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Abstract—Large language models (LLMs) have demonstrated
remarkable success in the field of natural language processing
(NLP). Despite their origins in NLP, these algorithms possess
the theoretical capability to process any data type represented
in an NLP-like format. In this study, we use stock data to
illustrate three methodologies for processing regression data with
LLMs, employing tokenization and contextualized embeddings.
By leveraging the well-known LLM algorithm Bidirectional En-
coder Representations from Transformers (BERT) [1], we apply
quantitative stock price prediction methodologies to predict stock
prices and stock price movements, showcasing the versatility and
potential of LLMs in financial data analysis.

Index Terms—finance, quantitative stock price prediction,
natural language processing, stock movement prediction, fintech,
machine learning, large language models

I. INTRODUCTION

Few subfields in machine learning (ML) have garnered as
much attention in recent years as NLP and the LLMs integral
to its advancements. Although these models excel in NLP
tasks, they are fundamentally versatile algorithms capable of
processing any data type that is appropriately formatted.

At a conceptual level, LLMs process sequentially arranged
data points - specifically, word-tokens - that encapsulate their
interrelationships and correlations through the positions of
their respective embedding vectors in the vector space. Nu-
merous tasks within NLP involve the derivation of subsequent
textual outcomes (i.e. prediction of future developments of
the input sequence as for example in next-token prediction)
or overarching semantic interpretations, such as sentiment
analysis, based on these structured inputs. Upon examining
these internal mechanisms, it becomes evident that numerous
research fields within ML exhibit analogous processing re-
quirements for their respective input data. Stocks for example
are highly correlated, dependent on other stocks [2] and
sequentially ordered trough their temporal price development.
Based on these shared characteristics with NLP data, it is
obvious why LLM algorithms can be potentially interesting for

processing stock data. Voigt et al. [3] have demonstrated that
language data and stock market data not only share conceptual
but also structural similarities, suggesting the potential appli-
cability of LLMs to financial datasets. Despite being relatively
underexplored in contemporary research, numerous time series
problems can be reformulated to align with the operational
framework of LLMs.

LLMs typically incorporate three coarse-grained processing
stages. Initially, the input text undergoes tokenization, during
which each of the l input word-tokens is mapped to an
index within a predefined vocabulary V ⊂ N. Subsequently,
each token index is assigned a contextualized (pre-trained)
embedding tensor (e.g. using the Word2Vec [4], [5] algorithm).
In the final stage, these embedding vectors are concatenated
to form a two-axis tensor, which is then fed into the model
for further processing. A sketch of the basic processing idea
can be seen in the first row in Figure 1.

We propose a series of methodologies to adapt each step
of the pipeline of LLMs in order to make them usable for
stock data. First, we employ stock data as embedding values,
inputting these embeddings over a specified time lag ∆t and
for a set of company stocks C. This approach replaces the
traditional method of concatenating embedding vectors with
stock data. Secondly, we explore the application of scaling
contextualized embeddings ei for various companies ci ∈ C.
The method, originally proposed in [3] serves as an analog to
the technique used in Word2Vec for generating word vector
embeddings, adapted for financial entities. Lastly, our third
approach involves the tokenization of stock regression data,
which aims to replicate the entire pipeline of an LLM. A
visualization of these concepts is shown in Figure 1. We have
decided to adapt the BERT model [1] for this work, as it is
one of the first models in the LLM landscape.

To summarize our contributions, we delineate three method-
ologies that leverage LLMs for broader applications to regres-
sion and time-series analysis, specifically using stock data as
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an example. We validate our ideas using the BERT model
trained on 60-minute resolution intraday stock data of Standard
and Poor’s 500 (S&P-500) companies. As tasks we use the
prediction of future prices (stock price prediction) and the
prediction of whether a stock price will rise or fall in the
future (stock movement prediction). We conceptualize end
to end models that do not require further feature selection,
domain knowledge or work from (expensive) financial experts.
The primary objective of this work is to demonstrate the
applicability of established NLP algorithms in the domain of
financial analytics by utilizing language models and stock data.
We aim to present initial findings that support the feasibility
of this approach. It is important to note that our goal is not
to identify superior stock movement prediction (SMP) / stock
price prediction (SPP) methodologies, but rather to highlight
the potential and usability of LLMs in this novel context.
Given this objective, our initial focus is on quantitative stock
price prediction, which exclusively utilizes numerical, histori-
cal stock data [6]. This approach is in contrast to fundamental
stock analysis [7], which incorporates a broader spectrum of
information, including annual reports, social media data, or
other relevant sources. For the integration of such fundamental
data, additional methodologies are discussed in Section VII.

II. RELATED WORK

Voigt et al. [3] pioneered the concept of adapting speech
models to multivariate regression data (i.e. stock data) by
reformatting such data into sentence-like structures. This
approach involves scaling multidimensional contextualized
embedding vectors êi for each ci dependent on the price
information x

(t)
i of ci at timestep t, thereby incorporating

regression data. Although [3] introduced these foundational
ideas, their work lacked experimental validation of the adapted
speech models (ASMs) and did not explore the use of tok-
enized regression data or two-axis tensor representations as
embedding inputs.

Further advancing their concepts, [3] also introduces the
Stock2Vec algorithm, designed to train embeddings êi specif-
ically tailored for various ci. In the financial ML domain, the
strategy of representing ci as contextualized embeddings is
commonly employed to uncover correlations among assets,
primarily to enhance risk minimization and portfolio opti-
mization strategies. Contextualized embeddings for ci work
similar to NLP where contextualized word-token embeddings
represent relationships and meanings of the word-tokens.
Embeddings of ci typically cluster stocks within the same
industry close together or express similar relations trough
similar distance vectors. In related literature such as [8],
[9], [10], and [11] embedding training strategies for ci are
introduced. Non of these models use the embeddings for
SMP/SPP downstream tasks.

The intercorrelation among stocks stands as a pivotal factor
in forecasting future stocks prices, a notion widely acknowl-
edged in contemporary research literature as for example in
[12] or [2]. In our proposed approach the intricate interrela-
tionships are encapsulated through ei. Traditional methodolo-

gies commonly integrate correlation matrices directly into the
modeling pipeline, as exemplified by [13], or leverage them
within graph-based networks, as showcased in [14]. However,
few studies opt for the utilization of ci-specific vectors ei, as
demonstrated by [15] or [2].

The importance of including relational information in stock
presentations was demonstrated, for example, by Kim et
al. [16]. In their model, there are performance differences
depending on the basis from which relationships between
two stocks are modeled (e.g. “Industry-Product or material
produced” or “Country of origin-Country”). The ablation study
in [14] shows decreasing performance if relationship modeling
is omitted.

An approach loosely related to the tokenization of stock
data that involves inputting quantitative stock data (along
fundamental data) as prompts into LLMs is discussed in [17]
and in [18]. One of the relatively few instances of employing
LLMs for non-linguistic data is exemplified by the ALBEF
model developed by Li et al. [19]. This model utilizes parts
of the pre-trained BERT architectures to process merged visual
and textual input features.

SPP/SMP are generally regarded as difficult problems [20]
and the performance of ML models is correspondingly low.
Especially when only quantitative methods are used, as in
the approaches presented here. In order to make our proposed
approach comparable with the literature, we will look at the
performance of some models that were also trained on US-
American stocks. In their study, Qin et al. [21] demonstrated
the efficacy of quantitative SPP models, achieving a root
mean square error (RMSE) of 0.31 on National Association of
Securities Dealers Automated Quotations (NASDAQ) data, in
contrast to a higher RMSE of 0.96 observed in their Recurrent
Neural Network [22] (RNN)-based baseline model. Similarly,
Feng et al. [12] reported models (using non-quantitative ex-
ternal relationship information) that exhibited an RMSE of
0.015 for New York Stock Exchange (NYSE) data and 0.019
for NASDAQ data. Their Long short-term memory (LSTM)
[23] model based baseline models recorded RMSE values
of 0.019 on the NASDAQ dataset and 0.015 on the NYSE
dataset, respectively. In the context of SMP, Ding et al. [24]
proposed a model that attained an accuracy of 57.3% on
NASDAQ data, surpassing the LSTM baseline’s accuracy of
53.89%. Furthermore, the same model achieved an accuracy of
58.7% on China A-shares data, which also exceeded the LSTM
baseline accuracy of 56.7%. The model proposed in [25]
exhibited significant performance, attaining an SMP accuracy
of 60.7% across diverse interday data for single ci from the
S&P 500 and Korea Composite Stock Price Index (KOSPI).
The authors also introduced baseline models that achieved
accuracies within the range of 51.49% to 57.36%.

III. MODEL

As delineated in Section I, we propose three distinct
methodologies employing transformer-encoder based language
models for the prediction of stock prices. These approaches,
along with the specific components of the LLM pipeline they
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Fig. 1. Visualized comparison of the ASMs with classic NLP models.
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Fig. 2. Visualization of a scaled company embedding input after the conversion of a stock data time series input into a Stock2Sentence representation.

adapt, are illustrated in Figure 1. Each approach utilizes the
CLS-token h ∈ Rη , where η represents the size of the model.
Subsequent to processing by the LLM, the position of this
token is input into a linear layer, which is followed by a
Sigmoid activation function to perform the model prediction
ŷ. Depending on the specific application, either the Mean
Squared Error (MSE) for SPP or Binary Cross Entropy (BCE)
H(ŷ, y) for SMP is employed as the loss function. Similar to
traditional predictive tasks in NLP, the CLS-token serves as
a representative of the entire processed input sequence, with
respect to the specified tasks.

As a language model we define the basic speech model
(BERT) FS((ẽi)

l
1=i) taking embedded inputs in the form

(ẽ1, ẽ2, . . . ẽl) with ∀ẽi ∈ Rη and transforming it into h.
In order to create the embedded word-tokens (ẽi)

l
1=i an

embedding model FE((v̂i)
l
1=i , Ẽ) which transforms tokenized

text input in the form (ṽ1, ṽ2, . . . ṽl) (with ∀ṽi ∈ Ṽ and
Ṽ ⊂ N) is used. To tokenize the input text X̃ we use the
tokenizer FT (X̃, Ṽ ).

A. Notation

In the following (with strong orientation to the notation
of [3]) the price information of a specific company ci at
timestep t is denoted as x

(t)
i ∈ R4. Stock data is typically

expressed using a 5-dimensional datapoint for a given time
interval by specifying for each time step (e.g. the last 60
minutes), the Opening Price, the Highest Price, the Closing
Price, the Lowest Price and the Trading Volume (OHCLV-
features). In the approaches presented here, we do not use
Trading Volume information. The price of all ci ∈ C at t is
expressed as the “Market Snapshot” [3] X(t) ∈ R4·|C| stacking
the price information of all companies. The concatenation of
Market Snapshots over the whole observation horizon ∆t is
referenced as X ∈ R(4·|C|)×∆t.

B. Embedding Based Approach

In alignment with the frameworks previously delineated in
[26] or [24] for example, this approach employs a concatenated
array of ∆t Market Snapshots X(t) ∈ R4·|C| as embedding
vectors, directly into FS(.), thereby circumventing the initial



embedding and tokenization procedure. Here we map |C| ≡ η
and ∆t ≡ l.

The primary distinction between the application of a stan-
dard Transformer model, i.e the one described in [27], lies
in the nuanced specificities of the modified language model
FS(.) (in this case BERT).

Following the methodology introduced by Yoo et al., a linear
transformation layer, with parameters uniformly shared across
all ci and incorporating a Rectified Linear Unit (ReLU) acti-
vation function, is applied to transform the raw price features
X into a latent feature representation X̄ . A consequential
aspect of this approach is the flexibility it affords in the input
dimensionality of FS(.), thereby enabling the utilization of η,
as specified by the original language model.

C. Stock2Sentence

The idea to map X into sentence-like structures is discussed
in [3]. For this methodology, the procedure commences by
“flattening” X , subsequently transposing the input at each
respective timestep dimension, and then concatenating the
flattened and transposed inputs sequentially. Each ci is trans-
formed into an embedding tensor êi utilizing FE(.) alongside
the trainable embedding matrix E. The derivation and speci-
fications of E are elaborated upon in Paragraph III-C0a.

To encode price information and construct the final em-
bedding vector ei, two distinct scaling methodologies are
evaluated: ei = êi⋆x

(t)
i or ei = êi⋆FÊ(fnorm(x

(t)
i ), Ê) with

⋆ being defined as either a multiplicative or additive method.
Each of the four OHCL-features represents one quarter of the
η dimensions of ei by stacking the vectors. In the approach
utilizing FÊ(.), Ê represents a learnable parameter matrix,
and fnorm(.) is a function designed to normalize the input
values of each ci and each OHCL-feature to an integer range
between 0 and θnorm. As delineated in [26], the technique of
shifting embedding tokens within the vector space constitutes a
prevalent strategy, employed, for instance, to encode positional
information, as exemplified in [28].

In order to generate sentence like structures we assign

a(t)[j, i] = e
(t)
i [j] (1)

and

A =
[
a(1) [PUNC] a(2) [PUNC] . . . a(∆t)

]
(2)

with [PUNC] ∈ Rη×1 as outlined in [3]. The punctuation
token [PUNC] is utilized to aid the model in differentiating
among various t. A schematic representation of this method
is depicted in Figure 2.

a) Contextualized Stock Embedding Vectors: The embed-
ding matrix E can be optimized through several methodolo-
gies, including Stock2Vec and other algorithms detailed in
Section II. The aim of using E is to represent relationships
between different ci abstractly as high-dimensional vectors.
Access was obtained to the pre-trained weights from the work
of Dolphin et al. in [11] and [10], facilitating empirical test-
ing. Alternatively, E can be initialized randomly and trained
from scratch. For the Stock2Vec algorithm, we use a slightly

adapted (compared with [26]) version in which, for example,
time-dependent embeddings are used for the CBOS algorithm
and the task is SMP instead of SPP.

One significant advantage of the Stock2Sentence approach
is that it improves the information presentation to the model
as each position in the “text” encapsulates a single data
point from the second (l-dimensional) input tensor axis. In
contrast, the method employing X(t), as discussed in Sec-
tion III-B, incorporates |C| information points per position.
This approach endeavors to leverage the underlying principles
and mechanisms of NLP models by aligning more closely
with traditional NLP text structures where each input position
includes one word-token. However, a notable drawback of this
method is the resultant expansion in input length by a factor
of |C|, which substantially increases computational demands.
This is particularly challenging for transformer architectures,
which are characterized by a space complexity of O(n2+n·k)
[27], thus rapidly depleting computational resources.

D. Reinterpretation as Text

The final methodology incorporates FE(.), FS(.), and
FT (.), and applies tokenization to regression values. This to-
kenization parallels the discretization process, bearing resem-
blance to the embedding-scaling techniques, albeit its applica-
tion within the domain of equities is notably unconventional.
It has precedent in other ML contexts e.g. discretization can
be analogized to the utilization of histograms for transforming
continuous variables, as for example in [29].

This strategy fundamentally reinterprets X not as a ten-
sor, but rather as textual data predominantly composed of
numerical entries. Consequently, this technique facilitates a
comprehensive reorientation of the problem from SPP to
processes typical for NLP, marking a significant paradigm shift
in the approach to data analysis.

To do this, we define the vocabulary V using the word-
tokens from the set

C ∪ {“-”, 0, “[PUNC]”} ∪ {n|n ∈ N, n ≤ θV } . (3)

The input is represented as a sentence

b(j) =
[
c1x̃

(j)
1 c2x̃

(j)
2 c|C|x̃

(j)
|C|

]
(4)

and the whole input, as

B =
[
b(1) [PUNC] b(2) [PUNC] . . . b(∆t)

]
. (5)

For each ci, stock ticker symbols (such as [APPL]) can be
employed as single tokens, akin to the methodologies outlined
in [8].

We define each transformed x
(t)
i as x̃

(t)
i by choosing only

one price feature (i.e. the Closing Price) and implementing a
digit reversal of the original values, subsequently multiplying
by a scaling factor 10θx , and rounding to θx decimal places.
This reversal process restructures the price display such that
each position aligns uniformly across different companies;
for instance, the most significant digit represents the fourth
decimal place, the next significant digit represents the third



decimal place, and so forth. This methodological adjustment
has been found to enhance the stability of the training process.

An alternative method could involve employing the default
FT (.) and V of the corresponding language model offering a
different avenue for data preprocessing and analysis.

IV. METHODS

In adherence to classical methodologies within the realm
of LLMs, we delineate two principal phases: “pre-training”
and “fine-tuning”. Pre-training is employed in NLP to instill a
foundational understanding of language in LLMs - a “gener-
alized language understanding” [26]. Conversely, fine-tuning
is dedicated to adapting the model for specific downstream
tasks. As delineated in [26] and [3], the adaptation of popular
techniques such as masked language modeling (MLM) [1]
and next-sequence prediction (NSP) [1] can be similarly
applied to stock prediction models. This approach teaches the
models a generalized comprehension of stock data, elucidates
intercorrelations among various ci, and enhances the overall
generalized performance. Pre-training stages are deferred to
future investigative efforts.

In this research, our focus is primarily on the fine-tuning
tasks. These tasks involve the already described SPP with
the target being y = X(t+o)[D] and SMP with the target
being y = I(t)(X(t) > X(t+o))[D] (adhering to the notation
established by Yoo et al in [30]) with D being the indices
of the Closing Price datapoints. For the purposes of this study
o = 1 holds, as is conventionally employed in related research,
exemplified in studies such as those in [12] or [31].

V. DATASET AND EXPERIMENT

The foundational data source for our dataset is the Alpha
Vantage API1, which provides us with extensive research
access to stock data. Consistent with the methodology of Voigt
et al., our analysis incorporates data from 309 companies listed
on the S&P-500 index that had available records dating back
to the year 2000. The temporal scope of our dataset extends
from 2000 to 2023, with data aggregated at intraday 60-minute
intervals. Following the approach adopted, we selected the
Closing Price of each timestep interval as the predictive target
y. We select the data from the year 2000 to the year 2021
as the training data, used to optimize the model parameters
and the data from 2021 to 2022 for the validation set used to
optimize the hyperparameters. For the final test set evaluation
we use the data from 2022 to 2023. This data split is the most
established approach in SPP/SMP and followed for example
in [32], [33] or [34].

The phenomenon of absent data points is frequently ob-
served in intraday datasets, particularly exacerbated with finer
time granularity. Conversely, interday datasets typically exhibit
minimal occurrences of missing x

(t)
i values. To address this

issue, in cases where data points are absent, we impute the
value by padding from the most recent existing x

(t)
i entry,

as done in [3]. All values are min-max normalized for each

1https://www.alphavantage.co/

ci and OHCL-feature respectively as done in previous studies
such as [35].

TABLE I
RESULTS FOR EMBEDDING BASED APPROACH.

Model SMP SPP
∆t 4 8 16 4 8 16
BERTη=64 50.5 50.6 50.9 3.8 3.6 3.7
BERT 53.2 53.4 52.9 2.7 2.8 2.8
BERTbase 52.0 52.2 52.1 2.6 2.8 2.9
BERTlarge 54.1 54.3 55.1 3.0 3.2 3.1
BERTpre-trained 50.6 50.7 50.9 3.5 3.8 3.3

TABLE II
RESULTS FOR STOCK2SENTENCE BASED APPROACH. THE SUBSCRIPT

SPECIFIES HOW E WAS INITIALIZED. HERE THE “STOCK EMBEDDINGS”
ARE FROM [11] AND THE “STOCK EMBEDDINGS-CBR” ARE FROM [10]

(FOR ci FOR WHICH THERE WERE NO WEIGHTS, RANDOM INITIALIZATION
WAS USED). THE S2V APPROACHES WERE TAKEN FROM [3] AND

RETRAINED. FOR ALL APPROACHES, IT WAS EMPIRICALLY DETERMINED
THAT THE USE OF Ê , θNORM = 100 AND ⋆ AS AN ADDITION OPERATION

WORKS BEST. TO VALIDATE THIS ASSUMPTION, TWO MORE APPROACHES
WERE TRAINED.

Model SMP SPP
∆t 4 5 6 4 5 6
BERT 54.1 53.7 53.9 2.6 2.2 2.5
BERTSock Embeddings 50.7 50.7 50.8 3.6 3.6 3.7
BERTSock Embeddings- CBR 50.9 51.2 51.3 2.9 3.1 3.1
BERTS2V- SG 53.4 53.6 53.6 1.9 2.0 2.0
BERTS2V-CBOS 54.3 54.1 53.9 2.5 2.4 2.5
BERT⋆=Multiplication 50.3 50.9 51.2 3.8 3.9 3.6
BERT⋆=Addition 51.2 51.4 52.5 3.0 3.2 2.9

TABLE III
RESULTS FOR TOKENIZATION BASED APPROACH.

Model SMP SPP
∆t 3 4 5 3 4 5
BERTV 51.2 51.1 51.4 3.7 3.4 2.9
BERTDefault-BERT-Vocab 50.8 50.9 50.8 3.6 3.6 3.7
BERTDefault-BERT-Vocab, Pre-trained 50.3 50.8 50.9 3.5 3.5 3.8

VI. RESULTS

In Table I, we delineate the outcomes for the embedding-
based approach; in Table II, we present the results for the
Stock2Sentence-based approach; and in Table III, the out-
comes for the tokenization-based method are detailed. Due to
the scaling of the input length by |C| for the Stock2Sentence
approach and by the factor |C| · v for the tokenization-based
approach, ∆t must be selected significantly smaller for these
two approaches than for the embedding-based approach. The
hope is that the detailed correlation and relationship modeling
between the individual stocks will nevertheless enable a good
performance to be achieved. We report the Accuracy for SMP
and the RMSE for SPP scaled by the factor 100 on the min-
max normalized values. Each experiment was repeated five
times.

It was observed that there is considerable variation in the
performance across different companies, which supports the
hypothesis that predictability may vary significantly among



Fig. 3. Grad-CAM visualisation of attention scores for Stock2Sentence
approach. The darker the color the higher the relevance (red) and the lighter
(yellow) the lower. Please refer to the Appendix for detailed explanation of
the used visualization algorithm.

stocks. This could have been one of the reasons why in [25]
(see Section II) only single stocks were chosen for prediction.
A real world application of ASMs could be based on a trading
strategy in which investments are only made in stocks with
high predictability / high accuracy values.

A. Investigating Time and Stock Relationships

As delineated in Paragraph III-C0a, the Stock2Sentence
approach facilitates the representation of each of the |C| ·∆t
data points as an individual component of the input sequence.
This methodological innovation permits a detailed examination
of the internal model attention mechanisms with respect to
each data point. Consequently, it becomes feasible to analyze
the relative importance of each ci at each t in relation to every
other ci at each t. A visualization is given in Figure 3.

In contrast to prior methodologies, which were restricted
to investigating either the attention across different ci as in
[30], or across different t as in [36], the Stock2Sentence
approach provides a more granular and interconnected analysis
of attention dynamics, thereby enhancing our understanding of
model behavior across both company and time dimensions.

VII. DISCUSSION AND FUTURE RESEARCH

The embedding-based methodology aligns closely with con-
ventional models, such as the approach detailed by Ding et al.
in [24]. Consequently, the results obtained through this method
are comparable, and in some instances, slightly inferior, as
evidenced in the results presented in Table I. Notably, the
effectiveness of the model appears to be positively correlated
with its size. For instance, when η is set to 64, the model
performance merely approaches the baseline threshold. Ad-
ditionally, initializing the model with weights pre-trained for
NLP tasks, (denoted as BERTpre-trained) detrimentally impacts
its performance. This reduction in efficacy is anticipated given
the original training objectives of the pre-trained model, which
differ significantly from the current application. Moreover,
variations in ∆t exert a minimal influence on the model’s
performance.

In the Stock2Sentence methodology, the initialization of
E with pre-trained weights, from Dolphin et al. from [11]
and [10], yields suboptimal results. This inefficacy is likely
attributable to the small values of η used during the training of
these models (η = 16 or η = 20). Future investigations could
reconsider these approaches by re-training the models from
[10] and [11] and potentially employing larger dimensions
E. Additionally, strategies that do not incorporate Ê also
demonstrate inadequate performance. A plausible explanation
for this phenomenon is the scaling of ê, particularly when
operations such as ⋆ as multiplication are applied. This
scaling may cause price information to excessively overlap
with the semantic content encapsulated in ê, to the extent that
the model becomes incapable of accurately understanding ê.

Tokenization-based methodologies exhibit generally poor
performance. One potential issue is the increased input length
that results from tokenizing regression values. This approach
is especially ineffective when applied to pre-trained BERT
models and utilizing the BERT vocabulary. A deficiency which
may be attributed to the significant divergence of the tokenized
stock data from the natural language corpus originally used to
train the BERT models.

As previously emphasized, the primary goal of this research
is to elucidate the intrinsic properties of these models and
their capability to obviate the necessity for human analysis or
domain-specific expertise. The preliminary results demonstrate
the efficacy of the outlined models, which, in many instances,
surpass the established baseline and exhibit substantial poten-
tial for generating profits. Given the innovative nature of these
methodologies, there is considerable scope for enhancing their
performance through further investigation, particularly con-
cerning the tokenization-based approach. Prior studies, such as
for example [17] and [18], suggest that incorporating trend and
histogram inputs in LLMs may yield more effective results.
Additionally, employing more intricate technical indicators
for defining e or including fundamental data could further
augment model performance.

One of the primary advantages of the Stock2Sentence (as
well as for the tokenization approach) approach is its capability
to eschew a fixed embedding dimension position for each
ci, unlike the majority of existing state-of-the-art SPP/SMP
models. This flexibility enables the model to accommodate
new entities, such as emerging companies, by dynamically in-
tegrating or excluding specific x

(t)
i values, for instance during

periods of zero trading or when data is missing. Additionally,
the approach allows for the incorporation of contextual fun-
damental data, such as data derived from processing current
news and social media. Notably, this last methodology war-
rants further exploration, as incorporating fundamental data
often enhances model performance by embedding additional
contextual information that may not be readily apparent from
mere time series data alone.

Future research should prioritise the integration of further,
publicly available, LLMs, such as GPT-2 [37], TransformerXL
[38], T5 [39], and LLaMA [40], within the models used for
the Stock2Sentence or tokenization methodologies. Moreover,



it is essential to adapt pre-training techniques such as MLM
and NSP. These methodologies could facilitate the models’
ability to discern inter-correlations among different ci, which
is regarded as a crucial strategy for enhancing the accuracy of
SMP/SPP.

Currently, our research prioritizes predictive models, which
are common in the domains of SPP and SMP, due to the
complexity associated with generative approaches that forecast
over extended future periods. However, generative models can
still be employed as suggested by [3], where predictions are
selectively generated for specific ci (or t), i.e. ŷ(t) /∈ R|C|.
This approach enables the model to restrict its predictions to
prices or price movements where it possesses a significant
degree of confidence and incorporate the idea of the different
predictability of individual stocks.

VIII. SUMMARY

In conclusion, we have delineated three methodologies to
replace specific components of a conventional NLP model
pipeline of LLMs tailored for regression data, exemplified in
the context of SPP/SMP. We have expounded upon the ben-
efits of our models and validated our methodologies through
empirical testing of the BERT model. Furthermore, we have
suggested avenues for future research focusing on adaptations
of generative speech models and of the incorporation of textual
data.
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APPENDIX

To visualize the Stock2Sentence approach we adapt and
modify the Grad-CAM visualization from [41]. The relevance
map R ∈ R(|C|·∆t)×(|C|·∆t) visualizes the relevance of each
of the |C| · ∆t input points with respect to each other. It is
calculated as

R = Ā and ▽A :=
∂ ( 1

|C| ·
∑

ci∈C H(ŷi, yi))

∂A
(6)

following the notation of [41].
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