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I. INTRODUCTION

Artificial Neural Networks (ANN) and Deep Learning

have attracted a great deal of attention in recent years,

at the latest since 2012 AlexNet (Krizhevsky, Sutskever,

and Hinton 2012) was the first ANN to win the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC).

It is a very fast moving field with an interesting mix

of academic and industry sponsored research. Many of

the research results are quickly finding their way into

everyday applications.

A lot of the ideas and theories behind ANNs and Deep

Learning are not new and go back to the 1960s. It’s

the major improvements in computational power like in

GPUs as well as the availability of large amounts of

data that made the recent breakthrough of Deep Learning

possible.

As a result of these first breakthroughs, research focused

for some time on problems with respect to these large

amounts of data. Conditional or Discriminative Models

can perform very well e.g. in computer vision, text

and speech recognition, for pattern detection and data

clustering.

In contrast to this, a Generative Model tries to create

new samples. Most use the idea of maximum likelihood

to estimate the probability distribution of the input data

of the training set. Explicit density models can explicitly

represent that probability distribution. Examples are

Boltzmann Machines in different variants, Deep Belief

Networks and Variational Autoencoders (Goodfellow,

Bengio, and Courville 2016, 654ff).

Implicit density models have to find indirect ways to

represent the probability distribution. In general this

means they can produce samples from the distribution,

but not the distribution itself (Goodfellow 2017). A very

promising representative of implicit density models are

Generative Adversarial Networks (GAN).

II. GENERATIVE ADVERSARIAL NETWORKS

The GAN framework was proposed by Ian Goodfellow

and colleagues in May 2014 in a paper of the same

name, »Generative Adversarial Networks« (Goodfellow

et al. 2014). It was presented later that year at NIPS

conference.

Since the publication of »Generative Adversarial Net-

works« until August 2017 more than 160 papers were

published, which not only dealt with GANs but also gave

their own name to their approach. The visualization in

fig. 1 might give an idea of how popular the topic is

right now. This is underlined by statements such as those

by Geoffrey E. Hinton, who calls GANs »one of sort of

biggest ideas in deep learning« and that they »have been

a big breakthrough« (G. Hinton and Ng 2017).

Figure 1. Over 160 papers that named GANs were published until

Aug. 28, 2017 (Hindupur 2017)

A. Basic idea

The basic idea is to use not just a single artificial neural

net, but two nets that train each other. One net, called

a generator, takes noise as input and generates samples

from it. The other one, called a discriminator, takes input
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from a training set as well as from the generator. It then

tries to decide if the input is from the training set and

real or from the generator and fake. This process is like a

competitive game in which on the one hand the generator

learns how fool the discriminator with more and more

realistic synthetic samples and on the other hand the

discriminator gets better and better in distinguishing fake

and real samples. In the long run and if everything goes

well, this leads to a situation where the generator produces

output which resembles the training data, leaving the

discriminator with no other option but to guess blindly.

One often heard metaphor is that of comparing the

generator to a cash counterfeiter, and comparing the

discriminator to the police. As the counterfeiter improves

his technique to produce counterfeit, so does the police

in detecting it. This rat race forces the forger to develop

better and better methods to produce ever more realistic-

looking counterfeits that are increasingly difficult to

distinguish from real money.

Figure 2. The basic idea of the GAN framework (Karpathy et al.

2016)

In principle, GANs are not restricted in the type of data

they generate. However, most examples and research

paper apply them to the creation of images. A main

reason for this is because images are easy to validate by

just looking at them and therefore give good examples

to visualize results in a printed publication.

B. Training process

Some details of the training process as proposed in

the original paper have been rectified several times.

This overview refers to the improvements presented

by Radford, Metz, and Chintala (2015). According to

Goodfellow (2017), most GANs today are based on this

DCGAN architecture (more about DCGAN in sec. III-C

and sec. V-A).

The generator network G takes an n-dimensional vector z

as input. z comes from a known probability distribution

pz , usually this is Gaussian noise. The idea of Radford,

Metz, and Chintala (2015) is to use fractionally-strided

convolutions to upsample z to the output dimensions by

adding zeros between the pixels before convoluting over

them, see fig. 4. G is modelled by putting multiple of

these convolutional layers behind each other until we

reach the desired output size. The example shown in

fig. 3 upsamples to a final size of of 64 × 64 pixels and

a depth of 3 for the color channels red, green and blue.

Figure 3. DCGAN generator using four fractional-strided convolutions

(Radford, Metz, and Chintala 2015)

The discriminator network D takes a sample x and

returns the probability that it is a real image from the

training set with the unknown probability distribution

pdata . For image generation in research, image databases

like ImageNet or one of its subsets, e.g. Caltech-UCSD

Birds 200 or Standford Dogs Dataset are used most of

the time. As they are well known, results can be easily

compared with other methods.

We want to train the discriminator so that it maximizes

D(x) for every x∼pdata and minimizes for every x∼pд .

For this task it uses the normal cross entropy cost

function.

Using game theory, the whole training process can be

interpreted as a zero-sum game as G’s ability to fool D

is balanced by D’s ability to categorize its input into fake

or true. A zero-game can be solved with the Minimax

Theorem by finding the Nash Equilibrium:

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] +

Ez∼pz [log(1 − D(G(z)))]
(1)

The two neural networks are trained using Stochastic

Gradient Descent (SGD). By taking the respective gradi-

ents from eq. 1 they accordingly adjust their parameters

θd and θд . It is also possible to use another variation of

SGD, for example Momentum or ADAM. Every training

iteration has two phases. In phase 1, D is updated for k

steps. In practice most of the time k equals 1. In phase

2 G is updated. Algorithm 1 outlines this process.

If both networks D and G have unlimited resources, they

might reach a Nash equilibrium. That means that D
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Figure 4. Example of fractionally-strided convolution from 3 × 3

input in blue to 5 × 5 output in green (Dumoulin and Visin 2016)

always produces an almost identical output for real as well

as for fake data, i.e. being unable to distinguish between

them. Or from the generator’s perspective, G would

generate samples with the same probability distribution

as the training data, meaning that pд = pdata (Goodfellow

et al. 2014).

Finding the equilibrium corresponds to minimizing the

distance of the probability distribution of pд and pdata .

In the original paper, Jensen-Shannon Divergence was

used for this task. Other GAN variations use different

distance functions (for example WGAN, see sec. III-D).

Algorithm 1 Minibatch stochastic gradient descent

training of generative adversarial nets (Adapted from

Goodfellow et al. 2014)

for number of training iterations do

for k steps do

• Sample minibatch {z(1), . . . ,z(m)} from pд(z).

• Sample minibatch {x (1)
, . . . ,x

(m)} from pdata(x).

• Update D by ascending its stochastic gradient:

∇θd

1

m

m
∑

i=1

[

logD
(

x
(i)
)

+ log
(

1 − D
(

G
(

z
(i)
)))]

.

end for

• Sample minibatch {z(1), . . . ,z(m)} from pд(z).

• Update G by descending its stochastic gradient:

∇θд

1

m

m
∑

i=1

log
(

1 − D
(

G
(

z
(i)
)))

.

end for

III. PROBLEMS AND IMPROVEMENTS

Many deep learning training processes consist of a single

ANN and are trying to find a single global minimum. In

general, this does work well and even when the minimum

is just local, the result are often sufficient.

In GANs, there are two nets trying to minimize their cost.

The goal is not to just to find the respective minima of

these two nets but to achieve an Nash equilibrium between

them both. In practice this setup leads to problems we

do not have with single net architectures.

A. Vanishing gradient

In the very beginning of the training process, G produces

very low quality samples and it is very easy for D to

detect them with a high confidence. D(G(z)) will then

output a value very close to 0 almost always, even if

G(z) makes larger changes. This results in what is called

the Vanishing Gradient Problem: due to the very small

gradients,G cannot improve anymore. A practical solution

to this problem is to change the objective function of G.

Instead of minimizing log(1−D(G(z))), G’s new objective

is to maximize logD(G(z)). Another approach proposed

by Chintala (2016) is to flip the labels from real to fake

and vice versa when training the generator. As it is often

the case, this trick comes from experience and not from

some theoretical insight.

B. Mode collapse problem

Most probability distributions are multi-modal, i.e. they

have multiple probability density peaks. Now it can

happen that G learns to fool D by imitating just a small

subset of those peaks. As D gets better in recognizing

a fake input, G jumps to another peak to fool D again,

neglecting what it learned before about the probability

distribution. And as D gets better this happens again.

As a result, G never learns more than a small part of

the distribution and the GAN never converges. Shown in

fig. 5 is an example of the mode collapse problem, where

it takes about 5000 training iterations of G focusing on

one peak, D adapting to this deception attempt and G

switching to the next peak.

Figure 5. Mode collapse example (Goodfellow 2017)

»Improved Techniques for Training GANs« (Salimans

et al. 2016) tries to overcome this problem with two

methods. Minibatch discrimination gives the discriminator

the possibility to compare the samples in a minibatch.

If their entropy is too low and/or they are too similar,

that might indicate that they are false. Feature matching
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changes the objective function of G, so it tries to recreate

values of an intermediate layer of D, not the end result

of D. It is not clear why this works but they »hope

to develop a more rigorous theoretical understanding in

future work«.

C. Stabilizing training with architectural constrains

In »Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks« Radford,

Metz and Chintala propose a few improvements to

stabilize GANs by applying architectural constrains

(Radford, Metz, and Chintala 2015). This architecture is

called DCGAN. The changes include replacing all pooling

layers with strided convolutions in D and fractional-

strided convolutions in G as well as using ReLU activa-

tion, removing fully connected hidden layers for deeper

architectures and other changes. Especially in regard of

image creation, this architecture became the new standard.

Figure 6. Generated images of bedrooms using a DCGAN (Radford,

Metz, and Chintala 2015)

D. Better training by using Wasserstein distance

A recent approach to improve the training process is

presented by Arjovsky, Chintala, and Bottou (2017)

and is called Wasserstein GAN (WGAN). They replace

the Jensen-Shannon divergence with the Wasserstein or

Earth Mover Distance (EM). As a result, mode collapse

is »drastically reduced«. One »of the most compelling

practical benefits of WGANs is the ability to continuously

estimate the EM distance by training the discriminator

to optimality«. In practice, this means there is no need

to carefully keep a balance between the discriminator

and the generator while training. This makes designing

GANs a lot easier.

This idea was once again improved by Gulrajani et al.

(2017).

IV. DISADVANTAGES AND ADVANTAGES

• As there is no explicit representation of a probability

distribution pdata like in it is not clear how how to

compare and validate results except by inspecting

visual samples.

• It is hard to train a GAN as in practice the objective

of D(G(z)) does not steadily improve but oscillates

around the Nash equilibrium. Although this problem

is addressed e.g. with the WGAN, there is also the

question if a pure equilibrium does exist at all in

general (Arora 2017).

• Sample generation is quite fast, as it only requires

one pass through the model while Boltzmann ma-

chines need to repeatedly apply a Markov chain

operator and PixelRNNs can only generate one pixel

at a time!

• The general impression is that GANs generate

images of higher quality. They are sharper and

contain more details. This is true especially in

contrast to generative models that use mean squared

error, as this results in blurred images.

V. INTERESTING PAPERS

As already mentioned in sec. II, there is no shortage of

publications on the subject of GANs. In the following

is a small and subjective selections of papers I found

interesting and astounding.

A. Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks (Radford,

Metz, and Chintala 2015)

Figure 7. Doing vector math on input vectors representing a specific

visual concept like »man with glasses« (Radford, Metz, and Chintala

2015)

A result of the DCGAN paper that is not mentioned so

far is their evaluation of what the network learnt. On a

trained model, each n-dimensional input vector z maps
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to a specific output, e.g. a face. Averaging three different

input vectors that represented similar visual concept like

»man with glasses«, they could to simple math with those

vectors as demonstrated in fig. 7. Similar to this they were

able to generated smooth transitions between images by

interpolation between a series of points in z.

B. Semantic Image Inpainting with Deep Generative

Models (Yeh et al. 2016)

This paper proposes a solution for filling missing parts

in images using a DCGAN. A very good introduction

into this paper (and GANs in general) is provided by

Amos (2016). Basic idea is the intuition that photo-

realistic images are just samples of a specific probability

distribution. As a GAN can learn to generate samples

given a specific training set e.g. with faces, it can also

learn to fill in missing parts of unknown face images.

Figure 8. Image inpainting results compared with other methods (Yeh

et al. 2016)

C. Beyond Face Rotation: Global and Local Perception

GAN for Photorealistic and Identity Preserving Frontal

View Synthesis (R. Huang et al. 2017)

This paper proposes a GAN architecture called Two-

Pathway Generative Adversarial Network (TPGAN) for

photo-realistic generation of frontal face views from

a face image under a different pose. The architecture

is an example for the increasing complexity of recent

GANs. The generator consists of two pathways. One

pathway processes the global structure, the other uses

four networks to process local facial landmarks: left

and right eyes, nose and mouth. The two pathways run

simultaneously, their results get fused. The discriminator

tries to distinguish between generated and real frontal

views. See fig. 9 for a rather impressive example.

Figure 9. Synthesized frontal face view (left) created from a profile

image (middle). On the right the ground truth frontal face (R. Huang

et al. 2017)

D. StackGAN: Text to Photo-realistic Image Synthesis

with Stacked Generative Adversarial Networks (H. Zhang

et al. 2016)

StackGAN is a text-to-image GAN which can generate

photo-realistic images of a size of up to 256x256px by

interpreting text input. As its title implies, it stacks two

GANs. The Stage-I GAN interprets the text description

to generate a low-resolution image outlining the basic

shapes and colors. The generator in Stage-II samples the

results of the first one and learns to add additional details.

In fig. 11 you see images generated for the input text »A

small yellow bird with a black crown and a short pointed

beak«. In the first row are results of Stage-I, below of

Stage-II.

The results are very good and with great and correct

detail, even when we impute they are curated. The basic

idea to divide a larger goal into smaller subtask - generate

a rough outline first, fill in details later - seems to be

a promising approach to tackle larger problems. There

are clear parallels between the problems solved with

StackGAN and TPGAN. It would be interesting to see

how they perform on solving the other task.

VI. CURRENT RESEARCH TOPICS

By and large, research is divided in theoretical and

practical in research.

On the practical side, people try to improve on existing

results, e.g. generate high quality images larger than
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Figure 10. The architecture of StackGAN gets quite complicated (H.

Zhang et al. 2016)

256×256px. There are also approaches to apply GANs on

sequencing media like sound and videos. Some interesting

research takes place in the field of medicine, e.g. for

anomaly detection (Schlegl et al. 2017) or image synthesis

to minimize the use of (radiation exposing) CT scans

(Nie et al. 2016).

Theoretical research is focused on questions how things

work. Large parts of Deep Learning in general are still

not well understood. A lot of quite functioning improve-

ments and best practices regarding hyperparameters and

architecture design come from experience and lack a

solid theoretical justification. They bear the danger of

becoming blackboxes and being applied »just because«.

Figure 11. StackGAN results trained on CUB dataset, synthesised

from the input text »A small yellow bird with a black crown and a

short pointed beak«. (H. Zhang et al. 2016)

VII. CONCLUSION AND OUTLOOK

In this text I outlined a quick and short overview on the

topic of »Generative Adversarial Networks«, explaining

the original implementation by Goodfellow et al. (2014)

as well as some improvements and further developments

on the topic since its publication in 2014. Also provided

is some insight into a few of the current problems and

solution approaches as well as interesting research results

and examples.

One of the reasons I’ve been working on this topic was

to give me a first introduction into the wide field of

Artificial Neural Networks and Deep Learning, which it

did provide. Although Generative Adversarial Networks

are very interesting, I’m not sure at this point in time

whether I will continue to work on exactly this area. But I

will continue to work on the topic of Deep Learning and

gain some practical experience in the upcoming semester.
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