
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department of Computer Science

Fakultät Computer Science
Studiendepartment Computer Science

Master Thesis

Florian Johannßen

Nao Robots in the Cloud - An Interface to Transform and
Execute Abstract Plans

Florian Johannßen
Nao Robots in the Cloud - An Interface to Transform and

Execute Abstract Plans

Master thesis submitted in terms of
the degree course Computer Science
at the Department of Computer Science
Faculty of Engineering and Computer Science
Hamburg University of Applied Sciences

Supervisor: Prof. Dr. rer. nat. Gunter Klemke
Co-Supervisor: Prof. Dr. rer. nat. Kai von Luck

Submitted on 10.02.2014

Florian Johannßen

Thema der Master Thesis
Nao Robots in the Cloud – An Interface to Transform and Execute Abstract Plans

Stichworte
Knowledge Sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System, Plan Sha-
ring

Kurzzusammenfassung
Im Rahmen dieser Masterarbeit wird das Thema Cloud Robotics behandelt. Dabei wird
insbesondere die Möglichkeit erforscht, wie Roboter mithilfe des Internets abstrakte Pläne
untereinander austauschen und verarbeiten können.
Es wurde eine Schnittstelle entwickelt, die es dem humanoiden Roboter Nao ermöglicht,
generische Roboterpläne aus einem Cloud Service herunterzuladen und auszuführen, um
von den Erfahrungen anderer Roboter profitieren zu können. Dazu wurden mehrere Experi-
mente durchgeführt, um die Benutzbarkeit und Flexibilität dieser abstrakten Schnittstelle zu
demonstrieren.

Florian Johannßen

Title of the paper
Nao Robots in the Cloud – An Interface to Execute Abstract Plans
Keywords
Knowledge sharing, Cloud Robotics, Nao, RoboEarth, Robot Operating System, Plan Sha-
ring

Abstract
This master thesis investigates the topic of Cloud Robotics, especially to share knowledge
among robots via internet technologies. It implements an interface to execute high-level
commands on the humanoid Nao platform that improves the learning mechanisms of the
robot.
Through this interface, Nao robots are able to connect themselves with a cloud service to
download and process high-level plans which can be generated by different robot platforms.
Thereby, this approach permits Nao robots to be no longer on their own as well as to
benefit from the experiences of other robots. Final experiments verify the usability of the Nao
interface.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Reader‘s guide . 3

2 Fundamentals 4
2.1 Cloud Computing . 4
2.2 Robot Operating System . 5
2.3 Nao robot . 8
2.4 NaoQi Software Development Kit . 9

3 Analysis 10
3.1 Scenario: Household assistance through internet-enabled robots 10
3.2 Remote-brained robots . 11
3.3 Cloud Robotics . 13

3.3.1 Knowledge sharing for robots . 14
3.3.2 Outsourcing compute-intensive tasks 14

3.4 Challenges . 15
3.5 Related Work . 19

3.5.1 RoboEarth . 19
3.5.2 A knowledge sharing Peer-To-Peer system 22
3.5.3 RobotShare . 23
3.5.4 DaVinci . 23
3.5.5 Cloud-based robot grasping . 25
3.5.6 MyRobots.com . 26
3.5.7 Nao application store . 28
3.5.8 Smartphone robots . 28
3.5.9 3D CAD browser . 29

3.6 Objectives and requirements . 30
3.6.1 Use cases . 32
3.6.2 Functional requirements . 33

CONTENTS v

3.6.3 Conclusion . 33

4 Design 34
4.1 Nao interface . 35
4.2 Approaches of communication . 40

4.2.1 Intelligent gateway . 41
4.2.2 Transparent gateway . 43
4.2.3 Without Gateway . 46
4.2.4 Conclusion . 48

5 Realization 49
5.1 Interface . 50

5.1.1 ROS middleware . 50
5.1.2 Exploring engine . 51
5.1.3 Nao platform . 52
5.1.4 Transformation engine . 53

5.1.4.1 Nao-ROS-stack . 53
5.1.4.2 CRAM Plan Language . 54
5.1.4.3 Process modules . 55

5.2 Gateway . 62

6 Experiments 63
6.1 Manipulation process module . 64
6.2 Navigation process module . 66
6.3 Speech process module . 66
6.4 Downloading an abstract plan . 67
6.5 Résumé . 69

7 Evaluation 70

8 Conclusion 72
8.1 Summary . 72
8.2 Outlook . 73

Chapter 1

Introduction

1.1 Motivation

The internet has become one of the most important communication media. It provides the
opportunity to publish and retrieve knowledge globally. Humans are able to perform un-
known tasks by asking the internet community for support in different situations. There are
user manuals for almost any challenge in everyday life. Through the internet we have not to
try out everything on our own. Instead, we benefit from the experiences of others by asking
the community. Like humans, robots are also limited in their functionality, knowledge and
processing power.
As presented by the International Federation of Robotics 1 IFR (2013), in 2012, about 3
million service robots were sold including robots for household, entertainment, education
and research as well as those for handicap assistance. IFR (2013) has predicted that be-
tween 2013 and 2016 further 22 million service robots will be delivered to the end user. This
number includes almost 15.5 million robots for domestic tasks like vacuum cleaning, window
cleaning, lawn-mowing and other types. The amount of toy robots will be probably 3.5 mil-
lion. Besides, about 3 million robots will be delivered for education and research during the
period 2013-2016. Finally, only about 6400 robots will be sold for elderly and handicap as-
sistance, but will be increased substantially within the next 20 years. Related to this forecast,
our household and our life will be more depending on service robots during the next three
years. That implies that robots have to operate in more dynamic and complex environments
than in structured and predictable industrial factories. Since many robots try to solve similar
challenges like grasping objects, navigating in household environments or detecting objects it
would be helpful if they could support each other by sharing new-learned skills. The question
is, if the internet can be used to connect this huge amount of robots with each other.

1International Federation of Robotics: http://www.ifr.org

http://www.ifr.org

CHAPTER 1. INTRODUCTION 2

Related to:

“In the first movie of the Matrix trilogy, there is a scene where Neo points to a
helicopter on a rooftop and asks Trinity, “Can you fly that thing? “ Her answer:
“Not yet.“ Then she gets a pilot program uploaded to her brain and they fly away.“
Guizzo (2011)

For humans, with our non-upgradeable brains, the possibility of acquiring new skills by con-
necting our heads to a computer network is still science fiction. Not so for robots. Nowadays,
companies like Aldebaran Robotics2 and Willow Garage3 are able to deliver wireless capable
and programmable robots with abstract interfaces. The specific tasks, such as inverse kine-
matic, voice recognition and path planning are supported by delivered Software Developer
Kits.
Thus the preconditions have been created to connect robots with the internet which provides
many benefits and applications.

• It permits robots to communicate with each other to improve their learning mechanism.

• Robots are able to download new skills from the internet to solve unknown tasks in
foreign environments.

• Robots can offload compute-intensive tasks to remote servers.

• Manufacturers are able to develop cheaper and smarter robots.

• Internet-enabled Robots are no longer developed for one specific task. Household
robots can also work in elderly residences without exchanging the software.

The target of this master thesis deals with the realization of the still unexplored approach of
knowledge sharing for robots via internet technologies. This work investigates the idea of
how a robot is able to perform an unfamiliar task by downloading new knowledge from the
internet. An interface will be created to transform and download abstract robot programs
inside a plan sharing system from the internet. Thereby, this master thesis enables robots to
download commands which could be generated by another robot type with different hardware
capabilities.

2http://www.aldebaran-robotics.com
3http://www.willowgarage.com

CHAPTER 1. INTRODUCTION 3

1.2 Reader‘s guide

The reader can work himself through this master thesis in a linear fashion, while the in-
terested reader may also decide to concentrate on single chapters. This master thesis is
organized in the following chapters.

Chapter 2 represents the basic terms and technologies, which are relevant for this work.

Chapter 3 analyses the topic Cloud Robotics by introducing a scenario and related
projects. It aims to demonstrate, which opportunities exist to create knowledge sharing
among robots via cloud services. Furthermore, it shows how this master thesis differs from
the presented projects as well as defines use cases and requirements to specify the objec-
tives of this work.

Chapter 4 designs an interface for the Nao robot platform to communicate with a cloud ser-
vice to transform and execute high-level plans. Besides, it introduces several communication
approaches to create a plan sharing system including the Nao interface. Finally a conclu-
sion reveals the advantages as well as disadvantages and argues why the chosen concept
is implemented in the realization chapter.

Chapter 5 demonstrates the implementation of an interface permitting Nao robots to trans-
form and execute high-level commands. A plan sharing system is introduced, which allows
Nao robots to download high-level plans by accessing the web service RoboEarth.

Chapter 6 shows the execution of some experiments to evaluate the correctness and ro-
bustness of the Nao interface.

Chapter 7 draws a résumé about the master thesis, which challenges were investigated
and how they were solved. Finally, an outlook shows opportunities to continue with the work
of this master thesis.

Chapter 2

Fundamentals

This chapter introduces the basic technologies in context of this master thesis.

2.1 Cloud Computing

The following definition of Cloud Computing by the National Institute of Standards and Tech-
nology (NIST) Mell and Grance (2011) is taken into account.

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action."

The cloud model is composed of five essential characteristics: on-demand self service,
broad network access, resource pooling, rapid elasticity, measured service. Mell and Grance
(2011) defined the following three common types of service:

Software as a Service allows the consumer to access the provider’s applications running
on a cloud infrastructure. The applications are accessible from various client devices ei-
ther through a thin client interface, such as a web browser or via a desktop interface. The
consumer does not control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities.

Platform as a Service permits the consumer to deploy his own applications onto the in-
frastructure of a cloud service provider. Furthermore, the consumer does not manage the
underlying cloud infrastructure, but has control over his own deployed applications to accom-
modate the configuration settings to his own preferences.

CHAPTER 2. FUNDAMENTALS 5

Infrastructure as a Service provides the consumer to provision processing, storage, net-
works, and other fundamental computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating systems and applications. The con-
sumer has control over operating systems, storage, and deployed applications; and possibly
limited control of select networking components.

2.2 Robot Operating System

ROS represents a robotic-specific middleware which is developed as part of the STAIR4

project as well as the Personal Robots Program5 at Stanford University in cooperation with
the robotic manufacturer Willow Garage Quigley et al. (2009a). Since 2008, Willow Garage
supports the further development of ROS. Nowadays, this framework is used by hundreds of
research groups and companies in the robotics industry. ROS brings along a quickly grow-
ing community. This framework provides a set of tools to support many different common
robotic problems like path planning, collision detection, image processing and many more.
For example, with the aid of ROS, it is possible to command the robot to walk from place A
to place B without thinking about which walking algorithm will be used. This meta operating
system is extendable with modules, called stacks. There are modules for many robots like
Nao, TurtleBot or PR2.
As described by Martinez and Fernández (2013), ROS-projects are structured in a special
way, called stacks. A stack can be a wrapper of a specific robot for the ROS middleware but
also a more generic utility library like navigation or image processing. Furthermore, stacks
organize the source code by using packages where each of them provides one particular
functionality. Through this structuring, ROS allows developers to implement robotic code
which is reusable.
In ROS, processes are called nodes which are organized in a Peer-to-Peer network without a
central point of communication. Any node in the system can access this network as well as is
able to interact with other processes. Nodes are processes, where computation can be per-
formed. Usually, a system includes several nodes to control different functions. Concerning
performance, it is recommended to have many nodes providing only one single functionality,
rather than a large node processing everything in the system. Nodes are written with an
ROS client library which is listed in section 2.2. The master node provides name registration
and lookup for all custom nodes. Without the master node, it is not possible to communicate
with nodes, services, messages, and others. Figure 2.1 shows an overview about the most
important concepts.

4STanford Artificial Intelligence Robot: http://stair.stanford.edu/
5http://personalrobotics.stanford.edu/

http://stair.stanford.edu/
http://personalrobotics.stanford.edu/

CHAPTER 2. FUNDAMENTALS 6

Figure 2.1: Core concepts of the ROS framework Martinez and Fernández (2013)

Client Libraries

ROS provides libraries in several programming languages for the implementation of nodes
and inter-process communication6.

• Main libraries

– rospy is a pure Python client library for ROS and is designed to provide the ad-
vantages of an object-oriented scripting language to ROS. The design of rospy
favors implementation speed (i.e. developer time) over runtime performance so
that algorithms can be quickly prototyped and tested within ROS.

– roscpp (C++) presents the most spreaded client library which is mainly used to
implement high-performance functionality in ROS.

– roslisp is a client library for writing ROS nodes in Common Lisp. The library is
written to support quick scripting of nodes, and interactive debugging of a running
ROS system.

As Woodall (2013) has described, ROS also provides experimental support for the program-
ming languages Java, Lua, EusLisp, R as well as some others.

6Describes the problem of how data can be exchanged among multiple threads and processes

CHAPTER 2. FUNDAMENTALS 7

Communication between nodes

Generally, nodes communicate with each other through messages. A message contains data
which transfers information to other nodes. ROS has several types of standard messages
and allows to develop custom types of them.
ROS provides three kinds of patterns for inter-process communication. The first one is to
subscribe or to publish data on ROS-Topics. When a node is sending data, it is publishing
this information on a topic. Nodes can receive messages from other nodes simply by sub-
scribing to the topic. For subscribing, it is not necessary that a publishing node exists. This
permits developers to decouple the production and the consumption. It is important that the
name of the topic must be unique to avoid name conflicts. These message streams repre-
sent an URL-like approach to transfer information among nodes.
Using services represent the second opportunity to provide an interaction among nodes.
When a node includes a service, all the nodes can communicate with it.
The actionlib package provides a standardized interface to support usual client server com-
munication. Through this library it is possible to create a client which sends so-called ROS-
Goals to a server to perform tasks with longer computation duration like face detection or
laser scanning. The ActionLib toolbox provides mechanisms to cancel the request during
the execution or get periodic feedback about the progress of the request. This is not possible
by using the publish/subscribe approach or services.

CHAPTER 2. FUNDAMENTALS 8

2.3 Nao robot

The Nao robot is developed by the worldwide leading manufacturer of humanoid robots Alde-
baran Robotics and is on the market since 2008. Nao is the most applied humanoid robot in
education and research. Since 2011, Aldebaran Robotics has announced the newest version
of the robot, called Nao Next Gen.

Figure 2.2: Nao Next Gen (Nao (2014); Nao (2012))

The Nao robot is equipped with a 1,6 GHz Intel atom processor, two HD cameras, four
mircophones, two loudspeakers as well as a WLAN interface. Besides, Nao provides several
sensors to perceive its environment. The Nao robot provides a battery duration of 1,5 hours.
The CPU is located in the head of the robot. The detailed documentation of the Nao platform
can be found under Aldebaran-Robotics (2013a).

CHAPTER 2. FUNDAMENTALS 9

2.4 NaoQi Software Development Kit

The humanoid robot Nao provides the NaoQi SDK7. This framework includes a program-
ming interface to develop applications in different programming languages like C++, Java or
Python. With the aid of NaoQi, developers are able to control the Nao hardware components.
The core of the NaoQi SDK represents the main broker which acts as a server running on a
linux kernel inside the “head“. This framework includes several modules to access the joints,
face recognition and other functions. The main broker decides which modules should be ex-
ecuted. It is possible to execute source code onboard the robot by loading programs directly
into the “head“. Besides, the NaoQi SDK permits developers to create application running
remotely on a laptop. Figure 2.3 shows the main broker with most of the Nao modules. To
get further information see the documentation Aldebaran-Robotics (2013b)

Figure 2.3: NaoQi SDK Aldebaran-Robotics (2013b)

7Software Developer Kit

Chapter 3

Analysis

This chapter analyses the topic of Cloud Robotics. It starts with a scenario giving an insight
into possible use cases which will be considered in this master thesis. It introduces initial
ideas as well as applications like offloading compute-intensive tasks or sharing knowledge
among robots. Mainly, this chapter presents an overview about current projects and demon-
strates opportunities how to create Cloud Robotics-related systems by discussing common
challenges. Finally, use cases and functional requirements concrete the objectives of this
work.

3.1 Scenario: Household assistance through internet-
enabled robots

Related to Weiser (1991), this scenario is based on the research topic of Ubiquitous Com-
puting. This paradigm means that all computing devices are fully integrated into human
environments. Sally is a 85 years old woman who lives alone in an apartment, including a
kitchen, bathroom, bedroom and living room. Because Sally is very forgetful, a sensor sys-
tem via RFID8 chips is integrated into her apartment to detect the positions of objects like
reading glasses or remote control. Since Sally is not able to solve everyday tasks like cook-
ing, washing dishes or setting the table for dinner, she is a proud owner of a new humanoid
service robot which is equipped with two legs, two arms with grippers, a head including
cameras, loudspeakers and microphones as well as several sensors for collision detection
and Wi-Fi access. Sally has bought this robot to get a helping hand for her household. It
is assumed that the robot has information about the environment and is able to navigate in
Sally´s apartment. The robot is connected with the sensor system to receive the location
of the objects. The robot provides an abstract programming interface to be controlled in a
high-level way.

8Radio-Frequency Identification

CHAPTER 3. ANALYSIS 11

It is also equipped with software to support path planning, localization, perception and ma-
nipulation. Thus, basic functionality is already provided on the robot. The robot is also
connected with the WLAN router of Sally‘s apartment.
So, if Sally commands the robot to bring her the remote control, the robot is able to connect
to a service via the internet to receive instructions and information. If another robot has al-
ready solved such kind of task in a similar environment and has published its abstract plan
on the internet, Sally‘s robot can download the program. Note that this information could
be generated by another robot with different hardware capabilities. The downloaded plan is
composed of several abstract actions like move to a position or grasping the remote control
which the robot can execute as well as meta information about the remote control, like the
physical properties. Besides, the robot gets the location of the remote control through asking
the sensor system. Based on these new skills the robot is able to bring the remote control to
Sally.
Even the seeming simplest tasks such as bringing Sally her remote control require complex
decision making. The robot has to decide where to stand in order to reach the object, which
hand to use, which grasp policy to apply, where to grasp, how much grasp force to apply, how
to lift the object, how much force to apply to lift it and how to hold it. Moreover, if other robots
already have answered these questions, it would be efficient for Sally‘s robot to process this
information.

3.2 Remote-brained robots

The consideration to connect robots with remote servers has already been researched in the
1990s by Inaba (1993). Inaba tried to minimize the needed hardware resources of the robot.
It was very difficult to execute experiments with robots in a real environment, because they
had to carry along heavy computers for computation. Inaba‘s approach solved this problem
by designing a robot system which separates the brain from the body as shown in figure
3.1. It opens the way to access intelligent software systems from the brain by different robot
bodies through radio links.
As presented in Figure 3.1, the brain-body-interaction takes place via the Brain-Body Inter-
face. The body is equipped without a computer. Instead, it provides sensors for perceiving
and actuators for operating in the real environment. Besides, it includes transmitters to send
data to the particular subsystem. The vision subsystem receives video signals for encod-
ing and the sensor subsystem gets sensor signals for analyzing. As shown in figure 3.1,
the interface forwards this information to the brain which provides parallel processing via a
powerful transputer9 network. The brain is outsourced to the so-called mother environment.
This software receives all sensor information. After processing, it sends the computed output
back to the Brain-Body Interface to control the robot.

9Microprocessor architecture intended for parallel computing

CHAPTER 3. ANALYSIS 12

The control subsystem delegates commands to the signal receiver of the body. The brain
benefits from the evolution of the mother environment which means if the mother is upgraded
to a more powerful computer the brain gains more computation power.
Note that different robots access the mother environment with the same wireless interface.
The performance of the wireless interface between the brain and the body is the key in the
remote-brained approach. Inaba et al. (1994) investigated how to design a lightweight me-
chanical animal as a remote-brained robot which outsourced a powerful vision system to the
mother environment. The implemented vision system inside the brain of the robot provides
dynamic and adaptive interaction capabilities with humans. Experiments have shown that
this approach permits free movement of mechanical animals by wireless interaction with the
remote brain.

Figure 3.1: Description of the remote-brained robot approach Inaba (1993)

Furthermore, Inaba et al. (2000) also developed a platform for robotic research based
on the remote-brained approach presented in figure 3.1. It shows different types of robot
bodies which interact with the brain via radio links. Besides, Inaba et al. (1997) designed
a humanoid robot system with a remote brain as well. The body of the biped robot was
equipped with several sensors, actuators and a power source. The brain provides real-
time parallel processing as well as a software mechanism for sensor monitoring and motion
control. Related to the following quote:

“For robotics research, this approach opens the way to use of large-scale pow-
erful parallel computers." Inaba (1993)

These works have established the way to connect robots with the cloud.

CHAPTER 3. ANALYSIS 13

3.3 Cloud Robotics

Kuffner (2011) and Quintas et al. (2011) have introduced the topic Cloud Robotics. This
idea provides a physical separation between the hardware and software components of the
robot. The conventional hardware devices of a robot, such as sensors, actuators, cameras
and loudspeakers are still on the robot. The difference to the usual approach, which designs
the software on the robot, is that the brain of a robot is outsourced to the cloud. Related
to the idea of Inaba (1993), the mother environment is similar to the cloud. Since wireless
communication is established as a high-performance and secure communication medium
which provides huge bandwidths, Cloud Robotics pushes the idea of Inaba (1993) with the
aid of unbounded computation power on demand to the next level. Besides, web services
with smart interfaces as well as standard protocols like SOAP10 and HTTP11 permitting an
easier connection to remote servers, compared to the research of Inaba. According to the
next quote:

“What if robots and automation systems were not limited by onboard computa-
tion, memory, or programming? This is now possible with wireless networking
and rapidly expanding Internet resources. " Kuffner (2011)

Cloud Robotics allows robots to offload compute-intensive tasks like image processing, voice
recognition and even downloading new skills instantly. Robots communicate with the cloud
via standard protocols like HTTP or HTTPS12. This approach provides the following two
possible usages.

10Simple Object Access Protocol
11Hypertext Markup Language
12Hypertext Markup Language Secure

CHAPTER 3. ANALYSIS 14

3.3.1 Knowledge sharing for robots

The idea of knowledge sharing aims to exchange information among heterogeneous robots
as presented in figure 3.2. Robots are heterogeneous if they have different capabilities and
hardware resources. Homogenous means that robots belong to the same platform. Quintas
et al. (2011) described that robots benefit from the experiences of others and improve their
learning mechanism through this concept. They investigated the possibility of how cloud-
enabled robots upload recently new-learned information (see figure 3.2, part a) to the cloud.
Furthermore, robots are able to download knowledge from the cloud (see figure 3.2, part b)
to solve tasks in foreign environments.

Figure 3.2: Knowledge sharing for robots

Cloud-connected robots are not longer developed for a few specific tasks, as it used to
be in the past. If a robot shall perform an unknown task, this design approach allows the
robot to download the required new knowledge.

3.3.2 Outsourcing compute-intensive tasks

Cloud Robotics also provides the possibility to offload heavy robotic tasks, like speech recog-
nition, face detection, inverse kinematic, grasping policies, image processing, SLAM13 algo-

13SimultaneousLocalizationandMapping

Simultaneous Localization and Mapping

CHAPTER 3. ANALYSIS 15

rithm and many more to remote servers. These services provide massive parallel com-
putation on demand for cloud-enabled robots. Thanks to this idea robots don‘t have to be
equipped with heavy computation power and big power sources that gives manufacturers the
opportunity to construct cheap, smart and lightweight robots as shown in subsection 3.5.8.

3.4 Challenges

The concept of Cloud Robotics brings along many problems which have to be solved by de-
velopers of cloud-based robotic systems. This section demonstrates opportunities to counter
typical challenges for developers who want to create platforms either to provide efficiently im-
plemented robotic algorithms as a service or systems for sharing robotic-specific knowledge.

Communication

Once computation and knowledge is swapped out to remote servers, the communication
between robots and a cloud service plays a very important role, related to performance and
functionality in cloud-based robotic systems. It is necessary to decide which application layer
protocol has to be used. The appropriate communication protocol depends on the cloud ser-
vice. If a cloud service provides a mail server, the robot has to interact via an application
layer protocol like SMTP14. FTP15 will be used to transfer files between the client and the
cloud service. The most significant application layer protocol represents HTTP16 which is
used to transport HTML documents for layout definitions and content in different description
formats like XML17 , JSON18 or plain text between client and server. A cloud service which
is accessible via HTTP, is called web service. To send robotic-specific information to a cloud
service, it is useful to encode these data as XML or JSON format which can be communi-
cated by support of HTTP. On the one hand, HTTP is a none-real-time protocol. Therefore, a
robot-cloud communication with HTTP is not useful for robots which have to operate in time
critical environments where latencies are not permitted. On the other hand this protocol is
very useful to send knowledge of heterogeneous robots in XML or Json format to a cloud ser-
vice because of its standardization. Therefore, every internet-enabled robot platform which
provides a software developer kit allows to establish a HTTP-Connection to a cloud service.
Another benefit of using HTTP is that the transferred data will not be blocked by a firewall.
Finally, the Web RTC19 project permits a real time communication for web browsers which is
supported by Google Chrome, Mozilla Firefox and Opera.

14Simple Mail Transfer Protocol
15File Transfer Protocol
16Hypertext Markup Language
17Extensible Markup Language
18JavaScript Object Notation
19Web Real-Time Communication: http://www.webrtc.org

http://www.webrtc.org

CHAPTER 3. ANALYSIS 16

Heterogeneity of robots

Probably the hardest challenge in this research area is to try knowledge sharing among
heterogeneous robots which are equipped with different hardware properties as well as other
capabilities. The monkey and banana problem is a popular challenge in artificial intelligence.
A monkey has to reach a bunch of bananas which is fixed at the ceiling. The monkey is
equipped with a chair and a stick to reach the bunch. This is a common planning problem
where the monkey has to find the ideal sequence of instructions to solve this task. Related
to knowledge sharing for robots, if a robot wants to share its ideal plan with a heterogeneous
robot, it might be that this plan is not useful for another robot. To solve this challenge,
intelligent reasoning mechanisms are needed to decide if a plan is practicable. Besides, a
biped robot performs tasks in another way than a drone or a wheeled robot. Furthermore,
through different hardware equipment and capabilities, heterogeneous robots are not able
to communicate directly with each other. A middleware can assist to abstract from the robot
specific hardware properties. Such an abstraction layer like ROSQuigley et al. (2009b), Yarp
Fitzpatrick et al. (2008), Orocus Smits et al. (2008) and Player Gerkey et al. (2003) hides
and encapsulates all robotic-specific capabilities like how the motion component of a robot
moves the arm. With the aid of a middleware it is possible to instruct the robot to move the
arm to a specific position in an abstract way without thinking about how the robot executes
this task.

Knowledge representation

Moreover, knowledge which shall be exchanged among different robot platforms needs to
be defined in a standard semantic representation, which every robot is able to process.
A knowledge description language is required to provide robots with all information they
need from the knowledge base. Earlier research on knowledge representation for actions
or objects usually did not deal with this kind of meta-information, but rather focused on the
representation of the information itself, for example in Hierarchical Task Networks Kutluhan
et al. (1994) and related languages for plan representation Myers and Wilkins (1997) or
the Planning Domain Definition Language developed by Ghallab et al. (1998). Exchange
formats like the Knowledge Interchange Format KIF by Genesereth and Fikes (1992) are
very expressive and generic languages, but have limited reasoning support. In particular, a
representation languages has to provide techniques for describing:

• Actions and object positions inside an environment

• Meta-information about physical properties of objects

• Self-models of a robot’s components which describes its capabilities

CHAPTER 3. ANALYSIS 17

Knowledge reasoning

Common reasoning mechanisms validate a plan if the robot already has all information which
is needed to execute a specific task successfully. Thereby, inference systems are required
which give a robot helpful advices how to handle plans with missing components.

Robot descriptions

The next challenge describes the problem of the gap between high-level plans like „Pick up
the cup with the right hand” and the corresponding low-level robot commands which need
to know the physical properties of the cup object. To fill this gap, a description language is
required which specifies the skills of a robot, including actuators, sensors and control algo-
rithms to match these capabilities against the requirements of an abstract plan. Through this
progress it is possible to check if knowledge is practicable before the robot downloads the
information. Robot description languages increase the reusability of robot control programs
and offer developers the possibility to implement software that works on such description
models and not only on the particular robot instance.
For example, the recent work by Lu (2012) has presented URDF20 which can be used as
description language to specify the kinematics, a visual representation as well as a collision
model. Developers can use this concept to calculate the 3D position of a robot and detect
potential collisions between the robot and its environment. The description contains informa-
tion about the components of the robot, like left-gripper or right-gripper but the robot does
not know the semantic of it. URDF is not designed for specifying robot components such as
sensors, actuators and matching those against task requirements.
COLLADA21 developed by Barnes et al. (2008), is a XML22 schema which is designed to de-
scribe 3D objects including their kinematics. It mainly focuses on modeling information about
scenes, geometry, physics, animations and effects. But similar to URDF, it lacks elements for
describing sensors, actuators and software.
Furthermore, Kunze et al. (2011) created SRDL23 to specify robots, capabilities and every-
day actions. Inference algorithms are used to match action descriptions to components of
robots via the concept of capabilities. Actions and capabilities are represented by the means
of ontologies. SRDL includes also inference algorithms.

Execution of abstract plans

To process downloaded knowledge from the internet, the robot has to provide an execution
engine to perform instructions. This challenge describes the problem of how to execute an

20Unified Robot Description Format
21COLLAborative Design Activity
22Extensible Markup Language
23Semantic Robot Description Language

CHAPTER 3. ANALYSIS 18

abstract plan on the robot platform. There are several opportunities to solve this problem.
McDermott (1991) developed the Reactive Plan Language as LISP-based notation for ab-
stract robot planning. It provides high-level concepts like monitors, interrupts, concurrency,
failure handling and top-level task descriptions. Another approach is using the CRAM24 Plan
Language (CPL) which is created by Beetz et al. (2010) to execute high-level robot pro-
grams. It is based on the ideas of McDermott (1991). This language allows to profit from
techniques like failure monitoring, creating goals and defining locations where objects shall
be placed. Such locations are usually described using abstract specifications like ’in reach
of the patient’, and need to be translated into actual metric positions. The goal concept is
attributabled to the work of Beetz and McDermott (1992). By defining goals, it is possible to
command a robot in an abstract way without thinking about which plan is used to reach the
goal. Additionally, SMACHBohren (2010) represents a hierarchical concurrent state machine
to rapidly create complex robot behaviour. SMACH provides a Python library that takes ad-
vantage of very old concepts in order to create robust robot behaviour with maintainable and
modular code very quickly.

Brainless robots

Another problem occurs if the wireless communication to the cloud breaks down. Without a
connection to the cloud, the robot becomes brainless. So it could be useful to place default
behaviour directly on the robot. One opportunity could be to store all knowledge which the
robot has downloaded from the cloud in its own database to be limited independent of the
cloud. Provided that the memory resource of the robot is not overworked, it could be helpful
to replace older plans which the robot normally does not use via common caching policies.
If the cloud connection is broken down in the approach of an intelligent gateway which is
demonstrated in subsection 4.2.1, all knowledge is gone. Default behaviour for manipulation,
navigation, perception and text-to-speech could be placed directly on the robot to counteract
this challenge.

Security

Through the combination of robotics and cloud computing, robots inherit the advantages as
well as the disadvantages of cloud computing. Robots which are operating in a hospital
store private information about patients in a cloud to share these with other robots. So,
it is important to consider well-known security issues like data loss, botnets, phishing and
manipulation of information. Besides, if robots download knowledge from unknown cloud
services it cannot be assured that these information have not been manipulated. Therefore,
verifying mechanisms are required.

24Cognitive Robotic Abstract Machine

CHAPTER 3. ANALYSIS 19

Symbol grounding problem

This challenge describes the problem of how a robot can process information whereas it
does not know the semantic of it. This issue includes the well known grounding problem, in-
troduced by Harnad (1990) from the psychology research area. Before the robot can execute
data, it has to assign semantic to these meaningless symbols.

3.5 Related Work

Recently, more and more companies and universities are interested in research on the topic
of cloud robotics. The following projects are some that are currently working on this topic.

3.5.1 RoboEarth

The project of Waibel et al. (2011) introduces RoboEarth which represents a World Wide
Web for robots. This cloud service can be used by heterogeneous robots to share information
among each other. Through RoboEarth robots are able to share information and experiences
about objects, actions and environments. This project is part of the Cognitive Systems and
Robotics Initiative25 founded by the European Union. The RoboEarth platform is divided into
the following segments.

RoboEarth storage

RoboEarth provides a distributed database to store information like object descriptions, maps
and task specifications which is accessible by using a web interface. Graphic 3.3 shows the
core idea of RoboEarth. Related to challenge 3.4, this project uses the RoboEarth language
which represents an extension of the Ontology Web Language. This description format,
developed by Tenorth et al. (2012), is used to describe the semantic relations between the
objects, actions and environments.
The knowledge processing system KnowRob, created by Beetz and Tenorth (2009), aims
to explore the RoboEarth database for a plan like „Serve a drink” with the aid of its internal
Prolog engine. If KnowRob finds a plan which satisfies the request, it checks the capabilities
of the robot against the requirements of the plan. If successful, KnowRob downloads the
plan and translates it to the CRAM Plan Language, which is a Lisp-like language for the
implementation of abstract plans. Besides, the KnowRob component provides inference
mechanisms. For example, it is able to reason that milk is drinkable and can be found in the
fridge. If a robot does not find milk in the kitchen, it can request KnowRob for assistance.

25http://cordis.europa.eu/projects/rcn/93278_en.html

http://cordis.europa.eu/projects/rcn/93278_en.html

CHAPTER 3. ANALYSIS 20

Beetz et al. (2010) have developed the Cognitive Robotic Abstract Machine Plan Language
for high-level plan execution on heterogeneous platforms.

Figure 3.3: RoboEarth (Waibel et al. (2011); Nao (2011); TurtleBot (2014))

The RoboEarth team demonstrated in some experiments how heterogeneous robots are
able to share executable plans among each other. Note that all components are integrated
into the ROS middleware. Thereby, the robots have to be compatible with the ROS abstrac-
tion layer. Trials have shown knowledge exchange among the Amigo26 robot and the PR227.

26http://www.techunited.nl/en/amigo-robot
27http://www.willowgarage.com/pages/pr2/overview

http://www.techunited.nl/en/amigo-robot
http://www.willowgarage.com/pages/pr2/overview

CHAPTER 3. ANALYSIS 21

Rapyuta

With their RoboEarth database, the RoboEarth team provides a very efficient approach to
store robot-specific information in the cloud. On the one hand they solved the problem that
robots were not able to access remotely stored knowledge so far. On the other hand the
processing elements of this information happen locally on the robot. Therefore, the cloud
engine Rapyuta was developed by Hunziker et al. (2013) to outsource robotic algorithms
to the cloud as well. Figure 3.4 shows that by extending the RoboEarth database, robotic-
specific information and processing units are both settled in the cloud.

Figure 3.4: Rapyuata Gajamohan (2013)

Conclusion

According to the relevance of this project to the master thesis, RoboEarth plays an important
role because it presents a very attractive approach to share knowledge between heteroge-
neous robots with the aid of elegant as well as powerful technologies. On the one hand it
brings along a lot of functionality to store robotic-specific knowledge in an efficient way. On
the other hand if robots want to process downloaded knowledge they have to provide a spe-
cific interface to transform abstract commands to low-level instructions. Furthermore, this
project created huge attention in the research area of cloud robotics and is still in a continual
advancement process.

CHAPTER 3. ANALYSIS 22

3.5.2 A knowledge sharing Peer-To-Peer system

The design of an efficient collaborative multirobot framework that ensures the autonomy and
the individual requirements of the involved robots is a very challenging task. This requires
designing an efficient platform for inter-robot communication. P2P is a good approach to
achieve this goal. P2P aims to make the communication ubiquitous by crossing the commu-
nication boundary and has many attractive features to be used as a platform for collaborative
multi-robot environments. Ogata et al. (2011) has implemented a P2P system based on
JXTA Overlay. In this paper, a JXTA Overlay is used as a platform for robot collaboration and
knowledge sharing. They evaluated the knowledge sharing system by many experiments.
Results have shown that the proposed system has a good performance and can be used
successfully for knowledge sharing between robots.

Conclusion

Compared to RobotEarth, where robots cooperate with each other via a cloud infrastructure,
this approach demonstrates a knowledge sharing by using a different communication pattern.
Since this master thesis pursues the target to provide a knowledge sharing via a central point
of communication, this project has only a limited relevance for the thesis.

CHAPTER 3. ANALYSIS 23

3.5.3 RobotShare

Another approach by Fan and Henderson (2008) has brought out a search engine like Google
for robots. RobotShare represents another web based approach for knowledge sharing
among robots, similar to RoboEarth. Concerning this challenge they developed a search
engine permitting robots to acquire and publish information about objects and plans. The
knowledge is efficiently indexed. When robots request the web repository for something like
how to wash cookware, they get the URL-reference of the knowledge as shown in 3.5.

Figure 3.5: RobotShare

Conclusion

On the one hand RobotShare shows an efficient concept to index robot-specific knowledge
which allows robots to acquire information very quickly. But on the other hand the received
information is defined in natural language and is not executable. Because of this missing
feature, RoboShare has no bearing on this work.

3.5.4 DaVinci

The work of Arumugam et al. (2010) presents DaVinci, a cloud service for robots to swap out
computationally intensive robot algorithms like path planning, sensor fusion or simultaneous
localization and mapping to remote servers.

CHAPTER 3. ANALYSIS 24

Figure 3.6 shows the architecture which includes mainly a Hadoop28 cluster and a DaVinci
server. The Hadoop cluster includes the data storage as well as computation nodes to pro-
vide parallel processing on this information. Through Hadoop’s HDFS29 filesystem, the infor-
mation can be stored efficiently. DaVinci uses the Map/Reduce framework to facilitate parallel
execution of tasks. Compared to running the same task on a single server, this reduces the
processing time of computationally intensive tasks significantly. The ROS middleware is used
to provide communication between the cloud service and the robots. Through the ROS ab-
straction layer it is possible that heterogeneous robots can request the DaVinci cloud service.
Robots can share their sensor information by uploading them to the DaVinci server which op-
erates as a central point of communication for the robots. Therefore, ROS nodes are running
directly on the robot to send this information to the DaVinci server which includes a running
ROS master node to collect the sensor data. This service can be accessed over an intranet
connection as a private cloud or over the internet via ROS messages which are wrapped
into HTTP requests and responses. DaVinci opens the way to aggregate sensor data from
heterogeneous robots to create global maps. Hence, the more robots share information, the
better robots can navigate in an unknown environment.

Figure 3.6: DaVinci Arumugam et al. (2010)

Conclusion

Similar to RoboEarth, this project provides exchange of sensor information only for ROS-
enabled robots. This master thesis considers especially projects which aim to share pro-
grams among robots.

28http://hadoop.apache.org/
29Hadoop Distributed File System

http://hadoop.apache.org/

CHAPTER 3. ANALYSIS 25

DaVinci is focused on the aggregation of sensor information which are generated by hetero-
geneous robots to create global maps. Because of that, this project will not be considered
much while creating this thesis. Nonetheless, the communication between the ROS-based
robots and the DaVinci server is interesting for this master thesis.

3.5.5 Cloud-based robot grasping

Another project of Kehoe et al. (2013) uses the cloud robotics approach to provide a cloud-
based grasping service with the aid of the Google object recognition engine, which is es-
tablished by the Google Goggles project. Google Goggles represents an image recognition
service for mobile devices. Usually a Smartphone sends an unknown picture about an object
or landmark to this cloud service. The recognition service analyzes the snapshot and returns
a generated description back to the user. This project aims to support a robot finding the right
grasping policy efficiently for an unknown object. The project is structured into two phases.
Figure 3.7 shows the offline phase which aims to train the recognition server by storing se-
mantic information about objects like description, identifier, weight, surface properties and
3D model in the Google Cloud Storage. These work has to be done by humans. Through the
GraspIt! toolkit, the stored CAD30 model is used to pre-compute a set of grasping strategies.
Finally, the service stores these policies in its cloud storage.

Figure 3.7: Cloud-Based Robot Grasping - Offline Phase Kehoe et al. (2013)

The following graphic 3.8 demonstrates the online phase where robots upload images
about objects to receive a possible grasping policy.

30Computer-Aided Design

CHAPTER 3. ANALYSIS 26

Figure 3.8: Cloud-Based Robot Grasping - Online Phase Kehoe et al. (2013)

A Robot uses its onboard camera to create a 2D image of the unknown object and sends
this picture to the cloud service for analyzing. The robot receives the 3D CAD model and a
set of grasping candidates, as shown in figure 3.8. After the estimation of the object position
where the robot calculates the reference point to grasp, it selects the grasping strategy with
the highest success probability. Finally, the execution results will be stored to improve this
process. Kehoe et al. (2013) executed experiments with the two-arm mobile manipulator
PR2 robot produced by Williow Garage and six objects (air freshener, candy, juice, mustard,
peanut butter and soap) which are stored in the cloud storage with pre-computed grasping
candidates. The results showed a failure rate between 0 - 23 %.

Conclusion

This project demonstrates a valuable approach to use cloud-based infrastructure to analyze
possible grasping policies. Especially, the usage of the Google Cloud Platform31 presents
an interesting option to connect robots with the internet for further work of this thesis.

3.5.6 MyRobots.com

The MyRobots.com project32 proposes a social network for robots which is launched by the
company RobotShop33. Users can create profiles for their robots, similar to Facebook, which
allow robots to publish updates like status information about their power source or their actual
position.

31https://cloud.google.com/
32http://www.myrobots.com
33http://www.robotshop.com

https://cloud.google.com/
http://www.myrobots.com
http://www.robotshop.com

CHAPTER 3. ANALYSIS 27

In the same way humans benefit from socializing, collaborating and sharing information,
robots can also benefit from those interactions by sharing their sensor information and giving
an insight into their current state. MyRobots.com aims to connect all robots and intelligent
devices to the internet as shown in 3.9. This approach improves the capabilities of the
robots by online monitoring and remote controlling. This project strives to provide cloud
robotics accessible to everyone and everything and aims to increase the involvement of
robotic developers. Internet-enabled robots can connect directly to the MyRobots.com cloud
service. For robots without internet access, the MyRobots-Connect adapter can be used
as Serial-to-Ethernet gateway to be connected with the platform. Through MyRobots.com
users are able to monitor and control their robots via a web interface remotely as well as
to receive alerts and problem reports. Furthermore, users obtain support from the robot
hospital service which provides algorithms to diagnose defective robots. Users are also able
to develop custom robotic applications by using the API34 of MyRobots.com and upload these
to the platform. Besides, it is possible to download applications directly on the robot, similar
to 3.5.7.

Figure 3.9: MyRobots.com MyRobots.com (2013)

Connecting robots to the internet can have many benefits for humans and robots. Hu-
mans get better user-experiences with handling robots. Besides, it is possible to collect
statistic information to improve the behaviour of the robot.

34Application Programming Interface

CHAPTER 3. ANALYSIS 28

Conclusion

This approach achieves an easy connection of robots to a cloud service. It allows developers
to download applications for their robots and provides monitoring mechanisms. It provides
no knowledge sharing among different robot platforms like RoboEarth or DaVinci. Robots
are only able to execute programs which are designed for their specific platform. Due to this
restriction, this project has not much relevance for this master thesis.

3.5.7 Nao application store

Aldebaran Robotics, the manufacturer of the humanoid Nao robot, has created a store for
Nao-specific applications. Users who joined the Nao community35 are able to share their Nao
programs. Furthermore, users can download a Nao application through the web interface
directly on the Nao robot.

Conclusion

Similar to MyRobots.com, the Nao robots cannot perform applications which are generated
by heterogeneous robots as in RoboEarth. Since this thesis aims to create a knowledge shar-
ing system where the information can be generated by heterogeneous robots, this project will
not take much influence. On the other hand the Nao application store represents a necessary
comparison project.

3.5.8 Smartphone robots

Recently, another trend is observed to build smart robots. Because of the rapid and con-
tinuous spreading of smartphones, many startups have focused on the development of
lightweight robots which are connected with a smartphone to use its computation power
and services like voice recognition and face detection. The concept of this approach is that
the user has to download the robot-specific applications from the appstore and integrates his
smartphone into the robot. Recently, more and more smartphone robots are available like
ROMO36, Oddverx37 and SmartBot38 which are presented in the next picture 3.10.

35https://community.aldebaran-robotics.com
36http://romotive.com
37http://www.oddwerx.com
38http://www.overdriverobotics.com

https://community.aldebaran-robotics.com
http://romotive.com
http://www.oddwerx.com
http://www.overdriverobotics.com

CHAPTER 3. ANALYSIS 29

Figure 3.10: Smartphone Robots (Oddwerx (2012); Roméo (2014); SmartBot (2013))

Conclusion

Smartphone Robots presents a nice application to outsource the brain to remote devices.
In contrast to the other projects, this approach is only useful for robots whose hardware
components do not require much computation power. Therefore, this idea is not practicable
for robots like the PR2, TurtleBot or Nao.

3.5.9 3D CAD browser

The 3D CAD Browser is an online 3D model exchange platform for graphic designers and
CAD engineers. With the aid of this cloud service users are able to upload as well as to
download 3D models in different formats. It presents an approach where users can upload a
3D model in a specific format and the cloud service translates this object format into another
one.

Conclusion

Related to the topic Cloud Robotics this project takes relevance because the cloud service
undertakes the challenge to transform one 3D model into another format. According to the
approach of plan sharing for robots, such a cloud service can be used to provide uploading
as well as downloading mechanisms of plans for different types of robots.

CHAPTER 3. ANALYSIS 30

3.6 Objectives and requirements

Although the research area of Cloud Robotics is just at the beginning, the analysis in 3.5 has
shown many different applications for robots. The related works have given a detailed insight
into some current projects. These works can be mainly divided into the two application ar-
eas of knowledge sharing for robots and outsourcing computational intensive tasks via cloud
computing concepts. Section 3.4 has already presented the common challenges in this re-
search area. This section aims to concrete the targets of the master thesis. It demonstrates
some use cases to deduce requirements and objectives. Besides, it will be used to define a
concrete research hypothesis and to delineate this work from other projects.
Firstly, this thesis is focused on knowledge sharing among heterogeneous robots. There are
different communication models like the Peer-to-Peer architecture and the blackboard archi-
tecture. Both patterns support a solution of the knowledge sharing problem for robots. Ac-
cording to Nii (1986) the blackboard architecture pattern is used to solve typical AI-problems
which do not provide a unique solution. Generally, the blackboard describes a shared repos-
itory of problems, partial solutions, suggestions, and contributed information. Autonomous
entities like an agent or a robot communicate with the blackboard as knowledge source by
selecting a problem, solving it with its expertise and putting the proposed solution back to
the board. Related to this research area, the blackboard architecture designs a central point
of communication where robots are able to share information among each other as shown in
subsections 3.5.1 and 3.5.4.
The Peer-to-Peer architecture provides a direct communication between the robots. Both
concepts have advantages as well as disadvantages. On the one hand subsection 3.5.2
has shown, that P2P systems overcome several security methods like firewalls, routers and
NAT‘s. In contrast to scenario 3.1, a robot sends requests to other robots directly to ask if
they have experiences for a specific job. On the other hand the Peer-to-Peer approach re-
quires that, if robot A wants to download knowledge which is generated by the source robot
C, C has to be online. In the blackboard architecture, the robots interact indirect with each
other. So, they do not care about the knowledge source.
This master thesis aims to implement the knowledge sharing approach through an indirect
communication where all participating robots do not know each other as well as do not take
care about the availability of the source robot. Those are the reasons why this work uses the
blackboard architecture. As this master thesis uses cloud computing technologies to tackle
the problem of knowledge sharing for robots, a cloud service operates as representative for
a blackboard. Figure 3.11 provides a sketch of knowledge sharing among different robot
platforms with the aid of a cloud service.

CHAPTER 3. ANALYSIS 31

Figure 3.11: Knowledge sharing among heterogeneous robots via cloud services (Roméo
(2014); PR2 (2013))

The next question to be answered is, which kind of knowledge should be exchanged be-
tween the robots. Compared to Prasad (2013) and 3.5.4 which are focused on multi-robot
map data merging in Cloud Robotics systems, this thesis does not investigate the challenge
of how heterogeneous robots can share information about environments among each other.
Besides, it does not use robots to create 3D models and send this information to the cloud
for grasping analysis like Kehoe et al. (2013). Because of the fact that the considered robots
are equipped with enough computation power, this thesis does not investigate the approach
of outsourcing robotic tasks like face detection or speech recognition as in 3.5.1. Knowl-
edge generation from the WWW by translating abstract instructions from websites to robot-
commands as presented in Tenorth (2011) will not be discussed in this master thesis. Instead
of working on these topics, this work permits robots to exchange abstract plans among each
other over a cloud service which is accessible via the World Wide Web. Since the com-
munication will be carried via WWW-Protocols, it will not be assumed that the robots have
real-time requirements. These abstract plans are defined as sequences of actions and are
stored in the cloud service. In contrast to the Monkey and Banana problem from section 3.4,
this work assumes that the instructions which will be shared between the robots, are already
in the right sequence.

CHAPTER 3. ANALYSIS 32

3.6.1 Use cases

This master thesis applies the approach of knowledge sharing for robots via cloud services
in a scenario where two heterogeneous robots and one human participate. The scenario is
divided into the upload use case and the download use case. The target is to show how
an inexperienced robot is able to solve an unknown task by processing knowledge which is
generated by another robot. The following use case diagram shows that the experienced
robot A uploads its high-level information about how to bring the remote control back to the
instructor to a cloud service. Thereby, abstract plans are stored in a database which is
globally accessible via the internet. The scenario shows that when an experienced robot
uploads its new generated knowledge, this information has to be transformed to an abstract
format.

Figure 3.12: Use cases - Nao in the cloud

The use cases have shown that some software is required to implement the commu-
nication between two robots and the cloud service. This thesis organizes these software
components inside a robot-specific interface which permits the robot to communicate with a
cloud service. Note that every robot which aims to participate in a plan sharing system has
to provide such kind of interface.

CHAPTER 3. ANALYSIS 33

3.6.2 Functional requirements

The interface to provide a plan sharing between robots via cloud services must meet the
following conditions:

1. The interface should be easy portable to further robot platforms.

2. Robots are able to send requests for robotic plans. The interface receives a plan
request and ensures to find a solution.

3. The interface translates an abstract plan to the robot-specific execution language.

4. In contrast to the RobotShare project presented in subsection 3.5.3 this interface facil-
itates robots to execute the requested knowledge.

5. The robots should be able to receive plans which are generated by heterogeneous
robot platforms: The difference to the Nao Application Store in 3.5.7 is that the robots
can download programs which have not been produced by the same robot type. So,
the provided design in chapter 4 opens the way for robots to process plans and knowl-
edge which are uploaded by heterogeneous robots, not only by a specific one.

6. The interface is able to receive a robot-specific plan and transforms these instructions
to an abstract program. After the translation process, the high-level plan will be up-
loaded to a cloud service.

3.6.3 Conclusion

The target of this master thesis deals with the implementation of a plan sharing system for
heterogeneous robots. It connects robots to a cloud service via an interface to exchange
abstract plans. The research hypothesis assumes that Nao robots are able to transform
and execute high-level plans from a cloud service. This includes the challenge of how it is
possible to control a robot on an abstract level without thinking about low-level tasks like path
planning. Besides, the master thesis introduces another way to give robots the possibility to
share information among each other. It includes the implementation of an interface for robots
as well as the execution of a scenario in which robots download and execute information from
the cloud service.

Chapter 4

Design

Chapter 3 has introduced the topic of Cloud Robotics. It presented a general specifica-
tion and use cases for a plan sharing system permitting heterogeneous robots to upload
new acquired skills to a cloud service as well as to download information. Furthermore, the
analysis has shown that robots need an interface to share executable abstract plans among
each other. As the Nao robot is the most applied humanoid robot related to education and
research as well as it is the only robot which is provided by the labor of the University of
Applied Science Hamburg, the Nao platform is selected to carry out a plan sharing system.
Note that the following concepts do not take notice of all requirements of subsection 3.6.2.
Since this work is focused on the downloading use case of subsection 3.6.1, an uploading
mechanism will not be considered in the following design suggestions.
This chapter introduces design opportunities of an interface to provide a plan sharing among
Nao robots via cloud services. Furthermore, it discusses several patterns to provide a com-
munication between the Nao robot, the interface and the cloud service. Note that the follow-
ing presented ideas and concepts are useful for other robots as well. It is more demonstrative
to apply the following design approaches on one specific platform. The process how to port
this concept to other robot platforms will be described in the outlook chapter 8.2. Finally, the
conclusion shows the advantages as well as disadvantages of these approaches and argues
why the chosen concept is implemented in the realization chapter.

CHAPTER 4. DESIGN 35

4.1 Nao interface

This section designs an interface for the Nao robot platform to download and to execute ab-
stract plans from a cloud service. It tries to satisfy the requirements 1-5 as listed in subsec-
tion 3.6.2. Diagram 4.1 describes the components of the interface providing a plan sharing
system for the Nao platform.

Figure 4.1: Component diagram of the Nao interface

The interface consists of the exploring engine, transformation engine and a middleware.

CHAPTER 4. DESIGN 36

It provides five interaction points to communicate with the Nao robot as well as with the cloud
service. The Nao robot sends a plan request to the exploring interaction point of the interface
and receives Nao-specific instructions. During the execution, the interface receives feedback
information from the robot. The cloud service sends abstract plans to the Nao interface by
accessing the Get High-Level Plans interaction point. The <<delegate>> stereo type in the
component diagram presents a forwarding procedure call to another component.

Middleware

Generally, a middleware represents a software layer to hide technical system-specific de-
tails from the application. In this thesis the middleware term will be used as abstraction
layer, which encapsulates robot platform-depending challenges like navigating, object recog-
nition, inverse kinematic or path planning algorithms for several robot platforms. Besides,
the middleware permits controlling several robots in an abstract way by providing wrappers
for different platforms. As presented in figure 4.1, the middleware contains wrappers for the
Nao platform, TurtleBot39 robot and much more. The middleware is used to send low-level
commands to the Nao robot. As shown in diagram 4.1, the transformation engine accesses
the Execute Nao Instructions socket to trigger the execution of the plan. This component
provides a wrapper over the NaoQi SDK40. which is described in section 2.4. The wrapper
forwards the commands to the Nao robot for execution by connecting to the NaoQi broker.
This process runs onboard on the Nao robot. During the plan execution the middleware re-
ceives feedback from the Nao robot which can be used for failure analysis and logging. By
using a middleware, it is possible to port this interface to other robot platforms.

Exploring Engine

As shown in figure 4.1 the exploring engine aids the Nao robot to search a special high-level
plan description. Therefore, the interface delegates a plan request to this component to
explore the cloud service via a HTTP interface. After downloading the abstract program,
it matches the capabilities of the robot against the requirements of the high-level plan. To
arrange this, it needs a semantic description of the robot. Subsection 3.4 already has
presented some description formats like URDF41 or SRDL42. Moreover, it translates the
plan from the abstract format like OWL43 into an executable even so generic language. Its
important that the exploring engine and the cloud service are geared to each other.

39http://www.turtlebot.com
40Software Development Kit
41Unified Robot Description Format
42Semantic Robot Description Language
43Web Ontology Language

http://www.turtlebot.com

CHAPTER 4. DESIGN 37

The following graphic 4.2 demonstrates the communication process between the exploring
engine, transformation engine, the middleware and the Nao robot. Note that this component
is not only accessible for Nao robts as presented in diagram 4.1. Since, for this component
already exists a software solution, this chapter is not going into detail. Instead, this engine
will be explained more in the realization chapter 5.

Figure 4.2: Communication process between all related components Nao (2011)

Transformation Engine

Graphic 4.1 shows that the exploring engine sends an executable abstract plan to the trans-
formation engine by accessing the Map Abstract Plans socket. To perform these plans on
the Nao platform, an abstraction layer is required to execute high-level commands. This
component aims to execute robot-independent applications by mapping abstract commands
to low-level Nao-specific instructions. The next graphic shows a more detailed view into the
transformation engine. It introduced modules for manipulation, navigation, perception and
text-to-speech. Each of these modules contains specific functions like moving an arm or
walking to a particular position. Hence, high-level instructions of a plan like Serve a drink
can call these functions to execute the Nao-specific low-level commands which are provided
by the Nao wrapper of the middleware. Note that this work designs the modules presented
in 4.3 for manipulation, navigation, perception and text-to-speech as so-called process mod-
ules. The concept of process modules will be used inside the transformation engine.

CHAPTER 4. DESIGN 38

Figure 4.3: Transformation of high-level plans to Nao-depending instructions

Process modules

This transformation engine uses the idea of process modules which is introduced by Beetz
et al. (2010) to transform high-level commands to robot-specific instructions. Generally,
this concept aims to execute the same high level plan like bringing the remote control on
heterogeneous robot platforms. A process module triggers the required hardware actions to
control the robot if an abstract task should be executed.

CHAPTER 4. DESIGN 39

The number of process modules depends on the robot and its application domain. House-
hold robots have to provide at least process modules for manipulation, navigation, perception
and speech processing. A high-level plan interacts with the robot by accessing only these
modules. The main requirement of a process module is to map high-level commands to
low-level instructions. As shown in figure 4.3, the process modules encapsulate low-level
robot functions. In this work process modules communicate directly with the Nao wrapper
as shown in figure 4.4.

Figure 4.4: Interaction between process modules and Nao wrapper

The input always is a designator which contains the meta information from the envi-
ronment like a target position to navigate the robot or the physical properties of an object
which should be grasped via the manipulation interface. The designator concept already
was introduced by Beetz and McDermott (1994) to supports dynamic plan parameterization.

CHAPTER 4. DESIGN 40

Beetz and McDermott (1994) used this approach to describe objects in an abstract way
within the Reactive Planning Language McDermott (1991). Generally, plans address objects
by unique identifiers like “put object 0815 onto object 0955”. If the robot cannot find this
object, it is not able to solve the task. This concept tackles the problem of how to handle
objects for robots by describing objects in a high-level way. Through this concept the robot
can search for a simliar kind of object which satisfies the same designator. Müller (2008)
has extended this approach by adding the location designator to specify positions of objects.
Action designators were established by Beetz et al. (2010). Their work contain all relevant
information to execute a task successfully.
With the aid of the designator concept, robots are able to handle dynamic and flexible plans.
The execution of a plan can be changed at runtime without restarting the plan. Generally,
a process module receives an action designator from high-level plans as parameter and
resolves these high-level descriptions to numeric control values. As presented in 4.4, it calls
the functions of the Nao wrapper, which forward these resolved numeric values to the low-
level componentes of the NaoQi SDK. The Nao wrapper includes modules to encapsulate
Nao-specific low-level functionality. The process modules use three middleware-depending
communication approaches which are described in 2.2 to call the low-level controllers of the
Nao wrapper.
Each module operates as a server to receive commands from the process module clients as
shown in 4.3. After executing the action, the process module creates events to influence the
belief state of the robot. It includes all information about the execution environment which
the robot assumes to be correct. This internal state also contains the set of known objects
as well as its locations and properties. A successfully executed action of the navigation
module creates an event like moveTo(position) which will be archived.

Moreover, the Nao interface represents a self-contained system which interacts with the
Nao robot as well as with the cloud service. In the following, several design ideas are
presented to place the Nao interface inside a plan sharing system.

4.2 Approaches of communication

This section shows several design approaches to create a communication between the Nao
robot, the interface and the cloud service. These concepts allow Nao robots to download
and execute abstract plans from a cloud service. There are different possibilities to place the
interface. The gateway term will be used as access point for the Nao robot to connect itself to
a cloud service. Generally, a gateway is a link between two computer programs or systems.
It is used to provide a transformation among different communication protocols. A gateway
acts as an interface between two programs or systems allowing them to share information

CHAPTER 4. DESIGN 41

among each other. Note that the following approaches are implementable for every type of
robot platform, not only for the Nao robot.

4.2.1 Intelligent gateway

This approach shows a concept where Nao robots are able to download executable plans
with the aid of a gateway, which represents an interface between the Nao robot and the cloud
service. Nao robots communicate indirectly with the cloud service via accessing the gateway.
The next figure shows a rough design of an intelligent gateway. Intelligent means, that the
gateway represents the Nao-specific interface which is designed in section 4.1.

Figure 4.5: Sketch of an intelligent gateway

Components

This subsection describes the responsibilities of the components which are used to design a
knowledge sharing for Nao robots via an intelligent gateway.

Nao robot

The Nao robot operates in a human living environment and represents a thin client which
means that not much extra software has to run on the robot. Related to scenario 3.1, Nao
only has to receive instructions by a human via speech recognition and delegate these in-
structions to the gateway to access the cloud service, looking forward to get a high-level
plan. The Nao robots have to provide a NaoQi broker server process to communicate with
the gateway over a wireless connection. So, Nao has to know the IP44 address of the gate-
way. The Nao platform, including the architecture and NaoQi SDK is already described in
section 2.3. On the robot itself are no more extra components required.

Gateway

The gateway represents an interface between the Nao robot and the cloud service. So, the
gateway has to know the IP address of the NaoQi-Broker server as well as the URL of the

44Internet Protocol

CHAPTER 4. DESIGN 42

cloud service. All intelligent software components of the Nao-specific interface are placed
in the gateway. The gateway operates as server and delegates the received plan requests
from the Nao robot to the cloud service. After exploring the cloud service and matching of
Nao capabilities against the requirements of the high-level plan the gateway downloads the
abstract commands. Through the Nao-specific interface which contains an abstraction layer
for manipulation, navigation, perception and text-to-speech translation the gateway is able
to execute the high-level instructions. During the execution of abstract plans, the gateway
sends low-level commands to the NaoQi broker to perform the program. It is not important
that the Nao robot and the gateway are connected in the same WLAN domain. But, the
closer the gateway is placed to the Nao robot the better the performance.

Cloud service

The cloud service stores all required information like descriptions of plans and objects in an
abstract definition format. These plans contain sequences of actions. The cloud service is
accessible through the HTTP45 interface and has to store all knowledge which is required to
perform high-level plans. As mentioned in 3.4, a cloud service which is accessible via HTTP
is usually called web service. So, a web service is intended as kind of cloud service to interact
with the gateway. In this approach the web service has the responsibility to store robot
programs in an abstract way which are preprocessed to be downloadable by robots. Note
that this kind of robot plan is not Nao-specific. The web service in this approach represents
a RESTful API. The web service provides the common HTTP request methods GET, POST,
PUT and DELETE. Through these operations the gateway is able to send a plan request
via the GET command to the web service. The GET instruction requests a resource like an
abstract plan from the cloud service. Thereby, the web service does not change its status.
This approach uses only the GET command because the design of the plan sharing system
does not consider an upload of robot plans.

Communication

Diagram 4.6 demonstrates the communication between the human, the Nao robot and a
cloud service by using the intelligent gateway approach. The sequence diagram shows the
use case when a human requests the Nao robot to perform an unknown task, similar to the
scenario 3.1. Firstly, the gateway activates the Nao-specific interface. With the aid of this
interface it is possible to control the Nao in an abstract way. It presents an abstraction layer for
manipulation, navigation, speech and perception. After that, it is possible to execute abstract
instructions from the web service which stores all needed information to solve the task. So,
the Nao robot can assume that no more knowledge has to be generated. Related to figure
3.2 instead of answering with „Sorry, I can‘t perform what you command me”, Nao connects

45Hypertext Transfer Protocol

CHAPTER 4. DESIGN 43

itself to a web service by accessing the gateway. It is important that the Nao robot and the
gateway are configured. The Nao robot sends a plan request to the gateway which forwards
the request to the web service. If a plan is found in the database of the web service, the
gateway receives it and maps the high-level plan to Nao-specific commands. This mapping
is only possible through the Nao-specific interface. The gateway accesses the NaoQi broker
server remotely and calls the particular low-level actuators of the Nao robot. During the
execution of the task, the gateway receives feedback and status information.

Figure 4.6: Communication among the Nao robot, the intelligent gateway and the web
service

4.2.2 Transparent gateway

In this design concept the Nao robots are able to download executable plans by accessing
a transparent gateway. Similar to the first design approach, the communication happens
indirectly between the Nao robot and the cloud service by accessing the gateway. In contrast
to the first concept this approach places the interface as part of the cloud service. Thus,
the cloud service undertakes the challenge to provide all needed software components to
implement a plan sharing among Nao robots.

CHAPTER 4. DESIGN 44

Figure 4.7: Sketch of a transparent gateway

Components

In the following the roles of the used components are described. It shows that this approach
applies these components in a different way as in the first approach.

Nao robot

The Nao robot has the same role as in the first design approach. The Nao robot also does not
provide software to translate abstract plans to low-level commands locally on the robot. Sim-
ilar to the first concept, it sends a plan request to the gateway and receives robot-depending
instructions from the gateway. After execution Nao is able to store the low-level commands
to increase the knowledge in its database.

Gateway

In this approach, the gateway is designed as forwarding component. Transparency means
that the gateway does not provide software components to support a plan sharing among
the Nao robots. It only forwards the plan request from the Nao robot to the cloud service
as well as delegates Nao-depending commands back to the robot. Different to the first
approach, this gateway does not carry out a mapping of high-level plans to Nao-specific low-
level instructions and it does not provide a search engine to explore the cloud service for a
specific robot plan.

Cloud service

This component has to provide the whole functionality for plan sharing among Nao robots.
Equally to the first concept, the cloud service is accessible via an HTTP interface as web
service and receives plan requests from the gateway. This design concept is similar to the
project 3.5.9 where users are able to upload 3D models in several different formats to the
web service which provides a mechanism to translate a user-specific 3D model into its own
internal description format. The web service of this project has a similar responsibility as this
web service. This approach permits every robot to upload a robot plan in its own language.

CHAPTER 4. DESIGN 45

The service receives the platform-specific plan and translates the program to its generic
description language. If a heterogeneous robot wants to download the plan, the cloud service
transforms the generic plan to the language of the platform. The robot-depending commands
will be sent back to the gateway which delegates the instructions to the robot.

Communication

The following sequence diagram shows the interaction between the Nao robot, the transpar-
ent gateway and the cloud service. As in the last approach the Nao robot and the cloud ser-
vice do not known each other. Nao sends a plan request to the gateway which forwards the
request to the cloud service. The cloud service starts the interfaces of all considered robots.
After exploring the database the service maps high-level commands to low-level instructions
by using the platform-specific translation method. Furthermore, these resolved instructions
will be sent to the gateway which delegates the commands to the Nao for execution.

Figure 4.8: Sequence diagram for the transparent gateway approach

CHAPTER 4. DESIGN 46

4.2.3 Without Gateway

This approach aims to provide a plan sharing for Nao robots with a direct connection to the
cloud service without a gateway. The main difference to both of the other concepts is that
the interface for interaction with the cloud service is placed directly on the robot.

Figure 4.9: Sketch of a plan sharing system without a gateway

Components

In the following the responsibilities of the Nao robot and the cloud service will described.

Nao robot

This approach designs the robot as fat client where all needed software for plan transforma-
tion and downloading are installed locally on the robot. The Nao robot has to know the URL
address of the cloud service. Nao explores directly the cloud service for a specific plan. If
the Nao finds a satisfying plan, it downloads the program. As this program is defined in an
abstract format the Nao robot has to map these high-level commands to its own platform-
depending language. After the translation process Nao is able to execute the abstract plan.

Cloud service

As well as in the both last approaches the cloud service represents a web service and pro-
vides an HTTP interface to download a plan. Besides, these programs are stored in an
abstract description language.

CHAPTER 4. DESIGN 47

Communication

As presented in the next sequence diagram, the Nao robot and the cloud service commu-
nicate without a gateway. When the Nao receives instructions to solve an unknown task it
explores the web service directly for a special robot program. After finding a satisfying plan
the cloud sends a high-level plan back to the robot. As already mentioned the Nao robot has
to map the high-level commands to its own platform-depending NaoQi SDK. If the robot has
finished translating the whole abstract plan the Nao is able to execute the plan.

Figure 4.10: Communication between the Nao robot and the web service

CHAPTER 4. DESIGN 48

4.2.4 Conclusion

The previously presented approaches to organize a plan sharing system for Nao robots have
different advantages as well as disadvantages. On the one hand by using a gateway as
interaction bridge the Nao robots do not need to be preconfigured which means the robot
does not have to provide components to connect itself with a cloud service. On the other
hand both of these ideas bring along the disadvantage of the lower performance, compared
to designing a plan sharing system without a gateway. The crucial reason to place the Nao-
specific interface not directly on the robot is that the developer has no chance to intervene
in case of runtime errors. Such critical behaviour is very risky because the Nao robot could
be damaged. So, it is recommended to place as few software as possible onboard. The
transparent gateway would be useful if not much message traffic occurs between the Nao
robot and the cloud service. Furthermore, designing an intelligent gateway makes sense
because of the enhanced exchangeability. Through this concept, it is easier to exchange
the cloud service or the robot than in both of other approaches. This thesis carries out the
design of a knowledge sharing system for Nao robots with the aid of an intelligent gateway.
It implements the Nao-specific interface from section 4.1 to a cloud service to download and
transforms high-level plans.

Chapter 5

Realization

This chapter implements a Nao-specific interface which is designed in section 4.1. This in-
terface permits Nao robots to download and execute abstract plans from a cloud service.
Moreover, it creates a plan sharing system by using the design approach of an intelligent
gateway as described in 4.2.1. This design concept allows an indirect communication be-
tween the Nao robots and a web service via an intelligent gateway that provides all intelligent
software to create a plan sharing among Nao robots. This realization uses the following com-
ponents which are already implemented by different research groups.

• RoboEarth Waibel et al. (2011): According to 3.5.1, the analysis revealed that the
RoboEarth web service is the best option because of its huge dissemination, scalability
and popularity as an internet based storage for robot-specific knowledge. Related to
4.2.1, RoboEarth is selected as cloud service inside the plan sharing system.

• KnowRob Beetz and Tenorth (2009): This knowledge processing system represents
the exploring engine designed in section 4.1 and is used to explore the web service for
abstract robot plans.

• CRAM Plan Language Beetz et al. (2010): This language provides domain specific
functions to describe abstract control programs for robots, which are used to create
high-level plans.

• ROS46 Quigley et al. (2009b): This framework fulfils the part of the middleware de-
scribed in subsection 4.1 to send low-level commands to the Nao robot. ROS was
chosen as preferred abstraction layer because of its popularity as well as its support
of many different robot platforms.

• Nao-ROS-stackHornung (2009): Provides a wrapper over the NaoQI SDK47 which is
integrated in to the ROS middleware.

46Robot Operating System
47Software Developement Kit

CHAPTER 5. REALIZATION 50

3.5.1 also showed that every robot has to provide an own mapping of abstract commands to
low-level instructions to execute RoboEarth-stored knowledge. So far, Nao robots have not
been able to process robot plans from the RoboEarth database. To counter this challenge,
the Transformation engine is created during this master thesis to map high-level plans to
Nao-specific commands. Therefore, the concept of process modules is implemented which
represents the core of the transformation engine. This work has implemented process mod-
ules to manipulate and navigate the Nao robot as well as to process text to speech. Since
the Nao robot and the web service RobotEarth are already presented in sections 2.3 and
3.5.1, this chapter is focused on introducing the components and middlewares used for the
implementation of the Nao-specific interface.

5.1 Interface

The Nao interface is based on recent projects Johannßen (2013a) and Johannßen (2013b).
This section shows a possible software solution to satisfy the design requirements of the
interface between the Nao-ROS wrapper and the RoboEarth web service as presented in
section 4.1. Figure 4.2 has shown that the interface includes several layers to abstract from
the Nao-specific hardware components. A middleware and a transformation engine will be
used to control the Nao robot in an abstract way as well as to transform high-level commands
to Nao-depending instructions. It also provides an exploring engine to browse the RoboEarth
web service for a requested abstract plan. The interface mainly contains components for
exploring and transforming high-level plans running on top of the ROS48 middleware. This
section demonstrates how these components are implemented.

5.1.1 ROS middleware

As described in the requirements of section 3.6, the interface has to provide the possibility
for Nao robots to process knowledge, which is generated by heterogeneous robots. To tackle
this challenge, robotic-specific middlewares can be used as abstraction layer to execute high-
level instructions that are produced by heterogeneous robots with different capabilities and
hardware resources. An abstraction layer over the Nao specific hardware is needed to satisfy
this requirement. With the aid of ROS, it is possible to command the robot to walk from
place A to place B without thinking about which kind of walking algorithm will be used. As
mentioned in section 2.2, this framework is extendable with modules, called stacks. There are
stacks for many robots like Nao, TurtleBot, Husky or PR2 as presented in http://wiki.
ros.org/Robots. Furthermore, ROS has released several distributions like Fuerte49,

48Robot Operating System
49http://wiki.ros.org/fuerte

http://wiki.ros.org/Robots
http://wiki.ros.org/Robots
http://wiki.ros.org/fuerte

CHAPTER 5. REALIZATION 51

Electric50, Groovy51 and Hydro52. This master thesis is focused on using Fuerte because
this version is the most stable one. For more detailed information about the ROS framework
see section 2.2.

5.1.2 Exploring engine

This component fulfills the responsibility to search a satisfying abstract plan inside the
RoboEarth storage as well as to translate this plan to an executable format. To implement
this functionality the KnowRob ROS-stack53 is used, which is integrated into the ROS mid-
dleware. More information about the KnowRob framework can be found in subsection 3.5.1.
This component uses the ROS-package re_comm54 which is part of the RoboEarth ROS-
stack to communicate with the web service. The following two subsections demonstrate how
the KnowRob framework is used.

Download abstract plan

With the aid of the KnowRob stack, robots are able to request the RoboEarth database for
a plan like grasping a bottle. The following algorithm 5.1 shows how KnowRob searches a
high-level plan.

Algorithm 5.1 Downloading OWL-description of a high-level plan
1: procedure DOWNLOADPLAN(Command) . Command: Name of the plan as string
2: PlanURL← searchURL(Command)
3: OWLplan← downloadOWLplan(PlanURL) . Downloads the OWL-description of

the plan
4: ActionClass← getActionClass(OWLplan)
5: return ActionClass . Returns the OWL-class of the plan
6: end procedure

Furthermore, it checks if the robot already knows all needed object models to perform
the task successfully. If not KnowRob downloads the missing models defined in OWL format
as presented in the algorithm 5.2.

50http://wiki.ros.org/electric
51http://wiki.ros.org/groovy
52http://wiki.ros.org/hydro
53http://wiki.ros.org/knowrob
54http://wiki.ros.org/re_comm

http://wiki.ros.org/electric
http://wiki.ros.org/groovy
http://wiki.ros.org/hydro
http://wiki.ros.org/knowrob
http://wiki.ros.org/re_comm

CHAPTER 5. REALIZATION 52

Algorithm 5.2 Downloading missing object models
1: procedure DOWNLOADMISSINGCOMPONENTS(ActionClass,Robot) . (ActionClass:

OWL-class of the plan; Robot: Semantic description of the robot)
2: Listo f MissingOb jectModels[URL]← searchMissingOb jectModels(Name,Robot)
3: ListO f Models[OWL]← downloadMissingModels(ListMissingOb jectModels)
4: end procedure

Generate executable plan

After downloading the requested high-level plan, the next algorithm translates the OWL-
based plan description to an executable format which can be processed on the Nao platform.

Algorithm 5.3 Translating OWL-Plan to CPL
1: procedure GENERATECPLPLAN(Plan) . Plan: OWL-class description
2: CPLplan← exportPlanToCPL(Plan)
3: return CPLplan
4: end procedure

Putting all together

The following algorithm presents the functionality of the exploring engine including the just
described algorithms 5.1, 5.2 and 5.3.

Algorithm 5.4 Exploring engine
1: procedure EXPLORINGENGINE(Command,Robot) . (Command: Name of the plan;

Robot: Sematic description of the robot)
2: ActionClass← DownloadPlan(Command)
3: DownloadMissingComponents(ActionClass,Robot)
4: CPLplan← GenerateCPLplan(ActionClass)
5: return CPLplan
6: end procedure

5.1.3 Nao platform

The implementation of the transformation engine is based on using the NaoQi SDK 1.14.5
Aldebaran-Robotics (2013a).

CHAPTER 5. REALIZATION 53

5.1.4 Transformation engine

As in section 4.1 designed, this part of the interface carries out a mapping of high-level plans
to Nao-specific low-level commands. To solve this problem the following ROS-stacks and
concepts are used.

5.1.4.1 Nao-ROS-stack

This stack provides a ROS-specific abstraction layer over the NaoQi SDK. It is developed
by the University of Freiburg Hornung (2009) and wraps the NaoQi API55 in the high-level
programming language Python to control the Nao robot in an abstract way. The current
version of the Nao-Stack is compatible with the NaoQI version 1.12 or newer. The Nao-Stack
provides access to sensors, odometry, cameras, teleoperation and speech recognition via
ROS nodes. Besides, it is possible to manipulate the joints of the Nao without thinking about
low-level problems like inverse kinematic or self collision. Usually, stacks are structured into
several packages whereby each of them provides support for one specific task like navigation
or face detection. The Nao-Stack mainly includes the following packages:

Package Description
nao_robot Provides basic functionality to access odometry, cameras,

sensors and joints
humanoid_msg Includes some basic services for humanoid robot navigation
nao_extra Contains tools to run the Nao robot remotely on the PC. It

provides mechanisms to monitor the joints and odometry
remotely.

Table 5.1: Packages of the Nao-stack

The Nao-ROS-stack provides support for developers to program applications for the Nao
platform more easily. As explained in section 2.2, ROS nodes represent processes to perform
tasks. They communicate with each other by sending messages inside the ROS network.
The Nao-ROS-stack contains several nodes for particular low-level tasks like solving path
planning or manipulating the motion of the Nao robot. This stack basically provides the
following ROS-nodes:

55Application Programming Interface

CHAPTER 5. REALIZATION 54

Node Description
nao_controller Contains basic functionality to access odometry, cameras,

sensors and joints
nao_speech Provides access to translate text to speech
nao_path_follower Represents the navigation module
nao_walker Includes some basic services for humanoid robot navigation
nao_sensors Contains tools to run the Nao robot remotely on the PC. It

provides mechanisms to monitor the joints and odometry
remotely.

nao_tactile Publishes data of Nao‘s tactile sensor
nao_camera Wrapps the NaoQI library ALCamera
nao_leds Provides controlling of Nao‘s LEDs

Table 5.2: Nodes of the Nao-ROS-stacks

5.1.4.2 CRAM Plan Language

As already mentioned in section 3.4, the Cognitive Robotic Abstract Machine Plan Language
extends the functional programming language Common Lisp. This language is based on
the concepts of the Reactive Plan Language (RPL) by McDermott (1991). The ROS-Stack of
the CRAM Plan Language (CPL) so-called cram_core56 is created by Moesenlechner (2009)
and includes these packages:

Package Description
cram_language Represents a Common Lisp extension to program abstract

robot plans
cram_reasoning Includes a full-featured Prolog interpreter which is

implemented in Common Lisp and provides algorithms for
pattern recognition

cram_designator Provides meta information about objects and actions
cram_process_modules Represents the interface to a specific robot
cram_utilities Utility methods and functions to support implementing

high-level robot programs
Table 5.3: CRAM-Core packages

CPL supports creating ROS-nodes which can communicate with other nodes of the Nao-
ROS-stack by sending ROS messages.

56http://wiki.ros.org/cram_core

http://wiki.ros.org/cram_core

CHAPTER 5. REALIZATION 55

5.1.4.3 Process modules

Section 4.1 has already introduced the concept of process modules to encapsulate the
robot-specific low-level components. As presented in table 5.3, this concept is sup-
ported by the ROS middleware as part of the cram_core ROS-Stack. The package
cram_process_modules57 provides libraries to define process modules in CPL. This mas-
ter thesis has developed process modules to manipulate and navigate the Nao robot as well
as to process text to speech. As presented in section 4.1, process modules map high-level
commands to low-level instructions. A process module receives a designator as parame-
ter from abstract plans and resolves these high-level descriptions to numeric control values.
Furthermore, these resolved values will be forwarded to the specialized low-level of the Nao-
stack. The following algorithms are implemented using the CRAM Plan Language. As pre-
sented in listing 5.5, each process module operates as autonomous thread. The function
StartProcessModules() will be triggered by the transformation engine.

Algorithm 5.5 Main function of the transformation engine
1: procedure STARTPROCESSMODULES()
2: Parallel
3: runT hread(ManipulationProcessModule)
4: runT hread(NavigationProcessModule)
5: runT hread(SpeechProcessModule)
6: EndParallel
7: end procedure

A process module always receives an action designator to perform a special task. It re-
solves the designator by extracting key-value pairs like (left, open) for the grasping action
through prolog-rules. Afterwards, the process module calls the particular action with the re-
solved values as parameters. Pseudocode 5.6 shows the functionality of a process module.

Algorithm 5.6 Functionality of a process module
Require: Designator 6= null

1: loop
2: procedure PROCESSMODULE(ActionDesignator) . Designator: List[(Key,Value)]
3: ResolvedDesignator← resolve(ActionDesignator) . Mapping of High-Level

descriptions to numeric values
4: callAction(ResolvedDesignator) . Execution of the action
5: end procedure
6: end loop

57http://wiki.ros.org/cram_process_modules

http://wiki.ros.org/cram_process_modules

CHAPTER 5. REALIZATION 56

Manipulation process module

This interface should provide the following actions to manipulate the low-level components
of the robot:

• Moving the arms to a target position

• Turning the head

• Opening and closing the grippers

The manipulation process module receives an action designator which describes what kind
of action shall be executed as well as how this action should be performed. Moreover, the
resolving function defines prolog rules to transform the meta information to numeric values.
Such an action designator to open the gripper can be described like (type: action(name:(to
open) (side :left)). The resolving mechanism only extracts the value of the side variable and
forwards this value to the Nao-ROS wrapper to execute the actions.
As presented in the basics of 2.2, the ROS framework provides several approaches for in-
teraction among nodes. To solve this challenge the ActionLib interface will be used which is
part of the ROS middleware. As already mentioned in section 2.2, this pattern presents a
typical communication between client and server.
The manipulation process module is using the nao_controller ROS-Node, which is part of the
Nao-Wrapper. This node provides a Joint-Trajectory-Action-Server to control the Nao joints.
The resolved meta information will be wrapped into a ROS-Action-Goal. Action-Client and
Action-Server communicate via the ROS Action Protocol with each other, which specifies the
messages: goal, result, feedback, cancel and status.
The NaoActionClient sends an Action-Goal to the Joint-Trajectory-Action-Server of the
nao_controller. The nao_controller receives the goal and executes the requested task like
moving the arm or opening the gripper. Note that the ActionLib calls are working asyn-
chronously. This is well-founded, because many computations are long-running. Hence, it is
advantageous to control another component of the robot while the Action-Server is calculat-
ing the result.

CHAPTER 5. REALIZATION 57

The following pseudocode shows an Action-Client to close the gripper by sending a goal
to an Action-Server of the Nao wrapper. The Nao-Action-Client acts as ROS node and
is registered under the topic JointTrajectory. Thereby, the client can send a special ROS-
message, which is wrapped into a ROS-goal, to the Action-Server of the nao_controller node.
This goal contains information about opening or closing as well as which gripper shall be
manipulated.

Algorithm 5.7 Low-level function to close the gripper of the Nao robot
Require: Side = le f t||Side = right

1: procedure CLOSEGRIPPER(Side)
2: NaoActionClient←makeActionClient(“/ jointTra jectory“,“JointTra jectoryAction“)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: if (Side=right) then Goal← createCloseRightGripperMsg()
5: elseGoal← createCloseLe f tGripperMsg()
6: end if
7: callGoal(NaoActionClient,Goal)
8: end procedure

Similar to the algorithm 5.7, the next pseudocode 5.8 shows how to create an Action-goal
to open the gripper of the Nao robot.

Algorithm 5.8 Low-level function to open the gripper of Nao
Require: Side = le f t||Side = right

1: procedure OPENGRIPPER(Side)
2: NaoActionClient←makeActionClient(“/ jointTra jectory“,“JointTra jectoryAction“)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: if (Side=right) then Goal← createOpenRightGripperMsg()
5: elseGoal← createOpenLe f tGripperMsg()
6: end if
7: callGoal(NaoActionClient,Goal)
8: end procedure

CHAPTER 5. REALIZATION 58

Algorithm 5.9 receives a 2D position which describes the target position to move the
head. Note in line 3, that the Nao-Action-Client connects itself with the Joint-Trajectory-
Action-Server.

Algorithm 5.9 Low-level function to move the head of Nao
1: procedure MOVEHEAD(X ,Y)
2: NaoActionClient←makeActionClient(“/ jointTra jectory“,“JointTra jectoryAction“)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: Goal← createMoveHeadMsg(X ,Y)
5: callGoal(NaoActionClient,Goal)
6: end procedure

The following pseudocode 5.10 shows how the challenge of moving the arm is solved.

Algorithm 5.10 Low-level function to move the arms of Nao
Require: Side = le f t||Side = right

1: procedure MOVEARM(Target,Side) . Target: 3D Position
2: NaoActionClient←makeActionClient(“/ jointTra jectory“,“JointTra jectoryAction“)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: if (Side=right) then Goal← createMoveRightArmMsg(Target)
5: elseGoal← createMoveLe f tArmMsg(Target)
6: end if
7: callGoal(NaoActionClient,Goal)
8: end procedure

The stable position means that the Nao robot will be moved to a position which can be
used as starting situation to execute every kind of action like walking.

Algorithm 5.11 Low-level function to move Nao to a stable position
1: procedure GOSTABLE

2: NaoActionClient←makeActionClient(“/ jointTra jectory“,“JointTra jectoryAction“)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: Goal← createStablePositionMsg()
5: callGoal(NaoActionClient,Goal)
6: end procedure

CHAPTER 5. REALIZATION 59

Figure 5.1 provides an overview of the communication between an Action-Client and the
nao_controller via ROS-Action-Messages. During the execution a server is able to send
feedback messages to the client. After the execution the client receives the result from the
server, which contains the target positions of the Nao joints. Furthermore, the client is able
to subscribe status information related to the execution.

Figure 5.1: ROS-nodes for manipulation

Because of the encapsulation of client and server, it is possible to create Action-Clients
and Action-Servers in different programming language like C++, LISP, Java or Python. This
process module creates corresponding Action-Clients which delegates the resolved meta
information to the Joint-Trajectory-Action-Server by sending an Action-Goal for every manip-
ulation task.

Navigation process module

With this interface it is possible to move the Nao robot to an explicit position via high-level
commands. It receives an action designator that contains itself a location designator includ-
ing all needed meta information for the target position and resolves it to numeric values.
Besides, this module delegates these values to the Nao control layer for their execution.
The ROS-node nao_path_follower is used, which implements an Action-Server to navi-
gate the robot. This process module implements a mapping of the high-level command
walkTo(Position) to Nao-specific low-level instructions of the nao_path_follower node. The
following algorithm 5.12 creates one Action-Client which wraps the resolved target position
to an Action-Goal and sends this message to the Action-Server, which is provided by the
nao_path_follower.

CHAPTER 5. REALIZATION 60

Algorithm 5.12 Low-level function for walking
1: procedure WALKTO(TARGET) . Target: 3D Position
2: NaoActionClient← makeActionClient(“/walkTarget“,“MoveBaseAction“‘)
3: waitingForServer(NaoActionClient) . Waiting until server is available
4: Goal← createWalkingMsg(Position)
5: callGoal(NaoActionClient,Goal)
6: end procedure

Furthermore, this ROS-node commands the Nao to walk to the target position. The main
difference to the manipulation process module is that this client communicates with another
Action-Server. Additionally, the two nodes interact with each other by using a different topic.
Note that the communication takes place via sending ROS-messages like goal, cancel, re-
sult, status and feedback on topic /walk_target. The following figure shows the communica-
tion via ROS-messages between the ROS-nodes nao_path_follower and NaoActionClient.

Figure 5.2: ROS-nodes for navigation

The client receives the temporary position via feedback message. After reaching the
target position the nao_path_follower sends the result back to the client.

CHAPTER 5. REALIZATION 61

Speech process module

This module has the responsibility to translate text to speech. Pseudocode 5.13 shows how
a node sends a sentence to the nao_speech server node. This process module uses the
publish/subscribe pattern to achieve the communication between the ROS-Nodes.

Algorithm 5.13 Low-Level function translate text to speech
1: procedure TEXTTOSPEECH(SENTENCE)
2: NaoROSnode← createROSnode()
3: Topic← ”/speech”
4: NaoROSnode.publish(Sentence,Topic)
5: end procedure

The client publishes the sentence to the server which has already a subscription on the
topic /speech. Finally, the nao-speech server node delegates the message to the speech
component of the NaoQi SDK.

Figure 5.3: ROS-nodes to tanslate text to speech

Creating Plans

In the following the goal term will be used as expression to describe the semantic of plans.
As mentioned in section 3.4, goals can be used to create high-level plans by achieving goals
as shown in peseudocode 5.14. Abstract plans defined in CPL58 communicate with process
modules by calling goals. This master thesis has defined particular goals for each action of
the three process modules. Algorithm 5.14 demonstrates a plan by achieving several goals
to manipulate the grippers as well as the head of the Nao robot.

58CRAM Plan Language

CHAPTER 5. REALIZATION 62

Algorithm 5.14 Creating High-Level Plans
1: procedure ABSTRACTPLAN()
2: Parallel
3: achieve(openGripper, le f t)
4: achieve(openGripper,right)
5: achieve(moveHead,Position(2,3))
6: EndParallel
7: end procedure

5.2 Gateway

Note that the design approach in 4.2.1 considers placing the interface on the gateway as
interaction point between the Nao robot and RoboEarth. The open source operating system
Ubuntu 12.04 is chosen to be installed on the gateway, because it is superior compatible with
the used components than other operating systems like Windows or Mac OS X. According
to http://wiki.ros.org/ROS/Installation Ubuntu seems to be the best sup-
ported operating system for the ROS framework. The 12.04 version is selected because of
its compatibility with the Nao-ROS-Stack. As shown in 5.4, the Nao interface is built on top of
the Ubuntu operating system. It is unimportant whether the gateway is placed on a laptop or
on a desktop computer, but it is recommended to place the gateway next to the environment
of the robot to reduce the distance between the Nao robot and its interface. Thereby, this
work has arranged to place the gateway on a remote laptop.

Figure 5.4: Overview of a plan sharing system by using the intelligent gateway approach Nao
(2014)

http://wiki.ros.org/ROS/Installation

Chapter 6

Experiments

This part of the master thesis shows some practical experiences with the implemented in-
terface of the Nao robot. Chapter 6 presents some trials to test the implemented process
modules on the real Nao robot. The experiments aim to investigate the possibility to access
the Nao process modules (:manipulation, :navigation, :speech) by high-level plans. These
tests are used to analyze the behaviour of the process modules. Furthermore, another ex-
periment demonstrates the possibility to download and execute an abstract plan from the
RoboEarth web service.

Setup

All experiments are performed on the same infrastructure as presented in figure 6.1.

Figure 6.1: Cloud-enabled Nao architecture

CHAPTER 6. EXPERIMENTS 64

Thereby, the Nao interface runs inside a gateway placed on a laptop. The following
trials use the Emacs59 environment to develop and execute abstract plans in the CRAM plan
language. Before high-level plans can be executed, a special setup is needed to perform
the experiments. Since the CRAM plans run inside the ROS middleware, the Emacs editor
has to be integrated into ROS as well. Therefore, http://wiki.ros.org/rosemacs
provides a ROS-based editor for Common Lisp. Firstly, the Nao interface has to be started
inside the Emacs environment. This step includes the launch of the process modules in
separate threads. Besides, it has to be ensured that the laptop is connected with the Nao
network via WLAN60 or LAN61. The simulation tool ChoregrapheAldebaran-Robotics (2013c)
provided by Aldebaran-Robotics (2013c) is also used to display the behaviour of the Nao
robot as shown in figure 6.2. The following figure shows the test environment including
Choregraphe, Emacs editor, laptop and Nao robot.

Figure 6.2: Test environment for the following experiments

6.1 Manipulation process module

The concept of the process module has already been explained in sections 4.1 and 5.1.4.3.
This experiment shows some practical trials of the manipulation process module. High level
plans are able to call actions like moving the arm or opening the gripper by accessing this
interface. This experiment tests the usability by execution of some actions, which are imple-
mented in subsection 5.1.4.3. The next algorithm presents a high-level plan to manipulate
the Nao robot.

59http://www.gnu.org/software/emacs/
60Wireless Local Area Network
61Local Area Network

http://wiki.ros.org/rosemacs

CHAPTER 6. EXPERIMENTS 65

Algorithm 6.1 Manipulate the joints of Nao by calling high-level commands
1: procedure ABSTRACTPLAN()
2: Parallel
3: achieve(openGripper, le f t)
4: achieve(openGripper,right)
5: achieve(crouch)
6: achieve(moveHead,Position(2,3))
7: achieve(moveArm, le f t,Position(1,1,1))
8: achieve(moveArm,right,Position(2,−1,3))
9: achieve(closeGripper, le f t)

10: achieve(closeGripper,right)
11: EndParallel
12: end procedure

Pseudocode 6.1 creates the following behaviour of the real Nao robot, presented in figure
6.3.

Figure 6.3: Experiments to manipulate the Nao robot

CHAPTER 6. EXPERIMENTS 66

6.2 Navigation process module

The next test aims to command the Nao robot to walk to the specific position by executing the
next pseudocode listing. The walking behaviour is presented in the following graphic slide
6.4.

Algorithm 6.2 Navigates the Nao robot to the particular position
1: procedure ABSTRACTPLAN()
2: achieve(walkTo,Position(1,1,1))
3: end procedure

Figure 6.4: Experiments to navigate the Nao robot

6.3 Speech process module

This test sends English sentences to the speech process module as shown in algorithm
6.3. The process module sends the sentence to the text-to-speech module of the NaoQi
framework. The output is displayed by the Choregraphe simulator presented in graphic 6.5.

Algorithm 6.3 Translates text-to-speech
1: procedure ABSTRACTPLAN()
2: achieve(speech, “HiIamNao.LetsRock‘nRol“)
3: end procedure

CHAPTER 6. EXPERIMENTS 67

Figure 6.5: Experiments to translate text-to-speech

6.4 Downloading an abstract plan

This experiment demonstrates how to download a high-level plan from RoboEarth to manip-
ulate the gripper of the Nao robot. As presented in Figure 6.6, an abstract plan is created
by using the Action Recipe Editor62 provided by the KnowRob framework. Through activat-
ing the button “Save Recipe to RoboEarth“, the plan NaoGripper will be uploaded to the
RoboEarth database in OWL63-format.

Figure 6.6: Creating an abstract plan to manipulate the gripper

62http://www.knowrob.org/doc/action_recipe_editor
63Web Ontology Language

http://www.knowrob.org/doc/action_recipe_editor

CHAPTER 6. EXPERIMENTS 68

As presented in figure 6.7, this abstract plan can be found via requesting the RoboEarth
web interface on http://api.roboearth.org.

Figure 6.7: Creating an abstract plan to manipulate the gripper

http://api.roboearth.org

CHAPTER 6. EXPERIMENTS 69

By using the transforming engine of subsection 5.1.4, it is possible to download such kind
of high-level plan. The following graphic presents a download-client, which also generates
a CPL plan. Since the Nao interface provides CPL-functions to manipulate the gripper, this
plan can be executed on the Nao robot.

Figure 6.8: Download-client

6.5 Résumé

This chaper presented the possibility to control the Nao robot via abstract commands in
the CRAM Plan Language. The implemented process modules were tested to manipulate,
navigate as well as to translate text to speech. Finally, experiment 6.4 showed that the
interface of section 5.1 permits Nao robots to download and execute a high-level plan to
manipulate the gripper.

Chapter 7

Evaluation

This chapter evaluates the Nao interface based on the executed experiments in chapter 6. It
is divided into three parts. Firstly, this chapter starts with a discussion about if and how this
work answers the research hypothesis of subsection 3.6.3 as well as which requirements of
subsection 3.6.2 have been satisfied. According to 3.6.3, this master thesis has investigated
how robots are able to transform and execute high-level plans from a cloud service by proving
this approach on one specific robot platform. Chapter 4 has designed an interface to meet
the conditions 1-5 of subsection 3.6.2.

1. Portability is provided by the interface using the concept of process modules as well
as the aid of the ROS framework. Section 8.2 shows an example how to configure
this interface for the TurtleBot64 robot. Thereby, it is potential to execute the same
abstract plan on a different robot platform by exchanging the process modules and the
ROS wrapper. The power of this approach lies definitely on the flexibility of the robot
programs.

2. Sending plan requests is solved by using the KnowRob framework to explore the
database of a web service like RoboEarth for a high-level plan. The experiment of
section 6.4 has demonstrated how high-level plans can be downloaded through the
exploring engine (see subsection 5.1.2) of the Nao interface.

3. Mapping of abstract commands to robot-specific instructions is created by this
master thesis through implementing process modules inside a transformation engine
to manipulate, to navigate as well as to access the speech module of the Nao robot.
The trials of sections 6.1, 6.2 and 6.3 have presented some tests to access the pro-
cess modules by high-level plans. It was demonstrated how to start the three process
modules manipulation, navigation and speech separately in their own thread. Thus, it
is possible to access these modules in parallel.

64http://www.turtlebot.com

http://www.turtlebot.com

CHAPTER 7. EVALUATION 71

The processed tests have shown first experiences how to control the Nao robot with
high-level plans via process modules like manipulating the actuators of the Nao as
well as to navigate the robot to a specific position. Furthermore, another trial tested
the speech process module to translate text to speech.

4. Downloaded plans are executable by using the CRAM Plan Language. Experiment
6.4 has demonstrated how to send a plan request to the RoboEarth web service. The
implemented interface of section 5.1 enables Nao robot to execute abstract cloud-
stored commands.

5. Robots can process knowledge, which is generated by different robots by using
the ROS framework as well as RoboEarth that stores robot-independent information.
The trials of chapter 6 have shown the possibility to execute abstract commands which
are not Nao specific.

The second part evaluates which requirements were not implemented in the realization chap-
ter 5.

1. Knowledge sharing between different robot platforms was not implemented while
writing this master thesis. This work has carried out a knowledge sharing among Nao
robots.

2. An uploading mechanism was also not implemented.

Finally, this chapter highlights situations in which a cloud-enabled Nao robot has advantages
compared to a cloud-disabled Nao robot. For example if the Nao robot is recently delivered
to the end user, the Nao is equipped without software. Indeed, the user can create programs
using the NaoQi framework, but it is not possible to execute complex applications immedi-
ately. Instead, a cloud-connected Nao robot can download executable plans instantly from
a cloud service to perform a task without having any previous knowledge. Another point is
that the user of a cloud-disabled robot has to provide programming skills in Python, Java or
C++. Using the implemented interface of this work, a user without programming skills is able
to control the robot in an abstract way.

Chapter 8

Conclusion

8.1 Summary

This master thesis showed how to apply the approach of knowledge sharing via cloud ser-
vices on robots to improve their learning mechanisms. Moreover, it demonstrated this con-
cept by developing an interface to connect the Nao platform to the web service RoboEarth.
This interface permits Nao robots to download and execute abstract plans. It also allows Nao
robots to process plans that can be generated by heterogeneous robots.
Chapter 3 introduced the topic of Cloud Robotics by demonstrating common challenges and
related projects. It revealed which software components are required to provide a plan shar-
ing among different robot platforms.
Chapter 4 designed a Nao-specific interface, which mainly provides a mechanism to explore
a cloud service for a specific plan request as well as a transformation engine. Inside the
transformation engine this work uses the concept of process modules to map abstract com-
mands to Nao-depending instructions, which are provided by the robot middleware ROS65.
These modules encapsulate the Nao hardware components. Furthermore, several com-
munication approaches showed different design concepts providing a plan sharing system
including the Nao robot, the Nao interface and a cloud service. These concepts differ from
each other by locating the Nao interface in another mode.
The realization chapter 5 described the implementation of a plan sharing system via an in-
telligent gateway permitting Nao robots to download and execute high-level plans from the
RoboEarth web service. The Nao interface is placed on a gateway acting as loose-coupled
interaction point between the robot and RoboEarth. It presented the KnowRob framework as
exploring engine to find a satisfying plan inside the RoboEarth database. This master thesis
implemented the transformation engine with the aid of the CRAM Plan Language as well as
the Nao-ROS wrapper.

65Robot Operating System

CHAPTER 8. CONCLUSION 73

Chapter 5 carried out process modules to manipulate, navigate as well as accessing the
speech module of the Nao in an abstract way without thinking about how the robot solves
these tasks. Furthermore, it showed the communication between the process modules and
the Nao-Wrapper via ROS-Nodes.
Besides, some experiments presented how to use the implemented process modules for the
Nao platform and demonstrated how high-level plans can be downloaded. The evaluation
showed that this approach provides definitely the possibility to control the Nao robot in an
abstract way as well as to execute programs that are not Nao-specific. Finally, the outlook
describes further suggestions to continue the work of this master thesis.

8.2 Outlook

This section aims to present possible advancements of the master thesis. It also shows
further opportunities to continue this work.

Improvements of the interface

Firstly, the Nao interface offers some possibilities for advancements.

A perception process module extends the functionality of the Nao interface. With the aid
of this interface a high-level plan would be able to access the object detection and speech
recognition of the Nao platform.

The uploading mechanism would permit Nao robots to create abstract plans that can be
uploaded to a web service like RoboEarth. As RoboEarth stores robotic-specific knowledge
in a OWL66-like format, called RoboEarth languageTenorth et al. (2012), Nao has to trans-
form plans defined in its own internal representation to the RoboEarth language. One oppor-
tunity is to generate knowledge by the tool Choreographe. This information will be translated
into the RoboEarth language, which can be uploaded to the RoboEarth web service.

66Web Ontology Language

CHAPTER 8. CONCLUSION 74

Plan Sharing among the Nao platform and the TurtleBot

Since the developed Nao interface provides a knowledge sharing with heterogeneous robots,
further projects could continue this work to exchange executable plans between a Nao robot
and another ROS67-enabled robots like the TurtleBot68 or the PR2 robot. Both robots are
developed by the popular robot manufacturer Willow Garage. As this company is also re-
sponsible for the maintenance and advancement of the ROS framework, both robots are
fully integrated into ROS.
To adapt the plan sharing system of section 5.2 to the TurtleBot platform, there only have
to be TurtleBot-depending process modules, which are located on top of the TurtleBot-ROS
wrapper69. Figure 8.1 shows an architecture that allows the TurtleBot robot to download and
execute high-level plans, which can be generated by the Nao robot.

Figure 8.1: Nao-TurtleBot Cooperation

67Robot Operating System
68http://www.turtlebot.com
69http://wiki.ros.org/Robots/TurtleBot

http://www.turtlebot.com
http://wiki.ros.org/Robots/TurtleBot

CHAPTER 8. CONCLUSION 75

Stepwise search space extension

This concept aims to extend the approaches of section 4.2 by controlling which cloud ser-
vices will be used when a Nao robot sends a plan request to the internet. Firstly, this ap-
proach places a private cloud into the environment of the robot to reduce the download
latency. This private cloud is only accessible for robots that operate in the same network. If
the private cloud does not provide a high-level plan, which satisfies the request, the cloud
service connects itself to a bigger cloud service. Through this concept, the search space
for an abstract plan is dynamic. This extension can be used by all of the three approaches
presented in section 4.2. The following graphic shows the extension of a plan sharing system
by using the concept of a stepwise search space.

Figure 8.2: Sketch of a stepwise search space extension Nao (2014)

Downloading safety plans

Subsection 3.4 represents one of the challenges not considered in this work. Nevertheless,
it is very important to be concerned about this topic. Plans stored in a private cloud can be
considered as secure, but public cloud stored plans require specified verifying mechanisms.
Similar to smartphone application stores like Apple Store or Google Play it is necessary that
a knowledge database like RoboEarth is able to ensure that no malware will be downloaded
by the robot.

CHAPTER 8. CONCLUSION 76

Plan caching

Certainly, it is not very efficient to download a plan from a cloud service each time a robot
wants to solve the same task. So, it is recommendable to think about caching policies to
optimize a plan sharing system. This challenge depends on the memory capacity of the
robot. For smart robots with low memory, it could be helpful to use algorithms swapping
elder plans by recently executed plans. Robots that represent fat clients with high memory
capacity are able to store all downloaded plans in its internal database.

Plan downloading via smartphone

This idea combines the topic Cloud Robotics with teleoperation70. As considered in chapters
3 and 4, robots receive the plan request by human through its own speech recognition sys-
tem. An alternative could be to use a smartphone as interaction interface permitting humans
to send plan requests to its robot from any place of the world.

Commercial app store for robots

Besides, it is interesting to think about how to earn money with this topic. Thus, the owners
of the robots have to pay for each plan the robot downloads. Different from the smartphone
application stores, it has to be checked if the plan is generally executable before a robot can
download it.

Connecting Nao with the Google Cloud Platform

Subsection 3.5.5 has already demonstrated the possibility to use Google-Technologies to
counter the challenges of Cloud Robotics. A very attractive opportunity to advance this work
would be to use the Google Cloud Platform71 as platform as a service permitting Nao robots
to cooperate with other robots.

70Controlling a robot via remote commands
71https://cloud.google.com

https://cloud.google.com

References

IFR, “Executive summary,” Tech. Rep., 2013. [Online]. Available: http://www.ifr.org/uploads/
media/Executive_Summary_WR_2013_01.pdf

E. Guizzo, “Robots with their heads in the clouds,” Tech. Rep., 2011. [Online]. Avail-
able: http://isdlab.aet.ntnu.edu.tw/roboticscloud/references/Robots%20With%20Their%
20Heads%20in%20the%20Clouds.pdf

P. Mell and T. Grance, “The nist definition of cloud computing recommendations of the
national institute of standards and technology,” Tech. Rep., 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E. Bergery, R. Wheelery,
and A. Ng, “Ros: an open-source robot operating system,” Tech. Rep., 2009. [Online].
Available: http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf

A. Martinez and E. Fernández, Learning ROS for Robotics Programming. Birmingham:
Packt Publishing, 2013.

W. Woodall. (2013, Oct.) Client libraries @ONLINE. [Online]. Available: http://wiki.ros.org/
Client%20Libraries

Nao. (2014) Nao robot, last accessed on 7.02.2014 @ONLINE. [Online]. Available:
http://www.ais.uni-bonn.de/images/robots/Nao.png

——. (2012) Modeling of mesencephalic locomotor region for nao humanoid robot, last
accessed on 7.02.2014 @ONLINE. [Online]. Available: http://www.emeraldinsight.com/
content_images/fig/0490390203015.png

Aldebaran-Robotics. (2013) Nao documentation @ONLINE. [Online]. Available: https:
//community.aldebaran-robotics.com/doc/1-14/index.html#

——. (2013) Naoqi framework @ONLINE. [Online]. Available: https://community.
aldebaran-robotics.com/doc/1-14/naoqi/index.html

http://www.ifr.org/uploads/media/Executive_Summary_WR_2013_01.pdf
http://www.ifr.org/uploads/media/Executive_Summary_WR_2013_01.pdf
http://isdlab.aet.ntnu.edu.tw/roboticscloud/references/Robots%20With%20Their%20Heads%20in%20the%20Clouds.pdf
http://isdlab.aet.ntnu.edu.tw/roboticscloud/references/Robots%20With%20Their%20Heads%20in%20the%20Clouds.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/Client%20Libraries
http://www.ais.uni-bonn.de/images/robots/Nao.png
http://www.emeraldinsight.com/content_images/fig/0490390203015.png
http://www.emeraldinsight.com/content_images/fig/0490390203015.png
https://community.aldebaran-robotics.com/doc/1-14/index.html#
https://community.aldebaran-robotics.com/doc/1-14/index.html#
https://community.aldebaran-robotics.com/doc/1-14/naoqi/index.html
https://community.aldebaran-robotics.com/doc/1-14/naoqi/index.html

REFERENCES 78

M. Weiser, “The computer for the 21st century,” Tech. Rep., 1991. [Online]. Available:
http://www.ics.uci.edu/~corps/phaseii/Weiser-Computer21stCentury-SciAm.pdf

M. Inaba, “Remote-brained robots,” Tech. Rep., 1993. [Online]. Available: http:
//ijcai.org/Past%20Proceedings/IJCAI-97-VOL2/PDF/118.pdf

M. Inaba, S. Kagami, T. Ishikawa, F. Kanehiro, K. Takeda, and H. Inoue, “Vision-based
adaptive and interactive behaviors in mechanical animals using the remote-brained
approach,” Tech. Rep., 1994. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=407540

M. Inaba, S. Kagami, F. Kanehiro, Y. Hoshino, and H. Inoue, “A platform for robotics research
based on the remote-brained robot approach,” Tech. Rep., 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3253&rep=rep1&type=pdf

M. Inaba, T. Ninomiya, Y. Hoshino, K. Nagasaka, S. Kagami, and H. Inoue, “A
remote-brained full-body humanoid with multisensor imaging system of binocular viewer,
ears, wrist force and tactile sensor suit,” Tech. Rep., 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3253&rep=rep1&type=pdf

J. Kuffner, “Cloud robotics: (and the future of distributed intelligence).” IROS2011 Workshop:
Knowledge Representation for Autonomous Robots, 2011.

J. M. Quintas, P. J. Menezes, and J. M. Dias, “Cloud robotics: Towards context aware robotic
networks,” Tech. Rep., 2011. [Online]. Available: http://mrl.isr.uc.pt/archive/752-062.pdf

M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E. Bergery, R. Wheelery,
and A. Ng, “Ros an open-source robot operating system,” Tech. Rep., 2009. [Online].
Available: http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,” Tech.
Rep., 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0921889007001364#

R. Smits, T. D. Laet, K. Claes, P. Soetens, J. D. Schutter, and H. Bruyninckx, “Orocos: A
software framework for complex sensor-driven robot tasks,” Tech. Rep., 2008. [Online].
Available: http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf

B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for
multi-robot and distributed sensor systems,” Tech. Rep., 2003. [Online]. Available:
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf

E. Kutluhan, J. Hendler, and D. S. Nau, “Htn planning: Complexity and expressivity,” Tech.
Rep., 1994. [Online]. Available: http://www.cs.umd.edu/~nau/papers/erol1994htn.pdf

http://www.ics.uci.edu/~corps/phaseii/Weiser-Computer21stCentury-SciAm.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-97-VOL2/PDF/118.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-97-VOL2/PDF/118.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=407540
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=407540
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3253&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3253&rep=rep1&type=pdf
http://mrl.isr.uc.pt/archive/752-062.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.sciencedirect.com/science/article/pii/S0921889007001364#
http://www.sciencedirect.com/science/article/pii/S0921889007001364#
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://www.cs.umd.edu/~nau/papers/erol1994htn.pdf

REFERENCES 79

K. L. Myers and D. E. Wilkins, “The act formalism,” Tech. Rep., 1997. [Online]. Available:
http://www.ai.sri.com/~act/act-spec.pdf

M. Ghallab, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins,
“Pddl planning domain definition language,” Tech. Rep., 1998. [Online]. Available:
http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf

M. R. Genesereth and R. E. Fikes, “Knowledge interchange format version 3.0,” Tech.
Rep., 1992. [Online]. Available: https://www.cs.auckland.ac.nz/courses/compsci367s2c/
resources/kif.pdf

D. Lu, “Urdf and you.” ROSCon 2012, 2012.

M. Barnes, E. L. Finch, and S. C. E. Inc., “Collada digital asset schema release 1.5.0,” Tech.
Rep., 2008. [Online]. Available: http://www.khronos.org/files/collada_spec_1_5.pdf

L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot description languages,” Tech.
Rep., 2011. [Online]. Available: https://ias.in.tum.de/_media/spezial/bib/kunze11srdl.pdf

D. McDermott, “A reactive plan language,” Tech. Rep., 1991. [Online]. Available:
http://www.cs.yale.edu/publications/techreports/tr864.pdf

M. Beetz, L. Moesenlechner, and M. Tenorth, “Cram a cognitive robot abstract machine
for everyday manipulation in human environments,” Tech. Rep., 2010. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5650146

M. Beetz and D. McDermott, “Declarative goals in reactive plans,” Tech. Rep.,
1992. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
AEBF0C40167CEFC345BF87BCCB81142B?doi=10.1.1.17.5031&rep=rep1&type=pdf

J. Bohren. (2010) Smach package summary, last accessed on 8.02.2014 @ONLINE.
[Online]. Available: http://wiki.ros.org/smach

S. Harnad, “The symbol grounding problem,” Tech. Rep., 1990. [Online]. Available:
http://courses.media.mit.edu/2004spring/mas966/Harnad%20symbol%20grounding.pdf

M. Waibel, M. Beetz, J. Civera, R. Andrea, J. Elfring, D. Galvez-Lopez, K. Häussermann,
R. Janssen, A. P. J.M.M. Montiel, B. Schießle, M. Tenorth, O. Zweigle, and R. van de
Molengraft, “Roboearth a world wide web for robots,” Tech. Rep., 2011. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5876227

M. Tenorth, A. Perzylo, R. Lafrenz, and M. Beetz, “The roboearth language: Representing
and exchanging knowledge about actions, objects, and environments,” Tech. Rep., 2012.
[Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6224812

http://www.ai.sri.com/~act/act-spec.pdf
http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf
https://www.cs.auckland.ac.nz/courses/compsci367s2c/resources/kif.pdf
https://www.cs.auckland.ac.nz/courses/compsci367s2c/resources/kif.pdf
http://www.khronos.org/files/collada_spec_1_5.pdf
https://ias.in.tum.de/_media/spezial/bib/kunze11srdl.pdf
http://www.cs.yale.edu/publications/techreports/tr864.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5650146
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AEBF0C40167CEFC345BF87BCCB81142B?doi=10.1.1.17.5031&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AEBF0C40167CEFC345BF87BCCB81142B?doi=10.1.1.17.5031&rep=rep1&type=pdf
http://wiki.ros.org/smach
http://courses.media.mit.edu/2004spring/mas966/Harnad%20symbol%20grounding.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5876227
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6224812

REFERENCES 80

M. Beetz and M. Tenorth, “Knowrob knowledge processing for autonomous personal
robots,” Tech. Rep., 2009. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5354602

Nao. (2011) Robotique: Nao, robot humanoide, last accessed on 7.02.2014 @ONLINE.
[Online]. Available: http://uncafemonblocnote.fr/wp-content/uploads/2011/02/NAO-4_
stand.png

TurtleBot. (2014) Turtlebot robot, last accessed on 7.02.2014 @ONLINE. [Online].
Available: http://ros.informatik.uni-freiburg.de/roswiki/attachments/Robots(2f)TurtleBot/
turtlebot320.png

D. Hunziker, M. Gajamohan, M. Waibel, and R. D. Andrea, “Rapyuta the roboearth cloud
engine,” Tech. Rep., 2013. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=6630612

M. Gajamohan, “Understanding the roboearth cloud.” ROSCon 2013, 2013.

Y. Ogata, E. Spaho, K. Matsuo, L. Barolli, and F. Xhafa, “A knowledge sharing p2p
system between robots using jxta-overlay,” Tech. Rep., 2011. [Online]. Available:
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf

X. Fan and T. C. Henderson, “Robotshare: A google for robots,” Tech. Rep., 2008. [Online].
Available: http://www.doc.ic.ac.uk/~xf309/Misc/IJHR.pdf

R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A. Kumar,
K. D. Meng, and G. W. Kit, “Davinci a cloud computing framework for service robots,”
Tech. Rep., 2010. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5509469

B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, “Cloud-based robot
grasping with the google object recognition engine,” Tech. Rep., 2013. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6631180

MyRobots.com. (2013, Dec.) Connect your robots. reap the benefits@ONLINE.

Oddwerx. (2012) Smartphone-roboter läuft mit open-source-betriebssystem, last ac-
cessed on 7.02.2014 @ONLINE. [Online]. Available: http://www.golem.de/1204/sp_
91274-34227-i.jpg

Roméo. (2014) Roméo robot, last accessed on 7.02.2014 @ONLINE. [Online]. Available:
http://spectrum.ieee.org/image/1749400

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354602
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354602
http://uncafemonblocnote.fr/wp-content/uploads/2011/02/NAO-4_stand.png
http://uncafemonblocnote.fr/wp-content/uploads/2011/02/NAO-4_stand.png
http://ros.informatik.uni-freiburg.de/roswiki/attachments/Robots(2f)TurtleBot/turtlebot320.png
http://ros.informatik.uni-freiburg.de/roswiki/attachments/Robots(2f)TurtleBot/turtlebot320.png
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6630612
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6630612
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://www.doc.ic.ac.uk/~xf309/Misc/IJHR.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509469
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509469
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6631180
http://www.golem.de/1204/sp_91274-34227-i.jpg
http://www.golem.de/1204/sp_91274-34227-i.jpg
http://spectrum.ieee.org/image/1749400

REFERENCES 81

SmartBot. (2013) Smartbot puts your smartphone to a new use, last accessed on 7.02.2014
@ONLINE. [Online]. Available: http://images.gizmag.com/hero/smartbot.jpg

H. Y. Nii, “Blackboad systems,” Tech. Rep., 1986. [Online]. Available: ftp://reports.stanford.
edu/pub/cstr/reports/cs/tr/86/1123/CS-TR-86-1123.pdf

PR2. (2013) Pr2 robot, last accessed on 7.02.2014 @ONLINE. [Online]. Available:
http://robotics.usc.edu/resl/media/uploads/photos/robots/pr2/pr2_size-large.jpg

D. Prasad, “Multi-robot map data merging in cloud robotics systems,” Tech. Rep., 2013.

M. Tenorth, “Knowledge processing for autonomous robots,” Tech. Rep., 2011. [Online].
Available: http://ias.cs.tum.edu/~tenorth/thesis.pdf

M. Beetz and D. McDermott, “Improving robot plans during their execution,” Tech. Rep.,
1994. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.
2901&rep=rep1&type=pdf

A. Müller, “Transformational planning for autonomous household robots using libraries of
robust and flexible plans,” Tech. Rep., 2008. [Online]. Available: http://mediatum.ub.tum.
de/doc/645588/645588.pdf

A. Hornung. (2009, Dec.) Ros-stack for the nao humanoid robot @ONLINE. [Online].
Available: http://wiki.ros.org/Robots/Nao

F. Johannßen, “Nao in the cloud,” Tech. Rep., 2013. [Online]. Available: http:
//users.informatik.haw-hamburg.de/~ubicomp/projekte/master2012-proj1/johannssen.pdf

——, “Nao robots in the cloud: An interface to execute abstract plans,” Tech. Rep.,
2013. [Online]. Available: http://users.informatik.haw-hamburg.de/~ubicomp/projekte/
master12-13-proj2/johannssen.pdf

L. Moesenlechner. (2009, Dec.) Cram-core stack @ONLINE. [Online]. Available:
http://wiki.ros.org/cram_core

Aldebaran-Robotics. (2013) Choregraphe @ONLINE. [Online]. Available: http://www.
aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html

http://images.gizmag.com/hero/smartbot.jpg
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/86/1123/CS-TR-86-1123.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/86/1123/CS-TR-86-1123.pdf
http://robotics.usc.edu/resl/media/uploads/photos/robots/pr2/pr2_size-large.jpg
http://ias.cs.tum.edu/~tenorth/thesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.2901&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.2901&rep=rep1&type=pdf
http://mediatum.ub.tum.de/doc/645588/645588.pdf
http://mediatum.ub.tum.de/doc/645588/645588.pdf
http://wiki.ros.org/Robots/Nao
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2012-proj1/johannssen.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2012-proj1/johannssen.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master12-13-proj2/johannssen.pdf
http://users.informatik.haw-hamburg.de/~ubicomp/projekte/master12-13-proj2/johannssen.pdf
http://wiki.ros.org/cram_core
http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html
http://www.aldebaran-robotics.com/en/Discover-NAO/Software/choregraphe.html

List of Figures

2.1 Core concepts of the ROS framework Martinez and Fernández (2013) 6
2.2 Nao Next Gen (Nao (2014); Nao (2012)) . 8
2.3 NaoQi SDK Aldebaran-Robotics (2013b) 9

3.1 Description of the remote-brained robot approach Inaba (1993) 12
3.2 Knowledge sharing for robots . 14
3.3 RoboEarth (Waibel et al. (2011); Nao (2011); TurtleBot (2014)) 20
3.4 Rapyuata Gajamohan (2013) . 21
3.5 RobotShare . 23
3.6 DaVinci Arumugam et al. (2010) . 24
3.7 Cloud-Based Robot Grasping - Offline Phase Kehoe et al. (2013) 25
3.8 Cloud-Based Robot Grasping - Online Phase Kehoe et al. (2013) 26
3.9 MyRobots.com MyRobots.com (2013) . 27
3.10 Smartphone Robots (Oddwerx (2012); Roméo (2014); SmartBot (2013)) . . . 29
3.11 Knowledge sharing among heterogeneous robots via cloud services (Roméo

(2014); PR2 (2013)) . 31
3.12 Use cases - Nao in the cloud . 32

4.1 Component diagram of the Nao interface 35
4.2 Communication process between all related components Nao (2011) 37
4.3 Transformation of high-level plans to Nao-depending instructions 38
4.4 Interaction between process modules and Nao wrapper 39
4.5 Sketch of an intelligent gateway . 41
4.6 Communication among the Nao robot, the intelligent gateway and the web

service . 43
4.7 Sketch of a transparent gateway . 44
4.8 Sequence diagram for the transparent gateway approach 45
4.9 Sketch of a plan sharing system without a gateway 46
4.10 Communication between the Nao robot and the web service 47

5.1 ROS-nodes for manipulation . 59

LIST OF FIGURES 83

5.2 ROS-nodes for navigation . 60
5.3 ROS-nodes to tanslate text to speech . 61
5.4 Overview of a plan sharing system by using the intelligent gateway approach

Nao (2014) . 62

6.1 Cloud-enabled Nao architecture . 63
6.2 Test environment for the following experiments 64
6.3 Experiments to manipulate the Nao robot 65
6.4 Experiments to navigate the Nao robot . 66
6.5 Experiments to translate text-to-speech . 67
6.6 Creating an abstract plan to manipulate the gripper 67
6.7 Creating an abstract plan to manipulate the gripper 68
6.8 Download-client . 69

8.1 Nao-TurtleBot Cooperation . 74
8.2 Sketch of a stepwise search space extension Nao (2014) 75

List of Tables

5.1 Packages of the Nao-stack . 53
5.2 Nodes of the Nao-ROS-stacks . 54
5.3 CRAM-Core packages . 54

List of Algorithms

5.1 Downloading OWL-description of a high-level plan 51
5.2 Downloading missing object models . 52
5.3 Translating OWL-Plan to CPL . 52
5.4 Exploring engine . 52
5.5 Main function of the transformation engine 55
5.6 Functionality of a process module . 55
5.7 Low-level function to close the gripper of the Nao robot 57
5.8 Low-level function to open the gripper of Nao 57
5.9 Low-level function to move the head of Nao 58
5.10 Low-level function to move the arms of Nao 58
5.11 Low-level function to move Nao to a stable position 58
5.12 Low-level function for walking . 60
5.13 Low-Level function translate text to speech 61
5.14 Creating High-Level Plans . 62
6.1 Manipulate the joints of Nao by calling high-level commands 65
6.2 Navigates the Nao robot to the particular position 66
6.3 Translates text-to-speech . 66

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§22(4) bzw.§24(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmit-
tel benutzt habe.

Hamburg, 10.02.2014 Florian Johannßen

	1 Introduction
	1.1 Motivation
	1.2 Reader`s guide

	2 Fundamentals
	2.1 Cloud Computing
	2.2 Robot Operating System
	2.3 Nao robot
	2.4 NaoQi Software Development Kit

	3 Analysis
	3.1 Scenario: Household assistance through internet-enabled robots
	3.2 Remote-brained robots
	3.3 Cloud Robotics
	3.3.1 Knowledge sharing for robots
	3.3.2 Outsourcing compute-intensive tasks

	3.4 Challenges
	3.5 Related Work
	3.5.1 RoboEarth
	3.5.2 A knowledge sharing Peer-To-Peer system
	3.5.3 RobotShare
	3.5.4 DaVinci
	3.5.5 Cloud-based robot grasping
	3.5.6 MyRobots.com
	3.5.7 Nao application store
	3.5.8 Smartphone robots
	3.5.9 3D CAD browser

	3.6 Objectives and requirements
	3.6.1 Use cases
	3.6.2 Functional requirements
	3.6.3 Conclusion

	4 Design
	4.1 Nao interface
	4.2 Approaches of communication
	4.2.1 Intelligent gateway
	4.2.2 Transparent gateway
	4.2.3 Without Gateway
	4.2.4 Conclusion

	5 Realization
	5.1 Interface
	5.1.1 ROS middleware
	5.1.2 Exploring engine
	5.1.3 Nao platform
	5.1.4 Transformation engine
	5.1.4.1 Nao-ROS-stack
	5.1.4.2 CRAM Plan Language
	5.1.4.3 Process modules

	5.2 Gateway

	6 Experiments
	6.1 Manipulation process module
	6.2 Navigation process module
	6.3 Speech process module
	6.4 Downloading an abstract plan
	6.5 Résumé

	7 Evaluation
	8 Conclusion
	8.1 Summary
	8.2 Outlook

