
An Introduction to Serverless Computing
Christian Bargmann

christian.bargmann@haw-hamburg.de
Hamburg University of Applied Sciences

Hamburg, Germany

ABSTRACT
Initially launched as an isolated solution by Amazon in 2014
and today known as AWS Lambda [1], the Serverless para-
digm is now supported by all major cloud providers.Whether
AWS, Google, Microsoft or IBM, the idea is always the same.
Serverless Computing allows developers to run applications
and services in the cloud without having to worry about
server provisioning, scaling and management. The products
that are often provided as "Function-as-a-Service" (FaaS) are
short-lived runtime environments that are dynamically as-
signed and scaled by the provider. This work is intended to
provide an introduction to Serverless Computing. To begin
with, terms are explained in this context. Then Serverless ar-
chitectures and designs are described and different scenarios
for Serverless Computing are presented. Thereafter different
challenges and opportunities of Serverless Computing are
discussed.

KEYWORDS
Serverless Computing, FaaS, Cloud Computing, Software Ar-
chitecture

1 SERVERLESS COMPUTING
Serverless Computing is a cloud computing paradigm where
the cloud provider provides a runtime environment for ex-
ecuting server-side logic. This server-side logic is imple-
mented by short-lived, stateless functions called Serverless
functions. The execution environment for these functions is
called Function-as-a-Service. Serverless Computing is based
on the idea of event-driven application architecture. This
application architecture originates from the current trend
of architectures consisting of containers and microservices
in cloud environments. As a result, functions are executed
in a Serverless application in response to the triggering of
certain events [4]. When a Serverless function is triggered,
the cloud provider dynamically allocates the computing ca-
pacity required to execute the function. After the execution
is completed, the computing capacities are released again.
Unlike the original Cloud Computing offerings, Serverless
Computing does not require the reservation of computing

Grundseminar M.Sc., February 28, 2019, Hamburg, Germany
2019.

capacity in advance. Previous cloud computing offerings re-
quired this, often resulting in problems due to misjudgement
of server utilization. Reserving too much computing capac-
ity resulted in high costs for unused resources. If, on the
other hand, the server utilization was underestimated and
too little computing capacity was reserved, high response
times resulted [10] [26].
As the name suggests, Serverless Computing does not

directly use servers. The term is often criticized because
although the word Serverless suggests the absence of servers,
they are still in use. In the form of a physical host or virtual
machine, however, they work in the background to execute
program code [24]. They are hidden by an abstraction layer
from the user of a Serverless platform. If Serverless is nothing
more than another abstraction layer on existing resources
or platforms, one can quickly come to the conclusion that
Serverless is nothing more than Platform as a Service (PaaS).
This is not wrong, because Serverless in the end is based on
a platform managed by the cloud provider and offered as a
service. But Serverless is to be seen as a logical evolution of
PaaS and thus a special form of this environment.

Figure 1: Representation of resources that fall within
the area of responsibility of Serverless Computing. [5]

There are two main differences between classic PaaS and
Serverless. First, in a Serverless world, the artifacts and re-
sources that are deployed are much smaller. For example, not
applications or containers are deployed anymore but only in-
dividual resources the size of a single function. On the other
hand, with a PaaS, the developer still has to take care of
availability and scaling himself. He must configure, monitor
and adapt them. With Serverless, this happens implicitly by
the amount of requests. Over- and under-provisioning of the
environment is therefore no longer a danger, as only those
resources are allocated that are really needed. The billing



Grundseminar M.Sc., February 28, 2019, Hamburg, Germany Christian Bargmann

model for Serverless Computing is also adapted to this. Only
what has actually been used is paid for and idle times of a
system is not billed [7].
From a developer’s point of view, Serverless means that

the time-consuming installation and management of server
capacities is no longer necessary. This was previously neces-
sary to get an application up and running. Instead, a provider’s
cloud service in the form of a "black box" is used. If the de-
veloper uploads program code to the Serverless platform,
the cloud provider takes over the complete administration of
the required server infrastructure, including server and op-
erating system maintenance. The developer of the Serverless
application has no control over the computing capacities,
their allocation and scaling and only has to implement the
Serverless functions. The cloud provider is responsible for
provisioning, monitoring, maintaining, scaling and fault tol-
erance of the resources. The creation of prototypes is signifi-
cantly accelerated by the addition of an abstraction level and
without the need to allocate computing capacities for the ex-
ecution of functions. Through the event-based architecture
of a Serverless application and the billing according to the
actual computing capacity used, the Serverless Computing
approach brings advantages over conventional cloud com-
puting paradigms in various areas. This applies, for example,
to cloud applications in the Internet of Things area, where
connected devices such as sensors and actuators sporadically
output data. In response, Serverless functions can be exe-
cuted. The Serverless Computing approach is also suitable
for web applications with lightweight backend functions.
Furthermore, Serverless functions are suitable as connec-
tors between different services of a cloud provider, which
serve as events. Since the Serverless platform controls the
allocation of computing capacity for the execution of Server-
less functions, it also guarantees scaling according to the
requests.

2 SERVERLESS ARCHITECTURES
Serverless architectures offer new possibilities for building
cloud applications. The key benefits of Serverless architec-
tures include minimal application deployment and opera-
tions, but also a highly scalable and fault tolerant environ-
ment. Event-driven architectures are ideal for Serverless
functionality because they can loosely couple different com-
ponents together.

Serverless architectures draw a clear line between the code
actually executed and its hosting environment. Serverless
architectures are event-driven, i.e. functions are defined that
are subsequently invoked by a trigger. After a function has
been executed, the allocated resources are released again im-
mediately. A trigger for a function can come from different
sources, e.g. a simple webhook, a cronjob or a file upload.

The activation of the trigger finally leads to the execution
of the code defined in the function. Many cloud providers
offer pre-defined APIs for triggers to allow Serverless func-
tions deployed on the platform to respond to specific events.
Unlike containers, for example, Serverless functions have a
lifetime of a few milliseconds to a few minutes [9] [17].

Figure 2: Serverless Computing or Function-as-a-
Service is the fourthway to consume cloud computing.
[11]

Serverless functions can be implemented both synchronously
and asynchronously. A typical use case for the synchronous
model is a Restful API endpoint where an incoming HTTPS
request triggers a Serverless function. The caller waits until
the function returns a result. In an asynchronous scenario,
the caller does not wait until the function returns a result.
Socket notifications or push notifications to a mobile device
can be used to provide asynchronous feedback to the user.
Serverless functions can be linked together to form an event
system and realize more complex processing chains [21].

2.1 Serverless Architecture Designs
Serverless functions can be combined in different ways to
form a comprehensive software architecture that benefits
from the advantages of Serverless Computing. The following
are some of the commonly used designs.

2.1.1 API-Gateway. Serverless can take over the back-end
scaling of individual microservices and at the same time
present a single frontend via an API gateway. The API gate-
way represents a single point of entry for different clients.
When an API endpoint is called, intelligent routing to the
back-end services takes place. The endpoints of the services
can be implemented as Serverless functions so that resources
are allocated automatically depending on the amount of re-
quests [13].

2.1.2 Cronjobs. Serverless Functions can be used as cron-
jobs to perform regularly repetitive tasks. The trigger here is
a timer that executes the Serverless function at certain time
intervals. The advantage of using Serverless functions as
cronjobs is that a physical or virtual machine does not have
to be operated continuously. Instead, resources are allocated
only at the time of execution and released again when the



Grundseminar M.Sc., February 28, 2019, Hamburg, Germany

task is complete. The cronjobs are also decoupled from the
hosts on which a certain task is to be executed [3].

2.1.3 File Triggers & Stream Processing. Serverless functions
can be used to implement classic extract, transform, and load
(ETL) processes. When different events occur, code can be
executed as part of a larger pipeline. For example, a function
could be triggered by uploading a file. This function down-
loads the file while another one applies transformations to
the data. Another function loads the now structured data
into a database. Depending on the number of uploaded files,
the ETL process scales automatically. Serverless functions
can also be used when processing data streams by including
appropriate logic to parse the data from the stream, bring it
into a structured format, and then store it in another system.
Again, the serveress function scales according to the amount
of data transfered [20] [14].

Figure 3: Example of a data pipeline implemented us-
ing a Serverless function. [16]

3 SERVERLESS SCENARIOS
This section introduces some use cases for Serverless archi-
tectures.

3.1 Mobile Backends
Mobile applications often also require server-side logic. Some-
times they need to access some server-side APIs, sometimes
they need to access and work with locally stored data. In
addition, these applications often need to outsource more
compute-intensive tasks to a scalable cloud platform. There
is typically a clear separation of responsibilities between
mobile developers and back-end developers. Serverless Com-
puting allows mobile developers to focus on developing the
actual mobile application while leveraging the server-side
logic that others may have implemented. This logic can be
implemented as a Serverless function that can optionally
be provided via an API gateway. Many cloud providers al-
ready offer runtime environments for Serverless functions
in which e.g. Swift can be executed. This allows mobile de-
velopers to quickly develop simple server-side logic without
having to learn another programming language. This can

significantly accelerate the development of scalable mobile
applications in companies without a broad programming
language spectrum [12].

3.2 Internet of Things
The Internet of Things can be described as a network con-
sisting of numerous so-called Smart Objects that exchange
information between each other. Each intelligent object in
the Internet of Things can be identified via its own inter-
net address and can thus be addressed by humans via the
world-wide-web. Although humans are responsible for con-
trolling these intelligent objects, their influence is limited.
By connecting to the internet, the smart devices are able to
act independently, adapt to situations and react to certain
scenarios. A big challenge in the IoT is the large number of
devices that have to communicate with each other. IoT often
dictates an event-controlled architecture that routes and pro-
cesses messages between the individual devices. Serverless
can play to its strengths here.
The use of Serverless platforms offers a highly available

environment for the processing of IoT data. At the same time,
Serverless functions scale with the number of IoT devices
and data traffic. By deploying individual functions, it is not
necessary to deploy the entire system again when changes
are made, but only the individual affected function, which
also makes it easier to add and support new devices and
sensors without downtime [19] [23].

3.3 Chatbots
Chatbots that provide a conversational interface to inter-
act with the user have become more and more popular in
the market with wide acceptance of mobile and intelligent
devices. Chatbots today are now embedded in popular mes-
saging applications and appear as standalone services such
as Apple Siri1, Amazon Alexa2 and Microsoft Cortana3.

Figure 4: Exemplary architecture of a Facebook Mes-
senger chatbot, implemented with AWS Lambda func-
tions and topics to route messages from publishing
clients to subscribing clients. [25]

1https://www.apple.com/de/siri
2https://www.amazon.de/b?ie=UTF8&node=12775495031
3https://www.microsoft.com/de-de/windows/cortana



Grundseminar M.Sc., February 28, 2019, Hamburg, Germany Christian Bargmann

Serverless Computing is an ideal platform to build extensi-
ble chatbots for various scenarios. Because of its cloud-native
nature, Serverless functions can be seamlessly integrated
with other cloud offerings such as artificial intelligence or
natural language processing. At the same time, they take
the challenge of delivering a global, scalable infrastructure
away from the developer and allow him to focus on the basic
functionality of the chatbot [18].

4 RESEARCH CHALLENGES
In this section, selected challenges related to Serverless Com-
puting are explained and approaches to solving them are
outlined. The challenges presented are the basis for more
in-depth research.

4.1 State Management
A Serverless function, similar to a microservice, is usually
stateless. A persistent state between two executions of the
same function is usually not possible due to the volatile
lifetime. It should be avoided to use states in order to scale the
Serverless functions easily and avoid a single point of failure.
However, there may well be applications in which a state is
necessary. There are various ways to deal with this situation.
The state can therefore neither be kept in memory nor on
the hard disk, so a Serverless function must store the state
externally. This can be realized e.g. by a distributed cache,
the storage of the state in a database or a distributed object
storage, or also by a workflow engine. However, the selected
solution should scale horizontally, as they can otherwise
become a bottleneck in the Serverless architecture [21] [16].

4.2 Transaction Management
Managing transactions in a Serverless architecture is a chal-
lenge. Sometimes an application needs business logic that
performsmultiple, "all or nothing" operations across multiple
database tables and provides atomicity, consistency, isolation,
and durability (ACID). Due to the short lifespan of a Server-
less function, known patterns from the microservice world
such as the 2-Phase commit or Saga pattern can be difficult to
apply to a Serverless architecture to implement distributed
transactions. One approach used is to outsource transaction
management to an external system. An example of this is
Amazon’s DynamoDB1 to implement related inserts, updates
or delete operations in a single business logic operation or
Cloud Spanner2 as a scalable, globally distributed, and syn-
chronously replicated database that provides transactional
consistency via a SQL-like interface [22] [16].

1https://aws.amazon.com/de/dynamodb
2https://cloud.google.com/spanner

4.3 Function Startup Time
A Serverless function does not reserve any resources in ad-
vance. If the function is not executed, it will still be held by
the cloud provider for a certain period of time with minimal
resources, as constantly recreating the function would be
time-consuming and inefficient. At the end of this period,
which varies depending on the cloud provider, all resources
of the function are released. If a Serverless function is trig-
gered again, a so-called "cold start" must be performed, which
can take a few seconds. The start time varies depending on
the cloud provider and agreed service level agreements. How-
ever, in the end it is important to be aware of this problem as
a user of Serverless services. There are different approaches
to solve the problem of cold starts. For example, some cloud
providers, such as AWS, offer service level agreements that
guarantee that a Serverless function always remains active.
Other approaches involve the implementation of keep-alive
mechanisms that periodically trigger Serverless functions to
keep them active. Serverless frameworks such as OpenFaaS1
or Kubeless2, which are based on orchestration tools such as
Kubernetes and follow a containerized function approach,
already have very low start times [28].

4.4 Function Execution Time
Serverless functions are designed to last from a few millisec-
onds to a few minutes. This also benefits cloud providers, as
it becomes easier to free resources when functions are termi-
nated and to distribute workload across multiple hosts. Often
the maximum runtime of a Serverless function is limited in
time by the cloud provider, thus time-consuming functions
should be implemented in a different way. If a Serverless
function has too long an execution time, there are several
ways to deal with this situation. One may divide the function
into several smaller functions. This does not change the total
runtime, but the division into subtasks allows a longer exe-
cution time. This can also indicate a design error if a single
Serverless function has a long execution time. A decomposi-
tion of the function can be useful in this case. Alternatively,
asynchronous functions can be used. Asynchronous han-
dling minimizes the time in which the actual process runs.
So-called durable functions pause and maintaine their state
while waiting for the scheduling of external processes [16].

4.5 Logging, Monitoring & Tracing
Due to the volatile nature of Serverless functions, monitoring
is not entirely uncomplicated. Many cloud providers offer
users their own monitoring solutions, which makes mon-
itoring on their platform accessible. There are also many
monitoring tools that are based on the monitoring solutions
1https://www.openfaas.com/
2https://kubeless.io



Grundseminar M.Sc., February 28, 2019, Hamburg, Germany

of the cloud providers. There are different approaches for
the implementation of Serverless monitoring. Firstly, client
code for a monitoring backend can be written directly to
the Serverless function. Other solutions wrap the code for
the Serverless function in a runtime environment that al-
ready has a client for monitoring, so that the user can keep
the actual Serverless function free of third-party libraries
and additional middleware. Other approaches use the cloud
provider’s API to access monitoring information and aggre-
gate metrics. Nevertheless, many challenges remain open
[21].

4.6 Function Failure & Resiliency
Theoretically, any service based on Serverless Functions
scales automatically and also benefits from the availability
and fault tolerance properties of Serverless Computing. This
includes provisioning of Serverless function instances, high
availability, retry logic from the cloud provider if available
or seamless integration with other cloud services. However,
there are still error conditions that Serverless Computing
cannot cover, such as bugs in function code, unavailability
of external services on which a Serverless function depends,
or general code performance. In order to prevent this from
happening, the tried and tested principles of error handling
can be applied to the Serverless function. For example in case
of basic HTTP functions, the right approach is for the code
that calls the function to perform the retries. To implement
retries, developers can either write their own retry logic or
reuse a common library . Other approaches, as mentioned
above, outsource the retry logic to the cloud provider. Here
the execution of the Serverless function is automatically re-
tried at a certain received event until it is finally completed
successfully. Backoff policies can be used to configure at
which intervals the retries are to be executed [27].

4.7 Debugging & Testing
Individual Serverless functions are usually quite small and
manageable. The actual complexity of the application results
from its composition. Unit testing should therefore prevent
a function with programming errors from going into produc-
tion. A local detailed analysis with profilers and debuggers
is possible, but difficult for functions running in production
on the Serverless platform. Integration tests, on the other
hand, are much more difficult to implement in Serverless ap-
plications than unit tests. Appropriate integration test envi-
ronments can be set up on the Serverless platform alongside
the productive environment. However, it should be consid-
ered that the tests use resources in the cloud that have to
be paid for accordingly. Regular load tests are therefore not
necessarily an option. Depending on the cloud provider, test
instances for required services or even stubs for mocking

interfaces of the Serverless platform can be provided, but
no local environment can replace the cloud environment in
which the Serverless application ultimately runs [21] [2].

4.8 Vendor Control / Lock-In
A much debated issue in Serverless Computing is the risk
of vendor lock-in, i.e. being tied to vendor-specific inter-
faces or services. The possibility of vendor lock-ins is often
the reason why Serverless Computing is not chosen as the
paradigm for application development. The reasons for inde-
pendence from a cloud provider can be very different, e.g. a
user of a Serverless platform does not want to enter into a
long relationship with the provider and only use services if
they provide advantages for his own application. Also the
idea that one’s own application is dependent on the further
development of the underlying cloud platform is also often
a deterrent. Nevertheless, a lock-in does not have to be neg-
ative. A user of a Serverless platform has to consciously get
involved and consider the possible consequences. Currently,
there are many efforts to ensure vendor independence in
Serverless Computing. One example is the abstraction frame-
work with the name Serverless1. It was originally designed
to simplify development in the AWS cloud, but now also
supports the other three major players (Microsoft Azure
Functions, Google Cloud Functions and IBM OpenWhisk)
within an acceptable scope. Another framework is the Spring
Cloud Function2 project, which provides a unified Function-
as-a-Service programming model across a variety of cloud
providers [6] [15].

4.9 Tooling
Due to the still young Serverless Computing paradigm, the
availability of tools for the deployment, compilation and
configuration of Serverless applications is not yet very devel-
oped. Although frameworks like the Serverless Framework
take a lot of work out of it, tools and IDEs for Serverless
Computing are missing that integrate into the developer
workflow and improve the user experience of Serverless
developers. There is also a need for tools for monitoring
Serverless functions and remote debugging [21].

The challenges presented are only an outline of many
others. Other aspects related to Serverless Computing which
can serve as a basis for in-depth research are e.g. versioning,
security aspects, multi-tenant capability [...] of Serverless
functions.

1https://serverless.com
2https://cloud.spring.io/spring-cloud-function



Grundseminar M.Sc., February 28, 2019, Hamburg, Germany Christian Bargmann

5 OPPORTUNITIES
This section provides an overview of the opportunities Server-
less Computing offers.

5.1 Development Focus & Prototyping
Through interactive prototypes, abstract concepts become
concrete and above all can be experienced and experienced by
end-users. In this way, the scope for interpretation for users
is kept to a minimum. Even for the developers, it quickly
becomes clear without long documentation how something
can be implemented. In this way, all content and functions
relevant to the user can be worked out before an unneces-
sary amount of money and time is invested in numerous
implementation phases. Serverless Computing is about lever-
aging tighter integration to cloud provider services. Creating
Serverless applications means that developers can focus on
the product instead of worrying about managing and run-
ning servers or runtimes in the cloud or locally. This reduced
effort can save developers time and effort that can be used
to develop products that are scalable and reliable. This leads
to quick prototyping of ideas and reduces development time.
Using Serverless, a Minimum Viable Product can be scaled
and used as a final product if built correctly and with re-
quired changes. This is especially interesting for startups to
save costs and time.

5.2 Billing Model
A particular characteristic of Serverless Computing is the
way in which the consumed resources are charged. The op-
eration of own hardware is associated with a variety of costs,
e.g. for maintenance, premises or staff. Cloud computing, on
the other hand, makes it possible to rent computing power
from the cloud provider, which is why a large part of the
maintenance costs for the infrastructure is eliminated. How-
ever, idle times of the rented infrastructure are still calculated.
Serverless Computing goes one step ahead and promises to
reduce infrastructure costs even further. A Serverless func-
tion is volatile, the allocated resources are released again at
the end of execution and only the actual execution period is
charged. The expenses for idle times are eliminated and only
the actually used computing power is paid for. Serverless
also leads to reduced operating costs, as more work is the
responsibility of the cloud provider [8].

5.3 Polyglot Programming
Similar to Microservices, Serverless functions allow the free
choice of programming languages. Depending on the appli-
cation, developers can choose between different language
runtimes. These functions are loosely linked via events. Each
Serverless provider offers a range of runtimes, which can

differ from provider to provider. In general, all major pro-
gramming languages are supported, such as Java, Python,
and Node.js [11].

5.4 Autoscaling
Serverless enables automatic scaling of the application with-
out having to worry about configuration. With classic ser-
vices, it must be decided either manually or on the basis of
metrics whether more instances must be started as the load
increases. With Serverless Computing, the cloud provider
takes over this responsibility and can increase function in-
stances depending on the load. However, it must be noted
that by giving control of scaling to the cloud provider, it is
difficult not to be able to address and mitigate errors related
to new Serverless instances.

6 CONCLUSION
The Serverless applications are promised a rosy future by
various voices. The term Serverless Computing refers to a
consistent further development of hybrid cloud structures
and microservices. It takes the burden off the developers to
deal with infrastructure and concentrate on the development
and behavior of their applications. Serverless accelerates
the development process, simplifies operations management,
and reduces development and operational costs. The sim-
plicity that this concept brings to software development will
make it mature and establish faster than any other paradigm.
However, critics of Serverless Computing warn that Server-
less users are increasingly losing control of their projects.
Due to the early development phase at the time of this work,
there are still many deficits such as strategies for integra-
tion testing, monitoring and debugging tools, which is why
despite the significant advantages of Serverless Computing,
attention should be paid when deciding to use this paradigm.
In summary, there is at this time a lot of development

in different aspects in the area of Serverless Computing,
which is why it remains exciting how the term Serverless
Computing and the Serverless platforms will develop in the
future.

REFERENCES
[1] Amazon. 2014. Introducing AWS Lambda. https://aws.amazon.

com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/ Ac-
cessed: 2019-2-14.

[2] Amazon. 2018. Testing and Debugging Serverless Applica-
tions. https://docs.aws.amazon.com/serverless-application-model/
latest/developerguide/serverless-test-and-debug.html Accessed: 2019-
1-23.

[3] Amazon. 2019. Schedule Expressions Using Rate or
Cron. https://docs.aws.amazon.com/lambda/latest/dg/
tutorial-scheduled-events-schedule-expressions.html Accessed:
2019-2-25.

https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html


Grundseminar M.Sc., February 28, 2019, Hamburg, Germany

[4] Abel Avram. 2016. FaaS, PaaS, and the Benefits of the Server-
less Architecture. https://www.infoq.com/news/2016/06/
faas-serverless-architecture Accessed: 2019-2-23.

[5] Christian Bargmann. 2018. Serverless & FaaS. http://users.informatik.
haw-hamburg.de/~ubicomp/projekte/master2018-gsem/Bargmann/
folien.pdf Accessed: 2019-1-11.

[6] Philipp Beyerlein. 2018. Serverless - The Vendor Is
Not Your Enemy. https://www.innoq.com/de/blog/
serverless-vendor-is-not-your-enemy/ Accessed: 2019-2-15.

[7] Cloudflare. 2018. How are serverless computing and Platform-as-a-
Service different? https://www.cloudflare.com/learning/serverless/
glossary/serverless-vs-paas/ Accessed: 2019-2-14.

[8] Cloudflare. 2018. What Is Function as a Service (FaaS)?
https://www.cloudflare.com/learning/serverless/glossary/
function-as-a-service-faas/ Accessed: 2019-2-14.

[9] A. Eivy. 2017. Be Wary of the Economics of "Serverless" Cloud
Computing. IEEE Cloud Computing 4, 2 (March 2017), 6–12. https:
//doi.org/10.1109/MCC.2017.32

[10] Geoffrey Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2017. Status of Serverless Computing and Function-as-a-
Service(FaaS) in Industry and Research. Unpublished. https://doi.org/
10.13140/RG.2.2.15007.87206

[11] Shekhar Gulati. 2018. hands-on-serverless-guide. https:
//github.com/shekhargulati/hands-on-serverless-guide/
blob/master/01-aws-lambda-serverless-framework/
01-introduction-to-serverless.md Accessed: 2019-2-23.

[12] Adrian Hall. 2018. How to design a serverless backend that
scales with your apps success. https://read.acloud.guru/
build-a-cost-effective-mobile-backend-for-scale-and-security-4c0c143e898c
Accessed: 2019-1-25.

[13] HashiCorp. 2018. Serverless Applications with AWS Lambda
and API Gateway. https://learn.hashicorp.com/terraform/aws/
lambda-api-gateway Accessed: 2019-1-17.

[14] Sanghyun Hong, Abhinav Srivastava, William Shambrook, and Tudor
Dumitras. 2018. Go Serverless: Securing Cloud via Serverless Design
Patterns. In 10th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 18). USENIX Association, Boston, MA. https://www.usenix.
org/conference/hotcloud18/presentation/hong

[15] Serverless Inc. [n. d.]. The most widely-adopted toolkit for building
serverless applications. https://serverless.com Accessed: 2019-2-26.

[16] Cecil Phillip Jeremy Likness. 2018. Serverless apps: Architecture, patterns
and Azure implementation.

[17] Ali Kanso and Alaa Youssef. 2017. Serverless: Beyond the Cloud. In
Proceedings of the 2Nd International Workshop on Serverless Computing
(WoSC ’17). ACM, New York, NY, USA, 6–10. https://doi.org/10.1145/
3154847.3154854

[18] Jyri Lehvä, Niko Mäkitalo, and Tommi Mikkonen. 2018. Case Study:
Building a Serverless Messenger Chatbot. 75–86. https://doi.org/10.
1007/978-3-319-74433-9_6

[19] Duarte Pinto, João Pedro Dias, and Hugo Sereno Ferreira. 2018. Dy-
namic Allocation of Serverless Functions in IoT Environments. CoRR
abs/1807.03755 (2018). arXiv:1807.03755 http://arxiv.org/abs/1807.
03755

[20] Danilo Poccia. 2018. Building Serverless ETL
Pipelines. https://de.slideshare.net/AmazonWebServices/
building-serverless-etl-pipelines Accessed: 2019-1-10.

[21] Mike Roberts. 2018. Serverless Architectures. https://martinfowler.
com/articles/serverless.html Accessed: 2019-2-12.

[22] Bernd Rücker. 2019. Lost in transaction? Strategies to manage
consistency in serverless architectures. https://berndruecker.io/
lost-in-transaction/ Accessed: 2019-2-16.

[23] Raman Sharma. 2018. Go serverless for your IoT needs. https://azure.
microsoft.com/de-de/blog/go-serverless-for-your-iot-needs/ Ac-
cessed: 2019-1-24.

[24] Matt Stine. 2017. Serverless? Not so FaaS! https://www.youtube.com/
watch?v=e59pTjaVPCs Accessed: 2019-1-10.

[25] Mustafa Turan. 2017. A Serverless, Event Driven Archi-
tecture for Chatbots. https://chatbotsmagazine.com/
a-serverless-event-driven-architecture-for-chatbots-3095eb40cbb7
Accessed: 2019-1-23.

[26] Tim Wagner. 2016. Getting Started with AWS Lambda and the
Serverless Cloud. https://de.slideshare.net/AmazonWebServices/
getting-started-with-aws-lambda-and-the-serverless-cloud/29%20(
Accessed: 2019-2-26.

[27] Slawomir Walkowski. 2018. Cloud Functions pro
tips: Using retries to build reliable serverless sys-
tems. https://cloud.google.com/blog/products/serverless/
cloud-functions-pro-tips-using-retries-to-build-reliable-serverless-systems
Accessed: 2019-2-15.

[28] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael M. Swift. 2018. Peeking Behind the Curtains of Serverless
Platforms. In USENIX Annual Technical Conference.

https://www.infoq.com/news/2016/06/faas-serverless-architecture
https://www.infoq.com/news/2016/06/faas-serverless-architecture
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2018-gsem/Bargmann/folien.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2018-gsem/Bargmann/folien.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2018-gsem/Bargmann/folien.pdf
https://www.innoq.com/de/blog/serverless-vendor-is-not-your-enemy/
https://www.innoq.com/de/blog/serverless-vendor-is-not-your-enemy/
https://www.cloudflare.com/learning/serverless/glossary/serverless-vs-paas/
https://www.cloudflare.com/learning/serverless/glossary/serverless-vs-paas/
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.13140/RG.2.2.15007.87206
https://doi.org/10.13140/RG.2.2.15007.87206
https://github.com/shekhargulati/hands-on-serverless-guide/blob/master/01-aws-lambda-serverless-framework/01-introduction-to-serverless.md
https://github.com/shekhargulati/hands-on-serverless-guide/blob/master/01-aws-lambda-serverless-framework/01-introduction-to-serverless.md
https://github.com/shekhargulati/hands-on-serverless-guide/blob/master/01-aws-lambda-serverless-framework/01-introduction-to-serverless.md
https://github.com/shekhargulati/hands-on-serverless-guide/blob/master/01-aws-lambda-serverless-framework/01-introduction-to-serverless.md
https://read.acloud.guru/build-a-cost-effective-mobile-backend-for-scale-and-security-4c0c143e898c
https://read.acloud.guru/build-a-cost-effective-mobile-backend-for-scale-and-security-4c0c143e898c
https://learn.hashicorp.com/terraform/aws/lambda-api-gateway
https://learn.hashicorp.com/terraform/aws/lambda-api-gateway
https://www.usenix.org/conference/hotcloud18/presentation/hong
https://www.usenix.org/conference/hotcloud18/presentation/hong
https://serverless.com
https://doi.org/10.1145/3154847.3154854
https://doi.org/10.1145/3154847.3154854
https://doi.org/10.1007/978-3-319-74433-9_6
https://doi.org/10.1007/978-3-319-74433-9_6
http://arxiv.org/abs/1807.03755
http://arxiv.org/abs/1807.03755
http://arxiv.org/abs/1807.03755
https://de.slideshare.net/AmazonWebServices/building-serverless-etl-pipelines
https://de.slideshare.net/AmazonWebServices/building-serverless-etl-pipelines
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://berndruecker.io/lost-in-transaction/
https://berndruecker.io/lost-in-transaction/
https://azure.microsoft.com/de-de/blog/go-serverless-for-your-iot-needs/
https://azure.microsoft.com/de-de/blog/go-serverless-for-your-iot-needs/
https://www.youtube.com/watch?v=e59pTjaVPCs
https://www.youtube.com/watch?v=e59pTjaVPCs
https://chatbotsmagazine.com/a-serverless-event-driven-architecture-for-chatbots-3095eb40cbb7
https://chatbotsmagazine.com/a-serverless-event-driven-architecture-for-chatbots-3095eb40cbb7
https://de.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud/29%20(
https://de.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud/29%20(
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-using-retries-to-build-reliable-serverless-systems
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-using-retries-to-build-reliable-serverless-systems

	Abstract
	1 Serverless Computing
	2 Serverless Architectures
	2.1 Serverless Architecture Designs

	3 Serverless Scenarios
	3.1 Mobile Backends
	3.2 Internet of Things
	3.3 Chatbots

	4 Research Challenges
	4.1 State Management
	4.2 Transaction Management
	4.3 Function Startup Time
	4.4 Function Execution Time
	4.5 Logging, Monitoring & Tracing
	4.6 Function Failure & Resiliency
	4.7 Debugging & Testing
	4.8 Vendor Control / Lock-In
	4.9 Tooling

	5 Opportunities
	5.1 Development Focus & Prototyping
	5.2 Billing Model
	5.3 Polyglot Programming
	5.4 Autoscaling

	6 Conclusion
	References

