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1 Introduction

Abstract

I developed an environment for modeling buy predictions. Therefore, I used

the yoochoose data sets and ran through the phases of CRISP-DM. For the

implementation, I have relied on parallel execution on processors and graphics

cards to make optimum use of given hardware resources. I used data balancing

methods since the data set contains almost 95% of non-buyers. An under-

and an oversampling method were used to better predict the buyers with

multilayer perceptron models. The methods worked almost equally well.

The implementations can be adjusted, this is especially necessary for further

feature engineering and model development of buy predictions.

Keywords: Data mining; predictive analytics; recommender systems; RecSys

Challenge 2015

1 Introduction

1.1 Motivation

Data is constantly generated and collected on the Internet. Companies are trying to

take advantage of this data. Especially in e-commerce a lot of useful data is collected

and used for analysis. One wants to get to know and understand the customer. This

knowledge is then used to bind customers and recommend suitable products. Amazon

already knows before the customer has bought what he will buy. They wants to use this

knowledge to store the articles near the customer before he purchases them. So, a very

fast delivery time is possible. But for this scenario you need a lot of data about the

customer, the products and above all the behavior of the customer. In this paper I am

generally dealing with the buy prediction and not with anticipatory shipping as Amazon

calls their process. But the buy prediction is part of this process. In this project, the goal

is to build a development environment for experiments in modeling buy predictions.

1.2 Outline

In Chapter 2, I look at buy prediction. I describe the context and questions of buy

prediction. Two actual papers about buy prediction are presented. I then look in detail
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2 Buy Prediction

at two papers on the data set of the Recommender System Challenge from 2015. In

chapter 3 I describe the creation and testing of the development environment. For this

I use CRISP-DM and describe the results of the necessary phases of the process model.

Chapter 4 summarizes the work and gives an outlook.

2 Buy Prediction

The digital library of the Association for Computer Machinery has 1518 search results for

buy prediction and 1534 for purchase prediction in 2010. There are 2474 search results

for buy prediction and 2120 for purchase prediction in 2017. Over the years, the number

of publications on the subject has increased almost annually.

There are di�erent issues in the context of buy prediction. In the context of anticipatory

shipping you want to know if a user buys something. Then you want to know what the

customer will buy and when the customer will buy it. Also, you want to know where the

order should be shipped to.

Buy prediction belongs to predictive analytics. Predictive analytics [7] includes a variety

of statistical and analytical methods used to develop models that predict future events

or behaviors. The shape of these predictive models depends on the behavior or event

they are predicting, but most predictive models calculate a score with the likelihood

the target behavior or event occurring. To create a predictive model data mining can

be used. Data mining is used to identify patterns, trends or relationships among the

data. These techniques are based on statistical methods like regression or time-series

models. These techniques allow to gain non-obvious knowledge. Application examples

are fraud detection in credit institutes [2] and predictive maintenance [6]. Predictive

maintenance connects information from di�erent devices and machines in real time to

improve maintenance processes by facility managers.

Buy prediction is assigned to the context of recommender systems. Recommender

systems attempt to predict the preference a user would give to an item. This information

can be used to make suggestions to the user. Therefore, collaborative �ltering and

content-based �ltering are mostly used. Collaborative �ltering searches users with the

same pattern of behavior like the target user and uses this information to predict the

behavior of the target user. Content-based �ltering searches similar items to items a user

likes. The buy prediction does not only aims to predict an interest in an item, but also,
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2 Buy Prediction

the action of purchasing an item. There are several questions that are currently being

addressed in buy prediction research.

Xia et al. [9] tried to bridge the gap and improved recommendation systems by explicitly

modeling consumer buying decision process and corresponding stages. They used a

multi-task learning model with long short-term memory networks (LSTM) to learn

consumer buying decision process. In this way, their model can capture user intentions

and preferences, predicts the conversion rate of each candidate product and makes

recommendations accordingly.

Bhagat et al. [1] presented their approach for repeat purchase recommendations at

Amazon. They wanted to recommend products from the purchase history of a customer

which he would likely buy again. They used the speci�c set of purchased products of a

customer for the recommendation.

This is a small insight into current research, which looks at other questions in buy

prediction than ours. That is why I now look at research that also deals with the data

set I use and that solves similar problems.

Recommender System Challenge

The Recommender System Challenge, also called RecSys Challenge, is a contest in the

context of the ACM Conference Series on Recommender Systems. In 2015 the assignment

was in the context of buy prediction. The given data was a sequence of click events

performed by some user during a typical session in an e-commerce website. The goal was

to predict whether the user is going to buy something or not, and if he is buying, what

would be the items he is going to buy. The task could therefore be divided into two sub

goals. Task one was to �nd out if the user is going to buy items in this session. The

second task was to �nd out if he buys what are the items he is going to buy.

The winner were Romov and Sokolov [8]. They described in their paper the winning

approach for the RecSys Challenge 2015. First, they described the training and test data

set. Each session is a sequence of click events with timestamp, item ID and category.

The objective function assigned the purchased items to the session. They noted that

sessions in training and test sets are not separated in time, although it is considered

good practice for recommendation problems to predict future events based on a training

set from the past. In their estimation, this leads to the fact that characteristics of time
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2 Buy Prediction

are very useful for the question. A buying rate was de�ned as the fraction of buyer

sessions in some subset of session and examined the buying rate in time. They found out

that users bought more often during midday than in the night hours, and more likely

on the weekend than during the week. Furthermore, the buying rates vary signi�cantly

among sessions with speci�c most clicked item. They noted that it is very important to

predict whether the user will buy at least one item, because the data set is unbalanced

and has only 5.5% sessions with buy events.

Therefore, Romov and Sokolov build a two-stage classi�er. One classi�er for the purchase

detection and one for the purchased item detection. They used two groups of features to

train the classi�ers. The �rst group of features described a session and the second group

described an item in a speci�c session. In the �rst group are features like the month of

the session start, the day of the session start and the session duration in seconds. In the

second group are features like item ID and the total number of clicks in the session for

the given item. The purchase detection classi�er uses only session features and the item

detection classi�er uses both groups.

When choosing the classi�cation method, Romov and Sokolov did not want to resort

to popular methods like XGBoost or ensemble in sklearn, because they must transform

their dozens of categorical features, e.g. by one-hot encoding. They used a MatrixNet

which is an implementation of gradient boosting over oblivious decision trees with careful

leaf values weighting based on their variance. The MatrixNet uses hash tables as base

learners for categorical features.

90% of the data was used for model training and 10% for model validation. Romov and

Sokolov took the validation data to �nd the best thresholds for the binary classi�cations.

For the winning approach, they optimize the item threshold by mean Jaccard similarity

and the purchase threshold by the competition score on the validation set. The purchase

detection classi�er achieves a AUC value of 0.85 on the validation set. It has 16%

precision and 77% recall for optimal thresholds. The item detection classi�er achieves

mean Jaccard measure of 0.765.

Cohen et al. [4] also took part at the contest. They achieved the 14th place in the

challenge's �nal leaderboard. First, they described the data and the patterns they found.

The most important �ndings were:

• buying events occur mainly between 6:00 am and 8:00 pm
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• buying events are most likely to occur on weekends rather than on weekdays, with

Tuesdays being the weakest day of the week for purchases

• if the item has been clicked on a few times in a session, the probability that the

item will be bought is high

• when users spent more time on an item in a session, the probability of buying this

item increases

• longer sessions lead to a purchase

This is only a selection of �ndings. Cohen et al. found a lot more with their data analysis.

This information was used to engineer new features. They also divided the features into

two groups. The �rst group called Features by Session (FS) provided various aspects

of a session. They started with 16 features and ended with a list of 13 features. They

used several feature selection algorithms (CfsSubset, OneR, InfoGain, and GainRatio)

and applied a simple voting mechanism to make their decisions. The second group of

features is called Features by Item in Session (FI). It provided various aspects on an

item in a speci�c session to describe if the item is going to be bought. They started

with 56 features and selected 22 features with the same feature selection process as for

FS. Before model training, they under sampled the majority class to create a balanced

training set. Given that the training data had 509,696 positive sessions, they randomly

sampled 509,696 negative sessions from the entire training data and used all of these

sessions as their training data.

Two di�ernet approaches were implemented. The �rst and easier approach was to classify

each item in a session as a buy or not. Cohen et al. denoted this approach as Classi�cation

of Item per Session Approach (CIPS). The strengths of this approach were that it requires

only one classi�er and that it takes advantage of the fact that the competition evaluation

improves more if you correctly predict the items than if you correctly predict the sessions.

FS and FI were used for model training with a balanced data set. They decided to use

a random subspace implementation from WEKA and used REPTree for model training.

REPTree is a fast decision tree learner that builds the tree using information gain and

pruning it using reduced-error. Random subspace models consist of multiple trees which

were constructed systematically by pseudo randomly selecting subsets of components of

the feature vector. They ran the random subspace for 50 iterations, each with a subspace

consisting of half of the 35 features.
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In the second approach Cohen et al. divided the challenge's task into two levels like

Romov and Sokolov [8]. In the �rst level they predicted buying sessions and predicted

the items that are going to be bought in these sessions in the next level. They called this

approach Two Level Classi�cation Approach (TLC). They trained the �rst model with

the FS on balanced data. The second classi�er was trained on the FI, but considered

only the sessions with purchases. They used the same algorithm and settings as in the

CIPS approach described.

By analyzing the predictions which generated by their two approaches Cohen et al.

noticed that the rate of the false positive classi�cation was very high and decided to

�lter the predictions. The rules they used were to increase the threshold on sessions with

one item to 0.6 and for sessions with more than four items to 0.6. With this solution the

TLC produced 597,453 points on the competition score, while CIPS produced 649,946

points. The CIPS approach performed better than the TLC approach. The �rst classi�er

of TLC performed less well than the second classi�er for item prediction. Cohen et al.

believed that the session classi�er could be improved. They compared the solution �les

of the two approaches and found that they di�er in terms of sessions and items predicted.

They wrote it implies that ensemble the two into one approach may improve the score.

3 Development Environment

I use the cross-industry standard process for data mining (CRISP-DM) from [3] for this

project. The subsections are phases of this process. I did not run through the deployment

phase, because it was not necessary for reaching the goals of this project.

3.1 Business Understanding

Objectives In this phase I only want to predict if a user is going to buy something or

not. I do not want to predict which items they will buy or when they will buy it.

The task is to build a model which predicts purchases on the yoochoose data with the

CRISP-DM steps. At the end a trained model with results and the pre-processing steps

should be available. In addition, it is expected that this implementation can be adapted

so that di�erent model procedures and pre-processing procedures can be tested. The

implementation of additional models is part of the following project. The following
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project will use the developed environment of this project and is based on the chosen

techniques of this project.

Situation I have some hardware requirements. The ML AG1 has hardware resources

at its disposal that are to be used in the environment (see Appendix A.1). The code

is written and tested on computers with two graphics cards. I have two of this work

computers. For longer running times, such as model training, the compute clusters can

be used with 10 graphics cards. On the work computers, execution of code is done

locally or in a docker container. On the compute clusters, I run the code in a docker

container. Using Docker [5] allows me to execute the code machine-independent. The

model techniques should support distributed computing, especially on graphics cards.

3.2 Data Understanding

Initial Data Collection The data I use for developing a buy prediction are the

datasets of the RecSys Challenge 2015. For the issue, I need the training data �les

yoochoose-clicks.dat and yoochoose-buys.dat. In the readme �le are some information

about the columns of the data sets. The test �le was only for the competition to have

a collective test set where the label is unknown. I use jupyter notebook and pandas to

analyze the data. Therefore, I write an own jupyter notebook for data collection. It

downloads the data �les which have the dat format, but they can be treated like csv

format �les. I load the click and buy data into pandas dataframes and set the data

types like datetime64 for the column Timestamp. Then I save the pandas dataframes as

parquet �les on our system. Therefore, I use the pyarrow package. Apache Parquet is a

columnar storage format which saves column information like the data types of pandas

dataframe columns.

Data Description The yoochoose-click data has about 33 million rows and 4 columns.

The pandas dataframe of the yoochoose-clicks needs 1.32 GB RAM. The yoochoose-buy

data has about 1.2 million rows and 5 columns. The pandas dataframe of the yoochoose-

buys needs 55.24 MB RAM. In Table 2 are the columns and their data types described.

I decide to set Session ID, Item ID and Category to the data type object, so that there is

no possibility to calculate with their values. It makes no sense to calculate mathematical

1ML AG is a working group on machine learning at the /* CREATIVE SPACE FOR TECHNICAL
INNOVATIONS */ (CSTI) laboratory at HAW Hamburg.

7



3 Development Environment

Yoochoose-clicks Yoochoose-buys

Rows 33,003,944 1,150,753

Columns 4 5

Memory usage 1.32 GB 55.24 MB

Table 1: Data shape

yoochoose-clicks

Name Data type

Session ID Object
Timestamp Datetime64
Item ID Object
Category Object

yoochoose-buys

Name Data type

Session ID Object
Timestamp Datetime64
Item ID Object
Price Float64
Quantity Int64

Table 2: Data types

operations such as an average on these columns, because this calculation is not meaningful

for a categorical value.

Data Exploration The yoochoose-clicks has about 9.2 million unique Session IDs,

therefore each Session ID has 3.6 clicks on average. The max value of clicks is 200. This

seems to be a hard limit, because 26 IDs reach this number of clicks. The yoochoose-clicks

has data from 2014-04-01 to 2014-09-30. Whereby, the most clicks were in august. The

users viewed 52,739 di�erent items in this period of time. They looked at the item with

the Item ID 643078800 147,419 times. It is the most considered item. There are 5,657

items which were only viewed once. The category "S" is the most common category. It

occurs 10,769,610 times, which is 33%. The category "S" indicates a special o�er. A

number between 1 to 12 indicates a real category identi�er. They are most common after

the category "S" and they each account for up to 5%. Then the brands follow. The value

of the category is the context of the click. If an item has been clicked in the context

of a promotion or special o�er, then the value will be "S". If the context was a brand,

then the value will be an 8-10 digits number. If the item has been clicked under regular
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category, i.e. sport, then the value will be a number between 1 to 12.

The yoochoose-buys has 509,696 unique Session IDs, therefore each buyer bought 2.3

distinct items on average. The session with most purchases has bought 144 distinct

items. 20.1% of the buyers bought 1 item and 11.5% bought 2 distinct items in a session.

The yoochoose-buys is also available for the same period of time as the yoochoose-clicks.

The most distinct items where bought in august. The item with the ID 643078800 is

bought the most in a session. It was bought in 15,203 sessions, which is 1.3%. The price

describes the sales price of the item, when the item was bought. The min value is 0,

but it is the representation of a missing value. The max value is 334,998, but there is

no information about the currency. The average price is 1,423. The quantity describes

how many items of one ID were bought in a session. The min value is 0, but it is the

representation of a missing value. The max value is 30 and the average quantity is 0.6.

The average is less than 1, because there are many missing values.

Data Quality Veri�cation In the yoochoose-clicks and yoochoose-buys, the missing

values were cleansed and replaced by 0. I did not �nd any missing values in Session ID,

Item ID and timestamp. In category are 49.5% missing values and in price and quantity

are 53.0% missing values. I did not detect any errors or data anomalies.

3.3 Data Preparation

Data Selection I decide to consider the entire data of yoochoose-clicks and yoochoose-

buys, because the available hardware is suitable for the size and the quality of the data

is su�cient.

Feature Engineering In this phase I use the features described in [4] instead of taking

time to develop a good feature set by our own. I implement 13 features and the label

to predict (see Table 3). The features are implemented in a python �le with tests of the

pytest framework. The �rst implementation of the feature extraction has a runtime of 2.5

hours on the entire data set. Every feature has its own python function for calculation.

Average time clicks, maximal time clicks, and maximal clicks item are the features which

need the most runtime. Therefore, I decide to improve the implementation of these three

items to reduce the runtime. They have in common to compute an aggregation value

like a maximum or an average with the pandas agg() function.
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Name Data type Description

Session time Float64 Session time in seconds

Average time clicks Float64 Average time between two
clicks in seconds

Maximal time clicks Float64 Maximal time between two
clicks in seconds

Day week Int64 Day of the week

Month year Int64 Month of the year

Time day Int64 Time during the day �
morning | afternoon | evening
| night

Number clicks Int64 Number of clicks

Maximal clicks item Int64 Maximal number of clicks on
one item

Percentage popular items Float64 Percentage of items in the
session that are popular
� I compute an overall
popularity score for each item
as #buys/#clicks.

Distinct items Int64 Number of distinct items

Average price Float64 Average price of clicked items

Percentage S Float64 Percentage of �S� category
from all categories of the items

Percentage items with category Float64 Percentage of items that have
category

Label Int64 0 if the user bought nothing
and 1 if the user bought
something

Table 3: Feature set
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Percentage factor Change 1 Change 2 Change 3

Average time clicks
To �rst version 0.56 0.72 0.15
To predecessor version 0.56 1.25 0.21

Maximal time clicks
To �rst version 0.55 0.72 0.15
To predecessor version 0.55 1.30 0.21

Maximal number clicks
To �rst version 0.99 1.14 0.24
To predecessor version 0.99 1.16 0.21

All features
To �rst version 0.72 0.87 0.21
To predecessor version 0.72 0.80 0.24

Table 4: Runtime change of feature extraction

The main objective is to parallelize the calculation of the three features on the processor.

The individual improvements build on each other. Each step uses the previously made

changes and not the �rst version of the implementation. The �rst change is to remove

the sort_values() function of pandas in average time clicks and maximal time clicks, and

only execute it once before the functions will be executed. This reduces the runtime by

almost 30%. The second change is to perform the aggregation by the apply function of

pandas on the dataframe. This does not improve the runtime of the three features and

the runtime extends again. However, an apply() function can be executed distributed,

but an agg() function cannot. The third change implements parallel execution with the

multiprocessing package of python. It uses data chunks to distribute the data on threads

and then applies the aggregation on this data chunks parallel. I implement it with the

three features. The Appendix A.2.1 shows the �rst implementation of average time clicks

and the Appendix A.2.2 shows the parallel version of average time clicks with all three

changes. The runtime has improved by 79 percent after the three steps.

The Table 4 shows the changes in the duration of the three features and the total duration

of all features. For this purpose, the changes to the �rst implementation and to the

previous step are considered. The changes are displayed with the percentage factor. I use

hardware con�guration 1 (see Appendix A.1) for the runtime measurement. After change

1, the runtime of average time clicks is 0.56 of the runtime of the �rst implementation.

After change 2, 0.72 of the runtime of the �rst implementation and after change 3, 0.15.

The next line shows the changes to the predecessor. From the �rst implementation to

change 1, the percentage factor is 0.56. From change 1 to change 2, the percentage factor

is 1.25, i.e. the runtime of average time clicks is 1.25 times longer with change 2 than

with change 1.

I also tried to improve the calculation of features by choosing a suited data type for
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each column in the click and buy dataset. Therefore, I used the categorical data type

from pandas library for the Session ID, Item ID and so on. However, the runtime of the

three features raised again, although this was done on the version with parallelization.

The runtime of average time clicks was 3 times higher than the version with the three

previously described changes. That is why I stayed with the previous data types (see

Table 2).

3.4 Data Understanding of Features

Data Description The feature data has about 9.2 million rows and 14 columns. The

pandas dataframe of the features needs 1.11 GB RAM. In Table 3 are the columns and

their data types described. All features are numbers.

Data Exploration The buyer class has 509,696 samples. The non-buyer class has

8,740,033 samples. Only 5.5% of the samples are buyers, this could be a problem for the

model training. Some modeling methods cannot learn to generalize from this data and

always predict the majority class. This model has an accuracy of 94.5%, but labels every

sample as a non-buyer.

The features are the knowledge for the model to learn the di�erences between the classes.

The correlation expresses the cohesion between the features. The correlation of the

features to the label is shown in table Table 5. The highest value is 0.19. The individual

correlations are low to the label.

Data Quality Veri�cation The features have no missing values. I calculated for all

Session IDs the features, because the number of rows is the number of unique Session

IDs.

3.5 Modeling

Modeling Technique Methods like collaborative �ltering and content-based �ltering

cannot be used. The data does not allow to collect user information beyond sessions or

use connections between items. I only have the Item ID and category, but cannot say if

two items are similar with this information. I need to predict a buy with the click stream

data. The click stream is represented with the calculated features as a state for every
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Feature Correlation

Session time 0.15

Average time clicks 0.05

Maximal time clicks 0.11

Day week 0.03

Month year -0.01

Time day -0.02

Number clicks 0.19

Maximal clicks item 0.18

Percentage popular items 0.06

Distinct items 0.13

Average price -0.03

Percentage S -0.01

Percentage items with category -0.01

Label 1.00

Table 5: Correlation to the Label

Session ID. I use multilayer perceptron as model algorithm and implement models with

Keras with TensorFlow backend.

Test Design I split the data into train and test data sets. I use 70% for model training

and 30% for testing. The data sets are divided equally for all models. They learn and

test on the same data. For evaluation, I use the accuracy and the loss. The expectation

is that the loss will decrease during training. But the accuracy should increase during

the training. Furthermore, I use a confusion matrix to visualize precision and recall.

Model Description I use multilayer perceptron for our models. All models have an

input layer with 13 dimensions for all developed features. I use 2 dense layers with 64

neurons and relu as activation function. Between these layers is a dropout. Then our

models have an output layer with one dimension for the predicted label. The activation

function of the output layer is a sigmoid function. I use 20 epochs and a batch size of

128. The loss function is binary cross entropy and the optimizer is rmsprop.

The �rst model is trained on 70% of input data. These are 6,474,810 samples with 362,650

buyers and 6,112,160 non-buyers. The second model is trained on 725,300 samples with

362,650 buyers and non-buyers each. I sample the data with RandomUnderSampler from

sklearn. It is an undersampling method for data balancing. The third model is trained on
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Actual class

Buyer Non-buyer
Absolute Relative [%] Absolute Relative [%]

Predicted class

Model I
Buyer 0 0.00 0 0.00
Non-buyer 147,046 5.30 2,627,873 94.70

Model II
Buyer 96,512 3.48 608,733 21.94
Non-buyer 50,534 1.82 2,019,140 72.76

Model III
Buyer 91,231 3.29 530,552 19.12
Non-buyer 55,815 2.01 2,097,321 75.58

Table 6: Confusion matrix

12,224,320 samples with 6,112,160 buyers and non-buyers each. I generate new data for

buyers with SMOTE from sklearn. It is an oversampling method for data balancing.

Model Assessment The �rst model does not generalize well. It only predicts non-

buyers, see Table 6. It has not learn the di�erent classes from the data. It is not useful

to look only at the accuracy which is 94.7%. The data set is unbalanced, and the mayor

class is 94.5% of all data. Therefore, I consider the measures like recall and precision,

see Table 7. The recall is 0, because the buyer class is never predicted.

Model II and Model III have less accuracy than Model I, but they predict the buyer

class. They learn something from the data. Recall or sensitivity is the proportion of real

positive cases that are correctly predicted positive. In our case it is how often the buyer

class is correctly predicted from all buyer cases. A value near 1 means that I recognize

the buyers well.

Precision or con�dence denotes the proportion of predicted positive cases that are correctly

real positives. In our case it is how often the buyer class is correctly predicted from all

predicted buyer cases. A value near 1 means that I can distinguish the buyers well from

the non-buyers.

Both models recognize the buyers well, but they do not distinguish well between the two

classes. One possibility is that the features are not good enough to distinguish the two

classes well. In addition, the model may have inappropriate parameters, e.g. too few

layers or neurons. Both data balancing methods perform equally well with the data and

model procedure.
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Accuracy Precision Recall F1 score Jaccard index

Model I 0.95 - 0 - 0

Model II 0.76 0.14 0.66 0.23 0.13

Model III 0.79 0.15 0.62 0.24 0.13

Table 7: Metrics of models

Figure 1: Development environment for buy prediction models

3.6 Evaluation

The objectives were achieved. An environment with the desired requirements was implemented.

In the following, the implemented environment is summarized, and which technologies

were used is shown. In the Data Selection module, a jupyter notebook was implemented

to load data to pandas and saved it to parquet �les. In the Data Understanding phase,

a jupyter notebook for the clicks and purchases was implemented, and one notebook

for understanding the features with pandas and matplotlib. In the Data Preparation, I

used python and pytest to calculate features and the label of the clicks and purchases.

In the Modeling phase I implemented three models with Keras. I used matplotlib and

scikit-learn to generate evaluation measures. I produced log data of model training and

saved the weights of the best model of each training phase. The individual modules can

be exchanged or adapted.

I did without an automatic processing line, because the data basis does not change

and the implementation of the features and/or the models changes depending on the

research question. However, it is not necessary to recalculate the features with each

15



4 Conclusion

model training. The modules can be executed manually on the PC or via a docker

container on hardware con�guration 1 (Appendix A.1). It is possible to run the modules

on hardware con�guration 2 (Appendix A.1) with a docker container or on any other

PC.

Thus, there is an environment for further experiments that meets the requirements. It

runs on the desired systems and uses their available resources. I have gone through the

CRISP-DM and created �rst buy prediction models.

4 Conclusion

Creating an environment for experiments for machine learning projects is something very

practical and not scienti�c. I did not �nd any suitable literature and therefore oriented

myself on CRISP-DM and implemented it practically for my application. In this project,

I used the work of Cohen et al. [4] as orientation, and the �ndings were used to test the

environment. The goal of the project was to build an environment for further experiments

and not to create the best model for buy prediction. These experiments will follow in the

next project and di�erent methods to create features will be implemented in the resulting

environment and compared with each other.
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A Appendices

A.1 Hardware Appendix

Those are the hardware resources of the ML AG at HAW Hamburg I used in this project.

There are two computers with the following equipment.

Con�guration 1:

• RAM: 64 GB

• CPU: Intel Core i7 CPU @ 4.2 GHz with 8 threads

• GPU: 2 x GeForce GTX 1080ti

Furthermore, there are two compute clusters with following equipment.

Con�guration 2:

• RAM: 396 GB

• CPU: 2 x Intel Xeon E5-2697V4 @ 2.3 GHz with 36 threads

• GPU: 10 x Nvidia Quadro P6000

A.2 Feature Engineering: Parallelized Execution

A.2.1 Feature Calculation

This is my �rst implementation of the feature average time clicks with Python. For each

session an average of the di�erence between two clicks is calculated in seconds.
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A Appendices

def average_time_between_two_clicks ( d f_c l i c k s ) :

s e r i e s = d f_c l i c k s . groupby ( [ ' S e s s i on  ID ' ] ) . \

agg ({ 'Timestamp ' : lambda group : group . \

sort_values ( ) . d i f f ( ) . mean ( ) } )

s e r i e s [ 'Timestamp ' ] = round( s e r i e s [ 'Timestamp ' ] . \

dt . tota l_seconds ( ) , 2)

s e r i e s . f i l l n a ( va lue=0, i np l a c e=True )

return s e r i e s [ 'Timestamp ' ]

A.2.2 Feature Calculation with Parallelization

This is the parallel version of the feature average time clicks with three major changes

to the �rst implementation. The sort_values() function is no longer called in the

method, but a sorted dataframe of the clicks is passed. So that this only happens at

one point in the source code and not again and again in the methods. An apply()

is introduced, because apply() can be parallelized. Here it can be found in the method

func_group_apply_avg_time(). The apply() calls the method with the agg() to calculate

the average of the di�erences. Here it is the method group_function_avg_time(). The

data chunk column divides the data set into di�erent parts. The method apply_parallel()

is used to parallelize the apply() per data chunk and execute it on the available threads

in parallel.

def average_time_between_two_clicks ( d f_c l i c k s ) :

d f_c l i c k s [ "data_chunk" ] = d f_c l i c k s [ " Se s s i on  ID" ] . \

astype ( ' in t64 ' ) . \

mod( cpu_count ( ) ∗ 1000)

s e r i e s = app ly_para l l e l ( d f_c l i c k s . groupby ( "data_chunk" ) , \

func_group_apply_avg_time )

s e r i e s . f i l l n a ( va lue=pd . Timedelta ( ' 0 days ' ) , i np l a c e=True )

return round( s e r i e s . dt . tota l_seconds ( ) , 2)

def group_function_avg_time ( group ) :

return group . d i f f ( ) . agg ( 'mean ' )
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A Appendices

def func_group_apply_avg_time ( df ) :

return df . groupby ( [ ' S e s s i on  ID ' ] ) [ 'Timestamp ' ] . \

apply ( group_function_avg_time )

def app ly_para l l e l ( df_grouped , func ) :

with Pool ( cpu_count ( ) ) as p :

r e t_ l i s t = p .map( func , \

[ group for name , group in df_grouped ] )

r e t_ l i s t = pd . concat ( r e t_ l i s t )

return pd . S e r i e s ( r e t_ l i s t )
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