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Abstract—This paper gives an entry point to the problem of
interpreting machine learning models. It includes an introduction
to machine learning models and their complexity, followed by
general aspects of interpretability. The focus, however, is put on
deep neural networks and modern techniques to increase their
interpretability.

Index Terms—machine learning, deep neural networks, convo-
lutional network, activation maximization, feature inversion

I. INTRODUCTION

The Research of Artificial Intelligence goes back to 1950
when Alan Turing introduced the Turing Test to determine the
existence of Artificial Intelligence [1]. At this point in time
the expectations for Artificial Intelligence were extremely
high. After it became clear that the expectations cannot be
matched, the subject was avoided for many years. Recently
the field of Artificial Intelligence gained enormous interest
again. The main reason for this are great successes in machine
learning due to growing computational powers and big data.
Machine learning algorithms could be trained on huge
datasets, sometimes exceeding the performance of humans
in special fields of interest such as playing chess or Go.
Especially complex machine learning models such as deep
neural networks impress with very high predictive accuracy.
However, because of their complexity, these machine learning
algorithms are hard to interpret and their decisions cannot be
explained. This causes a number of problems which need to
be dealt with, if Artificial Intelligence is to become part of
our modern society by supporting humans with difficult and
important decisions.

This paper gives an overview about the interpretability
of machine learning in general and focuses on deep neural
networks in specific. Section II gives an overview on machine
learning algorithms and a description of deep neural networks.
Section III covers the current state of science and technology
in interpreting machine learning, including its definition, im-
portance and evaluation of interpretability, while section IV
describes general methods of interpretation.
Sections V, VI and VII deal with modern and promising
algorithms to interpret deep neural networks.

II. MACHINE LEARNING

Machine learning is a branch of Artificial Intelligence that
deals with the appliance of algorithms on huge amounts of
data to improve the performance of a given task through
experience and training. In the training process a machine

learning algorithm characterizes underlying relationships
within large arrays or matrices to recognize patterns.
Common fields of application are: Extracting of information
from huge amounts of data (data mining), classification,
regression tasks or predicting of the future from information
from the past.
[2]

Machine learning can be separated into three main types
of learning: Supervised learning, unsupervised learning and
reinforcement learning.
• Supervised learning is using labeled training data to

synthesize a model function, generalizing the relationship
between feature Vectors and the supervisor labels. If the
model is trained well, it can accurately predict class labels
for unobserved data instances.

• Unsupervised learning algorithms discover structures in
unlabeled datasets. For this kind of learning it is not
necessary to know the desired target output.

• Reinforcement learning is a learning technique for
agents to explore an environment. The agent is executing
an adaptive sequence of actions and observes the response
of the environment state. To improve the behavior within
the environment, a reward function is being maximized.
[2]

Machine learning is a generic term, including a wide range
of different algorithms or models to solve learning problems.
Every model has its own advantages and disadvantages,
depending on the way of learning and many other properties.
Very popular machine learning models are: Decision trees,
linear models, logistic regression, Bayesian nets, random
forest and deep neural networks.

To build a machine learning application, an algorithm is
trained with data, containing the problem information. The
machine learning algorithm extracts the information from the
data and builds a model that represents the learned knowledge.
This model can be used to solve a given problem such as
classification or prediction. How the model remembers the
learned knowledge, depends on the kind of machine learning
method that was used.

A. Complexity of machine learning algorithms

The ability to learn from data, given a suitable dataset,
depends on the machine learning algorithm that is used.
Experience shows, that the most successful machine learning
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Fig. 1. Learning performance vs explainability of different machine learning
models. [4]

algorithms are also the most complex. Unfortunately, with the
complexity of a model comes the loss of insight and therefore
an inability to explain the model’s behavior. Understanding
the information a model extracts from the training data and
how the model solves a given task is hidden within the
parameters of complex models.
A decision tree for example is a fairly simple model. It is
very useful for representing knowledge, because it can easily
be read by humans. However, its learning abilities are limited.
Deep neural networks in comparison are the most successful
machine learning algorithms in modern research. This
technique has reached extremely high predictive accuracy,
sometimes exceeding human performances. However, a deep
neural network is described by up to millions of different
values and does not give insight into its knowledge or the
way decisions are made.

Because of their relevance for artificial intelligence, this
paper will focus on interpretation methods for deep neural
networks, which are introduced in section II-B. Because nearly
the entire research on interpretation methods for deep neural
networks is concerning the field of image recognition, deep
convolutional networks are explained as well. They are the
preferred deep learning solutions for image classifications and
are used as an example network in later sections.

B. Deep neural networks

Inspired by the human brain, artificial neural networks
consist of many simple processors which are called neurons.
The functionality of a single neuron is shown in figure 2.
Each neuron is connected to input sensors or other neurons,
processing their weighted signals to produce an activation
signal. Neural networks often combine thousand of neurons
with millions of connections between these neurons. Typically
they are structured in different layers, where each neuron
of a layer is connected to all or a partition of the previous
layers. A traditionally used layer is the fully connected
layer, in which every neuron of this layer is connected to
all neurons of the previous layers. Specialized layers such
as convolutional and pooling layers are explained in section
II-C. The difference between a shallow and a deep neural
network consists in the number of layers.

Fig. 2. Inspired by neurons of the human brain, an artificial neuron sums
weighted inputs and used an activation function to produce a output. [19]

Fig. 3. Example for representation learning of deep neural networks. In the
first layers the neural network learns features like edges which are combined
to abstract objects in later layers. [20]

Due to their complexity, deep neural networks succeed in
central artificial intelligence problems where other machine
learning algorithms fail [7, p.151]. The difficulty of problems,
such as speech recognition and object detection, results in
their high dimensional input. With an exceeding number of
variables the possible distinct configuration of these variables
increase exponentially, often transcending the number of
training examples. This kind of problem, also referred to as
the curse of dimensionality, exceeds the learning capability of
many traditional machine learning methods such as k-means,
k-nearest neighbors, decision trees or n-gramm models. The
reason for this is, that traditional machine learning methods
learn symbolic representation. Deep learning methods such
as deep neural networks meet the curse of dimensionality by
storing knowledge in distributed representations.
Compared to symbolic representations, distributed
representations do not store learned knowledge in one
feature, but in many distributed features which describe
partial knowledge on different levels. In deep neural
networks, the first layers learn low level features, while
intermediate layers combine them to higher level features.
This process is visualized on an image classifier, which is
trained to recognize faces, in figure 3. [7]
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Depending on the layers configuration neural networks are
differentiated in feed forward neural networks and recurrent
neural networks. Under the assumption that earlier inputs do
not have an effect on the current output, signals of feed
forward neural networks are only passed forward in one
direction. Recurrent neural networks however, use their output
of previous steps to compute the current step, which makes
them the deepest of all neural networks.
Section II-C explains convolutional neural networks which are
a specialized kind of feed forward neural networks. They are
widely used in the domain of computer vision and will serve
as an example network for interpretation methods in later
sections.

C. Convolutional neural network

A convolutional neural network is a network architecture
specialized for grid like typology, such as time series, that
can be thought of one dimensional grids, or images as two
dimensional grids. The core elements of a convolutional
neural network are convolutional layers, often combined with
pooling layers and fully connected layers.

A convolutional layer implements several filters, each spe-
cialized to detect a specific pattern. Technically a filter is
a small matrix which is slit over the feature matrix of the
previous layer to calculate the weighted inputs of a specific
neuron. Because the filter matrix is smaller than the feature
matrix, a filter is able to combine spatially close located input
features to one, more meaningful, output feature.
Sharing the filter parameters over all input features enables
a filter to detect meaningful relations in multiple locations
and reduces the memory and computational requirements.
By combining several filters, a convolutional layer detects a
number of meaningful features and their location.
A pooling layer is often applied after the convolutional layer.
Its task is to provide summary statistics of nearby outputs
by averaging them or taking the maximum value. More
detailed and mathematical information on convolutional neural
networks are provided by Ian Goodfellow [7].

III. THEORY OF INTERPRETABILITY

This section provides the theoretical basics of machine
learning interpretability. III-A explains the meaning of inter-
pretability while section III-B points out the importance of this
subject. Furthermore, section III-C gives some ideas on how
the interpretability can be evaluated.

A. What is interpretability?

Although there are many papers that claim to implement a
interpretable model, there does not seem to be an established
definition for the inpterpretability of machine learning. ”The
term interpretability is ill-defined, and thus claims regarding
interpretability of various models may exhibit a quasi-scientific
character” [6].

Definitions of interpretability vary, depending on the dif-
ferent papers and experts and seems to remain elusive. In

this paper a fairly simple definition is used: ”we define inter-
pretability as the ability to explain or present in understandable
therms to humans” [3]. The ability to explain is understood as
the ability to reason a single prediction of a machine learning
decision on one input example. The ability to present in
understandable form to humans is understood as the ability to
communicate the information that was extracted from data by
a machine learning algorithm to humans in an understandable
way.

B. Importance of interpretable machine learning

The importance of interpretable machine learning algorithm
comes from an incompleteness of the problem formalization
[3]. Tasks that can be solved by machine learning algorithms
cannot be formulated in a reasonable number of rules, but must
be learned actively by a machine. The programmer often lacks
understanding of the task itself and has limited insight into
the knowledge learned by the machine. Interpretability can
help the programmer and users to gain additional knowledge
about the problem and to develop trust in the machine learning
model. In the following, the most important reasons why
interpretable machine learning algorithm are needed are listed.
• Debugging is especially difficult for most machine learn-

ing algorithms, due to their black box behavior. Most
applications are evaluated by their accuracy. However it is
often unknown how accuracy can be improved. Problems
can be a bad quality of the training data, the use of an
inappropriate kind of algorithm, and wrongly configured
model parameter. This problem is often solved with a try
and error approach which requires a trade of time and
computational power. Gaining insight into the model and
understanding the reasons why and when a model fails
will improve the training process significantly.

• Scientific understanding: With growing datasets and
complexity of problems, interpretability helps to find new
understanding of real world causal relations within a
model. When the data is too big to be monitored by
humans, the trained model itself becomes a source of
information.

• Safety is important in applications where wrong decisions
of machines can have significant consequences (e.g. self
driving cars). Because machine learning is mostly used
for handling unknown data and uncertainty, it is hardly
possible to test a model in all possible scenarios. To
ensure the safety of a model, it is necessary to understand
why it is taking a decision to find flaws in its reasoning.

• Subconscious biases become important in applications
in which machines take decisions which directly affect
humans. Some examples are loan approvals, job interview
invitations or collision prevention in self driving cars.
During the training process, machine learning algorithms
can learn unwanted biases from the training data. This
biases cannot be discovered by only evaluating the accu-
racy of a model, but via the impact of different features
on a decision. Subconscious biases must be dealt with,
to ensure fair decisions of machines.
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• Gaining trust: There are fields of application for ma-
chine learning such as medical diagnosis or terrorism
detection, where wrong decisions can be catastrophic.
In these fields of application one cannot trust decisions
on blind faith. In this context, trust is defined as the
confident that the model will perform well on the real
world objectives and scenarios, meaning that the user
knows when the model perform well and when not [6].
If a human does not trust a machine learning model, he
will and should not use it in critical applications.

• Since the General Data Protection Regulation (GDPR)
which took effect in may 2018 it is not only useful to
create interpretable models, but also required by law for
many fields of applications. The GDPR regulates that
in case of automated decision making, the data subject
has the right to access ”meaningful information about
the logic involved, as well as the significance and the
envisaged consequences of such processing for the data
subject”. [5, Articles 13-15 and Articles 21-22]

However, interpretability is not necessary for all machine
learning models. If the consequences of an inaccurate
result are not significant (eg. advertising) or the problem
is well studied and validated in real application, there is
no need to interpret the model. In this case the accuracy
of the model is sufficient to evaluate the model’s performance.

C. Evaluating interpretability

Methods to evaluate the interpretability of machine learning
models vary depending on the paper or expert who is suggest-
ing it. The evaluation of interpretability is especially difficult,
because there is no consensus regarding an exact definition of
machine learning interpretability.

A very general and therefore practical approach was
suggested by Doshi-Velez and Kim [3]. Considering that
good interpretation highly depends on the task and the user
who receives the interpretation, a human grounded evaluation
is suggested.

The most effective human grounded evaluation method is
to evaluate the model with respect to its final task. For this
purpose, experts of the domain evaluate the interpretability
within a real application.
For example: If the task of a model is to work with doctors
on the diagnosis of patients with a particular disease, the best
way to evaluate could be performed by doctors performing
diagnoses.
A good baseline for an experimental setup is to compare the
model explanation with one of a human expert. This kind of
evaluation aligns with methods used in human-computer inter-
action. On the down side, these methods are very expensive
and must be well designed to reduce costs, time, and other
resources.

To reach a compromise between efficiency and costs of
evaluation, the task can be simplified, to the essence of the

Fig. 4. An illustration of three lines of interpretable machine learning
techniques, taking DNN for example. (a) Interpretable model design. (b) Post-
hoc interpretation of a model. (c) Post-hoc ex- planation of a prediction. [9]

original task. For the evaluation of a simplified task, non-
expert humans can be hired, allowing both a bigger subject
pool and less expenses. [3]

IV. METHODS TO INTERPRET MACHINE LEARNING
MODELS

This section explains different strategies to interpret
machine learning models. The explanations and examples
focus on deep neural networks and convolutional networks.
However, the general approaches of interpretation can be
applied to all machine learning models.

Depending on the time when an interpretation method is ap-
plied, it can be differentiated between designing interpretable
models and post hock interpretability. This categories can fur-
ther be differentiated, depending on the type of interpretation,
into model level interpretation and prediction/instance level
interpretation. [9]
The different interpretation methods are illustrated in figure 4
and explained in the following subsections. Sections V,VI and
VII deepen the knowledge of specific interpretation methods
for deep neural networks, which are most likely used in future
research projects.

A. Interpretable model design

Model level interpretation can be achieved by designing
models which incorporate interpretability directly in order
to be globally interpretable or to explain their individual
predictions.
There are two possibilities to construct globally interpretable
models. Either the model is trained as usual but with inter-
pretable constraints, or an interpretable model extraction is
applied.

Early methods of interpretable constraints include the
enforcement of sparsity which encourages a model to use
less features for a prediction, or the imposing of semantic
monotonic constraints to enable a monotonic relation between
features and predictions. Hereby more comprehensibility for
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the user is achieved, but the performance of the model is
reduced significantly.
Modern methods try to incorporate semantically meaningful
constraints to improve the model interpretability. An example
method to interpret convolutional neural networks on model
level is explained in detail in section V. [9]

Interpretable model extraction, or mimic learning, is
the task to approximate a complex model using an easily
interpretable model, such as decision trees, rule-based or
linear models. Hereby the performance of the complex model
is maintained and its statistical properties are reflected in the
simple model. [9]

Prediction-level explainable models are used to give the
user understandable rationale for a specific prediction. This
can be achieved by applying an attention mechanism to the
model, showing which part of the input is attended for a
specific prediction. A representative example is the Neural
Image Caption Generation with Visual Attention [11]. Here, a
convolutional neural network is encoding an image to a vector
representation which is used by a recurrent neural network
with attention mechanism to generate an image description in
text format.

B. Post-hoc interpretation

Post-hoc interpretation methods are used to extract
information from pre-trained models. The concept can be
applied without the need to sacrifice predicting performance
and it provides useful information about knowledge stored
in a model, or the reasoning behind a decision. The
extracted information may be presented as a text explanation,
visualization, local model explanation or by examples of
other inputs. [6]
Post-hoc methods are categorized in model-agnostic methods
which do not require model internal information and can
therefore be applied to every kind of machine learning model
and specialized methods which only work for one kind of
machine learning model.

A representative model-agnostic interpretation method is
the Permutation Feature Importance [13]. Its core idea is that
some specific input features of a model are more important
for a prediction than others. By permuting single input
features, a contribution score can be calculated, depending on
the permutations impact on the prediction.

Model-specific interpretation methods are often more
powerful, because they do not ignore internal model
information. For deep neural networks post-hoc interpretation
methods are used to explain generally learned representations
or specific prediction.
A very effective and widely used method to extract the
representation learned by specific neurons in a deep neural
network is to find the preferred input that maximized
the neuron’s activations. This method is called activation

Fig. 5. Structures of an ordinary conv-layer and an interpretable conv-layer.
Green and red lines indicate the forward and backward propagations. [10]

maximization and is explained in detail in section VI. [9]

Using the hypothesis that larger gradients represent relevant
features, back-propagation based interpretation methods are
often used to explain predictions of a pre-trained neural
network. Unfortunately, these methods are heuristically limited
and may generate low quality explanations, which contain
noise or highlight irrelevant features.
Guided feature inversion is a modern and very promising
model specific interpretation method, which is used to explain
predictions of convolutional neural networks. This method is
explained in detail in section VII. [9]

V. LEARN DISENTAGLED REPRESENTATIONS IN
CONVOLUTIONAL NEURAL NETSWORKS

In 2018 Zhang et al. [10] proposed a method to modify
traditional convolutional neural networks in order to classify
high level knowledge representations. For this purpose high
level convolutional layers are replaced by interpretable convo-
lutional layers.
Filters of a normal high level convolutional layer often
represent a mixture of patterns, making the interpretability
very difficult. Within an interpretable convolutional layer,
every filter represents a specific object part, which is more
semantically meaningful than representations of traditional
convolutional layers. The difference between a traditional and
an interpretable convolutional layer is illustrated in figure 8.

To train filters of interpretable convolutional layer to only
represent one specific object, a loss function is added to the
output of its feature map. This loss function encourages the
filter to reduce the entropy of inter-category activations, as
well as to reduce the entropy of spatial distribution of neural
activations. This causes the filter to learn a distinct object part
that belongs to a single object category and is only activate by
one single part of the object, rather than on different object
regions. [10]

VI. ACTIVATION MAXIMIZATION

Activation Maximization is a model level, post-hoc
interpretation method that is used to visualize representation
learned by deep neural networks. It was first introduced by
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Fig. 6. Numerically computed images, illustrating the class appearance
models, learned by a convolutional neural network, trained on ILSVRC-2013.
[16]

Erhan et al. in 2009 [15] and further developed by many
other researchers [16] [17] [18].

Activation Maximization is the task of finding an input
pattern that maximally activates one or multiple target
neurons in a specific layer of a neural network. The reasoning
behind this is that the pattern could be a good first-order
representation of what the neuron is doing. [15]

Activation Maximization is an optimization problem, math-
ematically described in equation 1 [9]:

x∗ = argmax
x

f ln(x)−R(x) (1)

Here, x∗ is the input pattern that is being maximized,
f ln(x) the activation function at layer l for a specific neuron
n and R(x) is a regulator. A local minimum for x∗ can be
found using back-propagation. This process is very similar
to training a neural network, disregarding that the weights
remain fixed, while the input is optimized. The regulator term
in equation 1 is used to regulate low level image statistics,
occurring in discriminatively-trained representations. Low
level statistics are usually not interesting for a high level
task. However, in practice, activation maximization is mostly
used for image classification, where the maximized input
images are used to understand the representations of classes
and features. Low level statistics could result in spikes
and other unwanted optical phenomenona which make the
representation image look unrealistic [17].
Even though the framework is easy to use, getting it to
work faces some challenges and surprises. Due to their large
searching space, images which satisfy the optimization might
still be unrecognizable (see figure 6). Different researchers
approach these problems using proper regularization and
image priors. [9]

Feature inversion, which was presented by Mahendran and
Vedaldi in 2014 [17], is an approach to use a hand crafted
image prior to optimize activation maximization. Instead of
trying to maximize a single neuron, an example image is used

Fig. 7. Synthesizing a preferred input for a target neuron, using a deep
generator network as image prior. In this example the deep generator network
was trained to invert the feature representation of layer fc6. To find a preferred
image, only the input of the deep generator network is optimized to maximized
the activation of the target neuron. The gradient information is visualized as
blue-dashed line. [18]

to compute the image encoding of a target layer (the encoding
is represented by the activation matrix of that layer). Using
only the layer representation, the original image is recon-
structed. Starting from random values, the reconstructed image
is optimized to closely match its target layer representation to
the prior image representation.
This task is formally described by finding the image x ∈
RHxWxC that minimizes the objective

x∗ = argmin
x∈RHxWxC

||f l(x), f l(x0)||2 − λR(x) (2)

given a representation function f l(x) : RHxWxC → Rd

at layer l and the original image x0. To compare the image
representation f l(x) with the original representation f l(x0),
the Euclidean distance is used. R(x) : RHxWxC → Rd is a
regulator and λ balances the loss function and the regulator.
The core idea of feature inversion is that the image
should not be completely invertible by its representation in
intermediate layers, because deep neural networks ignore
irrelevant information. Therefor, there should be a number
of reconstructed images, showing an image interpretation x∗
of the original image x0 and all information that are used in
intermediate layers to classify this particular image. [17]

In 2016 Nguyen et al. [18] improved the quality of acti-
vation maximization by using superior learned image priors,
generated by a deep generator network. The image generator
network was trained on the image net dataset to take in a
vector of scalars and to put out a synthetic image that looks
as real as possible.
The image generated by the generator network is used as input
for a deep neural network. To activate a target neuron of the
deep neural network, not the image itself but the input of the
generator network is optimized. Figure 7 visualizes this setup.
This method restricts the search to images that can be gen-
erated by the generator network, providing a strong bias to
realistic images (depending on the quality of the generator
network). [18]
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Fig. 8. Illustration of the different steps, necessary to perform a guided feature
inversion. On the left, the layer representations are calculated for a specific
image. On the right, the guided feature inversion and class-discriminative
interpretation is applied to create a mask m, highlighting contributing features.
This computational steps are explained in section VII. The linear combination
of the layer l1 is a regularization technique to improve the mask m, which
is not explained of section VII but described in [14].

VII. DEEP NEURAL NETWORK BASED PREDICTION WITH
GUIDED FEATURE INVERSION

Guided feature inversion is a post-hoc interpretation method,
taking advantage of intermediate layer information to explain
predictions of convolutional neural networks. It is used in the
field of image classification and computed in several steps,
resulting in a mask that highlights the most contributing parts
of a specific image. The computation steps are illustrated in
figure 8.

In the first step the prediction for a target image x0 is cal-
culated, saving all representations f l(x0) of the intermediate
layers.
The feature matrix of the last convolutional layer l0 is inverted
using guided feature inversion. A guided feature inversion
is an modified version of the feature inversion [17] (also
referred to in section VI). In the guided feature inversion the
expected inversion image x from equation 2 is reformulated
as a weighted sum of the original image x0 and a noise
background image p.

Φ(x0,m) = x0 �m+ p� (1−m) (3)

The optimization target x from equation 2 is replaced with
Φ(x0,m) and a regulator is added to control the values of the
weight matrix m.

Linversion = ||f l0(Φ(x0,m))− f l0(x0)||2 + α
1

d

d∑
i=1

mi (4)

The weight matrix m ∈ [0, 1]d is optimized to minimize
the inversion loss defined in equation 4. The first term
corresponds to the inversion area, while the second term

limits the area to be as small as possible. Without the second
term, the error would be zero, if all entries within m equal
1. However if the parameter α, which balances the inversion
error, and the area of m is set properly, m is optimized to
highlighting the most contributing objects of the input x0.

Because feature inversion is lacking discrimination power,
the mask m might still highlight several class objects that do
not belong to the target label. Using the last layer L activation,
the results of the feature inversion are fine-tuned using a class-
discriminative interpretation to only highlight objects of the
target class c.
For this purpose m is inverted to a mask mbg = 1 − m,
highlighting irrelevant information with respect to the target
class c. This includes the background and foreground objects
of other classes. Using mbg , the background part of the image
can be calculated as weighted sum of the original image x0
and p.

Φbg(x0,mbg) = x0 �mbg + p� (1−mbg) (5)

To remove contributing features that do not belong to the
target class c from the mask, m is optimized to reduce the
target loss, as defined in the following equation:

Ltarget = −fLc (Φ(x0,m)) + λfLc (Φbg(x0,m)) + β
1

d

d∑
i=1

mi

(6)
The first term of equation 6 strongly activates the softmax

probability fLc of class c while the second term is encouraging
that no features that contribute to class c are located in the
background. The last term is suppressing the area of m. The
parameters λ and β are used to balance the different terms of
the loss function.

More detailed explanations and further improvements of the
interpretation method are described by Du et al. [14].

VIII. CONCLUSION

The research on machine learning interpretation methods
has made significant process over the last few years. Especially
for the interpretation of deep neural networks, many new
algorithms were developed. Even though new interpretation
methods seemingly improve in performance along with com-
plexity, the insight into complex machine learning models is
still limited. An especially challenging task is to evaluate the
performance of different methods to compare them and to
identify their practical usability. Up to this point the research
of interpreting deep neural networks seems to remain solely
academic. The question when the level of interpretation for
deep neural networks is high enough to be used in practical
applications, remains open.

7



REFERENCES

[1] A. M. Turing (1950) Computing Machinery and Intelligence
[2] M. Awad and R. Khanna (2015) Efficient Learning Machines
[3] F. Doshi-Velez and B. Kim, (2017) Towards A Rigorous Science of

Interpretable Machine Learning
[4] D. Gunning (2017) Explainable Artificial Intelligence (XAI) Program

Update
[5] European Parliament (2016) General Data Protection Regulation
[6] Z. Lipton (2017) The Mythos of Model Interpretability
[7] I. Goodfellow and Y. Benigo and A. Courville (2016) Deep Learning
[8] K. Hornik (1989) Multilayer Feedforward Networks are Universal

Approximators
[9] M. Du and N. Liu and X. Hu (2018) Techniques for Interpretable

Machine Learning
[10] Q. Zhang and Y. Wu, and S. Zhu (2018) Interpretable Convolutional

Neural Networks
[11] K. XU et al. (2016) Show, Attend and Tell: Neural Image Caption

Generation with Visual Attention
[12] A. Nguyen and J. Yosinski and J. Clune (2016) Multifaceted Feature

Visualization: Uncovering the Different Types of Features Learned By
Each Neuron in Deep Neural Networks

[13] A. Altmann and L. Tolosi and O. Sander and T. Lengauer (2010)
Permutation importance: a corrected feature importance measure

[14] M. Du and N. Liu and Q. Song and X. Hu (2018) Towards Explanation
of DNN-based Prediction with Guided Feature Inversion

[15] D. Erhan and Y. Bengio and A. Courville and P. Vincent (2009)
Visualizing Higher-Layer Features of a Deep Network

[16] K. Simonyan and A. Vedaldi and A. Zisserman (2014) Deep Inside
Convolutional Networks: Visualising Image Classification Models and
Saliency Maps

[17] A. Mahendran and A. Vedaldi (2014) Understanding Deep Image
Representations by Inverting Them

[18] A. Nguyen and A. Dosovitskiy and J. Yosinski and T. Brox and J. Clune
(2016) Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks

[19] (23/02/2019) https://skymind.ai/wiki/neural-network
[20] R. Batuwita (2016) Deep Learning: Towards General Artificial Intelli-

gence

8


