
Project Report:
Deep Learning for Text Classification in Digital Journalism

Jan Paul Assendorp

Hamburg University of Applied Sciences, Dept. Computer Science,
Berliner Tor 7

20099 Hamburg, Germany
janpaul.assendorp@haw-hamburg.de

I. INTRODUCTION

The emerging field of digital journalism benefits vastly
from recent developments in deep learning for natural lan-
guage processing (NLP). Current deep learning models can
be effectively used for NLP tasks such as speech recognition,
machine translation, sentiment analysis or simply classification
of text and often outperform traditional text mining methods.
Those tasks are broadly associated to the latest challenges in
journalism in the face of digital media. Not only do modern
journalists have a need for systems which can ease access
and modification to existing corpora. but also are journalists
nowadays faced with a never ending stream of new topics and
hence new stories, which have to be identified and reduced
into a presentable format for the interested audience.

The scope of this project is to identify and evaluate an
appropriate tool chain for text mining in preparation for
the subsequent master thesis. This paper will focus on the
challenge of document-level classification by exploiting the
latest developments in the research fields of NLP and machine
learning. The task of incorporating this projects results into
a recommender system for dossiers is out of scope for this
paper and will be discussed in future work. The following
section II will briefly summarize the concept of dossiers
and the benefits of enhancing the process of dossier creation
with automated machine learning systems. Section III explores
different approaches of recent studies which aim to achieve
similar tasks to document classification. Therefore the dif-
ferences in traditional methods compared to its counterparts
from the field of deep learning will be examined. Section
IV describes convolutional neural networks as promising deep
learning model for NLP. Subsequently section V will describe
experiments of this project and briefly discuss the results.

II. RECOMMENDER SYSTEM FOR DOSSIER CREATION

The main focus of this project is the task of text clas-
sification due to its similarities to the concept of dossiers in
journalism. The goal is to train a predictive model to categorize
documents from a selected corpus to a given set of labels.

In the context of digital journalism, dossiers can be seen as
a set of multimedia documents focusing on a topic of interest.
Hence dossiers form an important tool for representing a selec-
tion of significant sources of information for a given subject to
an interested audience. In this project the focus will be solely
on textual data. In the past the content of dossiers has been
handpicked by journalists in a time consuming process which

required a deep knowledge of the topic. Today this process
can be massively accelerated by text mining applications. The
concept of dossiers this project is based on can be further
obtained from [1].

A news agencies archive of textual documents is likely
already labeled to some extend. Even though dossiers focus on
a given historical, political or cultural subject of interest, the
task of categorizing news wires can be seen as similar. The core
of text categorization is to find an appropriate representation
of textual data where metric types of measurements can be
used in order to compare different textual documents in terms
of similarity. In comparison, dossiers contain texts which also
need to have a certain amount of semantical similarity. Based
on this assumption, text classification will be seen as a baseline
task in the conception of a recommender system for dossiers.

A system for dossier recommendations could be used to
reduce the huge amounts of documents in an archive to a
manageable set of texts focusing on the subject of interest. The
journalists could subsequently evaluate the recommendations
and choose a subset of texts to be incorporated into the dossier.
For this process it is crucial that the system identifies all
relevant items from the corpus. In contrast, a small number of
non relevant texts can be easily disregarded by the journalist.
This observation is significant for the evaluation of a predictive
model, as described in the following sections.

Another important observation is the disparity in per-
formance of machine learning models on different datasets.
Therefore it is essential to use a set of documents for the
evaluation of the predictive model which is mostly similar to
the target textual data.

III. DOCUMENT CLASSIFICATION

The task of document-level classification has been broadly
explored in recent literature. Nevertheless, the accuracy of
classification models has been steadily improved by applying
state-of-the-art research and novel techniques. This section will
describe traditional as well as recent research on methods
to accomplish tasks similar to the categorization of text on
document-level. Section III-A will discuss language models for
representing textual data as a crucial task in text processing.

Text classification is one of the standard applications in text
mining. The objective in classification is to find appropriate
labels for previously unlabeled data from a predictive model
which has been trained on a given set of examples. In general
the traditional process of text categorization can be described

http://www.haw-hamburg.de/ti-i
mailto:janpaul.assendorp@haw-hamburg.de


by a series of necessary subtasks performed to identify and
extract relevant features from a given text, which can be further
applied to train a predictive model. Those subtasks can be
reduced to the different steps shown in figure 1.

Textual data can be seen as a sequence of words where each
term is mapped in a global dictionary. In data mining, text is
generally seen as unstructured data [2] even though it implies
structural information by the given rules of grammar. Hence
the difficulty in text mining lies in capturing these structural
or contextual constraints from a set of words. Based on the
extracted features from documents, text can be represented in
the algebraic vector space model [3] wherein each document
is described by a vector which holds information about its
containing words. With these vectors, different documents can
be compared and thus clustered or classified utilizing standard
vector algebra. Therefore a common method is to construct
a document-term-matrix to compute similarities. Language
models for representing text in a vector space are represented
in the following section III-A.

Figure 1. Pipeline of text categorization [4]

In order to improve the information gained from single
tokens, preprocessing can be applied to clean text prior to
feature extraction. Preprocessing includes tokenization and
normalization of text. In addition stopwords can be filtered for
removal of noise introduced by words without any semantical
significance. Another often used method in preprocessing is
to reduce words to a common stem in order to decrease
the dimensionality of word vectors and thus improve the
comparability of documents.

Unique tokens often have different value for understanding
the subject of a document. A simple method of weighting
features is by counting the corresponding words frequency.
However, this does not regard the significance of terms which
rarely appear in general but have a relatively high frequency
in specific topics. To consider relative importance of terms,
the term-frequency-inverse-document-frequency (TF-IDF) [5]
weighting scheme can be applied. This measure has been
proven to increase the quality of feature vectors in classifi-
cation of text [6].

Especially in classification of large documents the dimen-
sionality of feature vectors is increasingly high due to the
large number of terms in the vocabulary. This dimensionality
can be even further increased once sequences of words are
considered as features. However, these feature vectors are
in most cases sparse as many features solely appear in a
small fraction of the documents. Hence it is often required
to reduce the feature vectors dimensionality to enable the
classification algorithms to produce good results. A commonly
used method for dimensionality reduction is the principle
component analysis (PCA) which can reduce a matrix into
a lower dimensional representation.

Traditionally, relevant features from text are handcrafted in
a time-consuming manner and require an extensive amount of

preprocessing of raw text. In addition, those features are often
over-specified and incomplete [7]. The eminent difference
between the traditional approach and recent deep learning
methods is the automated learning of representations from text.
Features can hence be learned from raw text and represented
in some kind of language model.

The following section describes different language models
which can be applied to capture relevant information from a
given text. These model can be later used to compare and
classify documents.

A. Language models
The naive approach to capture the meaning of text is to

count the occurrences of distinct terms in the documents.
The result can be captured in a Term-Document matrix where
documents are represented as a vector of dimension n, where n
is equal to the amount of distinct terms in the set of all words in
the given dictionary. Consequently those vector representations
can be utilized to calculate arithmetic distances between single
documents.

1) Bag-of-words: Text can be interpreted as a bag of words
ignoring the sequential information of co-occurring terms.
Hence the semantics of each combination of words or general
grammatical structure will be lost completely. Nevertheless,
the bag-of-words model and thus the assumption of term
independence has been proven to be quite efficient in many
applications of text mining due to its simplicity [8].

2) Bag-of-n-grams: To initially capture the semantics of
word sequences, co-occurring terms within a fixed window
around a given center word can be considered as features. For
instance the mining of 3-gram features from text has lead to
good results in experiments by Rousseau et al. in [9]. However,
n-grams arouse the disadvantage of a highly increased dimen-
sionality of feature vectors as well as sparsity due to decreased
likelihood of n-grams co-occurring in different documents.

3) Graph-of-words: In order to extend the concept of n-
grams Rousseau et al. introduced the graph-of-words model
in [9], wherein word co-occurrences in a document were
translated into an undirected graph. In this graph model,
vertices represent distinct terms whereas edges are given by
co-occurrence between two terms.

Figure 2. Graph-of-words representation of text Graph-of-Words [9]



The resulting graph-of-words can be interpreted as a set
of long range n-grams to enhance the extraction of mean-
ingful features from text. Subgraphs can be directly mined
as features and mapped to a vector representation of the
document. Another interesting structural characteristic of the
graph representation is the main core defined as vertices with
the highest number of outgoing edges.

Figure 2 shows the main core of a graph-of-words as bold
labeled vertices. The core vertices can be seen as the most
important terms of the related document and can even be used
to reduce the feature space of n-grams for better classification
accuracy [9].

However, directly mining subgraph features leads to high
dimensional feature vectors which are very sparse. In addition,
the feature vectors hold solely binary values as each subgraph
can by definition only appear once in a graph representation of
a document holding distinct term vertices. Even the reduction
of the graph-of-words to the main core results in a high
dimensional vector space.

Apart from the main core, the graph-of-words features
profit from disregarding word-order compared to n-grams of
similar window size. This can lead to an increasing classifica-
tion accuracy, as shown in [9].

4) Vector representations of words: One of the biggest
drawbacks from the previously mentioned discrete language
models are the sparse feature vectors which might break the
classification algorithms performance or at least require addi-
tional work to efficiently handle large but sparse matrices. In
comparison, image processing applications in machine learning
benefit from dense matrices given by pixel data of images. To
approach this problem, Bengio et al. introduced in [10] word
embeddings as dense lower dimensional vector representations
of text. In this model, every word in the dictionary is encoded
in a vector representing the possibility of word co-occurrences
to other terms in the dictionary. The underlying assumption
of this continuous approach is that similar words are likely to
have similar vectors [11]. Given a sufficiently large dataset,
this pattern captures a great deal of the semantic relationships
of words. Semantically close words are therefore encoded in
the vector space as close vectors in terms of euclidean or
cosine distance [12]. This allows for vector equations such
as king − queen = man− woman [13].

The approach of dense vector representations can either be
achieved with global matrix factorization methods like Latent
Semantic Analysis (LSA) [14] or by local context window
methods e.g. the skip-gram [11] or the continuous bag-of-
words (CBoW) [15] model introduced by Mikolov et al.. The
objective of the continuous skip-gram model is to predict the
context of a center word [16] wherein CBoW predicts target
words from their surrounding context which can be useful for
a small dataset.

Sophisticated implementations for computing word em-
beddings are available through word2vec [16] or GloVe [13].
Both methods ultimately rely on unsupervised learning of co-
occurrence statistics of words in the corpus.

Instead of learning word vectors from the limited context
of the training set, word embeddings can be trained on the
largest available collection of text and subsequently applied
for training a classifier based on the original data. Using static
or non-static pretrained word2vec or GloVe vectors has been

proven to increase the classification accuracy [17]. However,
it has also been shown that non-static word embeddings
outperform their static variants as the vectors are adjusted to
the dataset during training [17].

B. Traditional text classification
A common approach to text classification is to compute

a bag of n-grams from preprocessed textual documents and
represent them in a term-document-matrix. Subsequently a TF-
IDF weighting scheme can be applied to emphasize often oc-
curring words in a single document which are rather rare within
the corpus. To further reduce the size of vector dimensionality,
algebraic methods like PCA can be applied to the term-
document-matrix. It is also common to use a linear kernel SVM
[18] classifier to categorize the transformed documents due
to its simplicity as well as good results on high dimensional
feature vectors [19] [9]. Even in this projects experiments, this
method has proven to result in a good classification accuracy
as seen in section V-C.

C. Deep learning for text classification
In traditional machine learning, the selection of relevant

features from data is a crucial task for a successful application.
In contrast, deep learning introduces end-to-end learning and
hence the automated learning of discriminating features from
data. This simplifies the otherwise complex process of hand-
picking features from text. Compared to traditional methods,
CNNs have been proven to deliver highly competitive results
[20]. The following section IV briefly introduces convolutional
neural networks as a promising model for language processing.

IV. CONVOLUTIONAL NEURAL NETWORKS FOR TEXT
CLASSIFICATION

Convolutional neural networks (CNNs) have recently pro-
duced remarkable results in machine learning for image pro-
cessing [21]. While similar to the concept of recurrent neural
networks (RNNs) regarding the ability to embrace sequential
input data, CNNs can also be used for NLP tasks such as text
classification. It can be shown that even a simple convolutional
model results in good classification accuracy [12] [17]. This
section will briefly introduce the concept of CNNs and how it
can be applied for text classification tasks.

A. Concept of CNNs
The underlying concept of CNNs relies on layers of

convolving filters applied on shifting windows over an in-
put matrix and thus extracting local features [22]. Another
architectural component is a pooling layer, which results in
a certain degree distortion of feature locality. All these layers
have weights, which are subject to be learned by the model.

An example architecture of a single layer CNN for
sentence-level classification by Kim et al. in [12] is shown in
figure 3. The input layer consists of a dense embedding matrix.
Given a sentence represented as a word vector s, where each
word is encoded in an embedding vector with dimension d, the
input layer is a s × d matrix. Essentially, the length of each
sentence has to be padded to a fixed maximum n, due to the
CNNs fixed input size [12].

In contrast to image processing, convolution filters are
applied to the entire width of the input layer but have variable
height, defined as region size [17]. Therefore, a convolution



Figure 3. CNN architecture for text classification [12]

filter parameterized by a weight matrix w ∈ Rhd uses a
window of h words for the extraction of a new feature ci. Given
xi:i+h−1 refers to a concatenation of words xi, xi+1, ...xi+h−1

of a window, the new feature is defined as shown in equation
1 [12].

ci = f(w ∗ xi:i+h−1 + b) (1)

The activation function f is essentially non-linear e.g. a
rectified linear unit (ReLU) [23] and b ∈ R is a bias term.
The resulting feature map c ∈ Rn−h+1, where

c = [c1, c1, ...cn−h+1] (2)

can then be obtained by applying the filter to each possible
window over the input sentence [12].

Following the convolutional layer, a max-over-time pooling
operation [24] can be applied on the feature maps in order to
extract the maximum value ĉ = max{c} and hence capture the
most important feature to the corresponding filter [12]. Often
1-max pooling [25] is applied to produce the feature maps [17].

Subsequently the extracted features can be classified in a
fully connected softmax layer resulting in an output represent-
ing the probability distribution over the class labels [12].

Training the model includes the filter weights w, the
bias term b as well as the softmax weights. Minimizing the
categorical cross-entropy loss is a reasonable training objective
[17]. Stochastic gradient descent (SGD) can be used in back-
propagation to optimize the model parameters.

To prevent the model from overfitting the training exam-
ples, regularization can be added to the softmax layer. Hinten
et al. proposed dropout in [26] as a method for regularization
by randomly omitting parts of the model. In this case, dropout
can be applied by setting the effected weights to zero during
back-propagation [12]. Another common method for regular-
ization is to apply l2 norm constraints [27]. However, it does
not improve the performance in NLP tasks [17].

The model shown in figure 3 also includes multiple input
channels. This allows e.g. the simultaneous use of static as well
as non-static word embeddings. Another interesting approach
is to use static pretrained word embeddings in one channel
along with embeddings learned from the training set in a
separate channel [12].

V. EXPERIMENTS

In order to evaluate an appropriate pipeline for classifi-
cation of document corpora in journalism, several methods
have been experimented with and are presented in this chapter.
Firstly, the traditional method of classifying preprocessed texts
by extracting weighted n-grams and feeding them to a SVM
has been implemented. This method has been further evaluated
by extracting subgraph features from the texts and representing
them in a graph-of-words model. Finally a CNN-approach and
therefore a deep learning approach incorporating pretrained
word embeddings led to the best results on the used corpus.

A. Experimental setup

Data transformation and preprocessing has been done in R
using the text mining package tm. Training and validation of
the weighted n-gram features has been carried out using the
linear SVM implementation from the e10711 R package for
statistical computations. R has also been used for plotting the
results of different classification models. Mining the frequent
subgraph features has been carried out using gSpan2 due to
its fast C++ implementation. The code for training the deep
CNNs has been written in python using Googles recently
published tensorflow3 framework for deep learning models.

All experiments have been carried out on a machine
running a common 4-core CPU (Intel Core i7 4770k) clocking
at 3.5GHz with 32GB of RAM. Training of the CNNs was
done on a GPU with 1536 CUDA cores and a total memory
of 4GB.

B. Dataset

The classification experiments have been carried out on
the Reuters R84 corpus. The dataset contains the eight most
frequent classes from the Reuters-21578 collection of news
stories. The eight classes consist of a minimum of 51 up to
3923 documents and sum up to a total of 7674 texts. The
dataset is interesting due to the variety in text length as well
as its skewed multi-class scenario. However, the collection has
been selected in order to produce comparable results to the
experiments Rousseau et al. in [9] and Malliaros et al. in [4].

1https://cran.r-project.org/web/packages/e1071
2https://www.cs.ucsb.edu/∼xyan/software/gSpan.htm
3https://www.tensorflow.org/
4http://www.cs.umb.edu/∼smimarog/textmining/datasets

https://cran.r-project.org/web/packages/e1071
https://www.cs.ucsb.edu/~xyan/software/gSpan.htm
https://www.tensorflow.org/
http://www.cs.umb.edu/~smimarog/textmining/datasets


C. Results
1) N-grams and linear SVM: To be able to compare the

CNN-approach to traditional models, a SVM with a linear
kernel has been used to classify documents previously prepro-
cessed and represented as n-gram features. The preprocessing
includes the removal of stopwords and stemming of words
to reduce textual noise in the documents. Subsequently 3-
grams are extracted from the texts and represented in a shared
vector space. The features are weighted following the TF-IDF
scoring function. The resulting term-document-matrix is very
sparse due to the large number of n-gram features. Hence the
sparsity of the matrix is reduced to allow higher performance
of the SVM. The resulting accuracy and F1-score of the SVM
classifier is presented in table I. Measuring the harmonic mean
of precision and recall, the F1-score can be effectively used in
a skewed class distribution. To generalize the results regarding
the used train and test split, 10-fold cross-validation has been
applied.

2) Graph-of-words and linear SVM: To evaluate the per-
formance of the graph-of-words model for extracting subgraph
features, an approach similar to Rousseau et al. in [9] has been
implemented. The set of documents has been cleaned, stemmed
and ultimately transformed into a graph representation of the
containing words. The main core was subsequently extracted
utilizing the igraph5 package in R. Mining of the most frequent
subgraphs has been done with gSpan on each class separately
due to the skewed class distribution of the dataset. Following
the example in [9], a relative support value of 7% was
applied to extract a proportional number of frequent subgraphs
regarding the class size. However, the good results from the
original paper could not be reproduced in this experiments. A
possible reason is the different method for retrieving the main
core used here. Rousseau et al. achieved an accuracy which
clearly outperforms the n-grams combined with a linear SVM
as described in the previous section V-C1. Table I contains the
results taken from [9] for comparison.

3) CNN and GloVe embeddings: The selected network
architecture is similar to the baseline single-layer CNN used
by Kim et al. in [12] due to its simplicity and yet good
results. However, the input has been limited to a single channel
to focus on the comparison of different word embeddings.
Nonetheless, expanding the model to dual channel input with
static pretrained as well as non-static learned representations
is subject of future experiments as described in section VI.
In addition, the classifiers in this project were applied on
document-level instead of sentence-level described in [12].

The embedding layer of the CNN has been altered to fit the
dimension of the embeddings as well as the maximum length
of the concatenated sentences of single documents. A total
number of 128 convolutional filters per filter size were used
with rectified linear units (ReLU). The different filter sizes
were set to 3, 4 and 5. Dropout was applied with a dropout
rate of 0.5. These hyperparameters were chosen similar to the
network used by Kim et al. in [12].

For training the network, Adam optimizer [28] has been
used for optimization of the models parameters. The data set
has been shuffled and randomly split into about 85% training
data and 15% evaluation data. In contrast to the experiments
on the SVM classifier, cross-validation has been disregarded

5http://igraph.org/r/

to speed up the experiments. Training was done with a batch
size of 64 and the model was trained in 200 epochs. For
visualization, the evaluation of the model was run every
100 training steps. The evaluation consisted of calculating
classification accuracy as well as cross-entropy loss.

Several models have been trained on different pretrained
GloVe word embeddings6. GloVe has been selected over
word2vec due to its better performance in terms of word
analogy and word similarity [13]. The GloVe word vectors
used in these experiments have been trained on a set of 6
billion tokens from Wikipedia and Gigaword 5 containing
400k words and were subsequently reduced to a dimension
of 50, 100 and 300. A major difficulty has been handling
unknown terms or padding tokens, which are not trained in
the GloVe embeddings. This has been resolved by using a
semantically insignificant default lookup term for unknown
words. However, it is expected, that the models accuracy can
be increased by pretraining a term without any importance to
the classification task.

Initially, the first model was trained using an non-static
embedding layer of dimension 128 which has been initialized
randomly and learned during the training. Figure 4 shows the
classification accuracy during training as well as evaluation.
Most interestingly, learning the embeddings from the training
data seems to work well on the dataset and provides a good
accuracy. However, it can also be noted, that during training
the models seems to overfit the training data which results in
a decreasing trend of difference in training accuracy compared
to evaluation accuracy.

Figure 4. CNN training and evaluation accuracy on randomly initialized
word embeddings learned in training

An explanation for the good results of word embeddings
learned from the training data is the length of the documents.
Compared to short-text classification, the dataset used here
incorporates sufficient contextual information for distinct terms
of the vocabulary. Due to limited memory on the GPU used
for training, the experiments with non-static embeddings have
been limited to preprocessed input data only. Hence an addition

6Embeddings available here: http://nlp.stanford.edu/projects/glove/

http://igraph.org/r/
http://nlp.stanford.edu/projects/glove/


(a) 50-dimension embeddings on preprocessed text (b) 100-dimension embeddings on preprocessed text (c) 50-dimension embeddings on raw text

Figure 5. CNN training and evaluation on static GloVe word embeddings

in future works can be rerunning this model on raw input text
and comparing it to the previous results.

The experiments shown in figure 5 have been applied on
static pretrained GloVe embeddings. Due to memory limita-
tions the experiments have been carried out starting with low-
dimensional GloVe embeddings. Furthermore, in some cases
the input data has been preprocessed and thus stemmed to
reduce the number of distinct terms in the training set. Figure
5a shows the training and evaluation results on 50-dimensional
GloVe embeddings pretrained on a vocabulary of 400k terms
with preprocessed input data.

In contrast to word embeddings learned from the training
set, figure 5a shows a significant decrease in classification
accuracy during evaluation. This example shows, that the
model does not benefits from the pretrained embeddings once
their dimensionality is significantly lower.

Based on this assumption a model has been trained on 100-
dimensional GloVe embeddings, which are similar to the 128-
dimensional non-static embeddings learned during training.
Figure 5b proves that pretrained GloVe embeddings outper-
form the learned word vectors with similar dimensionality on
preprocessed input text previously shown in figure 4.

Using preprocessed text on top of pretrained embeddings
does not fully exploit the underlaying semantic structure cap-
tured in the word vectors. Hence it is more natural to apply the
raw text on top of the embeddings. Due to hardware limitations
in these experiments, applying raw text has been solely used
on top of 50-dimensional GloVe embeddings. Figure 5c shows
the training and evaluation accuracy of the model trained with
raw text inputs. The evaluation accuracy increases significantly
compared to the other models. This can be explained by
the better use of semantic information in the embeddings as
described before.

However, figure 6 shows a significantly increasing trend in
cross-entropy loss over the training period. This is a sign for a
certain extend of overfitting of the training model which can be
improved by adjusting the dropout rate. The cross-entropy loss
might also be improved by changes in the CNN architecture.
Ultimately it is also influenced by the chosen training and
evaluation split of the shuffled documents. Nevertheless, the
results from the different CNN models demonstrate that deep
models can easily outperform traditional classifiers.

Figure 6. CNN training and evaluation cross-entropy loss on 50-dimensional
GloVe embeddings using raw documents

D. Summary of results
During the different experiments the model accuracy has

been recorded to allow for a practical comparison of the
different approaches. The following table I lists the results of
classification on the Reuters R8 collection using a traditional
method and different CNN models. In addition to the results
gained through experiments in this project, the results of the
graph-of-words approach coupled with a linear kernel SVM
has been added from [9] for comparison.

TABLE I. Classification results on Reuters R8 dataset

Method Accuracy
N-Grams and linear SVM 0.937
GoW and linear SVM [9] 0.955
CNN + variable Embeddings + preprocessed text 0.958
CNN + GloVe (50d) + preprocessed text 0.947
CNN + GloVe (100d) + preprocessed text 0.959
CNN + GloVe (50d) + raw text 0.967

The accuracy of the n-gram model has been recorded with
10-fold cross-validation which has been omitted for the CNN



models due to the computational complexity. In addition, the
weighted F1-score has been calculated for the n-gram approach
which resulted in a value of 0.848. In comparison, the GoW
approach in [9] achieved a F1-score of 0.864.

VI. CONCLUSION AND FUTURE WORK

In this project different classification models have been
evaluated for categorizing the Reuters R8 news collection. The
chosen dataset is seen as a good baseline for simulating a task
on a journalistic archive. This projects experiments focused on
deep learning methods for text classification due to promising
results achieved in recent academic papers.

Even though the CNN used in the experiments is a basic
model and has not been further optimized to the task at hand,
the results show a significant higher performance in direct
comparison to traditional approaches on the considered dataset.
This leads to the assumption that a CNN similar to the one
evaluated in the experiments is the preferable model for the
task of classification in a context of journalism.

However, the evaluated model can be further optimized
for the given dataset. The first step would therefore be the
implementation of cross-validation as well as a F1-score
measurement to improve the comparability of different models
on a dataset with skewed class distribution. Furthermore, the
CNN can be tuned by including l2 norm regularization or
adapting the dropout rate to prevent overfitting. Nevertheless,
as stated in IV-A the effect of regularization might be only
insignificantly improving the models accuracy.

A significant improvement can be expected from switching
to higher dimensional pretrained word embeddings. Commonly
300-dimensional word embeddings are used in recent publi-
cations [17] [12]. In addition, applying raw text data which
ultimately holds the most contextual information has been
shown to improve the classification accuracy. These changes
however require training on a superior GPU compared to the
one used in the experiments. The pretrained word embeddings
can also be used in a non-static way and hence be optimized
during training. It is also possible to experiment with dual input
channels holding both static as well as non-static embeddings
as described by Kim et al. in [12].

A trend in latest research on text classification is to use
input on character-level [20]. Character-level classification
utilizing CNN models has been shown to improve the results
on large datasets e.g. on millions of examples whereas it does
not achieve better results on smaller datasets.

REFERENCES
[1] N. Hälker, “Teilautomatisierte Erstellung von Dossiers auf Basis von

Textmining-Verfahren,” Masterthesis, HAW Hamburg, 2015. [Online].
Available: http://users.informatik.haw-hamburg.de/∼ubicomp/arbeiten/
master/haelker.pdf

[2] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data. Cambridge University
Press, 2007. [Online]. Available: https://books.google.de/books?id=
U3EA zX3ZwEC

[3] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, Nov. 1975,
pp. 613–620. [Online]. Available: http://doi.acm.org/10.1145/361219.
361220

[4] F. D. Malliaros and K. Skianis, “Graph-based term weighting for text
categorization,” in Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015.
ACM, 2015, pp. 1473–1479.

[5] A. Singhal, J. Choi, D. Hindle, D. D. Lewis, and F. Pereira, “At&t at
trec-7,” NIST SPECIAL PUBLICATION SP, 1999, pp. 239–252.

[6] X. Fu, E. Ch’ng, and U. Aickelin, “An improved system for sentence-
level novelty detection in textual streams,” 2015.

[7] R. Socher, “Recursive deep learning for natural language processing
and computer vision,” Ph.D. dissertation, Citeseer, 2014.

[8] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” arXiv preprint arXiv:1405.4053, 2014.

[9] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as
a graph classification problem,” in Proceedings of the 52th Annual
Meeting of the Association for Computational Linguistics and the 6th
International Joint Conference on Natural Language Processing (ACL-
IJCNLP ’15), 2015.

[10] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” journal of machine learning research, vol. 3,
no. Feb, 2003, pp. 1137–1155.

[11] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in contin-
uous space word representations.” in HLT-NAACL, vol. 13, 2013, pp.
746–751.

[12] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[13] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[14] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, 1990, p. 391.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[17] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1510.03820, 2015.

[18] T. Joachims, Text categorization with support vector machines: Learning
with many relevant features. Springer, 1998.

[19] O. Walter, R. Haeb-Umbach, B. Mokbel, B. Paassen, and B. Hammer,
“Autonomous learning of representations,” KI-Künstliche Intelligenz,
vol. 29, no. 4, 2015, pp. 339–351.

[20] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649–657.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, 1998, pp. 2278–2324.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), 2010, pp. 807–814.

[24] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, 2011, pp. 2493–2537.

[25] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 111–118.

[26] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[27] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 78.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

http://users.informatik.haw-hamburg.de/~ubicomp/arbeiten/master/haelker.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/arbeiten/master/haelker.pdf
https://books.google.de/books?id=U3EA_zX3ZwEC
https://books.google.de/books?id=U3EA_zX3ZwEC
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://www.aclweb.org/anthology/D14-1162

	Introduction
	Recommender system for dossier creation
	Document classification
	Language models
	Bag-of-words
	Bag-of-n-grams
	Graph-of-words
	Vector representations of words

	Traditional text classification
	Deep learning for text classification

	Convolutional neural networks for text classification
	Concept of CNNs

	Experiments
	Experimental setup
	Dataset
	Results
	N-grams and linear SVM
	Graph-of-words and linear SVM
	CNN and GloVe embeddings

	Summary of results

	Conclusion and Future work
	References

