
1

Natural Language Processing and Deep Learning
Matthias Nitsche

matthias.nitsche@haw-hamburg.de
Hamburg University of Applied Sciences, Department of Computer Science

Berliner Tor 7
20099 Hamburg, Germany

Abstract—Natural Language Processing is the application of
computational techniques to the analysis and synthesis of natural
language and speech. Deep learning is a class of machine learning
algorithms that learn to represent (hierarchical) features through
multiple layers of non-linear activation. Various architectures
exist to represent language in manifolds of hidden layers with
convolutional neural networks (CNN), recurrent neural networks
(RNN) and attentional feedforward neural networks (ANN). In
this paper we will briefly glance over the basics and provide a
small road map up to advanced concepts. Furthermore, state of
the art models in deep learning and their relevance to NLP are
presented.

Keywords—Natural Language Processing, Deep Learning, Ma-
chine Learning, Neural Networks

I. INTRODUCTION

The goal of every natural language processing application
is to capture implicit or explicit meaning or properties from
text. A lot of these applications such as text tokenization,
named entity recognition or sentiment analysis have gotten to
a very high quality standard although there is always room for
improvements. State of the art systems for text understanding
are tackled with a variety of different approaches. In this paper
we would like to compare and present several neural network
types. They include

1) Recurrent neural networks (RNN)

RNNs have become the baseline models for text un-
derstanding and are often used with sequential data.
Instead of back propagation, an enhanced more general-
ized version back propagation over time is applied. Due
the vanishing gradient problem Long short-term memory
networks (LSTM) by [Hochreiter and Schmidhuber, 1997]
in combination with attention mechanisms are favored.

2) Convolutional neural networks (CNN)

Up to now CNNs were largely used for vision and audio
tasks. This has changed and there are character, word and
sentence level CNN architectures for text understanding,
beating state of art LSTMs with fewer training time and
a smaller parameter space.

3) Memory/Attention networks

Attention is commonly known as a memory mechanism
used to additionally shift attention of ANNs to specific
parts of a sequence. Recently [Kaiser et al., 2017] pub-
lished the Transformer, beating state of the art CNN
and LSTM architectures on text understanding tasks. The

Transformer makes use of a mechanism called multi-head
attention and is a memory neural network.

Neural networks are used in several different large scale
language processing domains ranging from neural machine
translations, question answering, sentiment analysis to neural
programming. Inputs are sentences, questions or commonly
called queries, stated in natural language. Inputs are mapped
to a suitable feature space that represents language in relative
counts often leveraging contextual information of a given
word. Therefore most text understanding tasks concern them
self with sentences and paragraphs. With neural networks the
sequences are often encoded with an encoder network and
must be decoded to the specific task on a decoder network.
Encoder-decoder networks are two standalone neural networks
that represent end-to-end learning approaches.

II. BASICS

In this section we will glance over the major concepts of
deep learning and natural language processing. Deep learning
refers to a class of algorithms that work with multiple layers
of non-linear activation functions. In this paper we will focus
on the most well known deep learning algorithms namely
the artificial neural network (ANN). The task behind natural
language processing is mostly to infer properties and meaning
from text that is explicitly and implicitly stated. Text is almost
always a subject to interpretation and there are often multiple
meanings to the same text. This basic chapter heavily relies
on the deep learning book by [Goodfellow et al., 2016].

Fig. 1. Feed forward neural network

ANNs typical architectures, as seen in figure 1, consist of
an input layer, one to many hidden layers, an output layer

2

and a specified cost function. In theory it should be sufficient
to have more than two layers before a neural network is
considered deep. Adding more hidden units to each layer
makes a neural network broader, adding more hidden layers
makes it deeper. Each hidden unit of a layer is connected
to all units of its foregoing layer and the upcoming one.
Each single unit is composed of one to many non-linear
activation functions such as Thanh, ReLU or sigmoid. Each
of these functions have different properties depending on
the task at hand. The most popular non-linear activation
function is the Rectified Linear Unit (ReLU), which yields
the maximum or zero of an input max(0, input). Just like
in the nervous system of a human, a neuron corresponds to
a hidden unit and might be activated due to its incoming
potential which in turn releases a potential to the next
connected neuron. Predicting the path of a given input for
a neural network up to the output layer is currently impossible.

The output layer is directly connected to a cost function
that evaluates the outcome with a golden standard called label.
Building up the potential through a neural network up to
the cost function is called forward propagation. In order to
actually learn from the forward propagation we have to back
propagate what is referred to as error with a procedure called
back propagation. Back propagation is an algorithm that makes
use of a procedure called gradient descent that is responsible
for propagation the error of the cost function with respect to
each layers gradient, back to the input layer. Mathematically
speaking each layer is associated with a matrix of weights W ,
data input x and a bias b, that governs the potential activation
threshold. Back propagation is essentially an update of the
Jacobian weight matrices with respect to the error gradients of
the foregoing layer and the total error calculated by the cost
function ŷ.

A. Input layer

The input represents the feature space of a data point.
If sentences are classified for sentiment, each word is a
feature. Sentences are structural constructs that are governed
by a grammar. From these grammars statistical conclusions
can be drawn such as cooccuring words. A sentence alone
cannot be easily classified. Thus there must be several hundred
of million sentences for a good performance. Language is
morphologically rich and more words are added each day,
while grammar typically stays constant. As words cannot be
interpreted by computers they are transformed into embedded
vectors, mapping words into a numerical feature space. The
feature space can range from one-hot encoding, coocurrence
matrices to semantic indexing models or topic models with
Latent Semantic Indexing [Deerwester et al., 1990] or La-
tent Dirichlet Allocation [Blei et al., 2003]. State of the
art approaches however use neural language models such as
word2vec [Mikolov et al., 2013], GloVe [Pennington et al.,
2014] or seq2seq [Sutskever et al., 2014] mapping words
to a hidden feature vector of dimensionality n taking word
windows of size k.

B. Hidden layer
Hidden layers are the parts of ANNs that map the input

to some output. On the way depending on the type of neural
network in use, each hidden layer learns aspects of the input
data. CNN features are hierarchically ordered, starting from
dense input data, diminishing the size of layers at each step.
Each hidden layer is associated with a activation function
that must be differentiable. This stems from the fact that
during backpropagation the weights connecting the hidden
layers must be updated with respect to the error gradient of
the cost function. Secondly it is said that the popular activation
functions such as tanh, ReLU or sigmoid are non-linear. This
stems from the fact hat systems involving these functions
cannot be written as a linear combination of the unknown
variables or functions. In machine learning the objective goal
is often a linear approximation of the form W · x+ b, where
activation functions render the system of equations non-linear.
There is no definitive answer which function has the best
properties. As such using a non-linear activation function is
subject to experimentation for the model and dataset in use.

C. Output layer
The output layer needs to prepare the potential that was

activated within the network to scale and normalize it to a
particular cost function. In a classification task the output is
often a multinouli distribution inferred by a softmax. [Good-
fellow et al., 2016] There are a few standardized outputs given
the task. This is often a step that is highly dependent of the
task and cannot be automatically inferred by some parameters
alone (such as hidden layers). The output layers dimensions
must match those that the cost function consumes for instance
multi-class classification needs k output channels.

D. Cost function
Cost functions are the objective goals of a network. What-

ever forward and back propagation calculate and update is
entirely related to the loss of the cost function. The objective
can be stated either as maximizing the likelihood or mini-
mizing a loss. For multi-class classification we typically use
the softmax. The softmax normalizes all the incoming edges
summing to 1, calculating the partial probabilities that some
node is of class k.

P (y = j | x) = exp(xT · wj)∑K
k=1 exp(x

T · wk)
(1)

Representing text in the form of probabilities in a context
window, taking k words before and after the current head word
creates a semantic vector space with relative dependencies.
Models such as word2vec use an unsupervised window based
approach. The context of a given word w is chosen with a
window k such that wi−k, . . . , wi, . . . wi+k is satisfied. This
objective of a window is generally called skip-gram. The
objective cost function then is

P (wO | wI) =
exp(v′TwO

· vwI
)∑W

w=1 exp(v
′T
w · vw)

(2)

3

Here W is the whole vocabulary and v′ and v are the input
and output vector representations. The above equation can be
read as the probability that a word wO is likely given word
wI . The summation term in the denominator can be intractable
when W gets large. Thus there are sampling based approaches
such as the hierarchical softmax or noise contrastive estimation
(NCE) that improve speed by a large margin. Strictly speaking
the later does not satisfy a full language model as they
approximate the true joint probabilities with random sampling
and negative feedback procedures. [Mikolov et al., 2013]

E. Forward propagation
Forward propagation approximates a given task with its

input signal. That means the neural network tries to infer a
set of parameters that it assumes to be correct given the input.
The forward pass then becomes

h(2) = f(W (1) · x+ b(1))

h(3) = f(W (2) · h(2) + b(2))

ŷ =
1

n
·
n∑
i=1

| yi − h(3)i |
2

(3)

where x is the input and W the weight matrix between x
and the first hidden layer activation h(2). h(2) is then feed as
output to the third hidden layer h(3). The activation functions
f must be differentiable and are often non-linear, like tanh,
ReLU or sigmod.

h(2) = f(W (1) · x+ b(1)) (4)

Normally, weights are initialized with a uniform distribution
or any suitable prior distribution. ŷ can be calculated using any
cost function that is able to approximate the given task well.

F. Back propagation
Back propagation updates the weight parameters W with

the error gradients ∂
∂W ER of the loss ŷ after the forward

pass. In order to approximate the error we need to compute all
first derivatives (Jacobians) of the weights with respect to the
activation f(. . .) and the error gradients. This can be achieved
efficiently with automatic differentiation and graph based back
propagation algorithms computing the Jacobians and memo-
rizing results where needed. As parameters can go into the
billions there needs to be a trade off between computing the
derivatives and caching them. Fortunately most state of the art
numerical computation libraries such as Tensorflow or Cafe
support this. Back propagation works in several steps.

ŷ =
1

n
·
n∑
i=1

| yi − h(3)i |
2

∂

∂W (2)
ER = ŷ · h(2) + λ ·W (2)

δ(2) = ((W (2))T · ŷ) ◦ h′2
∂

∂W (1)
ER = δ(2) · h(1) + λ ·W (1)

δ(1) = ((W (1))T · δ(1)) ◦ h′1

(5)

First the loss is computed between output and the labels.
After this the weights of layer l are updated with respect
to the error gradient, often referred to as delta rule. The
error for this layer is computed and propagated to the prior
layer with respect to the error gradient. This repeats until we
are at the input layer. h′l is the derivative of the activation
function. λ is a regularization parameter controlling the size
of the weights. Back propagation requires that the non-linear
activation functions must be differentiable. The weights are
then updated using gradient descent with respect to the total
error of the cost function.

Wn+1 =Wn − η
∂E

∂Wn
(6)

Essentially gradient descent is back propagation with an
additional parameter η , controlling how large the update steps
of the gradients will be. Note that in this instance the objective
is to minimize the weights W by the rate of change of the
gradients.

III. STATISTICAL LEARNING

In statistical learning theory we try to find some notion
of truth in highly uncertain environments, explaining effects
and causes by measures of information gain called entropy.
To explore this field we would like to find some function F
that maximizes our predictions given explanatory variables x
and predictor variables y sampled from a distribution p(x; y)
such that F (x, y)converges to the true distribution as it grows
to infinity. Entropy is best described by the KullbackLeibler
divergence DKL measuring the information gain between two
distributions.

DKL(P || Q) =
∑
i

P (i) · logP (i)
Q(i)

(7)

DKL can be read as, the information gain when the proba-
bility distribution of Q is replaced with the distribution P . It
is thus the expected (average value) of the difference between
probability P and Q multiplied with the expectation of P .
The expected value gives you the average outcome of a
given distribution with probabilities p1, · · · , pk and the values
X = x1, · · · , xk

E[X] = x1p1 + x2p2 + · · ·+ xkpk (8)

As x goes to infinity the expected value becomes the
average value of the true underlying distribution. This notion
of expected values helps best in describing the theoretical or
underlying limits of what can be expected of a neural network.
The DKL can be approximated by maximizing a likelihood
function. The maximum likelihood estimation (MLE) is one
of the most used likelihood estimators (more commonly the
negative log likelihood). In theory we try to find a set of
parameters for a given distribution that is maximized compared
to a set of other parameters. The maximum a posteriori
estimation (MAP) is the generalization where a uniform prior
is assumed.

4

ˆ̀=
1

n

n∏
i=1

ln f(xi | θ),

MLE(θ̂) = argmax
θ∈

ˆ̀(θ;x1, . . . , xn)

(9)

A. Training error vs Generalization error
In machine learning there are two losses that are of particular

interest. The first is called training error and refers to the error
margin that is objectively maximized/minimized during train-
ing with your training data. The second is the generalization
error that quantifies how well your trained classifier works on
different data. The underlying reason why there is a disconnect
between both measurements is that we always assume, that we
fit our data x ∼ p(x) to a model F such that y is produced.

F : (x ∈ R)→ (y ∈ R) (10)

Now two problems arise. First we assume a connection
between x and y which must not be the case. Second we
assume that x is drawn i.i.d. from some distribution p(x) and
F is a predictor of p(x) which must also not be the case.
Assuming however that F is able to fit y with x our goal is
to minimize the training error. Let us assume that we have
a trained model F , how can we make sure that it fits new
unseen data z p(z) well? If we fit z with a trained model F
we try to minimize the generalization error.

Now there are two concepts often convoluted with training
and generalization that is overfitting and underfitting. Over-
fitting means that our model was narrowly trained on the
training data with too many parameters and thus cannot fit data
outside the training set. This goes hand in hand with a high
generalization error. Underfitting means that the model did not
capture the details of the dataset. This commonly means that
the training error is much higher.

B. Dropout
With dropout it is possible to prevent overfitting automati-

cally. Dropout means that hidden units of a neural networks are
dropped at random during training with a certain percentage.
By default most neural networks are trained with a dropout
parameter of 0.5, which amounts to 50% less units used during
training. Mathematically dropout is the multiplication of each
layer with a Bernoulli matrix

b(l) ∼ Bernoulli(p)
h̃(l) = b(l) · h(l)

h(l+1) = f(W (l+1) · h̃(l) + b(l+1))

(11)

[Srivastava et al., 2014] described dropout as producing a
“thinned” network containing the hidden units that survived.
The problem is that neural networks learn weights that are
higher than the actual unobserved test data. The intuition is if
a path through the network was established, it is much more
likely to go through this particular path again. After a while

the training data is completely fitted in certain paths through
the network but not through others. If instead each iteration
drops 50% of hidden units, they are forced to connect to other
hidden units because the path with the highest action potential
might not exist in this iteration.

IV. RECURRENT NEURAL NETWORKS

Recurrent neural networks and specifically LSTMs are
sequential neural networks. The forward propagation and
back propagation are now procedures of sequence, commonly
referred to as back propagation over time. To achieve this we
need to propagate the calculations from the forward pass to
each successive input, before back propagation updates all
the gradients at once. Figure 2 shows some kind of unrolled
version of a RNN.

Fig. 2. Unrolled RNN [Olah, 2015]

Where x0 . . . xt are all sequential inputs at different steps t
moving the calculation of each A to the next one. Mathemati-
cally speaking we can enhance the equations for feed forward
networks by

ht−1 =W (ht−2) · f(ht−2) +W (ht−1) · xt−1
ŷt−1 =W (St−1) · f(ht−1)
ht =W (ht−1) · f(ht−1) +W (h) · xt
ŷ =W (S) · f(ht)

(12)

where x1, x2, . . . xn is a sequence of word vectors embedded
in a corpus. We can see how each hidden layer h passes on its
context to the next forward pass of the next word. ŷt is the loss
of a word vector xt at some point t given all words before.
To understand this a bit better we need to look at language
models designed for sequential word formations.

P (w1, . . . , wn) =

n∏
i=1

P (wi | w1, . . . wi−1) (13)

Sequential language models take a word wi and compute
the probability with the joint probabilities of the prior words
w1, . . . wi−1. To compute such language models we normally
take the softmax over word probabilities [Bengio et al., 2003].
With this we are able to tell what words are the most probable
ones given the context window of all prior words.

A. Long short-term memory (LSTM)
While RNNs are useful tools for sequential computations,

they suffer from a drawback identified by [Hochreiter et al.,

5

2001], namely the vanishing gradient problem. It occurs when
a longer sequence cannot account for earlier timesteps as the
gradients get inherently small moving to zero. That means
words at the beginning of a long sequence are not accounted
for. To tackle this problem we typically use Long short-term
memory networks (LSTM) [Hochreiter and Schmidhuber,
1997]. The graphical view of an LSTM layer given by figure
3 is a bit more intuitive.

Fig. 3. LSTM [Olah, 2015]

A represents a hidden layer at timestep t. The hidden layers
ht−1 . . . ht each consume a hidden layer ht and memory ct
producing ht+1 and ct+1 for the next incoming word (hidden
layer at step t + 1). More formally a LSTM consists of a
gating system that applies certain filters and rules to determine
usefulness of the incoming memory and the current input word.

i(t) = σ(W (i) · x(t) + U (i) · h(t−1))
f (t) = σ(W (f) · x(t) + U (f) · h(t−1))
o(t) = σ(W (o) · x(t) + U (o) · h(t−1))
c̃(t) = tanh(W (c) · x(t) + U (c) · h(t−1))
c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t)

h(t) = o(t) ◦ tanh(c(t))

(14)

Intuitively one can easily connect certain ideas with each of
the formula resulting in the final judgment h(t). The hidden
layer of the step before h(t−1) in combination with the current
word xt generates a new memory c̃(t) which is the function
of the input gate i(t). The forget gate f (t) is there to asses
whether the memory is useful and what parts can be dropped
from it. The next step calculates what can be forgotten and
what parts of the current input is used for the new memory
c(t). The final hidden gate is there to filter out the unnecessary
parts of c(t) making a final judgment resulting in the output
for the next hidden layer.

B. Neural machine translations
Google’s neural machine translation system by [Wu et al.,

2016] is a state of the art example for LSTMs at scale seen in
figure 4. For this problem a deep LSTM neural network with
an 8-layer encoder (source language) and a 8-layer decoder
system (target language) was used. Each hidden layer got its
own GPU and is connected in both directions from first to last
and last to first word, improving results to some extend.

Fig. 4. Google Neural Machine Translations [Wu et al., 2016]

The language model for machine translations is

N∏
i=1

P (yi | y0, y1, . . . , yi−1;x1, x2, . . . , xM) (15)

which reads as the probability P of a word yi of the source
language given its prior joint probability of the source sentence
y0, y1, . . . , yi−1 and the target sentence x1, x2, . . . , xM . The
probabilities, which source word matches the most likely target
word can be decoded with a softmax. Additionally to make
better use of the source language an attention mechanism is
used to aid the decoder focusing on more relevant aspects of
the given sentence. Secondly residual connections were used
within the decoder and encoder to make sure that outputs of
earlier hidden layers are still present in later ones. Each hidden
layer was trained with its own GPU, making heavy use of
parallelism to speed up training.

V. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural network architectures are on the rise
for natural language processing and deep learning applications.
There are currently two approaches training a CNN with text.
The first is based on character input. This allows to completely
dismiss any kind of structural language models and just train
on character statistics. These approaches resent best with the
pixel based approach in vision, where it is possible to learn
higher hierarchical features from local densities. Interested
readers in character level CNN text classification might refer
to [Zhang and LeCun, 2015]. The second approach is rather
new and successfully connects the idea of sequential language
modeling with CNNs, which was up to this point entirely done
with RNNs.

A. Convolutional neural networks
CNN architectures typically start with a convolution layer

that map low level features with a sliding window to a more
abstract feature space. The sliding window is defined with a
padding and stride sizes. Padding enables the convolution to
ignore certain features and makes it possible to set barriers.
The stride defines how the sliding window computes the
features. After the convolutional layer typically follows a

6

non-linear activation function and pooling layer. The pooling
averages or maximizes the surrounding context given the prior
action potential of the convolutions. This essentially drops
further dimensions keeping higher level structures.
For character embedded neural networks the bag of words
assumption holds. Assuming words to be independently and
identically distributed is a drastic and wrong oversimplifica-
tion. Therefore using RNNs would be the obvious choice.
However while an oversimplification, it works surprisingly
well on text. Additionally CNNs can be trained with fewer
parameters and in parallel which makes them more tractable
for real world application. [Zhang and LeCun, 2015]

B. Sequential convolutional neural networks
At first glance the idea of modeling sequences in a CNN

is not intuitive. CNNs map features i.i.d. from its sample and
project it via mechanisms called convolutions and pooling
to extract hierarchically connected kernels. However as with
vision taking average values around a given data point e.g.
word or character yields location dependent characters. These
windows have been applied to models such as word2vec
before and work well in CNNs too. The key is that in
lower input regions, words are closer to each other. Moving
up the hierarchical CNN layers the feature space gets
smaller and therefore a lot of variance from lower regions
is narrowed to structural connections between words. This
is necessary to work with the amount of information available.

Recent advances by [Gehring et al., 2017] have shown that
CNNs can be used for sequential language models. The major
point is that convolutions and gated recurrent units are mixed
with an attention mechanism. The key however is to give
the CNN a notion of position. The sentence embeddings are
concatenated with a positional encoding that invalidates the
i.i.d. assumption.

In figure 5 we see the ConvS2S model by [Gehring et al.,
2017] that outperforms RNN based approaches on the machine
translation task. The embedding input is a sentence of a fixed
word size m and in a latent encoded d dimensional space of
the documents that occur in the training set. The latent space
is then encoded with its position in the whole corpus relative
to the sentence. For machine translations we typically use an
encoder for the source language and decoder for the target
language. When both training samples in English and German
are embedded they go through a couple of convolution and
pooling layers. Each layer is interchangeably called a block l.
Adding more blocks encodes more words. Each block has a
fixed word window parameter k which adds the possibility
to increase the sequence length by k times the number of
convolutional blocks.

hli = f(W l[hl−1i−k/2, . . . , h
l−1
i+k/2] + blw) + hl−1i

p(yi+1 | y1, . . . , yi, x) = softmax(Wo · hLi + bo)
(16)

Afterwards gated recurrent units f (GRUs) decide on the
relevant content. The dot product of the source and target
language represents the hidden feature space for the targets

Fig. 5. CNN Sequence to Sequence Learning [Gehring et al., 2017]

language most probable word. This mechanism, called atten-
tion, maps the most likely words given a language model to
a fix sized vector embedding. This is done with a softmax.
Moreover multi-step attention is employed where each layer
of the decoder stack is attended to separatly in combination
with the output of the encoder networks. This is described as
a key-value memory network depicted in [Miller et al., 2016].
Additionally, residual connections are employed due to the
very deep architecture and loss of information. This helps to
not forget earlier trained words of a sequence. The dimensions
in the end match up due to the fact that outputs at each layer
are padded by the input size of the encoder and decoder.

C. Results
The results can be drawn from table I. The ConvS2S yields

state of the art 41.29 BLEU on the EN-FR translation task,
yielding the highest thus far. It gets second in comparison to
the Transformer model on EN-DE with 26.36 BLEU. At the
time the model came out, the GNMT LSTM was the baseline
model, which was surpassed by [Vaswani et al., 2017] with
the Transformer model.

VI. ATTENTIONAL NEURAL NETWORK

Attention as described in [Bahdanau et al., 2014] is a
mechanism of connecting hidden layers with a sense of
location. Mathematically speaking we compute a dot product
over all the words in a sequence applying a softmax with
a resulting probability distribution telling us what parts of
a sequence is useful. Thus, with attention it is possible to
attend to the more relevant parts of longer sequences. This is
a problem, due to the vanishing gradient of longer sequences,
in particular for RNNs.

7

Attention can be understood looking at humans. If a human
focuses on a sentence in a text, there will be highlighted words
that stand out. These words play a role on how we perceive
the content and other words not so much. Attention is the
attempt to bring this kind of reasoning to neural networks by
combining the hidden layers with a sense of location with
respect to the current sequence.

It was still a big surprise when [Vaswani et al., 2017]
announced their Transformer model heavily relying on a mech-
anism called multi-head attention. Shortly after, a generalized
version towards deep learning and multi modal learning for
different data sources and domains was described [Kaiser et al.,
2017]. The architecture of the Transformer model can be seen
in figure 6.

Fig. 6. Attention is all you need [Vaswani et al., 2017]

Again, the inputs are sentences mapped to a neural vector
embedding. The position of each word in a sentence is
currently not encoded and unlike RNNs with recurrence or
CNNs with convolutions there is no information about it. The
input embeddings are therefore combined with a positional
embedding that can be produced in different ways and having
the same dimensions as the input sequences.

The output layers of the encoder and decoder are fully-
connected feed forward networks. The encoder maps the input
x1, . . . , xn to an output z1, . . . , zn which is then consumed
by a decoder multi-head attention mechanism producing the
probabilities y1, . . . yn with a per word softmax probability
distribution. Additionally residual connections are used within
the self attention mechanism. Now two questions arise, first
how does the multi-head attention mechanism work and
how does the decoder combine the encoder output with the
decoder input?

Attention can be seen as a function, mapping a query and a
key-value pair to output vectors. By using the query and key
of each value we focus the output on the part of the value that
matters most.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (17)

The keys, queries and values are linear projections of the
input embeddings wit size q+k+v. For each word in a sentence
we then split a word into 3 components to produce q, kandv.
Normally this is only done once. Multi-head attention goes
one step further by doing several of these attentions in parallel
concatenating the results. [Vaswani et al., 2017] have found
that combining several attentions with a current head word,
attends to different representations of the same query. Multi-
head attention then becomes

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i)

(18)

In addition several regularization techniques have been
employed, like residual dropout, attention dropout and label
smoothing.

A. Results
The results of all the models can be seen in table I. The

scoring is in BLEU, a measure for cooccuring bigrams between
the predicted and correct position of the target sentence. The
higher the BLEU score the better the outcome.

TABLE I. WMT MACHINE TRANSLATIONS

Models BLEU
EN-DE EN-FR

GNMT + RL 24.6 39.92
ConvS2S (BPE 40K) 25.16 40.46
Tranformer (base) 27.3 38.1
GNMT (Word pieces) + RL 26.3 41.16
ConvS2S (Ensemble) 26.36 41.29
Tranformer (big) 28.4 41.0

The Transformer beats the ConvS2S with a 28.4 BLEU
score on the EN-DE translation task. The ConvS2s on the
other hand beats the Transformer on the EN-FR translation
task with 41.29 BLEU. The state of the art GNMT LSTM
model still beats the Transformer on the EN-FR translation
task with a 41.16 BLEU score. The ensemble methods are
those with the best results over several different training runs.
The Transformer base model was trained on fewer data than
the big model validating the theory that more data yields better
results.

VII. CONCLUSION

In this text we provide a look at the changing landscape
of natural language processing in combination with deep
learning. Almost all architectures use encoder-decoder
networks connecting two networks with an attention

8

mechanism. Current methodology suggests that convolutional
neural networks and a completely new class of attentional
neural networks are on the rise. This is attributed to the
training of fewer parameters and architectures that can be
parallelized. Moreover, the accuracy of CNNs and attentional
networks is higher than their RNN counterparts. However,
RNNs/LSTMs are still considered baseline due to their
efficiency of capturing sequential information about text. As
new architectures and insights on the parameter space become
available, there will be updates on sequential networks as
well. Part of why CNNs and attentional networks work in
the first place is their explicit positional encoding and the
ability to memorize important aspects of inputs with attention
mechanisms. LSTMs can be trained in a similar fashion but
often at a much higher training cost using more complex
architectures.

Apart from the standard neural network architectures for
text we have also glanced over some aspects of statistical
learning theory. Insights from this realm are not to be
dismissed as they provide valuable input on evaluating
and interpreting ANNs. A lot of papers solely focus on
new architectures and improvement of accuracy. Why new
architectures perform better is often disregarded. While it is
true that higher accuracy is an objective that can be easily
compared, there are few explanations on why they work.
Deep learning still is a very immature research area with a
lot of questions that remain to be answered. That is partially
faulted to the fast development cycles and deep learning
researchers that do not understand NLP well enough.

Lastly we have shown useful applications of deep learning in
the real world. In particular machine translation systems have
gotten a lot better by the standard BLEU scores. Leading are
Google Brain attention models and Facebook FAIR sequential
convolutional networks. Training these state of the art models
is trivial with a laptop CPU when the dataset is relatively small.
State of the art results on the other hand can only be achieved
with larger data sets and more parameters. Thus it is inevitable
to use GPU clusters, that outperform CPUs by a great margin.
Software libraries such as Tensorflow, Theano of Caffe are
designed to work with GPUs out of the box. This is not true
for GPU clusters, as they need dedicated integration to work
well.

VIII. PROJECT OUTLOOK

In this section I would like to explain my general project
outlook for the upcoming semester. The process should be
defined by experiments following the Knowledge Discovery
in Databases (KDD).

An experiment defines a dataset and therefore a domain
(e.g. text, vision), a hypothesis that we would like to explain
and a model that, hopefully, explains the hypothesis. The
model is evaluated by standardized scoring functions and
compared to the baseline models in that domain. Additionally
if possible the GPU clusters from the HAW Hamburg can be
leveraged. Before conducting experiments on larger data sets

and more parameters the model should hint some indication
that it works on smaller baseline data sets.

During the first project phase I would like to explore how
to create different models solving problems in the domain
of text understanding. This includes working on tasks like
question answering, neural machine translations, abstractive
summarization or neural programmers. Furthermore I believe
that having a robust understanding of statistical learning
theory to understand neural networks is inevitable. Neural
networks yield great results on domains that are inherently
fuzzy at the cost of a black box procedure. On the other hand
classical NLP systems are well understood and algorithms
work as expected. They do not yield more than is possible or
proven. But what does a neural network learn? A hierarchical
representation of a task?

Ideally, such questions and working through some problem
sets result in a specialization that converges to my Master
thesis.

9

REFERENCES

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014).
Neural machine translation by jointly learning to align and translate.
CoRR, abs/1409.0473.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C.
(2003). A neural probabilistic language model. J. Mach. Learn. Res.,
3:1137–1155.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
Dirichlet Allocation. J. Mach. Learn. Res., 3(4-5):993–1022.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., and Harshman, R. (1990). Indexing by latent semantic
analysis. In JOURNAL OF THE AMERICAN SOCIETY FOR INFORMA-
TION SCIENCE, volume 41, pages 391–407.

[Gehring et al., 2017] Gehring, J., Auli, M., Grangier, D., Yarats, D., and
Dauphin, Y. N. (2017). Convolutional sequence to sequence learning.
CoRR, abs/1705.03122.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A.
(2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

[Hochreiter et al., 2001] Hochreiter, S., Bengio, Y., Frasconi, P., and
Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J.
(1997). Long short-term memory. Neural Comput., 9(8):1735–1780.

[Kaiser et al., 2017] Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A.,
Parmar, N., Jones, L., and Uszkoreit, J. (2017). One model to learn them
all. CoRR, abs/1706.05137.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and
Dean, J. (2013). Distributed representations of words and phrases and their
compositionality. CoRR, abs/1310.4546.

[Miller et al., 2016] Miller, A. H., Fisch, A., Dodge, J., Karimi, A., Bordes,
A., and Weston, J. (2016). Key-value memory networks for directly
reading documents. CoRR, abs/1606.03126.

[Olah, 2015] Olah, C. (2015). Understanding lstm networks. GITHUB blog,
posted on August, 27:2015.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D.
(2014). Glove: Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A.,
Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to sequence learning with neural networks. CoRR, abs/1409.3215.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention
is all you need. CoRR, abs/1706.03762.

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.,
Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo,
T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C.,
Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M.,
and Dean, J. (2016). Google’s neural machine translation system: Bridging
the gap between human and machine translation. CoRR, abs/1609.08144.

[Zhang and LeCun, 2015] Zhang, X. and LeCun, Y. (2015). Text under-
standing from scratch. cite arxiv:1502.01710Comment: This technical
report is superseded by a paper entitled ”Character-level Convolutional
Networks for Text Classification”, arXiv:1509.01626. It has considerably
more experimental results and a rewritten introduction.

