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Kurzzusammenfassung
Ein wichtiges Ziel der theoretischen Informatik ist die Entwicklung formaler Methoden, die es
erlauben die �alität der zu entwickelnden So�ware zu verbessern. Eigenscha�en wie Leben-
digkeit, Verklemmungen und Sicherheiten können für ein gegebenes Modell nachgewiesen
werden. Hierfür eignet sich das Modellieren mit Petri-Netzen als eine etablierte wissenscha�li-
che Technik besonders gut. Basierend auf Petri-Netzen, erweitern rekon�gurierbare Petri-Netze
die Netze um eine Menge von Regeln, die genutzt werden um das Netz dynamisch zu verändern.

Bisher fehlt die Möglichkeit der Veri�zierung von rekon�gurierbaren Petri-Netzen. Diese
�esis beschreibt die Überführung von rekon�gurierbaren Petri-Netzen zu einem Maude Netz.
Ziel dieser Master �esis ist der Nachweis der Korrektheit des Maude Netzes.
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Abstract
One important aim of theoretical computer science is model checking to improve the so�ware
quality. Properties such as liveness, deadlock or safety can be veri�ed for a given model.
Modelling with Petri nets is a typical technique because it is well understood and can be used
for model checking. Recon�gurable Petri nets are extending the concept of Petri nets with a
set of rules that can be used dynamically to change the net.

�e possibility to verify a recon�gurable Petri net and properties such as deadlocks or
liveness is non-existent. �e aim of this thesis is the proof of correctness of a Maude net.
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1 Introduction

�e fundamentals of many daily routines are so�ware-controlled devices used in the areas
of public transport, security systems, and banking terminals. In this context, cost e�ciency
and fault resistance are the main challenges that must be solved. In order to prevent faults,
a technique is needed to combine formalization, algorithms, and tools in comparison with
other standard tests that show only the absence of faults. Model checking is a solution for
computer-based systems that colligate a formal veri�cation technique for the behavioural
properties of a given system by inspecting all model states. Speci�cations given as formulae
are proven against a model that is used as the base, where the correctness of the model is
essential [1].

1.1 Aim of this Thesis

Recon�gurable Petri nets are well-established models for concurrent and non-deterministic
behaviour models [4–6]. �eir concurrent behaviour are suitable for complex systems that
describe dynamic structures, including changes by rules at runtime. For users it is di�cult
to determine whether some properties emerge due to the non-deterministic and concurrent
behaviour. �erefore, this thesis aims to develop an approach for the model checking of a
recon�gurable Petri net. �is approach includes the proof of model correctness so that the
veri�cation is applicable.

Maude’s well-established theory of rewriting logic is suitable for recon�gurable Petri nets
due to the uni�ed model of concurrency, which is particularly interesting for the concurrent
model of recon�gurable Petri nets [7, 8]. De�nitions of P/T nets, coloured Petri nets, and
algebraic Petri nets are de�ned in [9] in a manner that makes Maude a suitable basis for the
de�nition of a Maude net that models the net and rules of a recon�gurable Petri net. Finally,
Maude includes a implementation of model checking by its linear temporal logic of rewriting
(LTLR) module1.

1 http://maude.cs.illinois.edu/tools/tlr/, 24 March 2015
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1 Introduction

Based on the algebraic model of the previous work presented in [3], this thesis ensures the
correctness of the conversion as well as the bisimulation between a recon�gurable Petri net and
a Maude net. �e purpose is to guarantee that the given Maude net is applicable for the related
recon�gurable Petri net so that the veri�cation process can return valid results. �is is achieved
through de�nitions and proofs of the conversion between a recon�gurable Petri net and a
Maude net, as well as the bisimulation between the reachability graph for the recon�gurable
Petri net and the related search tree of the Maude net. Hence, the rewriting logic is formally
de�ned and combined with the theory of recon�gurable Petri nets (for more technical point of
views, see [3], or the Maude modules in appendix B). �ose functions that convert all parts
such as places, transitions, pre- and post-domains, or markings of a recon�gurable Petri net
into a Maude net are de�ned. With this result, all the functions can be bundled into a main
conversion by �eorem 1. Resting on both theories, �eorem 2 introduces the bisimulation
for both transition systems derived from the related de�nitions in Def. 15 and Def. 3. Such
bisimulation is based on the �ring and transforming steps of a recon�gurable Petri net and
the search tree of Maude, which are mapped with a function. �e resulting proof of such
bisimulation implies that both theories are behaviourally equivalent.

�e algebraic approach of a Maude net leads to the proof of properties, such as deadlock
freeness, by Maude’s model checking with the LTLR-module. Additionally, the model enables
the implementation of extension as, for example, the reachability graph. �e Maude net
implementation is thus used as a basis for more implementations which can be used to improve
the usability of net designs and which abides by required properties.

2



1 Introduction

1.2 Outline

�e following chapters can be divided into the background with all relevant theories such as
linear temporal logic and bisimulation. Next, the de�nition of a transition system, including
bisimulation and Maude is given. �is chapter ends with an introduction to recon�gurable Petri
nets and related works such as fundamental Petri net writing in Maude or more complex – for
example, coloured Petri nets. �en, the ReConNet model checker and the related reachability
graph are introduced. Next, the chapter labelled transition systems contains the de�nition
of related labelled transition systems for a recon�gurable Petri net and a Maude net. �e
chapter on the correctness of model checking for Maude contains the central content with all
de�nitions and proofs for the correctness of the conversion as well as the bisimulation. Based
on this, the evaluation chapter contains an example, including the results for a recon�gurable
Petri net, that has been proven against Charlie2. Finally, this thesis provides the basis for future
works such as graphically animated counterexamples, and a summary of all collected results
and a di�erentiated conclusion is also given.

�e appendices include detailed examples of the Maude search tree as well as the Maude
source code of the example net and rules.

2 http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie, 24
March 2015
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2 Background

�is chapter introduces the formal de�nition of recon�gurable Petri nets (with respect to well-
known Petri nets). It also shows the corresponding implementation, which is called ReConNet

[10], as well as the rewrite logic and the application rMC. rMC converts a recon�gurable Petri
net into a Maude net (see [3, 11]). Finally, it includes related works, such as Petri net de�nition
or more complex coloured Petri nets in Maude, as well as previous publications dealing with
recon�gurable Petri nets.

2.1 Temporal Logic

Temporal logic is an extension by time for inference logic. It contains the logic for specifying and
the techniques for reasoning time-based problems in �elds of philosophy and computer science.
�e time-based relations between moments are used by the before-a�erwards relationships so
that ”He is always happy!“can be reasoned by a single path with linear time logic or branching
paths with computation tree logic [12]. Both logics are used to verify computer-based systems
against a given speci�cation. An application of veri�cation is implemented by model checking
in Maude, where a state/event-based extension is used to verify the rewrite steps.

Model checking of recon�gurable Petri nets using Maude is de�ned in [3, 11]. Both papers
use a conversion to transmit a net and a set of rules into a Maude net that can be used for
linear temporal logic (LTL) model checking with the module LTLR1. �e LTL model-checking
module contains all the usual operators, such as true, false, conjunction, disjunction and not,
and complex operators with the next-operator being wri�en with O φ or the until-operator
notated with ψ U φ. Further, it supports release-operator statements, such as ψ R φ that are
internally converted into φ until ψ. Finally, it de�nes the future-operator that is wri�en with
^ φ that φ is possible in the future, whereby the global-operator that is wri�en with � φ claims
that φ is true in all states. All the operators are summarized in the following graphic, using a
suitable path description.

1 Linear temporal logic for rewrite (LTLR) with extensions for rewrite rules and properties such as fairness:
http://maude.cs.illinois.edu/tools/tlr/, 4 March 2015
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2 Background

O φ: • φ • • • •

ψ U φ: ψ ψ ψ φ • •

ψ R φ: φ φ φ φ, ψ • •

φ φ φ φ φ φ

^ φ: • • • • φ •

� φ: φ φ φ φ φ φ

Figure 1 shows a subsumption of the main LTL veri�cation process for a formula φ and a given
recon�gurable Petri net wri�en in Maude. Both parts are translated into Büchi automatons
and combined, a�erwards, into a product automaton that is �nally proven against emptiness.

reconfigurable
Petri net

Model
(Maude net MN)

Büchi automaton
(AMN)

negative formula (¬φ)

Generalised Büchi
automaton (G¬φ)

Büchi automaton
(A¬φ)

Product automaton
AMN ⊗A¬φ

Emptiness test

’yes’ ’no’, (counter-example)

Figure 1: LTL model checking of a Maude net, adjusted from [1, P. 292]
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2 Background

2.2 Bisimulation of the Transition Systems

According to [2, 13, 14], bisimilar refers to the behaviour equivalence of two systems. In
contradistinction to bisimilarity, can trace equivalence systems not determine decisions in the
system. An example of two systems that demonstrate the issue of trace equivalence is shown
in Figure 2. Initially, both systems can choose an a action. System S is now in state s1 and can
choose between b or c actions. System T is in state t1 or t′1, where no action can be selected.
As a result, both systems exhibit trace equivalence but are not bisimilar due to the decision.

s0start

s1

a

s2

b

s3

c

S

t0start

t1

a

t′1

a

t2
b

t3

c

T

Figure 2: Two trace equivalent but not bisimilar systems S
and T due to action a (adjusted from [2])

In formal terms the example in Figure 2 can be expressed as a transition system of Def. 1,
where all states are combined in a set S for states, while transition relation tr combines two
states and an action to a �ow.

De�nition 1 (Transition system (TS)). A transition system (TS) consists of a three-tuple TS =
(S,A, tr) with a set S of states, a set A of actions and transition relations tr ⊆ S × A × S.

Based on such a transition system, a bisimulation is de�ned by Def. 2. A relation B is used to
combine two states of two transition systems if they satisfy both conditions for all outgoing
actions.

6



2 Background

De�nition 2 (Action-based bisimulation of TS [14, 15]). Given two TSi with i ∈ 1, 2 and

TSi = (Si, Ai, tri) is an action-based bisimulation de�ned by a binary relation B ⊆ S1 × S2,

which is constructed by:

∀(s1, r1) ∈ B with action a ∈ A

∀s2 with s1
a−→
1
s2 ⇒ ∃r2 ∈ S2 : r1

a−→
2
r2 ∧ (s2, r2) ∈ B

∀r2 with r1
a−→
2
r2 ⇒ ∃s2 ∈ S1 : s1

a−→
1
s2 ∧ (s2, r2) ∈ B

If B is a binary relation between TS1 and TS2, then there exists a bisimulation TS1 - TS2.

2.3 Maude

Developed mainly at the Stanford Research Institute International (SRI International), Maude
is a well-known implementation of equation and rewriting logic [16, 17]. As a base, it uses a
powerful algebraic language for models of a concurrent state system. An extension of Maude
is the linear temporal logic for rewrite (LTLR) module that can be used to test de�ned modules
with LTL properties, such as deadlocks [1, 18, 19].
Implementations in Maude are based on one or many modules, where each is an abstract data
type (ADT). Further, each module is based on types, which are declared with the keyword ”sort“
for a single sort or for more with ”sorts“. Hence, some types for a Petri net can be described
with:

sorts Places Transitions Markings .

Depending on a given set of sorts, the operators can be de�ned. �e operators describe all
functions that are needed to work with the de�ned types so that, for example, a multiset of
markings can be expressed with a whitespace-functor. Placeholders, denoted by a underscore,
are used for the types a�er the double point, and �nally, the return type is given by the type
right to the arrow. �e following example is based on the above type of declaration:

op : Markings Markings → Markings .

If an operator is associative or commutative, it can be wri�en with keywords such as ”assoc“
and ”comm“. �ese keywords are de�ned at the end of a line so that a multiset of markings
can be extended by such properties by:

op : Markings Markings → Markings [assoc comm] .

7



2 Background

�e axioms are expressed by the equation logic of Maude, which de�nes the validity for the
given operators. For example, the initial marking of a Petri net can be exempli�ed with the
initial operator. As the validity can be wri�en with an equation, where, for example, a
given Petri net of Figure 3 is de�ned with a token on ”A“, these three lines follow:

op initial : → Markings .
ops A B : → Markings .

eq initial = A .

In summary, types de�ned are de�ned as sort, operators as functors op, and equations eq
as the validity of the related operators. Based on such de�nitions, the rewrite rules can be
used to replace one multiset with another. As usual in a functional language, all the terms are
immutable so that a A-term can be replaced by a rule with a B-term:

rl [T] : A ⇒ B .

Based on the above-mentioned de�nitions, the example in Figure 3 is a graphical representation
of the implementation. �e rule implements the token game of Petri nets, where two multisets
of the rule T can be seen as the pre- and post-set for a transition so that these rules describe a
�ring step.

A

T

B

Figure 3: Example Petri net for the Maude introduction

�e internal representation of Maude is shown in [20] as the labelled rewrite theory R. R is a
four-tuple (Σ, E, L,R) with Σ being an alphabet of functions, a set of equations E over Σ, a
set of labels L and a set of relation pairs R ⊆ L× (TΣ,E(X)2) that consists of a label and a
pair of terms.

�e rewrite rules ofR can be understood as a labelled sequence with the notation r : [t]E →
[t′]E . �e semantics should be read as [t]E becomes [t′]E . Further, a rule can be extended with
variables {x1, . . . , xn} for each term, so that r can be wri�en with r : [t(x1, . . . , xn)]E →
[t′(x1, . . . , xn)]E (or, in short, r : [t(x̄n)]E → [t′(x̄n)]E). �e following deduction rules in Def.
3 can be applied if R is de�ned.
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De�nition 3 (Rewrite theory of Maude [20]). Deduction rules

1. Re�exivity, for each [t] ∈ TΣ,E(X)

[t]→ [t]

2. Congruence, for each f ∈ Σn, n ∈N

[t1]→ [t′1] . . . [tn]→ [t′n]
[f(t1, . . . , tn)]→ [f(t′1, . . . , t′n)]

3. Replacement, for each rewrite rule r : [t(x1, . . . , xn)]→ [t′(x1, . . . , xn)] in R

[w1]→ [w′1] . . . [wn]→ [w′n]
[t(w̄/x̄)]→ [t′(w̄′/x̄)]

For the sake of completeness, Def. 4 introduces all the de�ned rules of [20]. Transitivity and
symmetry modulo equations are also part of the deduction rules de�ned for Maude.

De�nition 4 (Rewrite theory of Maude, including equations [20]). Extended deduction rules

for equations

4. Transitivity

[t1]→ [t2] [t2]→ [t3]
[t1]→ [t3]

5. Symmetry (modulo a set of axioms E)

[t1]→ [t2]
[t2]→ [t1]

2.4 Reconfigurable Petri Net

One of the most important models for concurrent systems and some so�ware engineering
parts are Petri nets, which are based on Carl Adam Petri’s dissertation [21]. Petri’s thesis
combines states and actions in one model that is exemplarily de�ned as a marked Petri net
in Def. 5. An extended variety of a Petri net is a recon�gurable Petri net, as in Def. 6, which
combines modi�cation rules with a net.

9



2 Background

De�nition 5 (Marked Petri net N [22, 23]). A marked Petri net N can be formally described

as a tuple by

N = (P, T, pre, post, cap, pname, tname,M):

• P is a set of places

• T is a set of transitions

• pre : T → P
⊕

is a function used for all pre-domains of each transition

• post : T → P
⊕

is a function used for all post-domains of each transition

• cap : P →Nw
+ assigns for each place a natural number as capacity

• pname : P → AP is a label function for places

• tname : T → AT is a label function for transitions

• M is a set of tokens byM ∈ P
⊕

Remark 1. �e set of token is also de�ned asM : P →N and the capacity by cap : P → P
⊕

Recon�gurable Petri nets are based on Petri nets and are signi�cant due to the fact that they
can modify themselves with a set of rules [24–26]. Providing a base is the following Def. 6,
which is used for the conversion process. For elaborate de�nitions, [6] contains de�nitions for
negative application conditions (NACs) and functions that change labels with rnw and tlb.

De�nition 6 (Recon�gurable Petri net RPN [6, 27]). A recon�gurable Petri net can be described

as a tuple of a recon�gurable Petri net RN = (N,R) by

• N is a Petri net

• R is a set of rules

• r ∈ R is de�ned by r = (rname, L← K → R), where L is the le�-hand side, which needs

a morphism to be mapped to a net N . K is an interface between L and R. R is the part

that is inserted into the original net andAR =
⋃
{rname} with (rname, L← K → R) ∈ R.

10



2 Background

Remark 2. �e initial state of a recon�gurable Petri net is given as (N0,R)withN = (N0,M0)
and N = (P0, T0, pre0, post0,M0) so that [(N0,M0)] is the initial state in LTSRPN.

One possible action of a recon�gurable Petri net is the �ring step by a transition t. Def. 7
de�nes that t is enabled if there are enough tokens on all pre-domain-related places and if the
post-domain satis�es the capacity restriction for all related places. �en, the resultant marking
can be calculated by the current marking minus the pre-domain, plus the post-domain, for the
transition t.

De�nition 7 (Transition �ring [6]). A transition t ∈ T is enabled, if its pre-domain is less

or equal than M and the resulting marking is less or equal than the capacity for each place.

�e resultant marking is calculated by the current marking minus the pre-domain plus the post-

domain.

pre⊕(t) ≤M
M + post⊕(t) ≤ cap

M ′ = (M 	 pre⊕(t))⊕ post⊕(t).

A transformation step for a recon�gurable Petri net (N,M) to (N ′,M ′) is de�ned in Def. 8.
It de�nes di�erent states for isomorphic nets when there are varied markings or labels. As a
result, there is no isomorphism between both nets in the example of Figure 13.

De�nition 8 (A transformation step in RPN [6]). A place-respecting transformation step in the

recon�gurable Petri net is given by

De�nition 9 (Isomorphism classes of nets). Isomorphism classes of nets: [(N,M)] = {(N,M) |
(N,M) � (N,M)}2

2 �e isomorphism class is compatible to �ring and transformation steps

11



2 Background

An example net N1 is illustrated in Figure 4, which contains two places and transitions as
well as two tokens. �e net is enabled to �re with the initial marking. Both transitions T are
activated and, a�er two �re steps, both tokens are moved to the other place P. From now on,
the net is in a state of deadlock and cannot �re unless a rule is used. Such a rule r1 is shown
in the lower bar in Figure 7 and explicitly in Figure 11, where a transition is replaced with
another with an inverse arc direction. A�er using r1, the net is enabled and can �re again until
the rule ceases to be applied.

P

T

T

P

Figure 4: Example Petri net N1

P

T ⊆

P

L

P

T T

P

K

P

T⊇

P

R

Figure 5: Example rule r1, which changes the arc direction
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Based on Def. 5, the net N1 can be formally wri�en as in Figure 6. Both places are in the set P
and both transitions in T . All transitions are described with the pre- and post-domains, and
the initial marking is de�ned with m and the capacity for each place with cap.

P = {P1, P2}
T = {T3, T4}

pre(T3) = P1

pre(T4) = P1

post(T3) = P2

post(T4) = P2

M0 = P1 + P1

cap(P1) = ω

cap(P2) = ω

Figure 6: Formal description of a Petri net (for a graphical presentation, see also Figure 4)

ReConNet, as published in [10], is an implementation of the recon�gurable Petri net in Def. 6.
An example net N1 and a rule r1 are shown in Figure 7, where N1 contains two places and
transitions. Both transitions convey a token from the upper place to that below. If all tokens
are consumed, the net is in a deadlock that can only be solved with the rule r1, which changes
the direction of �ring with a replacement of the transition.

Figure 7: ReConNet: Graphical editor for recon�gurable Petri nets
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2.5 Related Works

Part of the Maude documentation in [28] is a Petri net example that is graphically presented in
Figure 8. Maude’s term replacement system is used to model the �ring steps of transitions,
such as buy-c, change or buy-a. Based on this Maude structure, it is possible that add a model-
checking possibility which can be used to verify a deadlock or safety properties.

1 mod PETRI−NET i s
sor t s P l a c e Marking .

3 subsort P l a c e < Marking .
op : Marking Marking −>

Marking [ assoc comm] .
5 ops $ q a c : −> P l a c e .

7 r l [ buy−c ] : $ => c .
r l [ buy−a ] : $ => a q .

9 r l [ change ] :
q q q q => $ .

11 endm

Figure 8: Petri net example wri�en in Maude3

High-level nets (coloured Petri net) are introduced in [29] with a conversion of the banker
problem. �e focus is on the soundness and correctness of the Maude structure. Since the aim
is a formal de�nition of the model and the operators as well as the �ring of a transition are
given, it extends the previous approach of [28] with operators that contain details for the �ring
replacement rules pertaining to colours.

[30] shows an automatic mapping for UML models to a Maude speci�cation that is similar
to [3]. �e three-step process of modelling, analysing and converting to Maude modules is
used, where the �rst step focuses on subject-speci�c modelling within the UMLs’ class, state
or component diagrams. AtoM is used to convert the model into a Python-code representation
that solves constraints inside the UML model. �e �nal step is for the veri�cation of properties,
such as deadlocks, and contains the transfer to Maude.

In [31], Petri nets are also converted into several Maude modules, as seen in [3]. �e base is
an Input-Output Place/Transition net that is used for the conversion process. All components

3 http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/
maude-manual 13.html, 27 April 2015
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2 Background

are divided into special Maude modules for the net, which basically separate semantics and
the initial marking [30].

[32] presents a graphical editor for CPNs, which uses Maude in the background to verify
LTL properties. Speci�ed Maude modules (similar to [29]) are de�ned, which contain one-step
commands for the simulation.

A unifying Petri net framework is Snoopy2 published by the Brandenburg University of
Technology Co�bus. It combines families of coloured and uncoloured Petri nets in one graph-
ical user interface. �e aim of Snoopy2 is the design and execution of Petri nets [33, 34].
Additionally, Charlie is a graphical veri�cation tool published. It can import nets which are
created by Snoopy2, and can be analysed by various static and dynamically properties such as
invariants or a reachability graph [35].

GRaph- based Object-Oriented VEri�cation (GROOVE) di�ers to tools like Snoopy2 and
Charlie or ReConNet by the chosen model. �e graph transformations are realized with
states as snapshots, and transitions between the states are calculated by rule applications. A
consequence of such model is that not only static models can be used but also models with
evolutions can be modelled and proven with the included model-checking implementation
[36, 37].

�e public transport of Oslo as a case study is presented in [38]. �e authors created a model
of public transport using a Petri net that is converted into a Maude structure. �e aim is to
prove the freeness of deadlocks or liveness as well as performance tests that are presented in
[39].
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3 Model Checker for Reconfigurable Petri
Net

�is section introduces the implementation of ReConNet Model Checker (rMC). rMC is a
Java-based tool that enables a user to convert a given recon�gurable Petri net to a Maude net.
Further, such Maude nets can be executed and analysed by the tool. �e analysis includes
an export to a reachability graph, which is based on the returned output by the search
command. �e export includes an implementation that parses the output and generates
graphical representations with an export to Graphviz1.

3.1 ReConNet Model Checker (rMC)

�e basis of this thesis is the internal model of ReConNet, which allows the user to create
and simulate a recon�gurable Petri net. Due to the non-deterministic behaviour, it is di�cult
for a user to determine if some properties, such as deadlocks or liveness, are complied with.
�erefore, an approach for the model checking of a recon�gurable Petri net is a common
practice for ensuring such properties. �e ReConNet Model Checker (rMC) in Figure 9 is a Java-
and Maude-based approach that solved this gap by de�ning Maude modules for a recon�gurable
Petri net. �e modules contain the net and a set of rules as well as all mechanisms to �re a
transition or transform the net with a rule [3].

1 http://www.graphviz.org/, 26 April 2015
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Figure 9: rMC: ReConNet Model Checker

Listing 1 shows, in comparison to Figure 6, the same net, wri�en in the Maude modules
de�ned in [3]. Each set is modelled similarly to a set of places and transitions. As a spe-
cial feature, the capacity is directly de�ned for each place, so that a place is de�ned as
p(<label>|<identifier>|<capacity>). Meanwhile, transitions only consist
of t(<label>|<identifier>. �e pre- and post-domains are wrapped in a set with
the pre- or post-operator. Finally, the initial marking is modelled as a set in the last line.

1 ne t ( p l a c e s { p ( ” P ” | 3 | 2 1 4 7 4 8 3 6 4 7 ) , p ( ” P ” | 2 | w) } ,
t r a n s i t i o n s { t ( ” T” | 4 ) : t ( ” T” | 5 ) } ,

3 pre { ( t ( ” T” | 4 ) −−> p ( ” P ” | 3 | w) ) ,
( t ( ” T” | 5 ) −−> p ( ” P ” | 3 | w) ) } ,

5 p o s t { ( t ( ” T” | 4 ) −−> p ( ” P ” | 2 | w) ) ,
( t ( ” T” | 5 ) −−> p ( ” P ” | 2 | w) ) } ,

7 marking { p ( ” P ” | 3 | w) ;
p ( ” P ” | 3 | w) } )

Listing 1: N1 converted into Maude
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3 Model Checker for Recon�gurable Petri Net

Rule r1 is shown in Listing 2 and Listing 3. One rule consists of two nets with the same
structure, as presented in Listing 1. Only the le�-hand side and right-hand side are relevant for
the replacement rules, since the le�-hand side is necessary to �nd a match and the right-hand
side is necessary for the elements that replace the elements of the le�-hand side and the gluing
conditions of Def. 10 are ful�lled [3].

r u l e ( l ( ne t ( p l a c e s { p ( ” P ” | 19 | w) ,
2 p ( ” P ” | 16 | w) } ,

t r a n s i t i o n s { t ( ” T” | 2 3 ) } ,
4 pre { ( t ( ” T” | 2 3 ) −−>

p ( ” P ” | 16 | w) ) } ,
6 p o s t { ( t ( ” T” | 2 3 ) −−>

p ( ” P ” | 19 | w) ) } ,
8 marking { p ( ” P ” | 19 | w) ;

p ( ” P ” | 19 | w) } ) ) ,

Listing 2: Le�-hand side of r1 converted into Maude

1 r ( ne t ( p l a c e s { p ( ” P ” | 16 | w) ,
p ( ” P ” | 19 | w) } ,

3 t r a n s i t i o n s { t ( ” T” | 2 5 ) } ,
p re { ( t ( ” T” | 2 5 ) −−>

5 p ( ” P ” | 19 | w) ) } ,
p o s t { ( t ( ” T” | 2 5 ) −−>

7 p ( ” P ” | 16 | w) ) } ,
marking { p ( ” P ” | 19 | w) ;

9 p ( ” P ” | 19 | w) } ) ) )

Listing 3: Right-hand side of r1 converted into Maude

�e term replacement for �ring of transitions is based on the Def. 7. A rule uses the pre-
domain to determine if a transition is activated and observes the capacity for each place in the
post-domain. Listing 4 contains the implementation of De�nition 7, where each pre-domain
condition is implemented inside the le� side of a rule and the capacity condition is implemented
as an if condition.
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3 Model Checker for Recon�gurable Petri Net

1 c r l [ f i r e ] :
ne t ( P ,

3 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> PreVa lue ) , MTupleRest1 } ,

5 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
marking { PreVa lue ; M} )

7 R u l e s
MaxID

9 S t e p S i z e
a i d

11 =>
ne t ( P ,

13 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> PreVa lue ) , MTupleRest1 } ,

15 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
c a l c ( ( ( P reVa lue ; M) minus PreVa lue )

17 p l u s P o s t V a l u e ) )
R u l e s

19 MaxID
S t e p S i z e

21 a i d
i f c a l c ( ( P reVa lue ; M) p l u s P o s t V a l u e ) <=? P o s t V a l u e

Listing 4: Firing term replacement rule wri�en with Maude

Besides �ring, the transformation rules of Def. 11 are a central part of a recon�gurable Petri
net. Dynamical changes e�ected by rules enable the net to modify its structure on its own.
An abstract implementation of such rules is illustrated in Listing 5. �e rule consists of the
pa�ern-matching algorithm of Maude, which ensures that the le�-hand side is a subset of
the current net state. Furthermore, takes the right-hand side by rule application e�ect, if
the conditions are successfully proven. Conditions such as freeOfMarking2 or emp-
tyNeighbourForPlace3 by Def. 10 test whether parts of the current net states satisfy
requirements of the formal rule application. For example, a place can only be deleted if no
transition is related to this place.
2 see line 78 in Listing 16 for the de�nition and implementation
3 see line 102 in Listing 16 for the de�nition and implementation
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De�nition 10 (Gluing condition for rules [11]). Each rule r application with r = (rname, L←
K → R) in a recon�gurable Petri net satis�es the gluing conditions. �e gluing condition is

divided into the identi�cation and the dangling condition, so that:

• the identi�cation condition implies that no place or transition can be deleted and obtained

at the same time. Transitions are secured by their isomorph mapping of pre- and post-

domains and freeOfMarking is used for places to ensure that each deleted place ap-

plies p * MRest (for the implementation, see Listing 16 line 78)

• the dangling condition implies that a place can be deleted only if there are no connections

outside the rule. emptyNeighbourForPlace ensures for deleted places that p is not

used in pre{MTupleRest1} or post{MTupleRest2} (for the implementation, see

Listing 16 line 102)

De�nition 11 (Transforming with Maude net rules). For each rule r = (rname, L← K → R)
with L = (PL, TL, preL, postL,ML) and R = (PR, TR, preR, postR,MR) in a recon�gurable

Petri net, there exists a term rewriting rule that handles the quest by Maude’s pa�ern matching

and conditions, such as preserving markings by deletion, or, in case of a deleted transition, the

preservation of connections to places, so that

• there is a pa�ern match of the le�-hand side to ensure that the le�-hand side is a subset of

the current net state

• the match satis�es the identi�cation condition of Def. 10 to ensure that no transition or

place is deleted and obtained at the same time

• the match satis�es the dangling condition of Def. 10 to ensure that no deleted place is

connected to a transition outside of the match

c r l [<rname>] :
2 ne t ( p l a c e s { P L , PRes t } ,

t r a n s i t i o n s { T L : TRest } ,
4 pre { (∀t ∈ TL : pre(t)L ) , MTupleRest1 } ,

p o s t { (∀t ∈ TL : post(t)L ) , MTupleRest2 } ,
6 marking { M L ; MRest } )

r u l e ( l ( ne t ( p l a c e s { P L } ,
8 t r a n s i t i o n s { T L } ,

p re { (∀t ∈ TL : pre(t)L ) } ,
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10 p o s t { (∀t ∈ TL : post(t)L ) } ,
marking { M L } ) ) ,

12 r ( ne t ( p l a c e s { P R } ,
t r a n s i t i o n s { T R } ,

14 pre { (∀t ∈ TR : pre(t)R ) } ,
p o s t { (∀t ∈ TR : post(t)R ) } ,

16 marking { M R } ) ) )
| RRest

18 MaxID
S t e p S i z e

20 a i d { AidRes t }
=>

22 ne t ( p l a c e s { P R , PRes t } ,
t r a n s i t i o n s { T R : TRest } ,

24 pre { (∀t ∈ TR : pre(t)R ) , MTupleRest1 } ,
p o s t { (∀t ∈ TR : post(t)R ) , MTupleRest2 } ,

26 marking { M R ; MRest } )
r u l e ( l ( ne t ( p l a c e s { P L } ,

28 t r a n s i t i o n s { T L } ,
p re { (∀t ∈ TL : pre(t)L ) } ,

30 p o s t { (∀t ∈ TL : post(t)L ) } ,
marking { M L } ) ) ,

32 r ( ne t ( p l a c e s { P R } ,
t r a n s i t i o n s { T R } ,

34 pre { (∀t ∈ TR : pre(t)R ) } ,
p o s t { (∀t ∈ TR : post(t)R ) } ,

36 marking { M R } ) ) )
| RRest

38 NewMaxID
S t e p S i z e

40 a i d { AidRestNew }

i f ∗ ∗ ∗ c a l c u l a t e new i d e n t i f i e r s

42 AidRestNew : = c a l c u l a t e A l l I d e n t i f i e r s /\
∗ ∗ ∗ ∀p ∈ PL which a r e d e l e t e d ; p r o v e i f t h ey

44 ∗ ∗ ∗ a r e p a r t o f MRest ( i d e n t i t y c o n d i t i o n )
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f r eeOfMark ing ( ( p(< l a b e l > | < i d e n t i f i e r > |
46 <c a p a c i t y >) ) | MRest ) /\

∗ ∗ ∗ ∀p ∈ PL which a r e d e l e t e d ; p r o v e i f t h e r e

48 ∗ ∗ ∗ i s a r e l a t e d t r a n s i t i o n ( d ang l i n g c o n d i t i o n )

emptyNe ighbourForP lace ( p(< l a b e l > | < i d e n t i f i e r >
50 | <c a p a c i t y >) ,

p re { MTupleRest1 } ,
52 p o s t { MTupleRest2 } ) /\

∗ ∗ ∗ s e t new maximal i d e n t i f i e r c o u n t e r

54 NewMaxID : = correc tMaxID ( MaxID | S t e p S i z e |

|AidRestNew| ) .

Listing 5: Transformation term replacement rule wri�en with Maude

3.2 Reachability Graph

Based on the search command in Listing 7, Figure 11 shows the resulting state graph. All
the states are calculated by all possible rewrite rules of Def. 3 and Def. 5. Finally, the show
search graph command returns a text-based result of such states search as in Listing 7.

1 s e a r c h i n i t i a l => ! ne t ( P : P l a c e s , T : T r a n s i t i o n s ,
P r e : P r e , P o s t : P o s t ,

3 Any:Markings )
R u l e s : R u l e Max ID : In t S t e p S i z e : I n t

5 a i d P : I D P o o l .
show s e a r c h graph .

Listing 6: Maude search commands for a Maude net
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3 Model Checker for Recon�gurable Petri Net

�e search command output is exemplarily presented in Listing 7. At �rst, No solution.
signi�es that no �nal state, such as deadlocks, is found. �e next line gives a general overview
of the states found or the required time. A�erwards, the output is grouped by all states, such as
state 0, and followed by the related outgoing arcs, as for example arc 0 ===> state
1.

s e a r c h in NET : i n i t i a l =>! ne t ( P : P l a c e s , T : T r a n s i t i o n s ,
P r e : P r e , P o s t : P o s t , Any:Markings ) R u l e s : R u l e Max ID : In t

2 S t e p S i z e : I n t a i d P : I D P o o l .

4 No s o l u t i o n .
s t a t e s : 12 r e w r i t e s : 161 in 1ms cpu ( 0 ms r e a l ) ( 1 6 1 0 0 0

r e w r i t e s / second )
6 s t a t e 0 , C o n f i g u r a t i o n : ne t ( p l a c e s { p ( ” P ” | 2 | w) , p ( ” P ” |

3 | w) } , t r a n s i t i o n s { t ( ” T” | 4 ) : t ( ” T” | 5 ) } , p re { ( t ( ”
T” | 4 ) −−> p ( ” P ” | 3 | w) ) , t ( ” T” | 5 ) −−> p ( ” P ” | 3 |

w) } , p o s t { ( t ( ” T” | 4 ) −−> p ( ” P ” | 2 | w) ) , t ( ” T” | 5 )
−−> p ( ” P ” | 2 | w) } , marking { p ( ” P ” | 3 | w) ; p ( ” P ” | 3
| w) } ) r u l e ( l ( ne t ( p l a c e s { p ( ” P ” | 16 | w) , p ( ” P ” | 19 |

w) } , t r a n s i t i o n s { t ( ” T” | 2 3 ) } , p re { t ( ” T” | 2 3 ) −−> p ( ” P
” | 16 | w) } , p o s t { t ( ” T” | 2 3 ) −−> p ( ” P ” | 19 | w) } ,
marking { p ( ” P ” | 19 | w) ; p ( ” P ” | 19 | w) } ) ) , r ( ne t (
p l a c e s { p ( ” P ” | 16 | w) , p ( ” P ” | 19 | w) } , t r a n s i t i o n s { t
( ” T” | 2 5 ) } , p re { t ( ” T” | 2 5 ) −−> p ( ” P ” | 19 | w) } , p o s t
{ t ( ” T” | 2 5 ) −−> p ( ” P ” | 16 | w) } , marking { p ( ” P ” | 19 |

w) ; p ( ” P ” | 19 | w) } ) ) ) 25 10 a i d
{ 2 5 , ( 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 , ( 3 3 , ( 3 4 , ( 3 5 ) ) ) ) ) ) ) ) ) ) }

a r c 0 ===> s t a t e 1 ( c r l ne t ( P : P l a c e s , t r a n s i t i o n s {
T : T r a n s i t i o n s : T R e s t : T r a n s i t i o n s } , p re {
MTupleRest1 :MappingTuple , T : T r a n s i t i o n s −−>
P r e V a l u e : P l a c e s } , p o s t {MTupleRest2 :MappingTuple ,
T : T r a n s i t i o n s −−> P o s t V a l u e : P l a c e s } , marking {M:Markings

; P r e V a l u e : P l a c e s } ) R u l e s : R u l e Max ID : In t S t e p S i z e : I n t
a i d : I D P o o l => ne t ( P : P l a c e s , t r a n s i t i o n s { T : T r a n s i t i o n s :

T R e s t : T r a n s i t i o n s } , p re {MTupleRest1 :MappingTuple ,
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T : T r a n s i t i o n s −−> P r e V a l u e : P l a c e s } , p o s t {
MTupleRest2 :MappingTuple , T : T r a n s i t i o n s −−>
P o s t V a l u e : P l a c e s } , c a l c ( ( ( M:Markings ; P r e V a l u e : P l a c e s )

minus P r e V a l u e : P l a c e s ) p l u s P o s t V a l u e : P l a c e s ) )
R u l e s : R u l e Max ID : In t S t e p S i z e : I n t a i d : I D P o o l i f c a l c ( (
M:Markings ; P r e V a l u e : P l a c e s ) p l u s P o s t V a l u e : P l a c e s )
<=? P o s t V a l u e : P l a c e s = t r u e [ l a b e l f i r e ] . )

8 . . .

Listing 7: Example output for the search commands in Listing 7

Rule r2 in Figure 10 is used as an example to show a deadlock. Its di�erences with r1 has other
arc directions so that it is possible that a rule application ends in a deadlock. Such deadlocks
are visible as sinks in Figure 12 as state without outgoing arcs.

P

T ⊆

P

L

P

T T

P

K

P

T⊇

P

R

Figure 10: Example rule r2 which changes the arc direction, can result in a deadlock
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Figure 11: Abstract reachablility graph (ARG) for N1 and r1
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Figure 12: Abstract reachablility graph (ARG) for N1 and r2 with deadlock states state 4 and 6
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4 Labelled Transition Systems

�is chapter introduce the Maude net of [3] formally. �e following labelled transition systems
are de�ned in combination with Maude term replacement rules so that their labels are given
for recon�gurable Petri nets (in Def. 15) as well as for a Maude net (in Def. 16). Further,
both transition systems are used as a basis for the de�nition and proof of bisimulation in the
following chapter 5.

4.1 Maude net

�e main term of a recon�gurable Petri net is called a Maude net. It combines a net and a set
of rules as well as metadata such as the highest identi�er. �e following section introduces
the formal de�nition of the NET module that is introduced in [3]. �erefore, this section aims
to de�ne the NET module using a de�nition and the implementation of required sorts and
operators.

�e conversion of �eorem 1 is based on the recon�gurable Petri nets in Def. 5 and a
Maude net con�guration TCon�guration as a conversion target speci�ed in Def. 14. A Maude
net con�guration in Def. 14 again includes a net of Def. 12 and a set of rules in Def. 13, and,
therefore, speci�es all parts of a recon�gurable Petri net.

First, it speci�es Def. 12, which is a net including places, transitions, pre- and post-domains
as well as markings through sorts for each term, identity elements and separation operators.
�erefore, a net can be wri�en as shown in Listing 1.
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De�nition 12 (Maude net and its term sets). AMaude net is provided by a Maude module NET
(see Listing 18) by initial = net(P, T, Pre, Post, M), hence the following
well-formed conditions hold:

• P = places{ emptyPlace } or
P = places{ p1, ..., pn } so that some pi and pj are pairwise disjoint: pi = pj =⇒
i = j

• T = transitions { emptyTransition } or
T = transitions { t1 : ... : tm } so that some ti and tj are pairwise disjoint:

ti = tj =⇒ i = j

• Pre = pre { emptyMappingTuple } or
Pre = pre { mappingTuple1, ...,mappingTupleo } with

mappingTuplei = (ti−− >emptyPlace) or

mappingTuplei = (ti−− >{pi1, ..., pis}) so that some ti and tj are pairwise disjoint:

ti = tj =⇒ i = j and piu ∈ {p1, ..., pn}

• Post = post { emptyMappingTuple } or
Post = post { mappingTuple1, ...,mappingTupleu } with

mappingTuplei = (ti−− >emptyPlace) or

mappingTuplei = (ti−− >{pi1, ..., pis}) so that some ti and tj are pairwise disjoint:

ti = tj =⇒ i = j and piu ∈ {p1, ..., pn}

• M = marking { emptyMarking } or
M = marking { p1, ..., pk } with pi ∈ {p1, ..., pn}
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Further, a Maude net rule is de�ned in Def. 13. It combines the le� and right sides of a rule in
R to form a Maude net rule. As a wrapper, the operator rule is used, which contains the l
and the r operators for both sides. l and r both contain a net of Def. 12.

De�nition 13 (Term sets for rules [3]). A�er module NET gives a Maude net, the sorts Left-
HandSide, RightHandSide and Rule describe term sets of rules (see Listing 16).

Finally, the de�nition of the Maude net con�guration in Def. 14 combines the Maude net term
in Def. 12 and a set of rule terms in Def. 13 with metadata such as the highest identi�er that is
currently used, and a set of free identi�ers wrapped in the IDPool.

De�nition 14 (Maude net con�guration and its term sets [3]). A Maude net con�guration is

given by a Maude module NET as in Def. 12. �erea�er, a Configuration is de�ned by

IDPool, Int and Configuration (see Listing 15).

With respect to membership equation logic [40, 41], the speci�cation for recon�gurable Petri
nets is given by RPN(N) = (Σ, V, E). �at speci�cation is given as Maude source code in the
following pages through listings for sorts, as in Listing 8 or Listing 11 for operators.
�erefore, a membership equation logic is de�ned by a triple (Σ, V, E), where a signature
Σ = (K,S,Ω) is based on V that contains variables and axioms in E. Additionally, S contains
all sorts that are listed in Listing 8, K contains all kinds over S and Ω includes all operators
that are listed in Listing 10 and Listing 11.

As the base, the types are declared in Listing 8. Net and all included types such as Places,
Transitions, etc. for the Def. 12 and Rule, RightHandSide and LeftHand-
Side for the rule de�nition in Def. 13.

sor t Net . sor t P l a c e s .
2 sor t T r a n s i t i o n s . sor t Pre .

sor t P o s t . sor t MappingTuple .
4 sor t Markings . sor t Omega .

sor t Rule . sor t RightHandS ide .
6 sor t L e f t H a n d S i d e .

Listing 8: Sorts of a recon�gurable Petri net de�ned in Maude [3]
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As de�ned in Def. 12, each term set has a separation operator for more than one term. For
Places and MappingTuple, the ”,“is used. ”+“is de�ned as a separation operator for
Places terms that describes the �ring step, including the marking calculation. Transi-
tions are separated using ”:“and Markings using ”;“.

op p l a c e s { } : P l a c e s −> P l a c e s .
2 op t r a n s i t i o n s { } : T r a n s i t i o n s −> T r a n s i t i o n s .

op pre { } : MappingTuple −> Pre .
4 op p o s t { } : MappingTuple −> P o s t .

op marking { } : Markings −> Markings .
6

op , : P l a c e s P l a c e s −> P l a c e s
8 [ ctor assoc comm id : emptyPlace ] .

op + : P l a c e s P l a c e s −> P l a c e s
10 [ ctor assoc comm id : emptyPlace ] .

op : : T r a n s i t i o n s T r a n s i t i o n s −> T r a n s i t i o n s
12 [ ctor assoc comm id : e m p t y T r a n s i t i o n ] .

op , : MappingTuple MappingTuple −> MappingTuple
14 [ ctor assoc comm id : emptyMappingTuple ] .

op ; : Markings Markings −> Markings
16 [ ctor assoc comm id : emptyMarking ] .

Listing 9: Wrapping and grouping operators of a recon�gurable Petri net de�ned in
Maude [3]

If a net does not contain nodes, such as places or transitions, their identity elements can
be used. For each sort, an element in Listing 10 is de�ned. Hence, it is feasible to write
places{emptyPlace} if there is no place.

op emptyPlace : −> P l a c e s .
2 op e m p t y T r a n s i t i o n : −> T r a n s i t i o n s .

op emptyMappingTuple : −> MappingTuple .
4 op emptyMarking : −> Markings .

op w : −> Omega .
6 op emptyRule : −> Rule .

Listing 10: Identity elements of a recon�gurable Petri net de�ned in Maude [3]
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�e de�nition of single places, transitions, pre- and post- domains, and rules are shown in
Listing 11. A place consists of the sort Places and the p(<label>|
<identifier>|<capacity>) operator, where the capacity is either a concrete inte-
ger or a ”w“for omega. Transitions are de�ned with their Transitions sort while the
t(<label>|
<identifier>) operator combines a label and an identi�er for each transition. Map-
pingTuple is used to de�ne the pre- and post-domains for each transition (and Tran-
sitions term). It consists of (<transition> −− > <places>), where one
<transition> is mapped to a set of <places>. Finally, Def. 13 that are based on the
le�-hand and right-hand sides of a rule are given by the l and r operators as well as by ”|“,
which is used as a separator.

∗ ∗ ∗ p ( < l a b e l > | < i d > | < c a p a c i t y > )

2 op p ( | | ) : S t r i n g I n t I n t −> P l a c e s .
op p ( | | ) : S t r i n g I n t Omega −> P l a c e s .

4 ∗ ∗ ∗ t ( < l a b e l > | < i d > )

op t ( | ) : S t r i n g I n t −> T r a n s i t i o n s .
6

∗ ∗ ∗ t → P⊕

8 op ( −−> ) : T r a n s i t i o n s P l a c e s −> MappingTuple .

10 ∗ ∗ ∗ r u l e

op | : Ru le Rule −> Rule
12 [ ctor assoc comm id : emptyRule ] .

op l : Net −> L e f t H a n d S i d e .
14 op r : Net −> RightHandS ide .

op r u l e : L e f t H a n d S i d e RightHandS ide −> Rule .

Listing 11: Operator de�nitions of a recon�gurable Petri net de�ned in Maude [3]
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Listing 12 concatenates the Def. 12 and the implementation above in Listings 8 to 11, and Def.
13 to a Maude net con�guration in Def. 14. Additionally, a IDPool consists of its identity
element emptyIDSet, the ”,“as separator operator and aid{...} as wrapper for all free
identities.

1 sor t IDPool .
op emptyIDSet : −> I n t .

3 op , ( ) : I n t I n t −> I n t [comm id : emptyIDSet ] .
op a i d { } : I n t −> IDPool .

5
sor t C o n f i g u r a t i o n .

7 ∗ ∗ ∗ READING: NET SET<RULE> MAXID STEP S IZE ID

op : Net Rule I n t I n t IDPool −> C o n f i g u r a t i o n .

Listing 12: Implementation of the Maude net con�guration in Maude [3]

4.2 Labelled Transition System for Reconfigurable Petri Net

A labelled transition system for a recon�gurable Petri net is de�ned in Def. 15 with the included
isomorphism class in Def. 9. All states that are reachable by a �ring step of Def. 7 or the
transforming steps of Def. 8 are consolidated by the isomorphism class if their labels are equal.
�e example in Figure 13 shows two of those isomorphic nets, where the label of the places
are equal.

P1(”A“)

P2(”A“)

P1(”A“)

P2(”A“)

[N, 2p]

[N, p+ p′]

Figure 13: Two isomorphic nets by Def. 9 and the related labelled transition system

In the context of a recon�gurable Petri net, a transition system is de�ned by LTSRPN =
(SRPN, ARPN,

trRPN), where SRPN is a non-empty set that contains all states s = (N,M) ∈ SRPN. ARPN

contains two kinds of arc labels, such as �ring and transforming, which are de�ned by ARPN =
AT

⋃
AR. Transition relations are based on trRPN ⊆ SRPN ×ARPN × SRPN, so that a transition

relation de�nes the �ow by a combination of two states and one label.
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De�nition 15 (Labelled transition system for recon�gurable Petri net). Given a recon�gurable
Petri net ((N0,M0),R), the de�nition of a labelled transition system LTSRPN = (SRPN, ARPN, trRPN)
is based on the isomorphism classes of nets:

1. Initial states by Def. 9:

[(N0,M0)] ∈ SRPN

2. Firing steps:

If [(N,M)] ∈ SRPN ∧ (N,M) ∈ [(N,M)] ∧M [t〉M ′ in N then: [(N,M ′)] ∈ SRPN,

tname(t) ∈ ARPN and [(N,M)] tname(t)−−−−→ [(N,M ′)] ∈ trRPN

3. Transformation steps:

If [(N,M)] ∈ SRPN ∧ (N,M) ∈ [(N,M)] ∧ (N,M)
(r,o)
�===⇒ (N ′,M ′) for some rule

r = (rname, L← K → R) ∈ R and some occurrence o : L→ N then:

[(N ′,M ′)] ∈ SRPN, rname ∈ ARPN and [(N,M)] rname−−−→ [(N ′,M ′)] ∈ trRPN

4. Finally:

SRPN, ARPN, trRPN are the smallest sets satisfying the above conditions.

4.3 Labelled Transition System for Maude

A transition system for a Maude net is de�ned by LTSMNC = (SMNC, AMNC, RMNC), where
SMNC is a non-empty set that contains all states of a Maude breadth-�rst search tree. Maude’s
deduction rules of Def. 3 and Def. 4 are used to execute all known rules, such as �ring or
transformations, with rules in the RULES module. Such a state s ∈ SMNC consists of a Net
term as current state. AMNC is de�ned with AMNC = AT

⋃
AR and contains the labels of

rewrite rules, such as the �ring of a transition or transforming. trMNC is de�ned as a set of
transition relations that is based on trMNC ⊆ SMNC ×AMNC × SMNC. �erefore, two terms of
SMNC are connected with a label of a rewrite rule in AMNC.
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De�nition 16 (Labelled transition system for a Maude net). Given the Maude module NET,

a labelled transition system LTSMNC = (SMNC, AMNC, trMNC) is de�ned with respect to the term

sets over the equation conditions of the Maude modules by:

1. Initial:

initial ∈ SMNC

2. Firing steps:

If s ∈ SMNC and s→ s′ is a replacement for a rewrite rule [fire] of Listing 4 with the

third rule of Def. 3 so that
s = net(P,

transitions{t(label|identi�er) : TRest},

pre{t(label|identi�er)−− > PreV alue,MTupleRest1},

post{t(label|identi�er)−− > PostV alue,MTupleRest2},

marking{PreV alue;M})

is used as le�-hand side of Listing 4, then s′ ∈ SMNC , t(label) ∈ AMNC and t
t(label)−−−−→

s′ ∈ trMNC

3. Firing step for a transition with an empty pre:

If s ∈ SMNC and s→ s′ are a replacement for a rewrite rule [fire-emptyPre] with

the third rule of Def. 3 in the Maude module RPN and
s = net(P,

transitions{t(label|identi�er|capacity) : TRest},

pre{t(label|identi�er|capacity)−− > emptyPlace , MTupleRest1},

post{t(label|identi�er|capacity)−− > PostV alue,MTupleRest2},

marking{M})

then s′ ∈ SMNC , t(label) ∈ AMNC and t
t(label)−−−−→ s′ ∈ trMNC
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4. Transformation steps:

If s ∈ SMNC and s → s′ is a replacement for a rewrite rule [rname] in the Maude

module RULE and
s = net(places { PL, PRest},

transitions{TL : TRest},

pre{PreL,MTupleRest1},

post{PostL,MTupleRest2},

marking{ML;M})

rule( l( PL, TL, PreL, PostL, ML ) , r(R) )
then is:

s′ ∈ SMNC, r ∈ ARPN and s rname−−−→ s′ ∈ trMNC

5. Finally:

SMNC, AMNC, trMNC are the smallest sets satisfying the above conditions.

4.4 Résumé of the Formalisation

�e purpose of this chapter is the de�nition of a Maude net and the labelled transition systems
for both nets. To clarify the de�nition of [3], a Maude net is de�ned by a formal de�nition
in Def. 12 for nets, Def. 13 for rules and Def. 14 for a con�guration itself. Selected code
snippets are based on the de�nition listed for sorts in Listing 10, for operators in Listing 11
and Listing 11 as well as for the con�guration in Listing 12.

Def. 15 contains the de�nition of a labelled transition system for recon�gurable Petri nets.
It is based on an isomorphism class for net states and �ring as well as transforming steps that
are used for the transition relations. A construction of a similarly labelled transition system
for a Maude net is de�ned in Def. 16. All reachable states and their associated actions, such as
�ring and transforming rewrite rules, are used to de�ne the labelled transition system.
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Maude

�e content of this chapter is graphically represented by Figure 14. �eorem 1 is de�ned
as a conversion between the recon�gurable Petri net (N,R) and the Maude net NET. Fur-
ther, labelled transition systems are calculated by the related nets and inference rules. For
recon�gurable Petri nets, the transforming steps of Def. � and �ring steps of Def. 7 are
used. Equivalent rules are de�ned for a Maude net so that the �ring or transforming steps
are transferred into Maude rewriting rules. Formally, the deduction of such rewriting rules is
de�ned by Def. 3, which are extended by Def. 4. Finally, the labelled transition systems for
both nets are introduced by LTSRPN using Def. 15 and LTSMNC applying Def. 16.

LTSRPN as labelled transition systems for recon�gurable Petri nets is given by all reachable
states using �ring and transforming steps, whereby the states are pooled by the isomorphism
of Def. 9. Furthermore, LTSMNC is given for a Maude net, where all rewriting rule applications
of �ring and transforming steps are summarized.

�eorem 2 de�nes the bisimulation between these two labelled transition systems, whereby
Def. 2 is used to prove the bisimilarity of both systems, outgoing from the initial states by
�eorem 1. Bisimilarity for each reachable state implies the compliance of equality actions for
each pair in the relation. Such a relation is de�ned with map by Def. 18 between LTSRPN and
LTSMNC. Regarding the introduction of Section 2.2, the aim of �eorem 2 is to be able to decide
whether both systems are behaviourally equivalent.

(N,R) Conversion in T heorem 1 //

Def. 15
��

NET

Def. 16
��

LTSRPN
Bisimulation in T heorem 2 // LTSMNC

Figure 14: Correctness of conversion
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�e following chapter contains both theorems of Figure 14. �eorem 1 de�nes the conversion
of a recon�gurable Petri net to a Maude net. �erefore, several lemmas are de�ned, where
all parts such as places, transitions, etc. are converted separately. �eorem 2 de�nes the
bisimulation on the basis of the labelled transition systems.

5.1 Syntax Conversion

Towards �eorem 1, the following injective functions in Lemma 1-6 are used to convert all parts
of a recon�gurable Petri net into a NET- and a RULES-module. �e theorem itself speci�es
the conversion for a given recon�gurable Petri net to a Maude net that implies theses functions
so that

• buildPlace in Lemma 1 de�nes the conversion for places

• buildTransition in Lemma 2 de�nes the conversion for transitions (similar to buildPlace)

• buildPre in Lemma 3 de�nes the conversion for each pre(t) with t ∈ T
⊕

• buildPost in Lemma 4 de�nes the conversion for each post(t) with t ∈ T
⊕

(similar to
buildPre)

• buildNet in Lemma 5 de�nes the conversion of a net

• buildRule in Lemma 6 de�nes the conversion of rules inR

Def. 17 contains functions for the mapping of identi�ers and capacities leading to lemmas for
the conversion of places and transitions. �e identi�ers are used as unique keys for nodes such
as places or transitions due to the use by pre- and post-domains. Furthermore, the capacities
are used to de�ne a limit of tokens that can be stored on a place.

De�nition 17 (Injective identity mapping of idP and cap). Given a recon�gurable Petri net

(N,R) and an injective identity mapping idP : P → N for the places, for transitions analo-

gously, and a capacity function cap : P →N
⋃
{ω} is de�ned by:

cap(q) =

ω if cap(q) = ω

cap(q) else
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5 Correctness of Model Checking for Maude

�e conversion of places is de�ned in Lemma 1 where P
⊕

of net N is used as the source for
the induction. �e identity element emptyPlace is used in the induction basis, if P

⊕
is

empty. Each new place pn+1 is inductively converted by the induction step in the de�nition of
a Maude net place, whereby the conversion uses the identi�er and capacity function to convert
a place by the p(<label>|<identifier>|<capacity>) operator.

Lemma 1 (buildPlace). Given a set of places P together with an identity function idP (see Def.

17), a capacity function cap (see Def. 17) and a labelling function pname (see Def. 5), then there is

a injective function buildPlace : P
⊕
→ TPlaces.

Proof of Lemma 1. buildPlace is de�ned inductively over |P | by:

• for P = ∅, P
⊕

= {0} and buildPlace(0) = emptyPlace

• for P ′ = P
⊎
{p′} there is a buildPlace′ : P ′ → TP laces de�ned by

buildPlace′(s) =



buildPlace(s) if s ∈ P
⊕

buildPlace(s′),p(pname(pn + 1, 1)|idP (pn + 1, 1)|cap(pn + 1, 1)), ...,

p(pname(pn + 1, k)|idP (pn + 1, k)|cap(pn + 1, k))

if s = s′ + kpn + 1 , k ≥ 1 and s′ ∈ P
⊕
\ P ′

⊕

buildPlace is injective, given some set of places P = {p1, ..., pn} with idP , cap and pname,
so that s =

∑
1≤i≤n λipi ,

∑
1≤i≤n µipi = s′, then there is some 1 ≤ i ≤ n with λi , µi,

and hence

buildPlace(s) =p(pname(p1), 1), . . . ,p(pname(p1), λ1), . . . ,

p(pname(pi), 1), . . . ,p(pname(pi), λi), . . . ,

p(pname(pn), 1), . . . ,p(pname(pi), λn)

,

p(pname(p1), 1), . . . ,p(pname(p1), µ1), . . . ,

p(pname(pi), 1), . . . ,p(pname(pi), µi), . . . ,

p(pname(pn), 1), . . . ,p(pname(pn), µn) = buildPlace(s′)

is idp injective.
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5 Correctness of Model Checking for Maude

�e inverse function buildPlace−1 is de�ned for well-formed terms of sort Places (see
Def. 12) by

buildPlace−1(emptyPlace) = 0 and

buildPlace−1(p(pname(p1), 1), . . . ,p(pname(p1), λ1), . . . ,

p(pname(pi), 1), . . . ,p(pname(pi), λi), . . . ,

p(pname(pn), 1), . . . ,p(pname(pn), λn)) =
∑

1≤i≤n

λipi

�

�e proof of Lemma 2 is similar to Lemma 1. It di�ers in the part of the conversion, where the
de�nition of a transition as well as the identity element is used instead of the place de�nition.
Transitions are de�ned by the t(<label>|<identifier>) operator that contains only
the identi�er derived by the identity function idT to get a unique identi�er for this transition
from the source data.

Lemma 2 (buildTransition). Given a set of transitions T with tname by Def. 5 and idT by Def.

17, then there is a injective function by buildTransition : T
⊕
→ TTransitions

Proof of Lemma 2. Similar induction to the proof of Lemma 1, due to the ”:“constructor in
line 44 of module NET in Listing 15. �is includes di�erences by the de�nition in Def. 12:

• ”:“as separation instead of ”,“

• emptyTransition instead of emptyPlace

• t(<label>|<identifier>) operator instead of the place operator

�

Conversions of pre- and post-domains requires special de�nitions due to the MappingTuple.
Def. 12 introduces the concept of both domains that are based on the sort MappingTuple. It is a
mapping between a transition and a set of places so that it is suitable for buildPre in Lemma 3
as well as buildPost in Lemma 4.

�e proof itself is realised with an induction over the set of transitions. Each new transition
is a mapping to a MappingTuple-de�ned term. Such term consists of a transition that is
mapped with an arrow, which is wri�en in a Maude net with ”−− >“, to a set of places-
terms that are returned from pre(tn)1. �e related set of places is converted by buildPlace of
Lemma 1.
1 Empty pre- or post-domains are special cases that are solved by the identity element for place emptyPlace
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5 Correctness of Model Checking for Maude

Lemma 3 (buildPre). Given a set of transitions T with buildPlace of Lemma 1 and buildTran-

sition of Lemma 2, then there is a injective function by buildPre : T
⊕
→ TMappingTuple

Proof of Lemma 3. buildPre is de�ned inductively over |T | by:

• for T = ∅, T
⊕

= {0} and buildPre(0) =emptyMappingTuple

• for T ′ = T
⋃
{t′} there is a buildPre′ : T ′ → TMappingTuple de�ned by:

buildPre′(t′) =



buildPre(t′) if t′ ∈ T
⊕

buildPre(t′′), (buildTransition{tn + 1, 1} − − > buildPlace{pre(tn + 1, 1))}, ...,

(buildTransition{tn + 1, k} − − > buildPlace{pre(tn + 1, k)})

if t′ = t′′ + ktn + 1 , k ≥ 1 and t′′ ∈ T
⊕
\ T ′

⊕

�e proof of injection and the inverse function buildPre−1 for buildPre are analogously to
Lemma 1.

�

�e proof of Lemma 4 is similar to Lemma 3, which is realized inductively over the set of
transitions. It di�ers only in the used functions so that the same proof can be realized with
post(tn) instead of pre(tn).

Lemma 4 (buildPost). Given a set of transitions T with buildPlace of Lemma 1 and buildTran-

sition of Lemma 2, then there is a injective function by buildPost : T
⊕
→ TMappingTuple

Proof of Lemma 4. Similar induction to proof of Lemma 3, due to the equal construction in
line 48 of module NET in Listing 15. �

In Lemma 5 is a injective function de�ned, which combines all parts of a Petri net to Maude
net-term. A net operator wraps the places, transitions, pre-and post-domains as well as
markings into one net. buildNet is a injection as all functions are injections.

Lemma 5 (buildNet). Given a net N with buildPlace of Lemma 1, buildTransition of Lemma 2,

buildPre of Lemma 3 and buildPost of Lemma 4, then there is a injective function by buildNet :

(N,M)→ TNet with N = (P, T, pre, post,M)
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5 Correctness of Model Checking for Maude

Proof of Lemma 5. buildNet �e proof is separated into all parts of a Maude net and hence
a Net is given by injective functions:

net (places{buildPlaces(P )},

transitions{buildTransition(T )},

pre{buildPre(T )},

post{buildPost(T )},

marking{buildPlaces(M)})

�

Rules are converted by Lemma 6 where a set of recon�gurable Petri net rules is used to create
rule-terms in Maude. �e identity element emptyRule is returned if no rule is de�ned.
Each rule consists of two Petri nets with le�-hand side for the le�-hand side and right-hand
side for the right-hand-side so that the buildNet function can be used to convert the nets.

Lemma 6 (buildRule). Given a rule r by r = (rname, L← K → R) and buildNet by Lemma 5,

then there is a injective function by buildRule : R → TRule

Proof of Lemma 6. buildRule
Basis: |R| = 0 so that TRule = {emptyRule} � {0}
Induction hypothesis: |R| = n then there exists a injective function

buildRule : R′ → TRule

Induction step (n → n + 1): Is R′ = R
⊎
{rn + 1} with r′ = (rname, L ← K → R)

then there is by the induction hypothesis a injection with buildRule′ : R′ → TRule

which is de�ned by:

buildRule′(r′) =



buildRule(r′) if r′ ∈ R

buildRule(r′′) | {rule(l(buildNet(L)),r(buildNet(R)))}

if r′ = {r′′}
⊎
{rn + 1}

with r′′ ∈ R \ R′

�
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5 Correctness of Model Checking for Maude

Finally, �eorem 1 introduces the conversion of one given recon�gurable Petri net into a Maude
net. �e �rst part of the proof is based on the Def. 14 that de�nes all parts of a recon�gurable
Petri net in Maude’s term algebra. A Maude net consists of a net that is included in the net-
operator, a set of rules that are de�ned by the rule-operator as well as metadatas such the
highest identi�er. �e second part presented the RULES module by rewrite rules for each rule
inR.

�eorem 1 (Syntactic conversion of a recon�gurable Petri net to a Maude net con�guration).
For each recon�gurable Petri net (N,R), there is a well-formedMaudeNET andRULESmodule.

Proof of �eorem 1. By buildPlace of Lemma 1, buildTransition of Lemma 2, buildPre of
Lemma 3, buildPost of Lemma 4 and buildRule of Lemma 6 is for each recon�gurable Petri
net (N,R), with N = (P, T, pre, post,M) and R = {(rnamei, Li ← Ki → Ri)|1 ≤ i ≤ n}, a
well-formed Maude NET and RULES module (as in appendix Listing 18) given so that:

eq initial = buildNet(N)

buildRule(R)

metadata

In addition, there is the Maude module RULES with the rewrite rules of Def. 11 and the
implementation of Listing 5. �us we have for each rewrite rule r ∈ R with r = (rnamei, Li ←
Ki → Ri):

crl [rname] : net( places{buildPlaces(PLi), PRest},

transitions{buildTransition(TLi): TRest},

pre{buildPre(TLi), MTupleRest1},

post{buildPost(TLi), MTupleRest2},

marking{buildPlaces(MLi); MRest})

buildRule(R)

metadata

=>

net( places{buildPlaces(PRi), PRest},

transitions{buildTransition(TRi): TRest},

pre{buildPre(TRi), MTupleRest1},

post{buildPost(TRi), MTupleRest2},
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5 Correctness of Model Checking for Maude

marking{buildPlaces(MRi); MRest})

buildRule(R)

new metadata

if *** for deleted places

freeOfMarking(∀p ∈ PLi | MRest) ∧

*** for places of deleted transitions

emptyNeighbourForPlace(∀p ∈ PLi \ PRi |

pre{MTupleRest1} | post{MTupleRest2})∧

calculate new metadata .

�

5.2 Equivalence by Bisimulation

Labelled transition systems are de�ned for recon�gurable Petri nets by LTSRPN and a Maude
net by LTSMNC. Both labelled transition systems are comprised in this section by equivalence
through bisimulation. A map function is de�ned in Lemma 8 that linked a state s ∈ LTSMNC to
a state r ∈ LTSRPN. Hence, the function map inverses the direction of �eorem 1 and enables
the proof of �eorem 2, since bisimulation requires linked states in both directions.

Remark 3. To distinguish the states of the respective labelled transition systems, the variables

s for state in LTSMNC and r for state in LTSRPN are used

�e �eorem 2 is the major aim of this thesis and de�nes the behaviour equivalence of both
transition systems. �e proof implies that for each pair (sn, rn) ∈ map with n ≥ 0, all outgoing
actions are equal. Furthermore, the proof ensures that the reached states sn+1 and rn+1 are
also in map, so that (sn+1, rn+1) ∈ map is inductively required.

Preliminary to �eorem 2 de�nes Def. 18, a reversed conversion of �eorem 1. It maps all
parts of a Maude net back to a recon�gurable Petri net so that two states of the related labelled
transition system can be associated with each other.
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De�nition 18 (Surjective mapping between states of LTSRPN and LTSMNC). Given a recon-

�gurable Petri net (N0,R) with N0 = (P0, T0, pre0, post0, pname0, tname0, cap0,M0) and R as

in Def. 6 and the corresponding Maude modules NET and RULE as in �eorem 1. Further,

the label transition system is given by LTSRPN with Def. 15 and LTSMNC by Def. 16. So that

there is a mapping map : SMNC → SRPN for some states s ∈ SMNC of Def. 12 with s =
net(Places, Transitions, Pre, Post, Markings) | Rule Int Int
IDPool by

map(s) = [(N,M)] and

• P = {p|p is an atomic element in buildPlace−1(Places)}

• T = {t|t is an atomic element in buildTransition−1(Transitions)}

• pre : T → P
⊕

de�ned by pre(t) = buildPlace−1(place) ; if
Transitions =transitions{T : t(tname | x)} and

Pre =pre{MT,(t(tname | x)→ place)}

• post : T → P
⊕

de�ned by post(t) = buildPlace−1(place) ; if
Transitions =transitions{T : t(tname | x)} and

Post =post{MT,(t(tname | x)→ place)}

• pname : P → AP de�ned by pname(p) = label ; if

Places =places{P , p(label | x | x)}

• tname : T → AT de�ned by tname(t) = label ; if

Transitions =transitions{T : t(label | x)}

• cap : P → N de�ned by cap(p) = capacity ; if

Places =places{P , p(str | x | capacity)}

• cap : P → ω de�ned by cap(p) = w ; if

Places =places{P , p(str | x | w)}

• M = {m|m is an atomic element in buildMarking−1(Markings)}
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Based on Def. 18, the following Lemma 8 and Lemma 9 de�ne the linked states of both transition
systems. Lemma 8 is used to link states from SMNC to SRPN, whereby the Lemma 9 link states
the inverted direction from SRPN to SMNC.

Lemma 7 (map of the initial state). (N,M0) ∈ map(initial) is given by map as de�ned

in Def. 18

Proof of Lemma 7. Given initial as de�ned by Def. 12 as initial = net(Places, Tran-

sitions, Pre, Post, Markings), then there is a [(N0,M0)] as de�ned by Def. 6 with N0 =
(P0, T0, pre0, post0, pname0, tname0, cap0,M0) so that:

• P0 is de�ned by the inverse function of Lemma 1 with buildPlace−1 so that
P0 = {p|p is a atomic element in buildPlace−1(Places)}

• T0 is de�ned by the inverse function of Lemma 2 with buildTransition−1 so that
T0 = {t|t is a atomic element in buildTransition−1(Transitions)}

• pre0 is de�ned by the inverse function of Lemma 3 with buildPre−1 so that
pre0 : T → P

⊕
de�ned by pre(t) = buildPlace−1(place) ; if

Transitions =transitions{T : t(tname | x)} and

Pre =pre{MT,(t(tname | x)→ place)}

• post0 is de�ned by the inverse function of Lemma 4 with buildPost−1 so that
post0 : T → P

⊕
de�ned by post(t) = buildPlace−1(place) ; if

Transitions =transitions{T : t(tname | x)} and

Post =post{MT,(t(tname | x)→ place)}

• pname0 is de�ned by Def. 5 with pname : P → AP so that pname(p) = label ; if
Places =places{P , p(label | x | x)}

• tname0 is de�ned by Def. 5 with tname : T → AT so that tname(t) = label ; if
Transitions =transitions{T : t(label | x)}

45



5 Correctness of Model Checking for Maude

• cap0 is de�ned by Def. 5 with cap : P →Nw
+ so that:

– cap(p) = capacity ; if
Places =places{P , p(str | x | capacity)}

– cap(p) = w ; if
Places =places{P , p(str | x | w)}

• M0 is de�ned by the inverse function of Lemma 1 with buildPlace−1 so that
M = {m|m is a atomic element in buildMarking−1(TMarkings)}

�

Lemma 8 (map as function). map : SMNC → SRPN is a function given by map as de�ned in Def.

18

Proof of Lemma 8. For each s ∈ SMNC there is one r ∈ SRPN with map(s) = r.
Basis: For the initial s0 ∈ SMNC exists by Lemma 7 an initial state r0 ∈ SRPN
Induction hypothesis: Let be given a state sn ∈ SMNC with sn = net(Places,
Transitions, Pre, Post, Markings) | Rule Int Int IDPool,
so that map(sn) = rn = [(N,M)] with N = (P, T, pre, post, pname, tname, cap,M)
Induction step (n→ n+ 1): For each follower state sn+1 ∈ SMNC with sn

l−→ sn+1 ∈
trMNC there is a rn+1 ∈ SRPN with rn

l−→ rn+1 ∈ trRPN and map(sn+1) = rn+1 so that l
can be applied by:

• Firing by sn
tname(ts)−−−−−→ sn+1 as in Def. 16 with sn+1 = net(Places,

Transitions, Pre, Post, Markings′) | Rule Int Int

IDPool and by the isomorphism class of Def. 9 there is also a rn
tname(tr)−−−−−→ rn+1

as in Def. 15 with rn+1 = [(N,M ′)] so that

– Activation:

If marking{PreValue ; M} can be rewri�en by the rewrite rule
[fire] de�ned in Def. 7 and Listing 4, then the PreValue for ts
is less or equal than the marking of sn. Hence, is pre⊕(tr) ≤ Mr (line
one of Def. 7) and rn

tname(tr)−−−−−→ rn+1 ∈ trRPN due to M [tr〉M ′ in N with
rn+1 = [N,M ′], tname(ts) = tname(tr) and tname(tr) ∈ ARPN.

– Capacity limitation:

If (PreValue ; M) plus PostValue can be rewri�en by the
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rewrite rule [fire] de�ned in Def. 7 and Listing 4, then the Post-
Value for each place used by ts is less or equal than the capacity and
M + post⊕(tr) ≤ cap for tr (line two of Def. 7)

– New marking:

If calc(((PreValue ; M) minus PreValue) plus Post-
Value) can be rewri�en by the rewrite rule [fire] de�ned in Def. 7
and Listing 4, then the following marking Markings′ is given and the
marking for rn+1 is calculated byM ′ = (Mr	pre⊕(tr))⊕post⊕(tr). (line
three of Def. 7)

• Transformation by sn
rname(rs)−−−−−→ sn+1 as in Def. 16 with sn+1 = net(Places,

Transitions, Pre, Post, Markings′) | Rule Int Int

IDPool and the isomorphism class of Def. 9 there is also a rn
rname(rr)−−−−−→ rn+1 as

in Def. 15 with rn+1 = [(N ′,M ′)] so that

– match:

If sn can be rewri�en by the rewrite rule [rname] de�ned in Def. 11
and Listing 5, then is the L a subset of sn. Hence, there is an occurrence
o : L→ N de�ned in Def. 15 by rr and rn

rname(rr)−−−−−→ rn+1 ∈ trRPN as well
as rname(rs) = rname(rr).

– freeOfMarking applies for each deleted place p * MRest, as de�ned
in Def. 11 by the identi�cation condition in Def. 10

– emptyNeighbourForPlace applies for each deleted place p no oc-
currence in Pre and Post, as de�ned in Def. 11 by the dangling condition
in Def. 10

�
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Lemma 9 (map as surjective function). map : SRPN → SMNC is a surjective function given by

map as de�ned in Def. 18

Proof of Lemma 9. For each r ∈ SRPN there is one s ∈ SMNC with map(s) = r

Basis: For the initial r0 ∈ SRPN exists by �eorem 1 an initial state s0 ∈ SMNC

Induction hypothesis: Let be given a state rn ∈ SRPN with rn = [N,M ] so that there
is a sn ∈ SMNC with map(sn) = rn = [(N,M)] of Def. 18 and N = (P, T, pre, post,
pname, tname, cap,M).
Induction step (n→ n+ 1): For each follower state rn+1 ∈ SRPN with rn

l−→ rn+1 ∈
trRPN there is a sn+1 ∈ SMNC with sn

l−→ sn+1 ∈ trMNC and map(sn+1) = rn+1 so that
l can be applied by:

• Firing by rn
tname(tr)−−−−−→ rn+1 ∈ trRPN as in Def. 15 with rn+1 = [(N,M ′)] there

is by Def. 16 also a sn
tname(ts)−−−−−→ sn+1 ∈ trMNC with sn+1 = net(Places,

Transitions, Pre, Post, Markings′) | Rule Int Int
IDPool so that

– Activation:

If pre⊕(tr) ≤Mr (line one of Def. 7) and rn
tname(tr)−−−−−→ rn+1 ∈ trRPN due to

M [tr〉M ′ in N with rn+1 = [N,M ′], then tr is activated. Hence, mark-
ing{PreValue ; M} can be rewri�en by the rewrite rule [fire]
de�ned in Def. 7 and Listing 4, so that PreValue for ts is the less
or equal than the marking of sn as well as tname(ts) = tname(tr) and
tname(tr) ∈ ARPN.

– Capacity limitation:

If M + post⊕(tr) ≤ cap for tr, then the PostValue is less or equal
than the capacity for each place used by ts (line two of Def. 7). Hence,
(PreValue ; M) plus PostValue can be rewri�en by the
rewrite rule [fire] de�ned in Def. 7 and Listing 4,

– New marking:

If the following marking for rn+1 is calculated byM ′ = (Mr	pre⊕(tr))⊕
post⊕(tr) (line three of Def. 7), then calc(((PreValue ; M) mi-
nus PreValue) plus PostValue) can be rewri�en as the fol-
lowing marking Markings′ by the rewrite rule [fire] de�ned in Def.
7 and Listing 4.
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• Transformation by rn
rname(rr)−−−−−→ rn+1 ∈ trRPN as in Def. 15 with rn+1 = [(N ′,M ′)]

there is by Def. 16 also a sn
rname(rs)−−−−−→ sn+1 ∈ trMNC with sn+1 = net(Places,

Transitions, Pre, Post, Markings′) | Rule Int Int ID-
Pool so that

– match:

If there is an occurrence o : L→ N de�ned in Def. 15 by rr and rn
rname(rr)−−−−−→

rn+1 ∈ trRPN, then sn can be rewri�en by the rewrite rule [rname] de�ned
in Def. 11 and Listing 5 by L ⊆ sn.

– freeOfMarking applies for each deleted place p * MRest, as de�ned
in Def. 11 by the gluing condition

– emptyNeighbourForPlace applies for each deleted place p * Pre∧
p * Post as de�ned in Def. 11 by the gluing condition

�

Remark 4. �e function map in Lemma 9 is not injective due to the isomorphism class in Def.

9.

�eorem 2 (Bisimulation of LTSRPN and LTSMNC). LTSRPN and LTSMNC are bisimilar as de�ned

in Def. 2 by map in Def. 18

Proof of �eorem 2. For each relation de�ned by map of Def. 18, which consists of s ∈ SMNC

and r ∈ SRPN with map(s) = r = [N,M ], we have:

• s→ s′: For each a ∈ AMNC there is map(s) = r and r a−→ r′ ∈ trRPN, due to s a−→ s′ ∈
trMNC and the mapping of Lemma 8 and Lemma 9 there is map(s′) = r′ by Lemma 8 and
Lemma 9.

• r → r′: For each a ∈ AMNC there is map(s) = r and s a−→ s′ ∈ trMNC, due to r a−→ r′ ∈
trRPN and the mapping of Lemma 8 and Lemma 9 there is map(s′) = r′ by Lemma 8 and
Lemma 9.

So that a bisimulation between LTSRPN and LTSMNC is de�ned by the map function. �
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5.3 Résumé by the Correctness of Model Checking for Maude

�e previous chapter introduced the formal argumentation for the implementation correctness
of the Maude net de�ned in [3]. �e correctness is reasoned by the conversion in �eorem 1,
which converts a recon�gurable Petri net to a Maude net as well as the bisimulation in the
proof of �eorem 2.

�e bisimulation of �eorem 2 proves the behaviour equivalence for both labelled transition
systems by the de�nition in Def. 2. As results, the proof of �eorem 1 shows that there is the
possibility of a conversion from a recon�gurable Petri net into a Maude net. Further, the proof
of �eorem 2 clari�ed that there exists a behaviour equivalence for both labelled transition
systems.
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6 Evaluation

�is chapter evaluates the performance of the approach wri�en with Maude in version 2.7,
including LTLR in version 1.01 against the established tool Charlie version 2.02.

A Petri net with equal semantics, as a recon�gurable Petri net, is used as an example in
Figure 15. �is net is used to perform a comparative analysis, including a transfer into a
�at Petri net, where all transformation steps are modelled as separated nets that include the
transformation results. �e nets, as shown in Figure 16, are created with Snoopy2 in version 1.13
3 based on the reachability graph that contains all �ring steps as usual arcs and transformation
steps as do�ed arcs4. �e Figure 15 models the �ight routes between Hamburg, Berlin, and
Munich. For each �y-transition there exists a rule that handles �ight route changes which are
modelled as direction alters. A route change can occur when an aircra� is expected at another
airport, where it will serve another �ight. �is behaviour is modelled by the replacement of a
transition, including a switching of the pre- and post-domains (cf. Figure 5).

1 http://maude.cs.illinois.edu/tools/tlr/, 11 March 2015
2 http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie,

11 March 2015
3 http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy,

11 March 2015
4 �e nets modelled in Snoopy2 are manual created. An automation is part of the future work, where extend

benchmarks are challenged.
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6 Evaluation

Figure 15: Flight routes net for evaluation tests
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6 Evaluation

Figure 16: Snoopy net of Figure 15 and all rules: HAM-BER, BER-MUC, MUC-HAM and
BER-HAM

Table 1 contains all evaluation results of the reachability graph construction by Charlie and
Maude. All testcases are based on the previous test case (denoted by ’* +’) so that the reachability
graph is extended step by step with new rules. Furthermore, information about states and
edges are carried together for each testcase. For be�er reading, Figure 17 shows the data from
Table 1.
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6 Evaluation

Charlie States Edges Maude States Edges

* + HAM-BER 125,2 6 11 51,5 6 11
* + BER-MUC 125,3 12 28 51,9 12 28
* + MUC-HAM 131,4 24 68 51,8 24 68
* + BER-HAM 147,1 48 428 60,8 48 208

Table 1: Evaluation results of reachability graph analysis between Charlie and Maude
(in milliseconds)
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Figure 17: Compare collected data as graph

Besides the reachability graph generation, metadata is calculated for both systems. Maude
reveals deadlocks with Solution during the tracing of the state generation, and Charlie has
a metadata overview window. �e Table 2 connects all results for both systems with equal
results.

Charlie Maude

* + HAM-BER yes (at HAM) yes (at HAM)
* + BER-MUC yes (at HAM) yes (at HAM)
* + MUC-HAM no no
* + BER-HAM no no

Table 2: Evaluation results of the reachability graph analysis between Charlie and Maude
(in milliseconds)
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7 Future work

An integration of rMC in ReConNet, including the work�ow that converts a recon�gurable
Petri net into Maude modules, is advantageous. Executions for analysis are also important
for a helpful representation of the received information that can be used as assistance for
the net designer. Due to the complexity of a net as well as a set of rules, it is necessary to
show the reachability graph (e.g., Figure 11 or Figure 12). Information on deadlocks or circular
dependencies is simpler to understand, if presented in a graphical form.

Evolution of the reachability graph by using a coverability graph is required as well as
the general improvement of the Maude net. Reducing the size of the scope and states of the
reachability graph is an important challenge due to the performance. For example, it reduces
the loops of the coverability graph, which are created through the insertion of a transition
in�nite times by a rule. Further, the implementation of the identi�er pool becomes obsolete if
such rules are put in place.

�e implementation of more complex sort-structures are useful to prevent Maude net
structure issues. Currently, it is possible to add two place wrappers into each other such
as places{ places{...} }. An example approach, which solves this issue, is shown
in Listing 13. It inserts a new sort beside the existing sort Places and extends it by
Place. Place is used as a sort for singleplace-terms. �e wrapperplaces usesPlace,
instead of Places so that it only takes terms such as p(<label> | <identifier>
| <capacity>).

sor t s P l a c e s P l a c e .
2 op p ( | | ) : S t r i n g I n t I n t −> P l a c e .

op , : P l a c e P l a c e −> P l a c e .
4 op p l a c e s : P l a c e −> P l a c e s .

Listing 13: Prevent Maude net sort structure issues

55



7 Future work

Enhancements of LTL properties are useful for simpli�ed spellings of formulae such as the
reachability of a set of nodes by name. prop.maude actually contains operators that enable users
to ask for the reachablility of places by label, identi�er, and capacity with the reachable-
operator. Another example is the deadlock-freeness of a Maude net by the enabled-operator
(including only transition activation by t-enabled). Operators that use only the label of a
place make more sense since identi�ers can be changed by rule applications. A sample
implementation is presented in Listing 14, where only one label is used to prove whether a
place is reachable.

op r e a c h a b l e : S t r i n g −> Prop .
2

eq ne t ( P , T , Pre , Post ,
4 marking { p ( L | I | Cap ) ; MRest } )

R u l e s MaxID S t e p S i z e a i d
6 |= r e a c h a b l e ( L ) = t r u e .

Listing 14: Example of an extending operator for the LTL formulae

An implementation of special features such as negative application conditions (NACs) (see
[42]) or decorations (see [10]) is useful. NACs are used as net states for rules which should
not occur. Decoration includes the de�nition and implementation of tlb and rnw functions in
Maude. �e tlb function maps a transition label to a speci�c transition. Further, those labels
can be changed with the rnw function so that it is possible to add functions into a transition.
Some example applications are executable calculations such as counting an integer.

An interactive front end, which displays the collected LTL results, is a necessary extension
for the graphical implementation in ReConNet. Traces of the printed LTL-paths can help a
user to understand problems of the net and rules. If, for example, a deadlock occurs, then an
animation can show all actions that lead to the dead state. Such an animation can present all
actions, such as �ring and transformation steps, which end in a dead state where no action can
be used. Currently, the functionality of the front end supports only the generation of Maude
modules or reachability graphs in PDF- or SVG-�les.
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7 Future work

Finally, advanced benchmarks are useful to compare tools as Charlie against rMC. �e
automatization of testcases, including a database of di�erent net structures and rules, provides
di�erentiated results. �e example in Figure 15 contains an exponential growing state space
that is magni�cently handled by Maude net, but the net is minor due to the count of places and
transitions. A database of di�erent net structures can express an abstracted result in contrast
to the speci�c example net. Further, the testcases can be extended to other tools like Groove1,
which uses graph grammars to express rules.

1 http://groove.cs.utwente.nl/, 24 April 2015
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8 Summary and Conclusion

�e model checking for computer-based systems such as Maude’s linear temporal logic of
rewriting by term replacement algebra is a well understood technique to verify the behavioural
properties of a given system. Maude’s intuitive writing and the logical model are suitable for
the aim of this thesis, as they de�ne a model for recon�gurable Petri nets in term algebra.

�e concurrent and distributed model of recon�gurable Petri nets can be wri�en with term
algebra by a conversion of �eorem 1. Each part of such a recon�gurable Petri net is converted
into a Maude net. Furthermore, actions such as �ring or transforming are de�ned so that
labelled transition systems can be de�ned for both models and their related inference rules.

Bisimulation of labelled transition systems requires behaviour equivalence for each state
mapping in a relation de�ned between both systems. �eorem 2 and the related map function
de�ne such a bisimilarity for a given recon�gurable Petri net and a Maude net.

�e aim of this thesis is summarized in Figure 18, where the required conversion is introduced
by �eorem 1 and the bisimulation by �eorem 2. A given recon�gurable Petri net ((N,M),R)
is converted with several functions into a Maude net term. �e labelled transition systems are
derived by the inference rules of both nets. Finally, the �eorem 2 de�nes the bisimulation
between both labelled transition systems by a behaviour equivalence.

(N,R) Conversion in T heorem 1 //

Def. 15
��

NET

Def. 16
��

LTSRPN
Bisimulation in T heorem 2 // LTSMNC

Figure 18: Correctness of conversion

�e result of the proof for �eorem 1 clari�ed that a Maude net of Def. 14 is a valid represen-
tation of a formally de�ned recon�gurable Petri net. A conversion is formally de�ned and
proven so that it is possible to implement a conversion that transmits all parts of such model.
�e project before this thesis (see [3]) contains such a conversion, which uses a PNML-�le as
well as a XSL implementation.
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8 Summary and Conclusion

Further, the proof of bisimilarity shows that both systems are behaviourally equivalent. �e
states and actions of a labelled transition system, derived from a recon�gurable Petri net, show
that a Maude net calculates behaviourally equivalent states. �erefore, is a map-function by
Def. 18 de�ned as relation, which maps states of both transition system.

Consequently, the proofs show that the veri�cation of recon�gurable Petri nets and Maude
nets are correct using model checking by Maude’s LTLR. For this purpose, shows the evaluation
that properties such as deadlocks can be detected by the implementation of the model and
special operators for the LTL process. Further, Maude generates a text-based reachability graph
for a �nite state space. As side e�ect is such state space generated by rMC as graphic (e.g.
Figure 11).
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A Evaluation nets for Snoopy

�is section contains all Snoopy nets, for example, the evaluation �ight route. �e evaluation
is constructed in steps so that Figure 19 contains the initial example net, which results with
rule HAM-BER. Figure 20 extends the net in Figure 19 by rule BER-MUC. MUC-HAM are added
in Figure 21, and �nally, the Figure 16 contains all four rules with rule BER-HAM.

Figure 19: Snoopy net of Figure 15 and rule HAM-BER
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Figure 20: Snoopy net of Figure 15 and rules: HAM-BER and BER-MUC

Figure 21: Snoopy net of Figure 15 and rules: HAM-BER, BER-MUC and MUC-HAM
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B Extended Example of a Maude net

�is section contains all Maude modules for N1 and r1. At �rst, Listing 15 presents the
implementation of the NET module for the Maude net de�ned in Def. 14 and the Maude net
in Def. 12. Listing 16 contains the implementation of the RULES module de�ned in Def.
13, including the rewrite rule that is generated for r1 to perform such a transformation step,
including Maude’s pa�ern matching to detect a match. Listing 17 shows the implementation
of the PROP module with all necessary LTL properties. Finally, Listing 18 de�nes the NET
module with the initial state.

mod RPN i s
2 protect ing INT .

protect ing STRING .
4

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

6 ∗ ∗ ∗ L o c a l VARs

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

8
var S t r S t r 1 S t r 2 : S t r i n g .

10 var I I 1 I 2 I 3 Cap Cap1 Cap2 Counter MaxID S t e p S i z e :
I n t .

var P PRes t PSe t PSetL PSetR MTupleValue PreVa lue
P o s t V a l u e P1 P2 : P l a c e s .

12 var T TRest TSet TSetL TSetR : T r a n s i t i o n s .
var Pre PreL PreR : Pre .

14 var P o s t Pos tL PostR : P o s t .
var MTupleRest MTupleRest1 MTupleRest2 : MappingTuple .

16 var M M1 M2 MNew MRest MRest1 MRest2 MFollow : Markings
.

var R RRest R u l e s : Ru le .
18 var a i d : IDPool .

20
∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

22 ∗ ∗ ∗ P e t r i n e t N = ( P , T , Pre , P o s t , M 0 )
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∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

24
sor t Net .

26 sor t P l a c e s .
sor t T r a n s i t i o n s .

28 sor t Pre .
sor t P o s t .

30 sor t MappingTuple .
sor t Markings .

32 sor t Omega .

34 subsort P l a c e s < Markings .

36 op emptyPlace : −> P l a c e s .
op e m p t y T r a n s i t i o n : −> T r a n s i t i o n s .

38 op emptyMappingTuple : −> MappingTuple .
op emptyMarking : −> Markings .

40 op w : −> Omega .

42 op , : P l a c e s P l a c e s −> P l a c e s [ ctor assoc comm id :
emptyPlace ] .

op + : P l a c e s P l a c e s −> P l a c e s [ ctor assoc comm id :
emptyPlace ] .

44 op : : T r a n s i t i o n s T r a n s i t i o n s −>
T r a n s i t i o n s [ ctor assoc comm id :

e m p t y T r a n s i t i o n ] .
46 op , : MappingTuple MappingTuple −>

MappingTuple [ ctor assoc comm id :
emptyMappingTuple ] .

48 op ; : Markings Markings −> Markings [ ctor assoc comm
id : emptyMarking ] .

50 ∗ ∗ ∗ READING: Pname | ID | Cap

op p ( | | ) : S t r i n g I n t I n t −> P l a c e s .
52 op p ( | | ) : S t r i n g I n t Omega −> P l a c e s .
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op t ( | ) : S t r i n g I n t −> T r a n s i t i o n s .
54

op ( −−> ) : T r a n s i t i o n s P l a c e s −> MappingTuple .
56

op p l a c e s { } : P l a c e s −> P l a c e s .
58 op t r a n s i t i o n s { } : T r a n s i t i o n s −> T r a n s i t i o n s .

op pre { } : MappingTuple −> Pre .
60 op p o s t { } : MappingTuple −> P o s t .

op marking { } : Markings −> Markings .
62

∗ ∗ ∗ P e t r i n e t −t u p l e
64 op ne t : P l a c e s T r a n s i t i o n s Pre P o s t Markings −> Net .

66
∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

68 ∗ ∗ ∗ F i r i n g o f N = ( P , T , Pre , P o s t , M 0 )

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

70
op c a l c : Markings −> Markings .

72 op p l u s : Markings Markings −> Markings .
op minus : Markings Markings −> Markings .

74
∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

76 ∗ ∗ ∗ Enab l e AND Ca l c

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

78
op l e e q t h with : P l a c e s P l a c e s I n t −> Bool .

80 op <=? : Markings P l a c e s −> Bool .

82 ∗ ∗ ∗ Impl − l owe rEqua lThan # # # # # # # # # #

84 ∗ ∗ ∗ p l a c e m u l t i s e t i s empty

ceq emptyMarking l e e q t h p ( S t r | I | Cap1 ) with Counter
86 = t r u e i f Counter <= Cap1 .
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88 ∗ ∗ ∗ Cap−c o u n t e r i s t o o b i g

eq ( p ( S t r | I | Cap2 ) ; MRest ) l e e q t h p ( S t r | I | Cap2 )
with ( Cap2 + 1 )

90 = f a l s e .

92 ∗ ∗ ∗ f ound same p l a c e

ceq ( p ( S t r | I | Cap2 ) ; MRest ) l e e q t h p ( S t r | I | Cap2 )
with Counter

94 = t r u e
i f ( MRest l e e q t h p ( S t r | I | Cap2 ) with ( Counter +

1 ) ) .
96

∗ ∗ ∗ d e l a n o t h e r p l a c e

98 ceq ( p ( S t r | I | Cap1 ) ; MRest ) l e e q t h p ( S t r 2 | I 2 |

Cap2 ) with Counter
= t r u e

100 i f I =/= I 2 /\
( MRest l e e q t h p ( S t r 2 | I 2 | ( Cap2 ) ) with Counter )

.
102 ceq ( p ( S t r | I | w) ; MRest ) l e e q t h p ( S t r 2 | I 2 | Cap2 )

with Counter
= t r u e

104 i f I =/= I 2 /\
( MRest l e e q t h p ( S t r 2 | I 2 | ( Cap2 ) ) with Counter )

.
106

∗ ∗ ∗ o t h e r w i s e

108 eq M l e e q t h P with I = f a l s e [ owise ] .

110 ∗ ∗ ∗ Impl − sma l l e rAsCap # # # # # # # # # # # # #

112 eq marking { PSe t } <=? emptyPlace = t r u e .

114 eq marking {M} <=? ( p ( S t r | I | w) , emptyP lace )
= t r u e .
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116
ceq marking {M} <=? ( P , emptyP lace )

118 = t r u e
i f M l e e q t h P with 0 .

120
ceq marking {M} <=? ( p ( S t r | I | w) , PRes t )

122 = t r u e
i f PRes t =/= emptyPlace /\

124 marking {M} <=? PRes t .

126 ceq marking {M} <=? ( P , PRes t )
= t r u e

128 i f M l e e q t h P with 0 /\
PRes t =/= emptyPlace /\

130 marking {M} <=? PRes t .

132 eq M <=? P = f a l s e [ owise ] .

134 ∗ ∗ ∗ Impl − f i r e # # # # # # # # # # # # # # # # # # # # #

136 c r l [ f i r e −emptyPre ] :
ne t ( P ,

138 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> emptyPlace ) , MTupleRest1 } ,

140 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
marking {M} )

142 R u l e s
MaxID

144 S t e p S i z e
a i d

146 =>
ne t ( P ,

148 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> emptyPlace ) , MTupleRest1 } ,

150 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
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c a l c (M p l u s P o s t V a l u e ) )
152 R u l e s

MaxID
154 S t e p S i z e

a i d
156 i f c a l c (M p l u s P o s t V a l u e ) <=? P o s t V a l u e .

158 c r l [ f i r e ] :
ne t ( P ,

160 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> PreVa lue ) , MTupleRest1 } ,

162 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
marking { PreVa lue ; M} )

164 R u l e s
MaxID

166 S t e p S i z e
a i d

168 =>
ne t ( P ,

170 t r a n s i t i o n s {T : TRest } ,
p re { ( T −−> PreVa lue ) , MTupleRest1 } ,

172 p o s t { ( T −−> P o s t V a l u e ) , MTupleRest2 } ,
c a l c ( ( ( P reVa lue ; M) minus PreVa lue ) p l u s

P o s t V a l u e ) )
174 R u l e s

MaxID
176 S t e p S i z e

a i d
178 i f c a l c ( ( P reVa lue ; M) p l u s P o s t V a l u e ) <=?

P o s t V a l u e .

180 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

∗ ∗ ∗ Ex e c u t e Ca l c

182 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
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184 eq [ execu te−s t ep−minusStepEmptyPlace ] :
c a l c ( (M minus emptyPlace ) p l u s P o s t V a l u e ) =

186 c a l c (M p l u s P o s t V a l u e ) .

188 eq [ execu te−s t ep−minusEnd−s i n g l e ] :
c a l c ( ( p ( S t r | I | Cap ) minus ( p ( S t r | I | Cap ) ) )

p l u s P o s t V a l u e ) =
190 marking { P o s t V a l u e } .

eq [ execu te−s t ep−minusEnd−s i n g l e ] :
192 c a l c ( ( p ( S t r | I | w) minus ( p ( S t r | I | w) ) ) p l u s

P o s t V a l u e ) =
marking { P o s t V a l u e } .

194
eq [ execu te−s t ep−minusStep ] :

196 c a l c ( ( ( p ( S t r | I | Cap ) ; MRest1 ) minus ( p ( S t r | I |
Cap ) + MRest2 ) )

p l u s P o s t V a l u e ) =
198 c a l c ( ( MRest1 minus MRest2 ) p l u s P o s t V a l u e ) .

eq [ execu te−s t ep−minusStep ] :
200 c a l c ( ( ( p ( S t r | I | w) ; MRest1 ) minus ( p ( S t r | I | w

) + MRest2 ) )
p l u s P o s t V a l u e ) =

202 c a l c ( ( MRest1 minus MRest2 ) p l u s P o s t V a l u e ) .

204 eq [ execu te−s t ep−plusEnd ] :
c a l c (M p l u s P o s t V a l u e ) =

206 marking {M ; P o s t V a l u e } .

208 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

∗ ∗ ∗ Ru l e R = ( l n e t , r n e t )

210 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

212 sor t Rule .
sor t s L e f t H a n d S i d e RightHandS ide .

214
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op emptyRule : −> Rule .
216

op | : Ru le Rule −> Rule [ ctor assoc comm id :
emptyRule ] .

218
op l : Net −> L e f t H a n d S i d e .

220 op r : Net −> RightHandS ide .

222 op r u l e : L e f t H a n d S i d e RightHandS ide −> Rule .

224
∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

226 ∗ ∗ ∗ ID P o o l

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

228
sor t IDPool .

230
op emptyIDSet : −> I n t .

232 op , ( ) : I n t I n t −> I n t [comm id : emptyIDSet ] .

234 op a i d { } : I n t −> IDPool .

236 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

∗ ∗ ∗ C o n f i g u r a t i o n

238 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

240 sor t C o n f i g u r a t i o n .

242 ∗ ∗ ∗ READING: NET SET<RULE> MAXID STEP S IZE PID TID

op : Net Rule I n t I n t IDPool −> C o n f i g u r a t i o n .
244

endm

Listing 15: rpn.maude of N1 and r1 generated by rMC
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1 mod RULES i s
including RPN .

3
var S t r : S t r i n g .

5 vars I I 1 I 2 I R e s t I R e s t 2 Cap Cap1 Cap2 S t e p S i z e : I n t .
vars P PRes t PRes t1 PRes t2 PNet PRule : P l a c e s .

7 vars T TRest TSet TSetL TSetR : T r a n s i t i o n s .
vars Pre PreL PreR : Pre .

9 vars P o s t Pos tL PostR : P o s t .
vars MTupleRest MTupleRest1 MTupleRest2 : MappingTuple .

11 vars M M1 M2 MRest MRest1 MRest2 MNet MRule MFollow :
Markings .

vars R RRest : Ru le .
13 var N : Net .

15 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

∗ ∗ ∗ Rule−Co n d i t i o n s

17 ∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

19 op checkConta in ingMark ings ( | | ) : P l a c e s Markings −>
Bool .

21 eq checkConta in ingMark ings ( p ( S t r | I 1 | Cap ) | | ( p ( S t r |

I 1 | Cap ) ; MRest ) ) = t r u e .
eq checkConta in ingMark ings ( P | | MNet ) = f a l s e [ owise ] .

23
op c o n t a i n s ( | | ) : P l a c e s P l a c e s −> Bool .

25
eq c o n t a i n s ( p ( S t r | I 1 | Cap ) | | ( p ( S t r | I 1 | Cap ) ,

PRes t ) ) = t r u e .
27 eq c o n t a i n s ( P | | PNet ) = f a l s e [ owise ] .

29 ∗ ∗ ∗ equa lMark ing r e t u r n s t r u e i f :

77



∗ ∗ ∗ each marking o f t h e r u l e i s i n t h e marking m u l t i s e t

o f t h e n e t

31 ∗ ∗ ∗ and t h e marking s e t has no more mark ings o f each

marking

∗ ∗ ∗ i n s i d e t h e r u l e s e t

33 ∗ ∗ ∗ READING: NET−MARKING , RULE−MARKING

op equa lMark ing ( =?= ) : P l a c e s P l a c e s −> Bool .
35

eq equa lMark ing (
37 M =?= marking { emptyMarking }

) = t r u e .
39

eq equa lMark ing (
41 M =?= M

) = t r u e .
43

ceq equa lMark ing (
45 marking { p ( S t r | I 1 | Cap ) ; MNet } =?= marking { p (

S t r | I 2 | Cap ) ; MRest }
) = t r u e

47 i f equa lMark ing ( marking { MNet } =?= marking { MRest }
) /\

( MRest =/= emptyMarking ) .
49

ceq equa lMark ing (
51 marking { p ( S t r | I 1 | Cap ) ; MNet } =?= marking { p (

S t r | I 2 | Cap ) } ) = t r u e
i f not ( c o n t a i n s ( ( p ( S t r | I 2 | Cap ) ) | | MNet ) ) .

53
eq equa lMark ing (

55 ( MNet ) =?= ( MRule )
) = f a l s e [ owise ] .

57
∗ ∗ ∗ (

59 eq equa lMark ing (
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P =?= P
61 ) = t r u e .

63 ceq equa lMark ing (
( p ( S t r | I 1 | Cap ) , MNet ) =?= ( p ( S t r | I 2 | Cap ) ,

MRest )
65 ) = t r u e

i f equa lMark ing ( MNet =?= MRest ) /\
67 ( MRest =/= emptyMarking ) .

69 ceq equa lMark ing (
( p ( S t r | I 1 | Cap ) , MNet ) =?= ( p ( S t r | I 2 | Cap ) ) )

= t r u e
71 i f not ( c o n t a i n s ( ( p ( S t r | I 2 | Cap ) ) | | MNet ) ) .

73 eq equa lMark ing (
( PNet ) =?= ( PRule )

75 ) = f a l s e [ owise ] .
)

77
op f r eeOfMark ing ( | ) : P l a c e s Markings −> Bool .

79
∗ ∗ ∗ t h e r e i s no p l a c e

81 eq f r eeOfMark ing ( emptyP lace | M) = t r u e .

83 ∗ ∗ ∗ t h e r e i s no marking

eq f r eeOfMark ing ( P | emptyMarking ) = t r u e .
85

∗ ∗ ∗ t h e r e i s j u s t one p l a c e l e f t

87 ceq f r eeOfMark ing ( p ( S t r | I 1 | Cap ) | M) = t r u e
i f not ( checkConta in ingMark ings ( ( p ( S t r | I 1 | Cap ) )
| | M) ) .

89
∗ ∗ ∗ normal c a s e : t e s t p l a c e and c a l l r e s t

91 ceq f r eeOfMark ing ( p ( S t r | I 1 | Cap ) , PRes t | M) = t r u e
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i f not ( checkConta in ingMark ings ( p ( S t r | I 1 | Cap ) | |
M) ) /\

93 f reeOfMark ing ( PRes t | M) .

95 ∗ ∗ ∗ d e f a u l t c a s e − f a l s e

eq f r eeOfMark ing ( PRes t | M) = f a l s e [ owise ] .
97

99
∗ ∗ ∗ emp t yNe i ghb ou r F o r P l a c e r e t u r n s t r u e i f no p r e / p o s t

c o n t a i n s t h i s p l a c e

101 ∗ ∗ ∗ READING: PLACE , PRE , POST

op emptyNe ighbourForP lace ( , , ) : P l a c e s Pre P o s t −>
Bool .

103
eq emptyNe ighbourForP lace ( P ,

105 pre { ( T −−> P , PRes t ) , MTupleRest } ,
P o s t ) = f a l s e .

107
eq emptyNe ighbourForP lace ( P ,

109 Pre ,
p o s t { ( T −−> P , PRes t ) , MTupleRest } ) = f a l s e .

111
eq emptyNe ighbourForP lace ( P , Pre , P o s t ) = t r u e [ owise ] .

113
∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

115 ∗ ∗ ∗ RULE ID P o o l g e t t e r

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

117
vars MaxID NewMaxID S e t O f I n t s Count A i d P R e s t S e t

AidPRestNewSet I S e t : I n t .
119

121 ∗ ∗ ∗ He lp e r , which f i l l t h e s e t o f IDs

∗ ∗ ∗ READING: IDSET MAXID COUNTER INTERNAL−VAR
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123
op f i l l ( | | | ) : I n t I n t I n t I n t −> I n t .

125 eq f i l l ( I | MaxID | 0 | Count ) = I .
ceq f i l l ( I R e s t | MaxID | Count | I )

127 = f i l l ( ( MaxID + I , ( I R e s t ) ) | MaxID | ( Count − 1 ) |
( I − 1 ) )

i f I >= Count .
129 eq f i l l ( I 1 | MaxID | I 2 | Count ) = I 1 [ owise ] .

131

133 ∗ ∗ ∗ G e t t e r f o r t h e new ID ( p l a c e o r t r a n s i t i o n )

∗ ∗ ∗ READING: CURRENT SET MAXID STEP S IZE

135
op ge tA id ( | | ) : I n t I n t I n t −> I n t .

137
ceq ge tA id ( I 1 , ( I R e s t ) | MaxID | S t e p S i z e ) = I 1 i f I 1

=/= emptyIDSet .
139 eq ge tA id ( S e t O f I n t s | MaxID | S t e p S i z e )

= ge tA id ( f i l l ( S e t O f I n t s | MaxID | S t e p S i z e |

S t e p S i z e )
141 | MaxID + MaxID | S t e p S i z e ) [ owise ] .

143

145 ∗ ∗ ∗ Remove t h e f i r s t e l emen t from t h i s m u l t i s e t

∗ ∗ ∗ READING: CURRENT SET MAXID STEP S IZE

147
op r e m o v e F i r s t E l e m e n t ( | | ) : I n t I n t I n t −> I n t .

149
eq r e m o v e F i r s t E l e m e n t ( emptyIDSet | MaxID | S t e p S i z e ) =

151 f i l l ( emptyIDSet | MaxID | S t e p S i z e | S t e p S i z e ) .
ceq r e m o v e F i r s t E l e m e n t ( I 1 , ( I R e s t ) | MaxID | S t e p S i z e )

= I R e s t
153 i f I 1 =/= emptyIDSet [ owise ] .
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155

157 ∗ ∗ ∗ Add unused ID

∗ ∗ ∗ READING: CURRENT SET OLD ID

159
op addOldID ( | ) : I n t I n t −> I n t .

161
eq addOldID ( S e t O f I n t s | I ) = I , ( S e t O f I n t s ) .

163

165
∗ ∗ ∗ C o r r e c t t h e MaxID i f new IDs a r e g e n e r a t e d

167 ∗ ∗ ∗ READING: MAXID STEP S IZE NEW ID COUNT

169 op cor rec tMaxID ( | | ) : I n t I n t I n t −> I n t .

171 ceq cor rec tMaxID ( MaxID | S t e p S i z e | Count )
= cor rec tMaxID ( MaxID + S t e p S i z e | S t e p S i z e | Count

− S t e p S i z e )
173 i f Count > S t e p S i z e .

eq cor rec tMaxID ( MaxID | S t e p S i z e | Count ) = MaxID .
175

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

177 ∗ ∗ ∗ RULE IMPLEMENTATION

∗ ∗ ∗ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

179
vars I r u l e 1 0 3 I r u l e 1 0 2 I r u l e 1 0 4 I r u l e 1 0 5 I r u l e 1 0 1 9

I r u l e 1 0 1 6 I r u l e 1 0 2 3 I r u l e 2 0 1 9 I r u l e 2 0 1 6 I r u l e 2 0 2 3
I r u l e 3 0 1 6 I r u l e 3 0 1 9 I r u l e 3 0 2 5 : I n t .

181
vars Aid2 Aid1 AidRes t2 A idRes t1 AidRes t : I n t .

183
c r l [ R1−PNML] :

185 ne t (
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p l a c e s { p ( ” P ” | I r u l e 1 0 1 9 | w) , p ( ” P ” | I r u l e 1 0 1 6 | w
) , PRes t } ,

187 t r a n s i t i o n s { t ( ” T” | I r u l e 1 0 2 3 ) : TRest } ,
p re { ( t ( ” T” | I r u l e 1 0 2 3 ) −−> p ( ” P ” | I r u l e 1 0 1 6 | w) ) ,

MTupleRest1 } ,
189 p o s t { ( t ( ” T” | I r u l e 1 0 2 3 ) −−> p ( ” P ” | I r u l e 1 0 1 9 | w) )

, MTupleRest2 } ,
marking { p ( ” P ” | I r u l e 1 0 1 9 | w) ; p ( ” P ” | I r u l e 1 0 1 9 |

w) ; MRest }
191 )

r u l e (
193 l ( ne t (

p l a c e s { p ( ” P ” | I r u l e 2 0 1 9 | w) , p ( ” P ” | I r u l e 2 0 1 6 | w
) } ,

195 t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 3 ) } ,
p re { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 6 | w) ) }

,
197 p o s t { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 9 | w) )

} ,
marking { p ( ” P ” | I r u l e 2 0 1 9 | w) ; p ( ” P ” | I r u l e 2 0 1 9 |

w) }
199 ) ) ,

r ( ne t (
201 p l a c e s { p ( ” P ” | I r u l e 3 0 1 6 | w) , p ( ” P ” | I r u l e 3 0 1 9 | w

) } ,
t r a n s i t i o n s { t ( ” T” | I r u l e 3 0 2 5 ) } ,

203 pre { ( t ( ” T” | I r u l e 3 0 2 5 ) −−> p ( ” P ” | I r u l e 3 0 1 9 | w) ) }
,

p o s t { ( t ( ” T” | I r u l e 3 0 2 5 ) −−> p ( ” P ” | I r u l e 3 0 1 6 | w) )
} ,

205 marking { p ( ” P ” | I r u l e 3 0 1 9 | w) ; p ( ” P ” | I r u l e 3 0 1 9 |

w) }
) ) )

207 | RRest
MaxID
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209 S t e p S i z e
a i d { AidRes t }

211 =>
ne t (

213 p l a c e s { p ( ” P ” | I r u l e 1 0 1 6 | w) , p ( ” P ” | I r u l e 1 0 1 9 | w
) , PRes t } ,

t r a n s i t i o n s { t ( ” T” | Aid1 ) : TRest } ,
215 pre { ( t ( ” T” | Aid1 ) −−> p ( ” P ” | I r u l e 1 0 1 9 | w) ) ,

MTupleRest1 } ,
p o s t { ( t ( ” T” | Aid1 ) −−> p ( ” P ” | I r u l e 1 0 1 6 | w) ) ,

MTupleRest2 } ,
217 marking { p ( ” P ” | I r u l e 1 0 1 9 | w) ; p ( ” P ” | I r u l e 1 0 1 9 |

w) ; MRest }
)

219 r u l e (
l ( ne t (

221 p l a c e s { p ( ” P ” | I r u l e 2 0 1 9 | w) , p ( ” P ” | I r u l e 2 0 1 6 | w
) } ,

t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 3 ) } ,
223 pre { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 6 | w) ) }

,
p o s t { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 9 | w) )
} ,

225 marking { p ( ” P ” | I r u l e 2 0 1 9 | w) ; p ( ” P ” | I r u l e 2 0 1 9 |

w) }
) ) ,

227 r ( ne t (
p l a c e s { p ( ” P ” | I r u l e 3 0 1 6 | w) , p ( ” P ” | I r u l e 3 0 1 9 | w

) } ,
229 t r a n s i t i o n s { t ( ” T” | I r u l e 3 0 2 5 ) } ,

p re { ( t ( ” T” | I r u l e 3 0 2 5 ) −−> p ( ” P ” | I r u l e 3 0 1 9 | w) ) }
,

231 p o s t { ( t ( ” T” | I r u l e 3 0 2 5 ) −−> p ( ” P ” | I r u l e 3 0 1 6 | w) )
} ,
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marking { p ( ” P ” | I r u l e 3 0 1 9 | w) ; p ( ” P ” | I r u l e 3 0 1 9 |

w) }
233 ) ) )

| RRest
235 NewMaxID

S t e p S i z e
237 a i d { AidRes t2 }

i f AidRes t1 : = addOldID ( AidRes t | I r u l e 1 0 2 3 ) /\
239 Aid1 : = ge tA id ( A idRes t1 | MaxID | S t e p S i z e ) /\

AidRes t2 : = r e m o v e F i r s t E l e m e n t ( A idRes t1 | MaxID |

S t e p S i z e ) /\ NewMaxID : = correc tMaxID (
MaxID | S t e p S i z e | 2 ) .

241
endm

Listing 16: rules.maude of N1 and r1 generated by rMC
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mod PROP i s
2 protect ing STRING .

including RULES .
4

including SATISFACTION .
6

subsort C o n f i g u r a t i o n < S t a t e .
8

var L : S t r i n g .
10 var I Cap MaxID S t e p S i z e : I n t .

var Pre : Pre .
12 var P o s t : P o s t .

vars P P1 P2 PRes t PreVa lue : P l a c e s .
14 vars T T1 T2 TRest : T r a n s i t i o n s .

vars MappingTuple MTupleRest1 MTupleRest2 : MappingTuple
.

16 vars Any M MRest : Markings .
var R u l e s : Ru le .

18 var a i d : IDPool .

20 op r e a c h a b l e : Markings −> Prop .

22 eq ne t ( P ,
T ,

24 Pre ,
P o s t ,

26 marking { M ; MRest } )
R u l e s

28 MaxID
S t e p S i z e

30 a i d
|= r e a c h a b l e (M) = t r u e .

32
eq ne t ( P ,

86



34 T ,
Pre ,

36 P o s t ,
marking { p ( L | I | Cap ) ; MRest } )

38 R u l e s
MaxID

40 S t e p S i z e
a i d

42 |= r e a c h a b l e ( p ( L | I | Cap ) ) = t r u e .

44 op t−e n a b l e d : −> Prop .

46 eq ne t ( P ,
T ,

48 pre { ( T1 −−> PreVa lue ) , MappingTuple } ,
P o s t ,

50 marking { PreVa lue ; MRest } )
R u l e s

52 MaxID
S t e p S i z e

54 a i d
|= t−e n a b l e d = t r u e .

56 eq C |= t−e n a b l e d = f a l s e [ owise ] .

58 op e n a b l e d : −> Prop .

60 eq ne t ( P ,
T ,

62 pre { ( T1 −−> PreVa lue ) , MappingTuple } ,
P o s t ,

64 marking { PreVa lue ; MRest } )
R u l e s

66 MaxID
S t e p S i z e

68 a i d
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|= e n a b l e d = t r u e .
70

vars I r u l e 2 0 1 9 I r u l e 2 0 1 6 I r u l e 2 0 2 3 : I n t .
72

eq ne t ( p l a c e s { p ( ” P ” | I r u l e 2 0 1 9 | w) , p ( ” P ” |
I r u l e 2 0 1 6 | w) , P } ,

74 t r a n s i t i o n s { t ( ” T” | I r u l e 2 0 2 3 ) : T } ,
p re { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 6 |

w) ) , MTupleRest1 } ,
76 p o s t { ( t ( ” T” | I r u l e 2 0 2 3 ) −−> p ( ” P ” | I r u l e 2 0 1 9 |

w) ) , MTupleRest2 } ,
marking { p ( ” P ” | I r u l e 2 0 1 9 | w) ; p ( ” P ” |

I r u l e 2 0 1 9 | w) ; M } )
78 R u l e s

MaxID
80 S t e p S i z e

a i d
82 |= e n a b l e d = t r u e .

84 var C : C o n f i g u r a t i o n .
var Prop : Prop .

86 eq C |= Prop = f a l s e [ owise ] .

88 endm

Listing 17: prop.maude of N1 and r1 generated by rMC
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mod NET i s
2 including PROP .

including LTLR−MODEL−CHECKER .
4

ops i n i t i a l : −> C o n f i g u r a t i o n .
6

eq i n i t i a l =
8 ne t (

p l a c e s { p ( ” P ” | 3 | w) , p ( ” P ” | 2 | w) } ,
10 t r a n s i t i o n s { t ( ” T” | 4 ) : t ( ” T” | 5 ) } ,

p re { ( t ( ” T” | 4 ) −−> p ( ” P ” | 3 | w) ) , ( t ( ” T” | 5 ) −−>
p ( ” P ” | 3 | w) ) } ,

12 p o s t { ( t ( ” T” | 4 ) −−> p ( ” P ” | 2 | w) ) , ( t ( ” T” | 5 )
−−> p ( ” P ” | 2 | w) ) } ,

marking { p ( ” P ” | 3 | w) ; p ( ” P ” | 3 | w) }
14 )

r u l e (
16 l ( ne t (

p l a c e s { p ( ” P ” | 19 | w) , p ( ” P ” | 16 | w) } ,
18 t r a n s i t i o n s { t ( ” T” | 2 3 ) } ,

p re { ( t ( ” T” | 2 3 ) −−> p ( ” P ” | 16 | w) ) } ,
20 p o s t { ( t ( ” T” | 2 3 ) −−> p ( ” P ” | 19 | w) ) } ,

marking { p ( ” P ” | 19 | w) ; p ( ” P ” | 19 | w) }
22 ) ) ,

r ( ne t (
24 p l a c e s { p ( ” P ” | 16 | w) , p ( ” P ” | 19 | w) } ,

t r a n s i t i o n s { t ( ” T” | 2 5 ) } ,
26 pre { ( t ( ” T” | 2 5 ) −−> p ( ” P ” | 19 | w) ) } ,

p o s t { ( t ( ” T” | 2 5 ) −−> p ( ” P ” | 16 | w) ) } ,
28 marking { p ( ” P ” | 19 | w) ; p ( ” P ” | 19 | w) }

) ) )
30 25

10
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32 a i d { ( 2 5 , ( 2 6 , ( 2 7 , ( 2 8 , ( 2 9 , ( 3 0 , ( 3 1 , ( 3 2 ,
( 3 3 , ( 3 4 , ( 3 5 ) ) ) ) ) ) ) ) ) ) ) }

.
34

endm

Listing 18: net.maude of N1 and r1 generated by rMC
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