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Abstract. Big data technology influences current data management and
software stacks. Different patterns for building data pipelines are pro-
posed to address the challenges brought by big data. This paper describes
current big data architecture patterns and it presents benchmarking solu-
tions to analyze arising trade-offs when implementing big data pipelines.
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1 Introduction

In the past years the number of use cases and applications driven by big data
increased [1]. Social media and other trends like Internet of Things are producing
huge amounts of data which can be stored and analyzed relatively cheap due to
the still decreasing prices of storage and computation [1],[2]. Furthermore, there
is a considerable number of open source software available for analyzing the
data (often referred as “Hadoop ecosystem”). This encourages developers and
entrepreneurs to build data pipelines and model new business cases based on
data.

The architecture of data pipelines and the configuration of individual frame-
works is one of the main challenges of current software stacks which are able
to store and process big data [3],[4]. The integration of different types of pro-
cessing systems (for example batch and streaming applications) in a big data
architecture requires measurement of performance to choose the best system for
the specified use case. Examples for this kind of integration patterns are the
Lambda architecture [5], the Kappa architecture [6] and Liquid [7].

Provisioning and management of infrastructure is crucial for big data appli-
cations, bare metal or virtualization technology could be used as basic infrastruc-
ture. Containers are one of the most promising technologies in high performance
computing. They provide scalability, what makes them also interesting for big
data applications [8]. Containers have a interface for configuration parameters
to optimize resource allocation, for example with machine learning algorithms
[4]. Additionally meta-containers are an important concept, because they pro-
vide an extra layer for managing and controlling containers and their included
applications [9].

The performance of a big data stack in general can only be measured based
on a use case to be relevant in the proper sense of Jim Gray’s four criteria for
database benchmarks [10]. Another important objective to be benchmarked is
the connection between big data frameworks. A big data architecture can be im-
plemented as a sequence of frameworks to build a data pipeline for an application
(e.g. object recognition of images). More specific, the big data architecture has an
strong influence on the general application performance, on cluster management
and on configuration of included software stacks.

SMACK is an implementation of such an big data pipeline, which consists
of a sequence of frameworks [11]. In most cases alternatives could be found for
each of the frameworks which are building the data pipeline, so a continuous
measurement of performance is necessary to select the best fitting solution and
to optimize the final applications. The performance of frameworks and databases
for big data applications can be measured with benchmarks. Examples for well
known big data benchmarks are TPC-HS [12], BigDataBench [13], HiBench [14]
and YCSB [15]. These goal of this paper is to analyze current big data architec-
tures and to find big data benchmarks that identify trade-offs between different
proposed architectures.

This paper is organized as follows: Section 3 presents an general overview
about big data architectures. Section 3 provides solutions for autoscaling with
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emphasis on container technology. Section 4 compares actual big data bench-
mark suites and analyses their applicability to find trade-offs between big data
architectures. Section 5 introduces implications for a self-developed benchmark,
6 provides a conclusion.

2 Big Data Architectures

In context of big data architectures it is necessary to define the terms big data
and architecture separately. Subsection 2.1 explains the term big data in general.
Then concepts for big data systems and their architecture are described in 2.2.

2.1 Definition of Big Data

The most popular definition categorizes big data in three dimensions, which
are volume, velocity and variety [16]. Short named as three V’s, they were first
introduced by Laney in context of e-commerce [17].

Volume refers to data which is too big to be stored or processed by conven-
tional database systems [18]. Due to the ongoing technical evolution, the volume
dimension of big data could not reasonable be quantified in sense of units of
digital information, for example petabytes. The volume of big data is usually as
large, that it can only be stored in a distributed system. Analyzing these massive
data sets could ether be SQL or complex analytics like machine learning [16].
The need for complex analytics on big data goes beyond the features of tradi-
tional database systems and is therefore one of the main drivers for developing
big data systems.

The speed of incoming data and accordingly the need to compute results in
real time is defined as velocity [19], [17]. Applications like social media and In-
ternet of Things are examples that produce data streams in real time. Managing
this high-speed data is a main challenge for big data applications [1].

Variety of data involves a broad range of data types, data structures and
data inconsistencies [17], [1]. This factor implies a need for multiple data models
when storing big data. It also leads to a “no one size fits all” observation, that
multiple big data frameworks or databases are necessary to fulfill the job along
a data pipeline [20].

2.2 Characteristics of Big Data Systems

The 3 V’s of big data directly influence the characteristics of big data systems.
The following characteristics are essential for the design of a big data application
and the implemented software stack:

– distributed data storing
– computation at place of data
– distributed algorithms
– scaling up and down of computing resources
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– fault tolerance
– excessive utilization of RAM for real time applications
– load balancing

The volume dimension of big data constrains that data has to be stored on
multiple machines. For storage different solutions like distributed databases, dis-
tributed file systems or a distributed messaging system could be used. Accord-
ingly, the data store needs to distribute the incoming data inherently. Network
connection could be a bottleneck of big data systems, which generally can be
addressed by moving the computation to data, as it is implemented with MapRe-
duce paradigm [21]. The quantity of files and the size of single files is too big
to be transferred to a specific node, so computation needs to be executed at the
place where data is stored. Then algorithms have to compute in a distributed
and parallel approach to perform well with big data.

Workloads that redistribute data result in poor performance of big data pro-
cessing systems [22]. The benchmark from [22] shows that the execution time
of network intensive operations can be reduced by up to 36% installing a faster
network connection. Accordingly intelligent techniques of data distribution can
be a possible solution to increase performance of big data analytics workloads.

The ability to scale computing resources targets a reduction of processing
time and resource usages [23]. It can also reduce costs when using cloud infras-
tructures with pay-as-you-go payment model. Executing big data applications
in cloud environments heavily depend on pricing and cost of ownership models,
this case can additionally influence the design of big data applications.

Fault tolerance is a important feature that needs to be satisfied by big data
systems. Usually automatic replication of data is used to fulfill this requirement,
as it is implemented in HDFS [24]. Analytical frameworks like Apache Spark
use transformation logging to avoid network traffic, which could occur through
replication [25].

Complex analytics with incremental processing can be speed up with different
memory management techniques as implemented in Apache Spark or Apache
Flink [26], [27].

A main requirement of big data systems is loadbalancing. Loadbalancing can
be either application-internal resource management like YARN [28] or external
management of a complete big data software stack. For external management,
currently the most popular solutions are Docker Swarm, Google Kubernetes and
Apache Mesos [29], [30], [31].

All characteristics of big data systems have to be considered when imple-
menting a big data architecture. Depending on use case, different big data archi-
tectures can be deployed to satisfy the needs of a specific big data application.
Additionally, framework specific characteristics have to be considered. Finding
these trade-offs could be done with benchmarks and will be analyzed in Section
5. The next Section describes Big Data Architectures in general and presents
most recent approaches.
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2.3 Definition of Big Data Architecture

An architecture in general models the basic arrangement and connectivity of
parts of a system [32]. A big data architecture describes the data architecture
of a big data application system [33]. The parts of a big data system are usu-
ally a bundle of frameworks, which taken all together building an application.
This bundle and the connection of data pipelines could be referred as big data
architecture. Big data applications consist of diverse data pipelines to fulfill the
requirements of different types of storing and processing. The description and
management of big data architectures is aimed solve two main problems:

1. overview of used functional entities and frameworks, modular extensibility
and replacement of individual components (performance measurement de-
sirable).

2. better fit into organizational master data management.

The next Subsections presents patterns for big data architectures and discusses
advantages and disadvantages of these solutions. Section 5 describes trade-offs
of big data architectures and how they can be benchmarked.

2.4 Lambda Architecture

The following explanation of Lambda architecture is mainly based on original
work by Nathan Marz [5]. The Lambda architecture defines a big data system
as a series of layers to address the challenge of processing arbitrary functions on
a arbitrary dataset in real time ([5], p. 14). It is composed of a batch layer, a
serving layer and a speed layer.

The batch layer has a precomputing function to compute arbitrary views,
which are stored in a serving layer. It computes all incoming data, so the time of
computation usually took multiple hours. The results of computation are stored
in serving layer as views, additionally the master data remains unchanged. Big
data systems that are processing in batch layer should be high throughput and
high latency frameworks, for example Apache Hadoop can be used for this kind
of computation. Because of the long-running manner of batch layer the views
can not be computed with the latest data. This missing case is implemented in
speed layer.

The speed layer also computes arbitrary views for serving layer, but it pro-
cesses only recent data in real time. It does fast and incremental processing
and uses databases supporting random reads and random writes. Accordingly
latency-optimized big data systems are deployed for speed layer, for example
Apache Spark or Apache Flink for analytical processing. Due to random writes,
Apache Cassandra can be used as database for real time views.

The views generated by batch layer and speed layer got stored in serving
layer, where results also were merged. The serving layer generates indexed views
of data for fast querying, they must be updated very quickly. Real time usually
means the range between an a few milliseconds to a few seconds. ElephantDB is
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proposed as database for serving layer. It is a key-value database, where data is
stored in distributed shards.

The Lambda architecture features batch and real time, to the cost of com-
plexity when reconciling both layers [7]. Accordingly multiple big data systems
need to be maintained in parallel to satisfy the need of a single big data ap-
plication. This can be evaluated as implementation overhead and results in an
architecture trade-off.

2.5 Kappa Architecture

The Kappa architecture was initially described in a blog post by Jay Kreps,
the following description is mainly based on this source [6]. This architecture
addresses the problem of Lambda architecture to maintain code in two different
big data frameworks to compute a single result. Kappa architecture unifies batch
and streaming into one layer. When reprocessing is necessary, a instance of the
job is launched which processes all data, specified with a longer time period as job
configuration. The second job instance writes outcomes as batch computation to
a new result in service layer, for example a table. A big data application switches
to read from this result, when the second job instance caught up the first instance
of the job. Technically a framework is like Apache Flink is needed, that executes
batch computations and streaming computations on the same runtime [27].

The parallel computation of Kappa architecture induces a kind of racing
condition, because the second job instance need to catch up the first instance of
the job. Accordingly the second job instance needs more computational resources
then the first instance of the job to catch up with it. This increases the need
for specific loadbalancing and it also doubles the storage space during time of
“pursuit race” [7]. The doubled storage space taken by these two results can
be denoted as short time backup, which can be restored when the second jobs
produces bad results.

2.6 Liquid

Liquid is a nearline data integration stack to provide low latency data access,
it can be implemented as architecture for batch and near real time applications
[7]. The following description of Liquid architecture is mainly based on initial
publication by [7].

Liquid is composed of two layers, a processing layer and a messaging layer.
The messaging layer is responsible for data input from sources (primary data)
and it also provides processed output to the big data application. Data is repli-
cated and stored in messaging layer with a publish-subscribe model. Storing data
in RAM is used by preference due to file system caching of operating systems.
More specifically, data is persisted into distributed topics. They are implemented
as partitioned, append-only commit logs with a inherent natural order per parti-
tion for finegrained data access. Each partition keeps a sequence of messages and
an offset, which is implemented as unique identifier. A offset manager enables
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metadata-based access, because it can maintain annotations on data. These an-
notations could be metadata such as timestamps or the software version that
consumed a given offset. The offset manager allows to checkpoint offsets and
therefore it is possible for processing layer to reprocess the last consumed data
after failure. Apache Kafka is proposed to be used as framework for messaging
layer.

The processing layer allows batch and near real time processing. It can ac-
cess data in messaging layer through metadata (annotations) and it can produce
such metadata when storing data in messaging layer. Computation is based on
streams. A job processes data from input feeds, they can be primary data or
already processed data. The job-results are named derived data feeds. They can
be source for another processing job or being directly queried by big data ap-
plications. A job is divided into tasks when parallel processing is necessary. In
this case tasks process different, distributed partitions of a topic. Liquid allows
computation of both stateful and stateless jobs, also a communication between
jobs is possible. A stateful job must combine previous results with new incom-
ing data to work properly, for example stream processing operators like join or
aggregate [34], [35]. In Liquid architecture, the state is published in a changelog
which is stored as derived data feed in messaging layer.

The Liquid data integration stack supplies low latency, incremental process-
ing, high availability, resource isolation and cost effectiveness. The focus on meta
data management is a new approach to fit into organizational master data man-
agement. One critical aspect of big data and NoSQL technologies assumed by
traditional SQL supporters is the lack of available metadata for multiple appli-
cations. Liquid could be a step towards this cumbersome.

2.7 SMACK

The acronym SMACK stands for the frameworks Apache Spark, Apache Mesos,
Akka, Apache Cassandra and Apache Kafka [11]. The following description is
mainly based on [11].

The SMACK stack processes data in real time and aims to output in shortest
possible time, which is usually in milliseconds. It therefore builds a data pipeline
to store and analyze big data. The stack consists of four layers which are usu-
ally processed in the following order: ingestion layer, aggregation layer, analysis
layer and storage layer. The ingestion layer takes data from data producers and
publishes them into SMACK stack. Data is collected in form of queues with
a distributed messaging system. The message queue system allows partition-
ing, replication and sorting of data. Apache Kafka is used as message broker in
SMACK stack.

In Aggregation layer the data is processed with technology based on actor
model. The actor model allows lightweight, parallel and fault tolerant compu-
tation, data filtering and data enrichment. The actor model is implemented to
execute distributed algorithms, for example the Akka framework. Akka can ad-
ditionally be included in analysis layer, depending on the complexity of analysis
[36]. More complex analysis is implemented with a specialized processing engine,
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which is also based on actor model. The processing engine usually implements
stateful and stateless transformations on data, generally different systems could
be used for processing. Apache Spark is proposed as processing engine in analy-
sis layer, but it can also be included in aggregation layer when preprocessing of
data is necessary.

In storage layer a aggregate-oriented NoSQL database is used to persist data.
SMACK uses a database which implements key-value and column-family data
models, particularly Apache Cassandra is used as persistent data storage due to
the easy integration with Apache Spark in analysis layer. Cassandra implements
a ring architecture, where all nodes have the same role. Accordingly there is no
single point of failure, which leads to high availability in context of CAP theorem.
Cassandra could be used as data source for the final big data applications.

All frameworks or databases that process or store data are managed with a
cluster manager. The cluster manager abstracts computer resources away from
machines to enable fault-tolerant and elastic computing. Apache Mesos is used in
SMACK stack to orchestrate components and managing resources. The targets of
this cluster manager beside fault-tolerance and resource allocation are scalability
and isolation, latter is implemented based on container technology [31].

In conclusion, the SMACK is rather a possible software stack than an ar-
chitecture pattern which incorporates real time analytics with a classical ETL
process. From a architectural perspective, ingestion layer is implemented with
a message broker and storage layer relies on NoSQL solutions. In between, ag-
gregation layer and analysis layer are implemented based on actor model. The
next chapter describes solutions for autoscaling, which could be deployed with
Apache Mesos and container technology as it is proposed in SMACK stack.

3 Solutions for autoscaling of Big Data Systems

Virtualization is a technology to provide isolation and efficiency for computa-
tion [8]. Traditional hypervisors prefer isolation over resource sharing, with less
efficiency due to the emulation of hardware and a running operating system [9].
Container-based virtualization provides a shared, virtualized image of a operat-
ing system which consists of a root file system and a set of system libraries and
executables [8]. In this environment, applications could be bundled and executed.
Application virtualization bundles a set of processes to a container, that can be
moved between different systems [9]. The transfer of applications due to contain-
ers can be executed between all systems that have the container environment
installed.

According to [4], virtualization of the big data framework Apache Hadoop
offers benefits including shorter provisioning time, better performance isolation
and higher resource utilization. Especially higher resource utilization and a short
startup time of containers are useful to automatically scale workloads of big data
systems. Autoscaling needs the management of available computing resources
and the provisioning and scheduling of containers itself and their included ap-
plications. For this purpose the concept of meta-containers is invented, which
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allows signaling for workload characteristics and communication between con-
tainers [37]. Meta-containers can be deployed in two layers, which are cluster
resource management and application scheduling. Cluster manager like Apache
Mesos, Google Kubernetes and Docker Swarm are technologies that aim to man-
age cluster resources. Additionally application schedulers like YARN [28] fulfill
the property of scheduling workload characteristics and managing application
specific resources.

Containers are a good solution to run legacy code within a modern microser-
vice architecture [38]. Big data systems and their configurations are changing
permanently, which makes benchmark solutions quickly obsolete. Containeriza-
tion of big data benchmark solutions can simplify installation and configura-
tion big data systems and their benchmark solutions. Additionally, the possible
cost-effectiveness of container-based big data applications can influence big data
benchmarks to introduce more metrics like cost of ownership.

4 Benchmark suites for Big Data Architectures

This Section describes benchmarking solutions and analyzes trade-offs between
big data architectures presented in Section 2. Subsection 4.1 describes big data
benchmarking solutions. These solutions can compare trade-offs between big
data architecture patterns. Following this, a mapping of big data benchmarks to
big data architecture patterns is presented in Subsection 4.2.

4.1 Big Data Benchmarks

Current approaches for big data architecture patterns tackle the problem of real
time applications. These use cases require systems that can handle data streams.
Accordingly benchmarks for streaming applications are necessary to analyze the
performance when comparing different frameworks as a particular component in
a big data architecture. The TPC-HS benchmark is the first industry standard
big data benchmark, but it only benchmarks batch computation with Apache
Hadoop as processing system [39]. With batch computation, especially the Vol-
ume dimension of big data characteristics is targeted. This aspect of big data
could easily be generated, TPC-HS and BigDataBench provide data generators
which could produce appropriate big data [12], [40]. Generating data to simulate
streaming applications in a benchmark is more difficult [41].

StreamBench One of the first approaches to benchmark streaming applica-
tions in context of big data is StreamBench, which is a synthetic benchmark
that address typical stream computing scenarios and core operations [41]. The
following description of StreamBench is mainly based on the original publication
[41].

In StreamBench, data streams are generated based on real world query log
data and statistical information of an hour-long Internet package trace collected



X

once a month. The workloads of StreamBench covering three dimensions: the tar-
get data type of computation, the complexity of computation and the integration
of stored data and streaming data. The integration dimension is related to the
architectural need of processing stateful jobs. The implemented algorithms for
stateful computation are WordCount, DistinctCount and Statistics. The latter
calculates the maximum, minimum, sum and average of a numeric input.

Generated input records are transfered into a messaging system which serves
as data source for the streaming framework. The metrics of StreamBench are
throughput and latency [42]. The throughput metric is measured as average
count of records and data size processed per second. Latency is measured as
average time frame from the arrival of a record till the end of processing of this
record.

The benchmark measures the performance of stream computing frameworks
by identifying four different categories: 1. Performance with a single node recipi-
ent; 2. Performance with multi node recipients; 3. Performance of fault tolerance
by having a failure of a single node; 4. Performance comparison of durability
when executing a 48 hour run with constant data scales. The first proposed
execution of StreamBench compares Apache Storm and Apache Spark [41]. A
second publication adds Apache Samza, but only a workload addressing through-
put could be measured with this framework [43], [42]. The results showing that
Apache Spark and Apache Samza can handle larger amount of data than Apache
Storm. But Apache Storm has shorter latency.

Yahoo Streaming Benchmarks Yahoo Streaming Benchmarks is a open
source real-world streaming benchmark suite [44], [45]. The following descrip-
tion is mainly based on the original publication [44].

This benchmark suite simulates a real world application using the example
of a advertisement analytics pipeline. The benchmark includes Apache Kafka
as public-subscribe messaging system for data fetching and Redis as key-value
NoSQL database for storage [46],[47]. It builds a full data pipeline implemented
as middle layer between event sources and data storage. The computation is
performed on structured data streams and it includes following operators: filter,
projection, join and windowed count. These operators have to be implemented
for each framework individually, because of the lack of a standardized language
for streaming frameworks. The implemented metrics are throughput and latency,
the final results are calculated as percentile.

The benchmark is executed comparing the frameworks Apache Spark, Apache
Storm and Apache Flink [48], [49], [50]. The results show that Apache Storm
and Apache Flink have a lower latency when running with high throughput. But
Apache Spark can handle a higher maximum throughput rate in comparison to
Apache Storm and Apache Flink.
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4.2 Mapping of Big data Benchmarks on Big Data Architecture
patterns

When benchmarking Lambda architecture, it is necessary to compare the costs
of maintaining processing logic in two different layers to the performance ben-
efits implementing a Kappa architecture solution. For this case, a benchmark
that compares stream processing frameworks and batch processing frameworks
both executing batch jobs could be deployed. BigDataBench can be used for this
purpose, especially having metrics for performance. Other metrics for durability
complexity of programming jobs should be added to make a fair decision when
implementing a Lambda architecture. Durability metrics could be measured with
a long time execution. Metrics like lines of could be integrated to give hints for
measuring complexity of implementing jobs, referring as soft indicators for costs
of implementation. According to Nathan Marz batch layer of Lambda architec-
ture needs to read a lot of data at onces and it concedes to have a higher latency
([5], p. 56, 109). With these characteristics Apache Spark would be a good choice
for streaming applications according to StreamBench. It could be benchmarked
if Apache Spark has the same capabilities when doing batch computation.

Additionally the performance of big data frameworks needs to be measured
when doing incremental reprocessing, which is a crucial feature in all presented
big data architecture patterns. As mentioned in Section 2, all analyzed big data
architectures require the ability to incremental reprocessing. That is defined as
a merging process that combines previously computed data with new incoming
data. Benchmarking of big data architectures requires to analyze this feature
to find performance trade-offs between them. StreamBench can measure this
trade-off with the integration dimension. A interesting measurement would be
the time frame that frameworks need to catch up with jobs in situations denoted
as “pursuit race” in Kappa architecture. The implemented analytical pipeline of
Yahoo Streaming Benchmark could also be used for benchmarking incremental
reprocessing. It would be necessary to add a cluster manager for provisioning of
resources to let the batch job catch up the streaming job.

For choosing the best big data system for data cleansing, a benchmark that
measures the ability to absorb different data types and filtering functions is nec-
essary. This would address the Variety dimension of big data. A data cleansing
feature is needed in all presented big data architecture patterns, but it is im-
plemented with different types of systems depending on the specific big data
architecture pattern. To benchmark this feature, it would be necessary to put
special emphasis on filtering functions and throughput measurement. Another
challenge would be a benchmark measuring the hardware footprint of Lambda ar-
chitecture and Kappa architecture in comparison to Liquid, where Liquid should
perform better according to [7]. A benchmark measuring the efficiency of meta-
data management in Liquid architecture would also be interesting to measure
practically
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5 Implications for a self-developed benchmark solution

Benchmarking of big data architectures could be initiated by analyzing two theo-
retical dimensions as guide for choosing a benchmark solution. These dimensions
can be used to choose the right system for a individual purpose, answering the
main question of domain-specific big data benchmarking similar to Jim Gray’s
proposed question ([10], p.1): “Which system should I choose for my big data
architecture?”. The two dimensions are:

– computation type: Does the big data system has the same performance char-
acteristics when choosing other types of computation?

– competition: How does the big data system perform when benchmarking it
in comparison to other systems on the same type of computation?

Computation type

multiple

single

C
o
m

p
e
ti
ti
o
n

multiplesingle

TPC-HS SparkBench

BigDataBench

StreamBench

Yahoo Streaming 

Benchmark

Fig. 1. Classification of big data benchmarks to compare architectural decisions

Figure 1 shows an approach to characterize a few big data benchmarks. The
classification could be used to select components of big data benchmarks to
compare architectural decisions. For example, the classification leads to following
hypothesis which needs to be benchmarked when comparing solutions for big
data architectures:

– Hypothesis: A streaming framework can compute batch jobs at least as effi-
cient as a batch framework.

This hypothesis addresses a single computation type, for example when bench-
marking Lambda architecture. But multiple competitors (big data frameworks)
must be benchmarked to make the best decision. Accordingly Yahoo Streaming
Benchmark or StreamBench could be used to test this hypothesis. When making
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a decision to implement ether Lambda architecture or Kappa architecture, mul-
tiple computation types and multiple competitors must be benchmarked. Big-
DataBench could be used to decide this specific architecture problem. Included
test could be the cost of implementation and the performance of a streaming
framework running batch jobs.

To my best knowledge, there is no open source big data benchmark solution
that is completely containerized and addresses all challenges when benchmark-
ing big data architectures. Implementing a containerized big data benchmark
solution could accomplish the four criteria relevance, portability, scalability and
simplicity introduced by Jim Gray ([51], p.3f). Current solutions are scalable.
However, they sometimes lack relevance due to a legacy software stack included
in benchmark. The configuration is often too complicated and not simple enough
to make quick decisions when choosing systems for a big data architecture.

6 Conclusion and Future Work

This paper describes big data architectures and benchmarking solutions to mea-
sure the performance of these architectures. Furthermore, it presents an approach
for using current big data benchmarks to decide on the best big data architecture.
Therefore current definition of big data and architecture patterns are presented.
Additionally, several benchmarks are analyzed whether they can measure big
data architecture trade-offs. A simple classification matrix is introduced which
can help to choose a benchmark for measuring a big data architecture trade-off.
In future work, the matrix could be extended with more big data benchmark
suites to have a better overview of current solutions. Also big data benchmarks
could be executed to check if they can verify proposed hypotheses. Finally ap-
proaches to improve current big data benchmarks are presented.
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