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X Motivation

CSTI Cluster + Testing Machines (Ressources)

Test Setup (2x Nvidia 1080 ti, 64GB RAM)
Cluster setup (8x Nvidia P6000, 256GB RAM)
Benchmarking on standard tasks

“A deep learning pipeline at scale”



% Research Question

How to create an abstractive multi document
summarization (extended: dossier) system
that leverages context and human input?



5 Dossiers

Goal: Dossier is a collection of papers or other
sources, containing detailed information about a
particular subject. It is a meta structure.

Designed to fit a (topical) narrative / problem definition
Chronological / Historical / Hierarchical

Transparent and comprehensible

Presenting central (non-biased) arguments

Shallow at first glance, deep at second look



5 Dossiers

Problem: Dossiers are too hard for a first
“summarization” task. Dossiers can be viewed as a
Multi Task Learning (MTL) problem on different
objectives.

Key arguments of entire collections with different
topics / chronology

Presenting narratives / presenting a discourse
Implicit real world knowledge not in the source



5 Summarization

Goal: Automatic summarization of text, by
shortening large amounts of documents keeping
their original points.

Single / Multi document summarization
Concise and fluent, based on facts (no fakes!)
Extractive / Abstractive



5 Classic summarization

Extractive, e.g. reordering sentences and
passages. (abstractive not possible)

Cue words - dictionary based

Title - weighted average of title

Location - beginning / end of text

Indicator matrix - word /sentence importance
Topic based (LSI, LDA, TF-IDF)



5> Neural Summarization

End-to-end learning (large corpora + vocab
problematic)

Mostly abstractive (autoencoders)

Window based methods

Hierarchical e.g. sentence to word to character
WSD and OOV

Learning weights for factual checking and
repetition

Multi document summarization is “new”



»*  Rush, et al. (2015)
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*  A. See, et al. (2017)

OVV handling via pointer network - generate or
copy?

Learning a coverage vector, attending less to
frequently attended ideas over time

Handling documents, not sentences

Handles facts better and removes more
nonsensical claims
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»  More concepts

POS / NER / TF-IDF embeddings - R. Nallapati, et al.
(2016)

Hierarchy - learning sentences down to words (using
CNNs with LSTMs) - R. Nallapati, et al. (2016)

Use side information during attention - S. Narayan, et
al. (2017)

Factual checking, reducing invalid claims - Z. Cao, et al.
(2018)

Topic awareness - L. Wang, et al. (2018)
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> Context and Knowledge

Transfer Learning: Store knowledge conditioned on a
domain Ds and apply it successfully to a different
domain Dt.

Word2Vec, GloVe, Doc2Vec etc. are such models
In image recognition any model that is able to detect
“shapes”



52 Word2Vec (Mikolov et al. 2013)

Input projection  output

Unsupervised Word embedding w(t-2)
Skip-gram with sliding window as
context of center word
Negative sampling with noise
contrastive estimation

Essentially a PMI Matrix w(t) —/ -
Related: GloVe, Dep2Vec, \ ,_

w(t-1)

Dict2Vec

w(t+1)

T
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58 CoVe (B. McCann, et al. 2017)

Train a NMT system and use Use the encoder in a specific
the encoder as a language language task generically
model Related: Doc2Vec

Initialize with GloVe

Task-specific Model
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5> Chars (R. Jozefowicz, et al. 2016)

Word LSTM (a)
baseline

Char CNN (b) and Char
CNN with softmax
LSTM (c) outperform
Fewer parameters
Handling OOV out of
the box

Perplexity down from
50 to 20 (impressive)
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> News and Knowledge

Goal: Create language models based on all the information
and combine them through multi task learning

News present topics over time (event based)
Curated categories and keyword hierarchies
Articles are well written (if news source is good)
Descriptions, headlines, images etc.

HTML and hyperlinks

Editor notes and known authors

Geo locations and publishing locations

Named entities



»  Conclusion

Use language models on the domain data

Learn a broad task through auxiliary tasks

Connect different models with multi task learning
techniques

Characters actually make sense, so do hierarchies of
words and sentences

Use side information via attention
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‘ KDD - Summarization
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KDD - Technologies

Languages

Python3, Golang,
- Bash

Pipeline
Apache Airflow

 GPU

Visuals

Jupyter, Matplot,
- Bokeh, Plotly

Numeric
Numpy, Scipy

File handling

 HDFS, MongoDB,
~ Apache Parquet

Deployment

Nvidia-Docker,
 Docker

Data Munging

Pandas, Apache
- Arrow

 Learning

~ Keras, SpaCy,
~ Tensorflow



X QOutlook

Risks Chances

Extremely broad and complex A lot of ground to cover
Improving area, quality is okay = ¢ Real world data

Generating dossiers is “harder” German models are rare
than generating summaries Multiple interacting DL
No specific literature systems

Real world data . © Minimize risk by defining

clear subtasks
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75 Thanks!

Any questions ?

matthias.nitsche@haw-hamburg.de



