen ungeschützte Schnittstellen
- Kabellose Verbindungen machen Systeme von Außen verwundbar
- Security-Spezialisten sind nicht mit Safety-Richtlinien vertraut
- Wissenslücke für Safety-Security Problematik

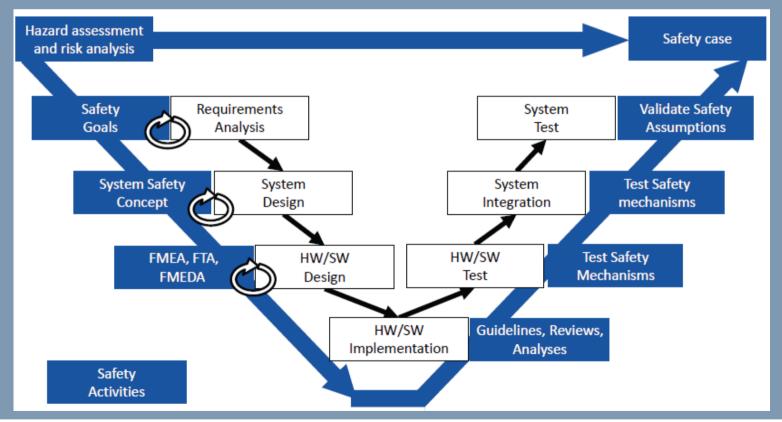
Forschungsstand Lösungsansätze "Automotive Functional Safety = Safety + Security"[3]

Simon Burton: ETAS GmbH

Jürgen Likkei & Priyamvadha Vembar: Robert Bosch GmbH

Marko Wolf: ESCRYPT GmbH

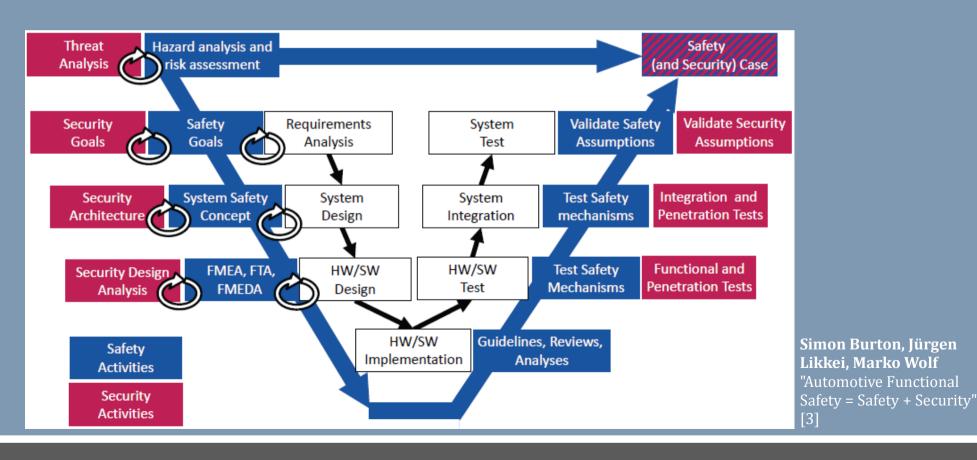
- Erweitert klassischen Entwicklungsprozess um Safety und Security Anteile
- Kombiniert ISO 26262 und ISO 14508


Forschungsstand Lösungsansätze "Automotive Functional Safety = Safety + Security"[3]

ISO 26262 (International standard for functional safety in passenger vehicles)

- Erweitertes V-Modell
- Reduzierung der Risiken durch System- und Hardwarefehler
- Klassische Analysemethoden während Konzeptionierungsphase
 - FTA (Fault Tree Analysis)
 - FMEA (Failure Mode and Effects Analysis)

Forschungsstand Lösungsansätze "Automotive Functional Safety = Safety + Security"[3] ISO 26262


(International standard for functional safety in passenger vehicles)

Simon Burton, Jürgen Likkei, Marko Wolf "Automotive Functional Safety = Safety + Security" [3]

Forschungsstand Lösungsansätze "Automotive Functional Safety = Safety + Security"[3]

ISO 26262 + ISO 14508

Forschungsstand Lösungsansätze "Automotive Functional Safety = Safety + Security"[3]

Zusammenfassung

- Security Ziele werden auf Basis von Safety Zielen entwickelt =>Gibt es Safety Ziele, die durch Attacken von Außen gefährdet werden?
- Aus identifizierten Zielen können Testfälle entwickelt werden

Nachteile

- Umsetzung erfordert strikte Einhaltung des vorgegeben Entwicklungsprozesses
 - Nicht praxisnah

Forschungsstand Lösungsansätze

"An Integrated Approach to Safety and Security Based on System Theory"[2]

William Young: Ph.D. Candidate in the Engineering Systems division at Massachusetts Institute of Technology, Cambridge, MA.

Nancy G. Leveson: Professor of Aeronautics and Astronautics and also Professor of Engineering Systems at Massachusetts Institute of Technology, Cambridge, MA.

Forschungsstand Lösungsansätze

"An Integrated Approach to Safety and Security Based on System Theory"[2]

Taktik

- WO sind Schwachstellen?
- Lücken werden geschlossen
- Priorisierung von Lücken nötig
- Kenntnisse über Angreifer notwendig
- Verteidigung aus nachteiliger Position
- Bottom-Up Konzept

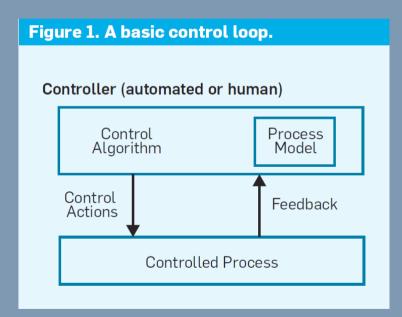
Strategie

- WAS muss beschützt werden?
- Welche Verluste sind möglich?
- Welche Verluste sind (nicht) akzeptabel?
- Von Abstrakt zu Konkret
 - Hierarchische Strukturen gut für menschliche Vorstellungskraft
- Top-Down Konzept

Forschungsstand Lösungsansätze

"An Integrated Approach to Safety and Security Based on System Theory"[2]

- Komponenten werden in hierarchische Kontrollstruktur abgebildet
- Startet mit hohem Abstraktionslevel
 - Stufenweise Konkretisierung
 - => Kleinere und besser kontrollierbare Menge an potenziellen Verlusten
- Unvollständigkeiten werden einfacher gefunden
 - => Dennoch kein Anspruch auf Vollständigkeit


Forschungsstand Lösungsansätze

"An Integrated Approach to Safety and Security Based on System Theory"[2]

STAMP

(System-Theoretic Accident Model and Processes)

- Modell für Ursache und Wirkung zwischen Systemkomponenten
- Control Loops zwischen den Stufen der hierarchischen Kontrollstruktur

William Young and Nancy G. Leveson
"An Integrated Approach to Safety and Security
Based on Systems Theory" [2]

Forschungsstand Lösungsansätze

"An Integrated Approach to Safety and Security Based on System Theory"[2]

STPA (System-Theoretic Process Analysis)

- Analysetechnik basierend auf STAMP
- Durchführungsschritte:
 - 1. Identifizierung des möglichen Fehlverhaltens
 - 2. Identifizieren von ungewollten, unsicheren Control Commands
 - 3. Untersuchen der Control Loops zum Identifizieren von ursächlichen Szenarios
- STPA-Sec: STPA mit Security Analyse
 - Unterschied zu STPA: Hinzufügen von Security-Szenarios (3.)

Mögliche Projekte / Zielsetzung

Projekte

- Analyse eines Systems auf Basis der System Theorie [2]
 - Entwickeln entsprechender Testfälle
- Testautomatisierung möglich?

Ziele

- Tieferes theoretisches Verständnis
- Einlesen/Einarbeitung testgetriebene Entwicklung im Themengebiet [1]
- Kenntnisgewinn in FTA / FMEA

Konferenzen

- SafeComp 2015: International conference on computer safety, reliability and security
 - **Keynote**: Andrey Nikishin, Director Special Projects & Future Technologies, Kaspersky Lab, London, UK

"Does IoT stand for Internet of Threats and other stories?"

 Cor Kalkman: Professor of Anesthesiology at University Medical Center Utrecht, NL,

"Medical devices, Electronic Health Records and assuring Patient Safety: future Challenges?"

Konferenzen

- ASQF Quality Days 2015: Qualitätssicherung von vernetzten Systemen
 - **Keynote**: Prof. Dr. Ina Schieferdecker, Leiterin des Fraunhofer FOKUS Berlin & ASQF-Präsidentin
 - Dr. Jürgen Großmann, Fraunhofer Fokus
 - "Systematically combine security rist assessment and testing based on standards"
 - Nils Röttger, imbus AG
 - "Softwareintegration im Kontext von Industrie 4.0 eine Herausforderung an die Qualitätssicherung?"

Quellen

- [1] Andrew J. Kornecki and Janusz Zalewsky
 "Safety and Security in Industrial Control"
- [2] William Young and Nancy G. Leveson
 "An Integrated Approach to Safety and Security Based on Systems Theory"
- [3] Simon Burton, Jürgen Likkei, Marko Wolf
 "Automotive Functional Safety = Safety + Security"