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Abstract

Model checking is an important aim of the theoretical computer science. It enables the
veri�cation of a model with a set of properties such as liveness, deadlock or safety. One of the
typical modelling techniques are Petri nets they are well understood and can be used for a
model checking. Recon�gurable Petri nets are based on a Petri nets with a set of rules. �ese
rules can be used dynamically to change the net.
Missing is the possibility to verify a recon�gurable net and properties such as deadlocks or
liveness. �is paper introduces a conversion from recon�gurable Petri net to Maude, that
allows us to �ll the gap. It presents a net transformation approach which is based on Maude’s
equation- and rewrite logic as well as the LTLR model checker.
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1 Motivation

�e �rst approach to convert recon�gurable Petri net to Maude (see [1]) is designed as extension
for ReConNet. It uses the implementation of ReConNet to get all possible matches for a set of
rules and a given Petri net. �is approach results in a dependency of the current net state and
the algorithm of ReConNet.
Hence, that the model-checking process has only one-step application of a rule may be wrong
if a rule is used twice, because an error may occur a�er the second usage.
�e new approach is based on the algebraic structure of recon�gurable Petri nets. �e main
task was to create a structure which can be read similar to the mathematical notation of a
recon�gurable Petri net. It includes the possibility to simulate the net. �is implies a solution
for a transition that de�nes the activation and �ring. Maude has been chosen as the appropriate
language to implement this de�nition.
Moreover, the rules need to be implemented within the new structure. In contrast to the �rst
approach it should be able to detect a match itself.
�e following sections contain an overview of all relevant parts of this approach. �e �rst
section gives a short overview of the background for this work. �e next section focuses
the new modules, which contain the data-types for the resulting Maude speci�cation of a
converted recon�gurable Petri net. Finally, an evaluation shows the performance of the current
implementation based on a test net.
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2 Background

First we introduce recon�gurable Petri nets. �ey extend Petri nets with a set of rules, that can
modify the net at runtime. Moreover, Maude is introduced since it is the result the conversion
aims at. Finally, a short survey of related works is presented.

2.1 Reconfigurable Petri nets

One of the most important models for concurrent systems and some so�ware engineering
parts are the Petri nets, based on Carl Adam Petri’s dissertation [2].
A marked Petri net can be formally described as a tuple N = (P, T, pre, post, M0) where P is
a set of places and T is a set of transitions. pre is used for all pre-conditions of transitions,
which describes how many token are required for �ring. On the other hand, post holds all
information of the post-conditions for all transitions. Finally, M0 shows all initial tokens on
the places for this net N [3, 4].
Further, based on a Petri net are recon�gurable Petri nets important because they can modify
themselves with a set of rules [5–7]. A recon�gurable Petri net can be describe a tuple of a
recon�gurable Petri net RN = (N,R). �is de�nition uses the Petri net tuple and a setR of
rules, which are given by rule r = (L← K → R) [8, 9]. L is the le�-hand side (LHS), which
needs a morphism to be mapped to a net N . K is an interface between L and R. R is the part
which is inserted into the original net. To realise this replacement a matching algorithm needs
to be de�ned that �nds L within the source net N . �is match includes a mapping between
the elements in the Petri net and the le� side of the rule (L). Basically, this algorithm �nds the
same structure (form L) within the Petri nets [10].
Recon�gurable Petri nets are also comprises capacities and labels for transitions/places [8]. A
limitation for place is realised via a capacity, that contains a value which describes how much
token can be stored on a place. �e function cap : P →Nw

+ assigns for each place a natural
number as capacity. Further, two label function (pname and tname) refer for each place or
transition a name from a name space (pname : P → AP and tname : R→ AT ).
ReConNet is shown in Figure 1 with an example net N1 and ruleR1. �e con�gurations such
as node names or markings as well as the control elements for �ring and transformation are
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2 Background

presented in the upper region of the graphical interface. A graphical illustration of recon�g-
urable Petri nets is in the remaining interface. First, a net which models a cycle is composed of
three places and transitions as well as one token. Wider, a rule which changes the arc direction
of a transition is displayed under the net. In both editors are activated transitions marked as
black transitions instead of grey normal transitions. Colours for places in rules are used to
ensure the common bond.

Figure 1: ReConNet - graphical editor for recon�gurable Petri nets

2.2 Maude

Maude has been developed at the Stanford Research Institute International (SRI International)
for the last two decades. �e equation and rewriting logic, which supports a powerful algebraic
language, is used as a base [11, 12]. Based on these two kinds of logics Maude models a
concurrent state systems that used for semantic analysis such as deadlock discovery via LTL-
model-checking-module [13, 14].
Maude consists of a core which is named ”Maude Core“. On top of its core every other part is
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2 Background

wri�en in Maude itself. Actually, Maude is distributed in version 2.6 form the website1 [15].
A program in Maude is based on one or many modules where every part of the system looks
like a clear to read abstract data type (ADT). A module contains a set of types, which are used
with the ”sort“-keyword. It is also possible to de�ne more than one type with the plural form

”sorts“. Each type describes a property for the module. For example types for a Petri net can be
described with:

sort P laces Transitions Markings . (2.1)

Depending on some sorts a set of operators needs to be de�ned. �ese operators describe all
functors which are used to work with the de�ned types. For example a functor for writing a
multiset of markings, can be expressed with a whitespace. �is whitespace is surrounded with
underscore, denoting a placeholder for the types de�ned a�er the double point. �e return
type right of the arrow, is of sort markings.

op : Markings Markings → Markings . (2.2)

If this operator has to be associative (in Maude with a short version: ”assoc“) and commutative
(short with: ”comm“) properties, Maude de�nes this in the end of this line. Hence, we obtain a
multiset of markings by this operator. �e notation allows these properties in box brackets, so
that it can be wri�en as:

op : Markings Markings → Markings [assoc comm] . (2.3)

Maude uses the equation logic to de�ne the validity for an operator (axioms). �is can be
exempli�ed with the initial marking from a Petri net. �is marking is a representation of the
initial state of the Petri net. Based on this information we can de�ne an operator that describes
the initial state of a Petri net. A�er that, the validity with an equation can added. If we have a
Petri net with only one marking with an ”A“ label we obtain these two lines:

op initial : → Markings . (2.4)

eq initial = A . (2.5)

1 www.maude.cs.uiuc.edu/, retrieval on 16/05/2014
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2 Background

Types are de�ned as ”sort“, operators as functors and equations as the validity of operators.
�e rewrite rules can be used to replace one multiset with another multiset. So all terms are
immutable as in many functional languages. A replacement rule consists of two multisets,
where the �rst set is replaced with the second one. �ese two termsets are separated with a
double arrow, as shown in the following example, where a term A is replaced with a new term
B:

rl [T ] : A ⇒ B . (2.6)

Based on this example an implementation of the token game of Petri nets can be realised.
�e two multisets can be seen as pre- and post-set of a transition. Hence, a rule can be used
to describe a �ring step with this two sets. �is replacement rule can be modelled with the
following graphical representation:

A

T

B

Figure 2: Example Petri net N for the Equation 2.6

2.3 Related Work

�e basic example for a Petri net to Maude conversion uses a shop system, where a user can
buy an apple or candies. �e mapping into Maude uses the term replacement system to model
the �ring steps of this net. Based on this Maude-structure it is possible to add a model-checking
possibility, which can be used to verify a deadlock or safety properties [15].

Figure 3: Shop example with apple and candy

A more complex example of this modelling (see Figure 3) is shown with high level nets in
[16]. It presents a conversion of the banker problem where two credits are handled by the net
structure. �e focus of the work lays on the soundness and correctness for this conversion
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2 Background

approach. A formal de�nition of the model and the operators as well as the �ring of a transition
is given. Further, the paper presents an approach for a coloured Petri net (CPN). It extends
the previous approach with more complex operators for the �ring replacement rules. �e
conversion of transitions is realised via Maudes replacement rules and operators which contain
the coloured tokens.
Automatic mapping for UML-models to a Maude-speci�cation (see [17]) is similar to this
paper’s idea of converting recon�gurable Petri nets. In [17] the authors present three steps
modeling, analysing and converting to Maude modules. �e �rst step focuses on subject-
speci�c modeling within UMLs class, state or components diagrams. A�er that step, the tool
AtoM is used to convert the model into a Python-code representation. �is code will be used
to solve some constrains inside the UML-model components and some diagram speci�c parts.
Lastly, the �nal step transfers all data into a Maude-speci�cation, which can be used to verify
some properties for example deadlocks.
In [18] Petri nets are also converted into Maude-modules. As a base an Input-Output Place/-
Transition net (IOPT net) is used and saved in a PNML-�le. �ese �les are the origin for the
conversion process. Further, PNML is used as a well-known markup-language for Petri nets.
�is process divides all components of a Petri net in special Maude-modules (net, semantic
and initial markings) which can be used to verify in a same way as in [17].
A use case for the resulting Maude structure is presented in [19]. �e authors modelled the
public transport of Oslo with a Petri net, which is converted into a Maude structure. �e aim
is to proof the net with Maude’s LTL module and properties such as deadlock freedom or
liveness. An evaluation shows that the simulation can handle a net with 2067 places and 3572
transitions as well up to 32 tokens (which models the trains) [20]. Test measurements for one
train used 1614 rewrites and for 32 trains 35630 rewrites in 3.62 seconds.
[21] presents a graphical editor for CPNs. It uses Maude in the background to verify properties
such as liveness and deadlock freedom. �erefore, it converts a net into speci�ed Maude
modules (similar to [16]) which are simulations with one step commands. A�er one step the
tool is capable to present the results.
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3 Data type

A recon�gurable Petri net N1 consists of a tuple which is separated in a Petri net N and a
set of rulesR. It can be wri�en with N1 = (N,R). Furthermore, a Petri net can be formally
described as a tuple N = (P, T, pre, post, M, cap). Where P is a set of places, T is a set
of transitions, pre and post are functions which maps T → P⊕ and �nally M is the initial
marking. Additionally, a function cap : P → Nω can be used to model a capacity of a place P

with a value Nω [8].
An example of a Petri net is shown in Figure 4. Each blue circle is a place and each rectangle is
a transition. �e arrows between these elements describe the arcs, which can connect a place
with a transition and vice versa. �e two black points are tokens which can be consumed by a
transition.

A T

A

TA

T

Figure 4: Example Petri net N1

A rule is consists of three Petri nets L, K and R. L is the le�-hand side (LHS) which should
be found. �e right-hand side R would be inserted in the net, if this rule is used. K is the
interface between L and R.
�e example in Figure 5 shows a rule which changes the direction of an arc for a transition T .
�e change is realised by two steps. At �rst, the match of the le�-hand side ensures that the
rules can be applied. And �nally, the right-hand side contains the information to be used.
�is example contains a transition which connects the places in reverse order (arc colour black).
However, the mapping net contains both transitions. �e arc inversion is realised by a deleting
one transition and adding a new transition with reversed arcs.
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3 Data type

A

T ⊆

A

L

A

T T

A

K

A

T⊇

A

R

Figure 5: Example rule r1, which switch the arc direction

�e aim of this work is to create Maude modules, which provides the possibility to create
a formal writing of a recon�gurable Petri net. �e example net in Figure 4 can be formally
indicated as:

P = {A2, A3, A4}
T = {T5, T6, T7}

pre(T5) = A4

pre(T6) = A2

pre(T7) = A3

post(T5) = A3

post(T6) = A4

post(T7) = A2

m = A2 + A4

cap = ωA2 + ωA3 + ωA4

Figure 6: Formal description of a Petri net (for a graphical presentation see also Figure 4)

Hence, the module needs a de�nition for places, transitions and markings as well as the
de�nition of pre- and post-sets. It comprised the type hierarchy and the syntax as shown in
Listing 1.
First, all sorts are de�ned. A sort can be understand as a type which contains the semantic. An
example for a semantic is a Petri net place or transition. Furthermore, a type hierarchy can be
formulated with the keyword subsort. �is is a membership equation logic feature of Maude. It
enables Maude to use a mapping between di�erent types. �is facilitated to describe the type
Places as subset of the type Markings.
Based on the types, all operators can be de�ned. A de�nition begins with the keyword op

followed by the operator syntax. �is contains an operator-name and handover parameter.
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3 Data type

For all parameters a de�nition of the types are shown a�er the colon. If this multi-set of
parameters is empty (an arrow stands a�er the colon) this operator is a constant. �e return
type stands a�er the arrow and �nally a dot ends the statement. Additionally, special properties
as associativity or commutativity can be added inside of box brackets. Further, the de�nition
can be extended with equations.

1 sor t s Net P l a c e s T r a n s i t i o n s Pre P o s t MappingTuple
Markings .

3 subsort P l a c e s < Markings .

5 op emptyPlace : −> P l a c e s .
op e m p t y T r a n s i t i o n : −> T r a n s i t i o n s .

7 op emptyMappingTuple : −> MappingTuple .
op emptyMarking : −> Markings .

9
op , : P l a c e s P l a c e s −> P l a c e s [ ctor assoc comm id :

emptyPlace ] .
11 op + : P l a c e s P l a c e s −> P l a c e s [ ctor assoc comm id :

emptyPlace ] .
op : : T r a n s i t i o n s T r a n s i t i o n s −>

13 T r a n s i t i o n s [ ctor assoc comm id :
e m p t y T r a n s i t i o n ] .

op , : MappingTuple MappingTuple −>
15 MappingTuple [ ctor assoc comm id :

emptyMappingTuple ] .
op ; : Markings Markings −> Markings [ ctor assoc comm

id : emptyMarking ] .
17

∗ ∗ ∗ READING: Pname | ID | Cap

19 op p ( | | ) : S t r i n g I n t I n t −> P l a c e s .
op t ( | ) : S t r i n g I n t −> T r a n s i t i o n s .

21 op ( −−> ) : T r a n s i t i o n s P l a c e s −> MappingTuple .

23 op p l a c e s { } : P l a c e s −> P l a c e s .

9



3 Data type

op t r a n s i t i o n s { } : T r a n s i t i o n s −> T r a n s i t i o n s .
25 op pre { } : MappingTuple −> Pre .

op p o s t { } : MappingTuple −> P o s t .
27 op marking { } : Markings −> Markings .

29 ∗ ∗ ∗ P e t r i n e t −t u p l e
op ne t : P l a c e s T r a n s i t i o n s Pre P o s t Markings −> Net .

Listing 1: Maude module for a Petri net

Based on this de�nition, it is possible to write the net in Maude. �e operator net is a wrapper-
operator for a net and contains Places, Transitions, Pre, Post and Markings. �e set of places
is realised with the operator places. �is operator contains a multi-set for places which are
separated with a comma. Further, the operator transitions is a set for transitions. It separates
the elements with a colon. In addition, the pre and post operators describe the pre and post
conditions of a transition. Both operators contain a multi-set of MappingTuple, which are a
mapping between a transition and a multi-set of places. Finally, the marking-operator contains
a multi-set of Places. �e content is separated with an additional symbol as the linear sum in
the mathematics de�nition in Figure 6.
�e example in Figure 6 can be wri�en in Maude as in Listing 2. It separates all operators
and the included multi-sets with commas. Each multi-set is wrapped with curved brackets.
A place is modelled as tuple with p(<label> | <identi�er> | <capacity>). Labels are de�ned
as a string, identi�er and capacity as numbers. Transitions are based on the tuple t(<label> |
<identi�er>). Each type has the same type as for the place.

10



3 Data type

ne t ( p l a c e s { p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 4 |

2 1 4 7 4 8 3 6 4 7 ) ,
2 p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) } ,

t r a n s i t i o n s { t ( ” T” | 7 ) : t ( ” T” | 5 ) : t ( ” T” | 6 ) } ,
4 pre { ( t ( ” T” | 7 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

( t ( ” T” | 5 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
6 ( t ( ” T” | 6 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) } ,

p o s t { ( t ( ” T” | 7 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
8 ( t ( ” T” | 5 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

( t ( ” T” | 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) } ,
10 marking { p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 |

2 1 4 7 4 8 3 6 4 7 ) } )

Listing 2: Maude module for a Petri net

3.1 Activation and Firing

A transition t is activated, wri�en by m[t〉, when the following two conditions are satis�ed.
�e �rst condition consists of the pre-set of this transition. �e net marking has to contain at
least as many tokens, as described it in the pre-set (see Equation 3.1). Furthermore, all post
places have to satisfy the capacity condition. Adding more tokens than a place can store is not
possible (see Equation 3.2).
If both conditions are satis�ed, the transition t can �re. One �ring step is wri�en with m[t〉m′,
where m is the current marking and m′ is the following marking. �e calculation of m′ is
described in Equation 3.3. First, the pre-set is deducted from the current marking. Now the
post-set of t can be added to the result.

pre⊕(t) ≤ m (3.1)

m + post⊕(t) ≤ cap (3.2)

m′ = (m	 pre⊕(t))⊕ post⊕(t). (3.3)

11



3 Data type

A conversion of the �rst condition (see Equation 3.1) is shown in Listing 3. �e rewrite rule
contains two parts for the condition. First, T –> PreValue models pre⊕(t). Second, ≤ m is
converted into marking{PreValue ; M}. Hence, the formal de�nition is implemented. Either
the pre-set of a transition is a part of the marking multi-set, or the rule is not enabled for
�ring. �is implementation uses the matching algorithm from Maude to �nd possible cases of
applications. It is able to determine when the termset contains this condition. In summary, a
rule uses one transition from the net-tuple and tests the existing in the pre-set in the current
marking.
Furthermore, the Equation 3.2 is expressed by the condition of the Maude rule. Hence, the sum
of the current marking plus the post-set for the transition is less or equal than the capacity of
each place. �e addition of the current marking and the post-set is wri�en a�er the if in the
last line of Listing 3. �e addition result is used with the <=? which requires a multi-set of
places on the right side. Details can be found in Listing 4.
Further, the rule result contains a function which calculates the resulting set of markings.

calc(((PreValue ; M) minus PreValue) plus PostValue)

And may be read as the formal de�nition in Equation 3.3, where PreValue ; M describes m

and PreValue is the pre-value of the transition v. �e place holder PostValue represents the
post-domain of the transition t.

c r l [ f i r e ] :
2 ne t ( P ,

t r a n s i t i o n s {T : TRest } ,
4 pre { ( T −−> PreVa lue ) , MTupleRest1 } ,

p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
6 marking { PreVa lue ; M} )

R u l e s
8 I

=>
10 ne t ( P ,

t r a n s i t i o n s {T : TRest } ,
12 pre { ( T −−> PreVa lue ) , MTupleRest1 } ,

p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
14 c a l c ( ( ( P reVa lue ; M) minus PreVa lue ) p l u s

P o s t V a l u e ) )

12



3 Data type

R u l e s
16 I

i f c a l c ( ( P reVa lue ; M) p l u s P o s t V a l u e ) <=? P o s t V a l u e
.

Listing 3: Activation and �ring of a transition

�e operator <=? (in words smallerAsCap) maps the capacity condition in this Maude module.
�e aim is to return true if the marking is less or equal than the capacity of each places in the
post-set of a transition.
�e source code consists of the helper method leeqth with . �is operator tests the capacity
of a place multi-set and a single place. �e third parameter is used to count the occurrence of a
token in the multi-set. In case that the counter is bigger than the capacity it returns false. All
other cases results with true.

1 op <=? : Markings P l a c e s −> Bool .
op l e e q t h with : P l a c e s P l a c e s I n t −> Bool .

3
∗ ∗ ∗ Impl − sma l l e rAsCap # # # # # # # # # # # # #

5 eq marking { PSe t } <=? emptyPlace = t r u e .
ceq marking {M} <=? ( P , emptyP lace )

7 = t r u e
i f M l e e q t h P with 0 .

9 ceq marking {M} <=? ( P , PRes t )
= t r u e

11 i f M l e e q t h P with 0
/\ PRes t =/= emptyPlace

13 /\ marking {M} <=? PRes t .
eq M <=? P = f a l s e [ owise ] .

15
∗ ∗ ∗ Impl − l owe rEqua lThan # # # # # # # # # #

17 ∗ ∗ ∗ p l a c e m u l t i s e t i s empty

ceq emptyMarking l e e q t h p ( S t r | I | Cap1 ) with Counter
19 = t r u e i f Counter <= Cap1 .

∗ ∗ ∗ Cap−c o u n t e r i s t o o b i g

13



3 Data type

21 eq ( p ( S t r | I | Cap2 ) ; MRest ) l e e q t h p ( S t r | I | Cap2 )
with ( Cap2 + 1 )
= f a l s e .

23 ∗ ∗ ∗ f ound same p l a c e

ceq ( p ( S t r | I | Cap2 ) ; MRest ) l e e q t h p ( S t r | I | Cap2 )
with Counter

25 = t r u e
i f ( MRest l e e q t h p ( S t r | I | Cap2 ) with ( Counter +

1 ) ) .
27 ∗ ∗ ∗ d e l a n o t h e r p l a c e

ceq ( p ( S t r | I | Cap1 ) ; MRest ) l e e q t h p ( S t r 2 | I 2 |

Cap2 ) with Counter
29 = t r u e

i f ( MRest l e e q t h p ( S t r 2 | I 2 | ( Cap2 ) ) with Counter )
.

31 ∗ ∗ ∗ o t h e r w i s e

eq M l e e q t h P with I = f a l s e [ owise ] .

Listing 4: Capacity proof of each place in the post-set

3.2 LTL Properties

�e aim of this work is to verify properties such as deadlocks, liveness or reachability for a
recon�gurable Petri net. To realise this Maude’s LTLR implementation is used. It is based on
an implementation of the linear temporal logic (LTL). �e implementation itself uses a Kripke
structure, which is realised on the basis of the equation and rewriting logic, basically a �nite
transition system [14].
�e following examples in Listing 15 �. are using the operators de�ned in Listing 5. It contains
an operator for the reachability of a marking. �e enabled-operator includes the activation of
a transition as well as the ability to apply a rule. Finally, the last three lines in Listing 5 include
a standard equation, which is used when no other equation can be used.
�e implementation starts with a sub sorting of the Con�guration-type. �is is necessary
because the Kripke structure is based on these informations. It means that all Con�guration-
objects are relevant for the construction of the states of the Kripke structure. In terms of this
work a Con�guration-object contains a snapshot of a recon�gurable Petri net. At the beginning
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it includes the initial marking and the primal state of the net without any transformation with
rules. All other following conditions include the further interactions of the net (in this case the
Con�guration with �ring steps and rule treatments).

subsort C o n f i g u r a t i o n < S t a t e .
2

op r e a c h a b l e : Markings −> Prop .
4

eq ne t ( P , T , Pre , P o s t ,
6 marking { M ; MRest } )

R u l e s MaxID S t e p S i z e a idP a idT
8 |= r e a c h a b l e (M) = t r u e .

10 op t−e n a b l e d : −> Prop .

12 eq ne t ( P , T ,
pre { ( T1 −−> PreVa lue ) , MappingTuple } ,

14 P o s t ,
marking { PreVa lue ; MRest } )

16 R u l e s MaxID S t e p S i z e a idP a idT
|= t−e n a b l e d = t r u e .

18 eq C |= t−e n a b l e d = f a l s e [ owise ] .

20 op e n a b l e d : −> Prop .

22 eq ne t ( P , T ,
pre { ( T1 −−> PreVa lue ) , MappingTuple } ,

24 P o s t ,
marking { PreVa lue ; MRest } )

26 R u l e s MaxID S t e p S i z e a idP a idT
|= e n a b l e d = t r u e .

28
eq ne t ( p l a c e s { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,

30 p ( ” A” | I r u l e 2 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) , P } ,
t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 4 ) : T } ,

15
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32 pre { ( t ( ” T” | I r u l e 2 0 2 4 ) −−> p ( ” A” | I r u l e 2 0 1 7 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
MTupleRest1 } ,

34 p o s t { ( t ( ” T” | I r u l e 2 0 2 4 ) −−> p ( ” A” | I r u l e 2 0 2 0 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
MTupleRest2 } ,

36 marking { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ; M } )
R u l e s MaxID S t e p S i z e a idP a idT

38 |= e n a b l e d = t r u e .

40 var C : C o n f i g u r a t i o n .
var Prop : Prop .

42 eq C |= Prop = f a l s e [ owise ] .

Listing 5: LTL Properties: deadlocks, liveness and reachability

3.3 Matching of Rules

A recon�gurable Petri net consists of a net and a set of rules R. Each rule contains three
sub-nets, which contain a net L for matching, a net R for the replacement and a net K that
maps between the two nets.
�e �rst project [1] is based on ReConNet. �is tool provides the capability to �nd non-
deterministic matches for a net and a set of rules [10]. �e aim of the �rst project is an
extension that enables ReConNet to verify a net with a given set of rules. �e veri�cation
process is realised by a conversion to a Maude speci�cation. In order to realise this process, an
interface is designed for using ReConNet to �nd a match. Due to this constellation, only the
initial state of a net and all rules can be veri�ed with the LTL-process.
�e new aim is to ensure that the Maude speci�cation �nds the matching itself. �is implies a
possibility to de�ne a rule in this speci�cation as well as the dangling-condition (see section
3.4). Further, the meta-data con�guration (such as current highest identi�er) should adapt a
net and a set of rules.
�e de�nition of a rule and the meta con�guration can be found in Listing 6. First, the sorts
Rule, Le�HandSide and RightHandSide are de�ned. �is models the two sides of a rule. �e
mapping net K is not included, because it is not relevant for matching of a rule. Further, the
Con�guration consists of a net, a multi-set of rules and a global ID-count. �e net contains all
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information as places, transitions, markings and pre- as well as post-sets. Each rule multi-set
entry contains a le� and right side. At last the ID-count is used for each insertion step, where
a new transition or a place will be added.

∗ ∗ ∗ Ru l e R = ( l n e t , r n e t )

2 sor t Rule .
sor t s L e f t H a n d S i d e RightHandS ide .

4 op emptyRule : −> Rule .
op | : Ru le Rule −> Rule [ ctor assoc comm id : emptyRule ]

.
6 op l : Net −> L e f t H a n d S i d e .

op r : Net −> RightHandS ide .
8 op r u l e : L e f t H a n d S i d e RightHandS ide −> Rule .

10 ∗ ∗ ∗ C o n f i g u r a t i o n

sor t C o n f i g u r a t i o n .
12 op : Net Rule I n t −> C o n f i g u r a t i o n .

Listing 6: De�nition of a rule and the con�guration (net, multi-set of rules and global
ID-count)

�e rule r1 is shown in two Listings 7 and 8. It is based on the de�nition in Listing 6. Where the
le�-hand side provides all information which are necessary for �nding a match. �e right-hand
side contains all information for the result of the transformation. For example it contains the
new elements (here a transition) and the related ID.
�e whole rule is wri�en as a condition replacement. If the conditions satis�ed with the current
net, the rule can be applied. Due to the replacement, the le�-hand side of the rule is replaced
with the right-hand side. Furthermore, a rule is working with a con�guration object. It uses a
net, a multi-set of rules as well as an ID-count.
�e example in Listing 7 shows the le� side of the rule in Figure 5. �e net which should
be found, consists of two places with the label A. Further, it contains a transition T which
connects the two places. A description of the arcs can be found in the pre- and post-set. At last
it contains a marking on the place A. All these elements are part of the net in the rule. It only
di�ers in the ID, which are not given as concrete numbers. Each Irule<number> is a variable
that is used for �nding a structural match. If the net has the same structure, but other ID’s for
the places and transitions, this rule is also activated. �is is possible because Maude maps the

17



3 Data type

ID’s internal with each variable. Moreover, each set contains a variable for possible residual
elements. For example, in this net the set places contains more than two places. �e remaining
place’s are mapped into the variable PRest, so this rule is still activated. If a multiset has no
more elements the identities (id) is used (for a de�nition see Listing 1). Each id itself is the
empty-set constant operator (such as emptyPlace, emptyTransition, emptyMappingTuple or
emptyMarking).

c r l [ R1−PNML] :
2 ne t ( p l a c e s { p ( ” A” | I r u l e 1 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,

p ( ” A” | I r u l e 1 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) , PRes t }
,

4 t r a n s i t i o n s { t ( ” T” | I r u l e 1 0 2 4 ) : TRest } ,
p re { ( t ( ” T” | I r u l e 1 0 2 4 ) −−> p ( ” A” | I r u l e 1 0 1 7 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
6 MTupleRest1 } ,

p o s t { ( t ( ” T” | I r u l e 1 0 2 4 ) −−> p ( ” A” | I r u l e 1 0 2 0 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
8 MTupleRest2 } ,

marking { p ( ” A” | I r u l e 1 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ; MRest }
)

10 r u l e ( l ( ne t ( p l a c e s { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,
p ( ” A” | I r u l e 2 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) } ,

12 t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 4 ) } ,
p re { ( t ( ” T” | I r u l e 2 0 2 4 ) −−>

14 p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ) }
,

p o s t { ( t ( ” T” | I r u l e 2 0 2 4 ) −−>
16 p ( ” A” | I r u l e 2 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) )

} ,
marking { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) }

) ) ,
18 r ( ne t ( p l a c e s { p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,

p ( ” A” | I r u l e 3 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) } ,
20 t r a n s i t i o n s { t ( ” T” | I r u l e 3 0 2 6 ) } ,

p re { ( t ( ” T” | I r u l e 3 0 2 6 ) −−>

18
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22 p ( ” A” | I r u l e 3 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) ) }
,

p o s t { ( t ( ” T” | I r u l e 3 0 2 6 ) −−>
24 p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) )

} ,
marking { p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) }

) ) )
26 | RRest MaxID S t e p S i z e

a i d P l a c e { AidPRes t } a i d T r a n s i t i o n { AidTRest }

Listing 7: Example of rule r1 wri�en with Maude (le�-hand side)

In the following example in Listing 8 the right-hand side di�ers from the le�-hand side. It
contains the net structure of the right-hand side. �e example adds the new transition T . It
calculates the new identi�er which is detailed described in section 3.5.

1 =>
ne t ( p l a c e s { p ( ” A” | I r u l e 1 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,

3 p ( ” A” | I r u l e 1 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) , PRes t }
,

t r a n s i t i o n s { t ( ” T” | AidT1 ) : TRest } ,
5 pre { ( t ( ” T” | AidT1 ) −−> p ( ” A” | I r u l e 1 0 2 0 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
MTupleRest1 } ,

7 p o s t { ( t ( ” T” | AidT1 ) −−> p ( ” A” | I r u l e 1 0 1 7 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
MTupleRest2 } ,

9 marking { p ( ” A” | I r u l e 1 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ; MRest }
)

r u l e ( l ( ne t ( p l a c e s { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,
11 p ( ” A” | I r u l e 2 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) } ,

t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 4 ) } ,
13 pre { ( t ( ” T” | I r u l e 2 0 2 4 ) −−>

p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) )
} ,

15 p o s t { ( t ( ” T” | I r u l e 2 0 2 4 ) −−>
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p ( ” A” | I r u l e 2 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) )
} ,

17 marking { p ( ” A” | I r u l e 2 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) }
) ) ,

r ( ne t ( p l a c e s { p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) ,
19 p ( ” A” | I r u l e 3 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) }

,
t r a n s i t i o n s { t ( ” T” | I r u l e 3 0 2 6 ) } ,

21 pre { ( t ( ” T” | I r u l e 3 0 2 6 ) −−>
p ( ” A” | I r u l e 3 0 2 0 | 2 1 4 7 4 8 3 6 4 7 ) ) }

,
23 p o s t { ( t ( ” T” | I r u l e 3 0 2 6 ) −−>

p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 )
) } ,

25 marking { p ( ” A” | I r u l e 3 0 1 7 | 2 1 4 7 4 8 3 6 4 7 ) }
) ) )

| RRest NewMaxID S t e p S i z e
27 a i d P l a c e { AidPRes t } a i d T r a n s i t i o n { AidTRest2 }

i f AidTRest1 : = addOldID ( AidTRest | I r u l e 1 0 2 4 ) /\
29 AidT1 : = ge tA id ( AidTRest1 | MaxID | S t e p S i z e ) /\

AidTRest2 : = r e m o v e F i r s t E l e m e n t ( AidTRest1 | MaxID
| S t e p S i z e ) /\

31 NewMaxID : = correc tMaxID ( MaxID | S t e p S i z e | 2 ) .

Listing 8: Example of the rule r1, wri�en with Maude (right-hand side)

3.4 Dangling-Condition

A special part of a rule matching is the gluing condition. �is condition is separated into the
identi�cation and dangling condition. �e identi�cation condition requires that no place or
transition is speci�ed to be simultaneously added and deleted. Further, the dangling condition
de�nes that a place can only be deleted if there are only arcs to transitions, that are deleted as
well. Transitions are not relevant for dangling condition.
�e example net N2 in Figure 7 shows a short example, where a place A (the red place) should
be deleted with rule r3 in Figure 8. �e rule has only one match because the bo�om part of the
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net di�ers in an addition transition. �is transition injured the dangling condition and the rule
cannot be used at this point.

A T A

A T A T

Figure 7: Example net N2

A

T ⊆

A

L

A

T

A

K

A

⊇ T

R

Figure 8: Example rule r3 which deletes the place A

�e associated Maude code can be found in Listing 9. It is seperated in two parts. First, the
equalMarking-operator tests the current net marking. �is condition ensures that the net
marking and the rule are the same for all deleted places.
�e marking of the net is given with:

marking{ p(”A“| Irule1019 | 2147483647) ; MRest }

It contains the token AIrule1019 from the rule and also the variable MRest. �e second marking,
from the net (another A token), is in this multi-set of markings. Further, the second multi-set
contain all places that should be deleted. In this example the other place is called A. Hence, the
following line contains all relevant information:

marking{ p(”A“| Irule2019 | 2147483647) }

�e result is true, if the second set of markings is equal to the marking in the �rst set.
Furthermore, for each deleted place is a emptyNeighbourForPlace-operator de�ned. �is opera-
tor tests the dangling condition with the remaining pre and post multi-sets. In Listing 9 this
two sets are de�ned as MTupleRest1 and MTupleRest2. All operator de�nitions can be found in
Listing 10.
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1 equa lMark ing ( ( marking { p ( ” S ” | I r u l e 1 0 7 | 2 1 4 7 4 8 3 6 4 7 ) ;
MRest } )

=?=
3 marking { emptyMarking } ) /\

emptyNe ighbourForP lace ( p ( ” S ” | I r u l e 1 0 6 | 2 1 4 7 4 8 3 6 4 7 ) ,
5 pre { MTupleRest1 } ,

p o s t { MTupleRest2 } )

Listing 9: Dangling-Condition if a place should be deleted

All needed operators for the dangling condition are de�ned in Listing 10. �e equalMark-

ing-operator proves whether the second multi-set is a subset of the �rst multi-set. �e �rst
parameter is a multi-set of the current net marking. And the second parameter contains the
marking of the rule. �e result is only true, if the �rst multi-set contains the same marking for
each place as the second multi-set. �erefore, the equations are separated into �ve case di�er-
entiations. �e �rst equation includes the situation where two identical marks are compared.
If this situation occurs the result is true. �e second case contains a recursion. It consumes
two markings of each multi-set and returns true, if the recursion call also returns true. �e
following equation di�ers only in case distinction. It returns true, including a recursion, when
the markings are not in the multi-sets. Based on this equation, the following lines include the
situation where the second set only contains one element. If the �rst remaining multi-set does
not contain more than one of these markings, it returns true. Finally, if it is not possible to use
another case, this is called the ”otherwise case“ (Maude’s keyword with brackets: [owise]). For
all other conditions it returns false and ends the recursion.
Further, the emptyNeighbourForPlace-operator can be used for a test, that examines the neigh-
bours of a place. It returns true if the place does not have any arcs outside the rule. �is means
exactly that all arcs at the place are included in the rule.
�e implementation uses three equations. �ey are separated into the �rst two situations
where a pre or a post exists. And �nally the other case is true, where no arc exists.

op c o n t a i n s ( | ) : P l a c e s P l a c e s −> Bool .
2 eq c o n t a i n s ( p ( S t r | I | Cap ) | ( p ( S t r | I | Cap ) , PRes t ) )

= t r u e .
eq c o n t a i n s ( P | PNet ) = f a l s e [ owise ] .

4
∗ ∗ ∗ READING: NET−MARKING , RULE−MARKING
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6 op equa lMark ing ( =?= ) : P l a c e s P l a c e s −> Bool .
eq equa lMark ing ( p ( S t r | I 1 | Cap ) =?= p ( S t r | I 2 | Cap ) ) =

t r u e .
8 ceq equa lMark ing (

( p ( S t r | I 1 | Cap ) , MNet ) =?= ( p ( S t r | I 2 | Cap ) ,
MRest ) )

10 = t r u e
i f c o n t a i n s ( ( p ( S t r | I 1 | Cap ) ) | MNet ) /\

12 c o n t a i n s ( ( p ( S t r | I 2 | Cap ) ) | MRest ) /\
( MRest =/= emptyMarking ) /\

14 equa lMark ing ( MNet =?= MRest ) .
ceq equa lMark ing (

16 ( p ( S t r | I | Cap ) , MNet ) =?= ( p ( S t r | I | Cap ) ,
MRest ) )

= t r u e
18 i f not ( c o n t a i n s ( ( p ( S t r | I | Cap ) ) | MNet ) ) /\

not ( c o n t a i n s ( ( p ( S t r | I | Cap ) ) | MRest ) ) /\
20 ( MRest =/= emptyMarking ) /\

equa lMark ing ( MNet =?= MRest ) .
22 ceq equa lMark ing (

( p ( S t r | I 1 | Cap ) , MNet ) =?= ( p ( S t r | I 2 | Cap ) ) ) =
t r u e

24 i f not ( c o n t a i n s ( ( p ( S t r | I 2 | Cap ) ) | MNet ) ) .
eq equa lMark ing (

26 ( PNet ) =?= ( PRule ) )
= f a l s e [ owise ] .

28
∗ ∗ ∗ READING: PLACE , PRE , POST

30 op emptyNe ighbourForP lace ( , , ) : P l a c e s Pre P o s t −>
Bool .

eq emptyNe ighbourForP lace ( P ,
32 pre { ( T −−> P , PRes t ) , MTupleRest } ,

P o s t ) = f a l s e .
34 eq emptyNe ighbourForP lace ( P ,

Pre ,
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36 p o s t { ( T −−> P , PRes t ) , MTupleRest } ) = f a l s e .
eq emptyNe ighbourForP lace ( P , Pre , P o s t ) = t r u e [ owise ] .

Listing 10: Dangling-Condition helper methods

3.5 Multi-Set for used Identifiers

One problem of Maude is the missing garbage collection1. �is can result in an over�ow if a
rule inserts a node (place or transition), because each new node gets an identi�er.
To solve this problem a multi-set of unique identi�ers is used. It requires a modi�cation of
the Con�guration de�nition which is introduced in Listing 6. Now it contains an integer for
the maxID and for the de�ned step size. Further, it has two sets for the place and transition
identi�ers. �e implementation can be found in Listing 11.

1 ∗ ∗ ∗ READING: NET SET<RULE> MAXID STEP S IZE PID TID

op :
3 Net Rule I n t I n t I D P o o l P l a c e I D P o o l T r a n s i t i o n

−>
5 C o n f i g u r a t i o n .

Listing 11: Extending the Con�guration with the identi�er multi-set

�e usage of the de�ned �elds in Listing 11 are useful when a rule deletes or adds a node as
a place or a transition. An example of the implementation for a rule is shown in Listing 12.
�e transition t(”X” | Irule1031) has to be deleted here. �e identi�er of this node is contained
in the le� side of the rule. �e variable Irule1031 holds the current value which is reused in
line 21, where the ID is added into the new identi�er multi-set AidTRest1. �e next step uses
this multi-set to receive a new identi�er for the new transition with the identi�er AidT1. �e
ge�er-operator in line 22 sets the value for the new transition. Further, the new identi�er must
be deleted from the old identi�er multi-set. �e last step sets the maxID to its new value, if the
max-step is overrun.

1 http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/
maude-manual 42.html, retrieval on 20/10/2014
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1 c r l [ R1−PNML] :
. . .

3 t r a n s i t i o n s { t ( ” X” | Irule1031 ) : TRest } ,
. . .

5 MaxID
S t e p S i z e

7 a i d P l a c e { AidPRes t }
a i d T r a n s i t i o n { AidTRest }

9 =>
. . .

11 t r a n s i t i o n s { t ( ” X” | AidT1 ) : TRest } ,
p re { ( t ( ” X” | AidT1 ) −−> p ( ” A” | I r u l e 1 0 1 3 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
13 MTupleRest1 } ,

p o s t { ( t ( ” X” | AidT1 ) −−> p ( ” A” | I r u l e 1 0 1 6 |

2 1 4 7 4 8 3 6 4 7 ) ) ,
15 MTupleRest2 } ,

. . .
17 NewMaxID

S t e p S i z e
19 a i d P l a c e { AidPRes t }

a i d T r a n s i t i o n { AidTRest2 }
21 i f AidTRest1 : = addOldID ( AidTRest | Irule1031 ) /\

AidT1 : = ge tA id ( AidTRest1 | MaxID | S t e p S i z e ) /\
23 AidTRest2 : = r e m o v e F i r s t E l e m e n t ( AidTRest | MaxID

| S t e p S i z e ) /\
NewMaxID : = correc tMaxID ( MaxID | S t e p S i z e | 1 ) .

Listing 12: Save old identi�er and receive a new from the identi�er multi-sets

Every operator which is used in the Listing 12 is shown in Listing 13. �is listing contains
the implementation of the �ll-operator which generates new identi�ers if the set is empty.
Further, it has operators which can be used to receive or set an identi�er to a multi-set of
identi�ers. It is not necessary to di�er between places and transitions because the operators
can be generic programmed. Each operator has parameters which can take both multi-sets. So
the getAid-operator provides the function to receive the �rst element of a multi-set. Otherwise,
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the removeFirstElement-operator can delete this �rst element of a given multi-set. Moreover,
the addOldID-operator adds an element into a multi-set and the correctMaxID-operator de�nes
a new maxID if it is necessary.

∗ ∗ ∗ READING: IDSET MAXID COUNTER INTERNAL−VAR
2 op f i l l ( | | | ) : I n t I n t I n t I n t −> I n t .

eq f i l l ( I | MaxID | 0 | Count ) = I .
4 ceq f i l l ( I R e s t | MaxID | Count | I )

= f i l l ( ( MaxID + I , ( I R e s t ) ) | MaxID | ( Count − 1 ) | (
I − 1 ) )

6 i f I >= Count .
eq f i l l ( I 1 | MaxID | I 2 | Count ) = I 1 [ owise ] .

8
∗ ∗ ∗ READING: CURRENT SET MAXID STEP S IZE

10 op ge tA id ( | | ) : I n t I n t I n t −> I n t .
ceq ge tA id ( I 1 , ( I R e s t ) | MaxID | S t e p S i z e ) = I 1 i f I 1 =/=

emptyIDSet .
12 eq ge tA id ( S e t O f I n t s | MaxID | S t e p S i z e )

= ge tA id ( f i l l ( S e t O f I n t s | MaxID | S t e p S i z e | S t e p S i z e )
14 | MaxID + MaxID | S t e p S i z e ) [ owise ] .

16 ∗ ∗ ∗ READING: CURRENT SET MAXID STEP S IZE

op r e m o v e F i r s t E l e m e n t ( | | ) : I n t I n t I n t −> I n t .
18 eq r e m o v e F i r s t E l e m e n t ( emptyIDSet | MaxID | S t e p S i z e ) =

f i l l ( emptyIDSet | MaxID |

S t e p S i z e | S t e p S i z e ) .
20 ceq r e m o v e F i r s t E l e m e n t ( I 1 , ( I R e s t ) | MaxID | S t e p S i z e ) =

I R e s t
i f I 1 =/= emptyIDSet [ owise ] .

22 ∗ ∗ ∗ READING: CURRENT SET OLD ID

op addOldID ( | ) : I n t I n t −> I n t .
24 eq addOldID ( S e t O f I n t s | I ) = I , ( S e t O f I n t s ) .

26 ∗ ∗ ∗ READING: MAXID STEP S IZE NEW ID COUNT

op cor rec tMaxID ( | | ) : I n t I n t I n t −> I n t .
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3 Data type

28 ceq cor rec tMaxID ( MaxID | S t e p S i z e | Count )
= cor rec tMaxID ( MaxID + S t e p S i z e |

S t e p S i z e |

30 Count − S t e p S i z e )
i f Count > S t e p S i z e .

32 eq cor rec tMaxID ( MaxID | S t e p S i z e | Count ) = MaxID .

Listing 13: Identi�er multiset implementation
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4 Transformation

�is section includes the architecture of the conversion process as well as the results of some
model checking formula.

4.1 Architecture

�e output base of ReConNet consists an extension of PNML1. PNML is a XML-based standard
for the Petri net export. �e graphical editor ReConNet uses this standard for the persistence
of developed nets. In addition to the pure PNML-standard, a rule is stored with its three net in
a PNML �le.
Based on PNML, this work uses XSL to realise the conversion. �e result uses the Maude
modules which are de�ned before the conversion.�e sorts for Places, Transitions and the net

itself are previously de�ned. And further it contains the logic of �ring or the identi�cation of
the dangling condition (see also the de�nition of all modules in the listings above).
�e XSL process is designed with the separation of the global types as places, transitions, pre
or post. Further, it has the speci�c sub xsl-templates for the conversions as in the net, rules,

prop or rpn. �e structure is summarized in Figure 9. �e global types are de�ned above the
speci�c modules that are grouped together in separate packages.

1 http://www.pnml.org/, retrieval on 23/09/2014
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4 Transformation

Figure 9: Structure of the stylesheets for the conversion

�e di�erence to the �rst project is that this approach is independent of ReConNets imple-
mentation. �e �rst project uses the persistence-module of ReConNets to load PNML-�les (net
or rule) [1]. �is approach is superior because it is built up directly on the PNML data. �e
conversion process is wri�en with XSL, which provides a well known language. �e interface
between this approach and ReConNet is realised through an export to the PNML �les that can
be used with a net or few rules.

4.2 Results

Based on the result of the conversion process it is possible to use Maude’s LTL implementation.
�e prop.maude-module includes all the necessary code for the LTL process (see Listing 14).
It subsorts the Con�guration-typ under state, which is required (for the Con�guration-typ see
Listing 6).

including SATISFACTION .
2 subsort C o n f i g u r a t i o n < S t a t e .

Listing 14: Sub sorting of Con�guration with State
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4 Transformation

In the �rst example, the deadlock freedom of example Figure 4 will be shown. �e formula is
based on the box- and diamond-operator. In total it describes the semantic of liveness. It means
that a property is globally (box) repeatedly (diamond) true. To write the liveness property for
the recon�gurable Petri net modules, the following line can be used:

rew modelCheck(initial, [] <> enabled) .

It uses the Maude modelCheck-operator with the initial con�guration (net, marking, rules and
global variables) and the formula []<> enabled. �e formula is based on the three operators []
and <> as well as the enabled-operator (for the de�nition see Listing 5).
In terms of this example the following output in Listing 15 results, if the trace is enabled.

Maude> rew modelCheck ( i n i t i a l , []<> e n a b l e d ) .
2 r e w r i t e in NET : modelCheck ( i n i t i a l , []<> e n a b l e d ) .

r e w r i t e s : 197 in 0ms cpu ( 0 ms r e a l ) ( 2 7 0 6 0 4 r e w r i t e s /
second )

4 r e s u l t M o d e l C h e c k R e s u l t : counte rexample (
. . .

6 { ne t ( p l a c e s { p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ,
p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,

8 t r a n s i t i o n s { t ( ” T” | 6 ) : t ( ” T” | 7 ) : t ( ” T” | 2 6 ) } ,
p re { ( t ( ” T” | 6 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

10 ( t ( ” T” | 7 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
t ( ” T” | 2 6 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) } ,

12 p o s t { ( t ( ” T” | 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
( t ( ” T” | 7 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

14 t ( ” T” | 2 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,
marking { p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 |

2 1 4 7 4 8 3 6 4 7 ) } )
16 r u l e ( l ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) ,

p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 ) } ,
18 t r a n s i t i o n s { t ( ” T” | 2 4 ) } ,

p re { t ( ” T” | 2 4 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ,
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4 Transformation

20 p o s t { t ( ” T” | 2 4 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 )
} ,

marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) ,
22 r ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
t r a n s i t i o n s { t ( ” T” | 2 6 ) } ,

24 pre { t ( ” T” | 2 6 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 ) } ,
p o s t { t ( ” T” | 2 6 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 )
} ,

26 marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) )
26

28 10
a i d P l a c e { 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 , ( 3 3 , ( 3 4 , ( 3 5 , (

30 3 6 ) ) ) ) ) ) ) ) ) ) }
a i d T r a n s i t i o n { 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 , ( 3 3 , ( 3 4 , ( 3 5 , ( 3 6 )

) ) ) ) ) ) ) ) ) }
32 , d e a d l o c k } )

Listing 15: Counterexample of a deadlock

�e meaning of this counterexample is that the rule consists of this marking. It is possible that
all tokens are on one place. Furthermore, this place has only incoming arcs which results in a
deadlock. �e net-state with this deadlock is modelled in Figure 10.

A3 T26

A4

T6A2

T7

Figure 10: State of N1 with a deadlock (r1 can not be applied)

In assumption that the markings were changed on the places within the rule (see Figure 11)
the result is varied, shown in Listing 16. It shows, that the net N1 and rule r2 are deadlock free.
�e new rule prevents the situation in Figure 10, where the marking can be located on one
place which has only incoming arcs. Hence, two situations are possible. First, the rule is not
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4 Transformation

enabled when a marking is at a place, where all arcs are starting. �e net itself can �re. On the
other hand, a marking will be placed on a place where one or more arcs are incoming. For this
case, the rule can be used. �e result is that a transition is enabled now and will also continue
to be used for the token game. In either situation, an operator of Listing 5 is enabled since the
enabled-operator is de�ned for the �ring and transformation step.

A

T ⊆

A

L

A

T T

A

K

A

T⊇

A

R

Figure 11: Example rule r2 which changes the direction of the arc (di�erent marking in
contrast to r1 in Figure 5)

Now the result of the formula is true and Maude prints some information such as the rewrite
count.

Maude> rew modelCheck ( i n i t i a l , []<> e n a b l e d ) .
2 r e w r i t e in NET : modelCheck ( i n i t i a l , []<> e n a b l e d ) .

Debug ( 1 )> rew [ 1 ] modelCheck ( i n i t i a l , []<> e n a b l e d ) .
4 r e w r i t e [ 1 ] in NET : modelCheck ( i n i t i a l , []<> e n a b l e d ) .

r e w r i t e s : 6575268 in 20240ms cpu ( 2 0 2 4 3 ms r e a l ) ( 3 2 4 8 6 5
r e w r i t e s / second )

6 r e s u l t B o o l : t r u e

Listing 16: Counterexample for the deadlock freeness

In addition, the enable-test can only be realised for the transitions with the t-enabled-operator.
It only consists of the transitions and no rules (see Listing 17).

Maude> r e w r i t e [ 1 ] in NET : modelCheck ( i n i t i a l , []<> t−
e n a b l e d ) .
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4 Transformation

2 r e w r i t e s : 1521 in 4ms cpu ( 6 ms r e a l ) ( 3 8 0 2 5 0 r e w r i t e s /
second )

r e s u l t B o o l : t r u e

Listing 17: Counterexample for a t-enabled test

�e reachable-operator is designed to �nd a given marking. �e formal de�nition of this
operator is:

op reachable : Markings→ Prop.

�erefore, it is possible to test one or many tokens. In the example bellow (see Listing 18) two
tokens (A3 and A3) are searched in N1. Maude’s result describes a situation where it found a
deadlock with two tokens on A2.

1 Maude> rew modelCheck ( i n i t i a l , <> r e a c h a b l e ( p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .
r e w r i t e in NET : modelCheck ( i n i t i a l , <> r e a c h a b l e ( p ( ” A” |

3 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .
3 r e w r i t e s : 141 in 0ms cpu ( 0 ms r e a l ) ( 2 6 2 0 8 1 r e w r i t e s /

second )
r e s u l t M o d e l C h e c k R e s u l t : counte rexample (

5 . . .
{ ne t ( p l a c e s { p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ,
7 p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,

t r a n s i t i o n s { t ( ” T” | 5 ) : t ( ” T” | 7 ) : t ( ” T” | 2 6 ) } ,
9 pre { ( t ( ” T” | 5 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

( t ( ” T” | 7 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
11 t ( ” T” | 2 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,

p o s t { ( t ( ” T” | 5 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
13 ( t ( ” T” | 7 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

t ( ” T” | 2 6 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) } ,
15 marking { p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ;

p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) } )
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17 r u l e ( l ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
t r a n s i t i o n s { t ( ” T” | 2 4 ) } ,

19 pre { t ( ” T” | 2 4 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 )
} ,

p o s t { t ( ” T” | 2 4 ) −−> p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
21 marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) ,

r ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
23 t r a n s i t i o n s { t ( ” T” | 2 6 ) } ,

p re { t ( ” T” | 2 6 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 )
} ,

25 p o s t { t ( ” T” | 2 6 ) −−> p ( ” A” | 17 |

2 1 4 7 4 8 3 6 4 7 ) } ,
marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) )

27 26
10

29 a i d P l a c e { 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 , ( 3 3 , ( 3 4 , ( 3 5 , ( 3 6 ) ) ) ) ) )
) ) ) ) }

a i d T r a n s i t i o n { 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 , ( 3 3 , ( 3 4 , ( 3 5 , ( 3 6 )
) ) ) ) ) ) ) ) ) }

31 , d e a d l o c k }

Listing 18: Counterexample for a reachable test

An example where the LTL-formal is true can be found in Listing 21. �is is a basic test where
the formula veri�es the reachability of the initial marking. Maude reached true a�er six steps
because the marking already contains the search parameter.

1 Maude> rew modelCheck ( i n i t i a l , <> r e a c h a b l e ( p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .
r e w r i t e in NET : modelCheck ( i n i t i a l , <> r e a c h a b l e ( p ( ” A” |

3 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .
3 r e w r i t e s : 6 in 0ms cpu ( 0 ms r e a l ) ( 5 0 0 0 0 r e w r i t e s / second )

r e s u l t B o o l : t r u e

34



4 Transformation

Listing 19: Counterexample for a reachable of the initial marking

A more complex example can be found in Listing 20. �e example veri�ed that two markings
(A4 and A4) are reachable from the initial marking. �e formula di�ers from the formula in
the example above (see Listing 21). It negated the formula, so that the result contains a path to
this marking, or otherwise it returns true.

Maude> rew [ 1 ] modelCheck ( i n i t i a l , ˜ ( <> r e a c h a b l e ( p ( ” A” |
4 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ) ) .

2 r e w r i t e [ 1 ] in NET : modelCheck ( i n i t i a l , ˜ <> r e a c h a b l e ( p
( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .

r e w r i t e s : 174 in 0ms cpu ( 0 ms r e a l ) ( ˜ r e w r i t e s / second )
4 r e s u l t M o d e l C h e c k R e s u l t : counte rexample (

. . .
6 { ne t ( p l a c e s { p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,
t r a n s i t i o n s { t (

8 ”T” | 5 ) : t ( ” T” | 6 ) : t ( ” T” | 7 ) } ,
p re { ( t ( ” T” | 5 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

10 ( t ( ” T” | 6 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
t ( ” T” | 7 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) } ,

12 p o s t { ( t ( ” T” | 5 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
( t ( ” T” | 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

14 t ( ” T” | 7 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) } ,
markingp(”A” — 4 — 2147483647) ; p(”A” — 4 — 2147483647))

16 r u l e (
l ( ne t (

18 p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
t r a n s i t i o n s { t ( ” T” | 2 4 ) } ,

20 pre { t ( ” T” | 2 4 ) −−> p ( ” A” | 17 |

2 1 4 7 4 8 3 6 4 7 ) } ,
22 p o s t { t ( ” T” | 2 4 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 ) } ,

marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) ,
24 r ( ne t (
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p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
26 t r a n s i t i o n s { t ( ” T” | 2 6 ) } ,

p re { t ( ” T” | 2 6 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 ) } ,
28 p o s t { t ( ” T” | 2 6 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ,

marking { p (
30 ”A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) )

2 6 , { ’ f i r e } } , n i l )

Listing 20: Counterexample for a reachable of the initial marking

Based on the reachable-operator it is possible to describe the liveness-condition, which means
that a marking can be reached again. �is includes all possible �ring steps or rule applying.
In the example net N1 the test will return a situation where the net arrests in a deadlock. All
tokens are placed on A4 which has only incoming arcs. Hence, no rule (in this example r1)
can be applied (for a graphical representation of the result see also Figure 10).

1 Maude> rew modelCheck ( i n i t i a l , []<> r e a c h a b l e ( p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ) ) .
r e w r i t e in NET : modelCheck ( i n i t i a l , []<> r e a c h a b l e ( p ( ” A”
| 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ) .

3 r e w r i t e s : 197 in 0ms cpu ( 0 ms r e a l ) ( 2 8 5 0 9 4 r e w r i t e s /
second )

r e s u l t M o d e l C h e c k R e s u l t : counte rexample (
5 . . .
{ ne t ( p l a c e s { p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 3 |

2 1 4 7 4 8 3 6 4 7 ) ,
7 p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,

t r a n s i t i o n s { t ( ” T” | 6 ) : t ( ” T” | 7 ) : t ( ” T” | 2 6 ) } ,
9 pre { ( t ( ” T” | 6 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

( t ( ” T” | 7 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
11 t ( ” T” | 2 6 ) −−> p ( ” A” | 3 | 2 1 4 7 4 8 3 6 4 7 ) } ,

p o s t { ( t ( ” T” | 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ) ,
13 ( t ( ” T” | 7 ) −−> p ( ” A” | 2 | 2 1 4 7 4 8 3 6 4 7 ) ) ,

t ( ” T” | 2 6 ) −−> p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) } ,
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15 marking { p ( ” A” | 4 | 2 1 4 7 4 8 3 6 4 7 ) ; p ( ” A” | 4 |

2 1 4 7 4 8 3 6 4 7 ) } )
r u l e ( l ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
17 t r a n s i t i o n s { t ( ” T” | 2 4 ) } ,

p re { t ( ” T” | 2 4 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 )
} ,

19 p o s t { t ( ” T” | 2 4 ) −−> p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) ,

21 r ( ne t ( p l a c e s { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” A” | 20 |

2 1 4 7 4 8 3 6 4 7 ) } ,
t r a n s i t i o n s { t ( ” T” | 2 6 ) } ,

23 pre { t ( ” T” | 2 6 ) −−> p ( ” A” | 20 | 2 1 4 7 4 8 3 6 4 7 )
} ,

p o s t { t ( ” T” | 2 6 ) −−> p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 )
} ,

25 marking { p ( ” A” | 17 | 2 1 4 7 4 8 3 6 4 7 ) } ) ) ) , d e a d l o c k
} )

Listing 21: Counterexample for the liveness-condition for A3

4.3 Tests

Test cases are separated into two steps for the conversion to Maude and a veri�cation with
Maude’s LTL model checker. XSLT provides a test mechanism with XSLTunit2, which is
implemented for the used XSL processors SAXON3. Further, the Maude test cases are realised
with JUnit which implements a Java process. It is executing a shell script including a set of
commands such as veri�cations for a deadlock. �e Maude Development Tools4 can not be used,
since there is no support for model checking commands.

2 http://xsltunit.org/, retrieval on 20/10/2014
3 http://saxon.sourceforge.net/, retrieval on 20/10/2014
4 http://moment.dsic.upv.es/mdt/, retrieval on 20/10/2014

37

http://xsltunit.org/
http://saxon.sourceforge.net/
http://moment.dsic.upv.es/mdt/


5 Evaluation

�is section presents a �rst step of the performance evaluation of this approach. �e evaluation
is based on two steps. At �rst, a net is converted into the Maude modules. And a�er that step
it is tested with the liveness formula (see the �rst formula in section �).
�e conversion uses a net which is build as a circle and the rule r1 (see Figure 5). Further, it
contains one token at place P1. �e structure connects a place with two transitions (one for
the pre and vice versa). Hence, it is possible to build a test which shows the performance of a
net which can be scaled with the size of nodes (places and transitions).
For this work four net sizes are used, which allow to make a meaningful statement. Each net
has the same semantic and should return true. Hence, only the runtime meta-data such as
rewrite count and time are di�erent. �e conversion process runs in each case with nearly the
same time (see Table 1). Further, the rewrites are grown linear with the size of nodes. It takes
109 rewrites for 10 places and transitions. If the net has twice as many nodes as in the �rst
example, it takes 209 rewrites. Only the used time grows exponentially. It changes from 13
ms to 23994 ms. If the net receives only 4 new nodes, it grows to 189939 ms (see Table 2). �e
resulting state-space explosion was expectable as a well known issue of LTL [22].
All tests are realised on a �inkpad X230 with an Intel® Core™ i5-3320M CPU with 4 cores
(2.60GHz) and 16 GB RAM. It was implemented on a Ubuntu 12.04 which is build up the
3.14.17-031417-generic kernel.

p x t time [ms]
10x10 in 1701
20x20 in 1737
22x22 in 1704
23x23 in 1737

Table 1: Conversion from PNML to
Maude

p x t rew time [ms]
10x10 109 in 13
20x20 209 in 23994
22x22 229 in 189939
23x23 239 in 834358

Table 2: Veri�cation of liveness
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6 Future Work

An outlook of the following work is shown in this section. �e formal founding represents
the essential part of the conversion from a recon�gurable Petri net to Maude. �e aim is the
veri�cation of the soundness and correctness for the conversion and target representation of
the net in Maude.
Furthermore, an integration of parts from a recon�gurable Petri net such as negative application
conditions (NACs) (see [23]) or decorations (see [24]) should be realised. �is enables the
veri�cation of the nets and rules from the Living Place Hamburg [24].
Finally, a benchmarking is necessary between this approach and a tool such as Charlie1 to
obtain a meaningful statement. �is implies a way which converts a recon�gurable Petri net
into a net that can be used from other veri�cation tools. �e main challenge is to realise a
conversion which contains the net and all possible rule conditions.

1 http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie, retrieval
on 19/10/2014
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7 Conclusion

�is paper presents an approach which enables LTL model checking for recon�gurable Petri
nets. �e intention was to use Maude with the equation- and rewrite logic for the transforma-
tion result. Maude itself includes modules for an on-the-�y model checking, based on the state
de�ned by the new modules of this work.
�e resulting modules can be used for the modelling as the formal de�nition of the recon�g-
urable Petri nets. �is means that the modules include a structure of sorts and with associated
operators which allow a tool or user to write a clear formal de�nition of the net as well as a
set of rules. Furthermore, conditions as for example the dangling condition are also included
by the modules de�ned by this paper.
Finally, the evaluation shows that the de�ned modules have problems with the size of the net.
One problem is that a rule can add a place or transition. Hence, it is necessary to get new
identi�ers for this elements. If a rule inserts a new node and this new node receives a new
identi�er, the problem results in an in�nite behaviour. Currently this problem is not solved.
Unless it exists a countable reuse of identi�ers. For a example it is possible that a rule deletes
one element and inserts a new one. �e old unused identi�er can be recycled. For this special
formula the model checking process returns. If the rule creates in�nite nodes (each use inserts
a new transition) it has no chance to receive a result for this formula.
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8 Summary

�e aim of this work is to allow LTL for recon�gurable Petri nets. �e tool ReConNet is the base,
which makes it possible to create a recon�gurable Petri net. Further, it includes a possibility to
export a net and a set of rules as PNML-�les. �is �les are the origin for this approach.
�e approach realises Maude modules which can be used in a LTL process. Maude includes a
module for an on-the-�y model checking process. �e new modules consist of 4 separated parts.
First a module contains the de�nition for an algebraic recon�gurable Petri net. �e aim of the
module is to allow a writing of a net and a set of rules as it is provided by the mathematical
notation. Furthermore, it supports an activation and �ring of a net. �e next module contains
the rule de�nitions. Rewrite rules are used to design a rule which uses the pa�ern matching
of Maude for the possibility to use this rule. Each rule ensures that the dangling condition is
maintained. Further, an identi�er multi-set is used to cache unused identi�er for places and
transitions. �is caching allows the process to verify a formula, if the number of identi�ers is
limited. Next, a module contains the de�nition for operators which are necessary for the LTL
formulae. For example the enabled-operator can be used for the liveness condition. At last, a
module includes the initial de�nition of a net and a set of rules. �e initial state embodies the
initial marking, places and transitions.
Based on each module LTL formulae can be veri�ed with Maude. It returns true, or a coun-

terExample with an example for an error case of this formula.
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