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ABSTRACT
Exploring spatial and temporal audience behavior around ambient displays is an
important area of HCI research. It aids in, for instance, understanding better user
appropriation in natural environments. However, there are only a few tools to cap-
ture said behavior and, simultaneously, little knowledge on the space around am-
bient display installations exists. In this research, we report on audience behavior
observed during an in-the-wild study where we deployed our custom Ambient Sur-
faces solution in a professional, large-scale agile software development context for
circa 5 years. Across 18 weeks in 2017, we collected skeletal data with two Microsoft
Kinect v2 cameras resulting in behavior information of more than 30,000 passersby.
Our results indicate, among others, that users did show the highest levels of en-
gagement at quite some distance to the Ambient Surfaces and that people engaging
in direct interaction did so rather purposely. Ultimately, this article encapsulates
our research’s originality in four contributions including an approach to separate
passersby from real users and an in-depth exploration of skeletal data. With the
tools and methods illustrated, we hope demonstrating manifold insights for future
research on audience behavior tracking.

KEYWORDS
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1. Introduction

Embedding interfaces in the wild, meaning placing them stationary in real-world pub-
lic and semi-public spaces (Williamson & Williamson, 2017), is one of the key aims of
ubiquitous computing (Dalton, Dalton, & Hoelscher, 2015). Nowadays, interfaces have
advanced past the desktop metaphor and emphasize on touch and gesture interactions
(Stephanidis et al., 2019), while being, in fact, ubiquitous (Boucher, Blumenstein, de
Jesus Oliveira, & Seidl, 2021). With the rise of the post-desktop era, the spatial variable
in HCI research has become an integral part in the overall interaction process (Dalton
et al., 2015). Large and interactive displays, or ambient displays as we refer to, are
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no exception to this development in ubiquitous computing. An increasing number of
deployments in public (e.g., city settings) and semi-public (e.g., offices) environments
can be observed (Ardito, Buono, Costabile, & Desolda, 2015) resulting in a notable
contextual diversity of installations (Germany, Speranza, & Anthony, 2019). Com-
monly, ambient displays are evaluated through understanding their audience behavior
(Elhart, Mikusz, Mora, Langheinrich, & Davies, 2017), while behavior here means a
performance of some kind that people carry out in front of an installation (Williamson
& Williamson, 2014). Past research, however, was more concerned with aspects such
as a technology’s usability (Williamson & Williamson, 2014) leading to a lacking in
understanding of how ambient displays affect audience behavior physically, socially,
and culturally (Ardito et al., 2015). Unsurprisingly, ambient displays were often found
to be irrelevant to the space where they were deployed and, simultaneously, it remains
unclear how they are really appropriated in the wild (Parker, Tomitsch, & Kay, 2018).
While studies attempted to model spatial and temporal audience behavior in the past
(Shi & Alt, 2016), it remains a challenging endeavor (Ardito et al., 2015).

In more recent years, research has been building on the advances in depth-image
cameras to scrutinize audience behavior in the wild. It has underlined the importance
of understanding better how people move around a display installation (Elhart et al.,
2017) to, for instance, learn more about users who wish not to interact (Williamson
& Williamson, 2014). The premise is that by investigating the space more holistically,
research can come up with more sophisticated tools, methods, frameworks, and theories
(Dalton et al., 2015). First tools have already been developed to both increase the
automation throughout the research process and reduce the workload resting upon
scientists (Mäkelä, Heimonen, & Turunen, 2018). In contrast to manual observations
and interviews allowing for the analysis of tens of users, data from up to thousands
of users could now be automatically investigated (Williamson & Williamson, 2014).
While these tool-based approaches are considered more cost-effective (Mäkelä et al.,
2018), they can also be easily used in other deployments and be readily integrated
with other methodologies (Williamson & Williamson, 2014). Research on ambient
displays in the wild, however, remains a challenge (Mäkelä et al., 2018; Williamson
& Williamson, 2017) and warrants methodological development (Schwarzer, Draheim,
von Luck, Wang, & Grecos, 2021). Not many tools exist to capture audience behavior
(Elhart et al., 2017) and new tools to accurately record and analyze interaction in
a wider context are much called for (Dalton et al., 2015). Also, depth-based data,
particularly skeleton data, has not been utilized to its full capacity (Mäkelä et al.,
2018).

In response, this article draws attention to a recent study (Schwarzer et al., 2021),
where we deployed two of our custom ambient display solutions—henceforth referred to
as Ambient Surfaces—in a professional, large-scale agile software development (ASD)
environment for roughly 5 years. Each of the systems was equipped with a Microsoft
Kinect v2 sensor operational for 18 weeks in 2017. During this time, skeletal data of
more than 30,000 passers-by was gathered. Building on this data set, we elaborate
here on the tools utilized and the methods leveraged to expand on both spatial and
temporal audience behavior. Ultimately, our research’s originality is discussed along-
side four individual contributions. First, this study proposes a still missing approach
to separate passersby from real users, including their levels of engagement. Second,
our research suggests incidents of direct interaction that have not been, so far, con-
sidered in existing behavioral models. Third, with behavioral data distilled from a
professional context, our study contributes rich nuances to existing work that has
been largely informed by research in public environments. Finally, with the illustrated
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steps of collecting, preprocessing, and analyzing skeletal data, our work fundamentally
adds to its exploration.

The article is organized as follows: Section 2 elaborates the related literature with
respect to both studies modeling spatial and temporal audience behavior and studies
introducing tools to track said behavior. Afterwards, Section 3 introduces the Am-
bient Surfaces solution and the research context. Subsequently, Section 4 illustrates
the methods utilized for the data collection and the analysis process. Further, Sec-
tion 5 presents the results obtained, whereas Section 6 discusses the originality of our
work including research implications, recommendations of future work, and research
limitations. Finally, Section 7 concludes the article.

2. Related work

While a vast amount of past research has already used video analysis techniques such
as face recognition and eyeball detection (Elhart et al., 2017), we concentrate here on
studies taking on the challenge of investigating audience behavior in the wider context
(Williamson & Williamson, 2014). Initially, it is emphasized on the fundamentals of
spatial and temporal interaction models, including an introduction to seminal work.
Then, the focus is on studies that leveraged camera-based approaches to track people
in the space of ambient display installations and, in instances, applied examples of
said models. Finally, our work is related to existing research.

2.1. Spatial and temporal interaction models

In the early 2000s, the first spatial and temporal interaction models appeared. Since
then, many models have been suggested to articulate audience behavior (Germany et
al., 2019). Two types have ultimately emerged (see Figure 1): spatial and temporal
models (Davies, Clinch, & Alt, 2014). While the former considers how users behave in
light of the spatial relationship to a display, the latter considers how the engagement of
users with a display changes over time. Whereas existing models share common traits,
they are typically derived from different phenomena and contexts (Germany et al.,
2019). A similarity of existing models is their emphasis on single-surface installations
(Boucher et al., 2021) and their foundation dividing the interaction process in multiple
phases (Michelis & Müller, 2011). While the initial phase typically considers cases
where people ignore a display entirely, the last phase takes into account instances
where people engage in close or personal interaction. Evidently, however, more recent
research builds on advances regarding camera-based sensors. While during the early
2000s lab-based research was required to equip users with separate hardware devices
to track their spatial behavior (e.g., Streitz, Röcker, Prante, Stenzel, & van Alphen,
2003), newer research uses sensors such as Kinect cameras to do the same in more
natural environments (e.g., Elhart et al., 2017).

Fundamentally, spatial models have in common that they define interaction zones
based on a user’s distance to a display (Alt, Buschek, Heuss, & Müller, 2021). The
earliest attempt to model spatial audience behavior was authored by Streitz et al.
(2003) and by Prante et al. (2003). Their work, essentially, suggested three zones
of interaction, including an active zone directly in front of a display, a notification
zone where users can be proactively attracted, and an ambient zone where people are
provided with general information. Both solutions GossipWall (Streitz et al., 2003)
and Hello.Wall (Prante et al., 2003) were built as an informative art installation us-
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(a) Observed spatial audience behavior with a display showing a text message and an animated
effect to attract users (Germany et al., 2019). The installation was located on a university
campus.

(b) Captured temporal audience behavior with displays installed behind public storefront
windows in a city installation (Michelis & Müller, 2011). The displays visualized, among others,
a mirror image of the environment in front of them.

Figure 1.: Two exemplary studies attempting to model spatial (top) and temporal
(bottom) audience behavior.

ing light patterns to emit information. Using RFID technology, both systems created
distance-dependent semantics. Were people, for example, tracked nearer to the instal-
lation, the GossipWall and the Hello.Wall emitted information such as personal light
patterns. Subsequently, said three-zone model was used and extended in later work.
For instance, Vogel and Balakrishnan (2004) introduced a spatial model ranging from
distant implicit interaction (e.g., subtle cues such as body orientation) to up-close
explicit personal interaction (e.g., hand and touch gestures). Their model focuses on
fluid transitions between phases (e.g., opportunity to quickly and seamlessly initi-
ate and end interactions) and suggests a wider range of interaction techniques. Vogel
and Balakrishnan (2004) leveraged a motion tracking system with sensors attached
to a user’s body to measure distances. Another example is the work from Greenberg,
Marquardt, Ballendat, Diaz-Marino, and Wang (2011) based on the seminal theory
of proxemics (Hall, 1966). In ubiquitous computing, as Greenberg et al. (2011) note,
proxemics concern inter-entity (i.e., a mix of people, digital devices, and non-digital
things) distances. The goal is to in one way or another sense the proximity between
these entities. However, the previous models primarily focus on single-user interaction
and do not support back-and-forth transitions (Davies et al., 2014). In contrast, the
model by Memarovic et al. (2012) allowed to elaborate multi-user interactions and
transitions. It builds on a principal human need in public spaces—i.e., to engage pas-
sively and actively as well as to discover. Finally, Germany et al. (2019) partially build
on the work from Vogel and Balakrishnan (2004) and created models based on differ-
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ent implicit (i.e., an animated effect) and explicit (i.e., a message inviting interaction)
screen prompts (see Figure 1a). They investigated how increased attention and aware-
ness affect the engagement with their display. Using an ultrasonic range finder sensor,
distances to the display were determined.

Opposed to spatial models, temporal models consider interaction as a movement
process of users through different stages (Alt et al., 2021). Each of these stages can
only be reached by overcoming a certain threshold. The public interaction flow model
by Brignull and Rogers (2003) is an early conceptual example. The authors’ work was,
among others, motivated by the question of how groups of people socialize around am-
bient displays. The principal idea is that people’s interest must be stimulated enough
and the system has to provide affordances about what it offers. Simultaneously, people
have to be willing to spend their time and effort. Another example is the Audience
Funnel framework (see Figure 1b) introduced by Michelis and Müller (2011). This
framework is considered one of the most influential ones (Mäkelä et al., 2018) and
was motivated by the fact that no quantitative data had been collected of how many
people pass through the individual thresholds of a given model’s phases. The authors
pursued a better understanding on how to improve conversion rates between phases
by indicating where high numbers of people drop out. At each transition between
these phases, certain amounts of dropouts can be observed, hence only a percentage of
people proceed to the next phase. Latest research, additionally, took into account the
contemporary ubiquity of interactive surfaces. For example, the Multi-Device Interac-
tion Model (Boucher et al., 2021) is driven by this development and considers people
carrying around their own personal devices and bringing them into public spaces. In a
museum context, the authors observed the interaction focus shifting away from single,
large display installations and interaction zones melding together.

2.2. Examples of audience behavior tracking

The examples presented in this section follow the notion that some automation of the
audience behavior evaluation process can be realized (Elhart et al., 2017). Specifically,
to monitor audience behavior in the vicinity of a display installation, these studies
leveraged approaches based on anonymous depth data and computer vision algorithms.
The cameras deployed were configured in a bird’s eye setup or were placed near the
display facing passersby. For example, Mäkelä et al. (2018), on a more methodological
note, present a semi-automatic evaluation process for longitudinal deployments. In
their study, the authors collected interaction and skeletal data recorded with a Kinect
v1 sensor. Their gesture-controlled display solution Information Wall was deployed
for 1 year on a university campus and data of a total of more than 100,000 passersby
could be gathered. Mäkelä et al. (2018) applied the Audience Funnel framework and
found, among others, that most users were first-time users. Their approach benefits
the reduction of resources, the capability of privacy-preserving and semi-automatic
analyses, and the study of effects in longitudinal deployments. Another example is
the work from Elhart et al. (2017), who applied computer vision algorithms to raw
depth frames—also recorded with a Kinect v1 sensor. The authors used and evalu-
ated their tool Audience Monitor, an open source tracking tool to capture audience
behavior. With this tool, Elhart et al. (2017) were reportedly able to detect passersby
with high accuracy on average. Audience Monitor was operated for 52 days (1,248
hours) in a university canteen and detected 40,763 passersby in total. Different kinds
of visualizations were created by the tool to prepare the results (e.g., bar chart dia-
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grams), while the overall analysis process was still very labor-intensive (e.g., querying
log files). In the study from Williamson and Williamson (2014), computer vision tech-
niques were used as well. The authors introduced Tracker Tool, a solution to capture
pedestrian traffic, based on motion detection and background subtraction. With the
help of this tool, they were able to track passersby and their walking paths. In the
context of a field study of two public installations, pedestrian data of 4 hours in total
could be gathered. Additionally, 2 hours of baseline data and 1 hour of data with a
street musician were collected. It was found, among others, that relocating a display
does affect walkways of pedestrians and that passersby changed directions because a
display was in close vicinity to their direction of travel. A few years later, Williamson
and Williamson (2017) concentrated on the investigation of the experimenter role and
how it affects pedestrians. In this study, the authors did not focus on understanding
interaction but on comparing different evaluation approaches. To this end, their Silly
Hats Only solution, a playful gesture-controlled display, was deployed. Silly Hat Only
prompted passersby to perform a teapot gesture and displayed their silhouette. Over-
all, 32 hours of video material were collected including 20 hours of baseline material
(12,213 pedestrians in total). A Microsoft Kinect v2 camera was leveraged and data
was processed using OpenNI libraries. Williamson and Williamson (2017) revealed
that, for example, overt observations resulted in a substantially lowered conversion
rate of passersby that spend 5 seconds or more at the display (compared to covert
observations). Finally, attention is drawn to the study from Shi and Alt (2016). While
no results are presented in this study, the introduced Anonymous Audience Analyzer
tool shows promising means to track audience behavior. The tool uses virtual reality
technology and allows for scrutinizing skeletal data from one to many Microsoft Kinect
sensors. With the help of different visualized observational perspectives, Anonymous
Audience Analyzer enables researchers to view the scene in front of a display from
a user’s or bird’s eye point of view. It further allows to replay recorded material at
arbitrary speed.

2.3. Relating to existing research

Considering the studies presented, the work from Mäkelä et al. (2018) arguably in-
formed our research the most. We similarly placed the Kinect sensors directly facing
passersby and our study also heavily builds on skeletal data. Additionally, the aforesaid
study encouraged us to adapt the Audience Funnel framework to organize findings re-
garding user engagement. Methodologically, their semi-automated evaluation process
demonstrated insightful ideas on how to process skeletal data and guided us in the
early stages of our research. Other studies, however, informed our research as well.
Elhart et al. (2017) inspired us to similarly prepare heat map visualizations to inves-
tigate data showing spatial conditions. The work from Williamson and Williamson
(2014) resulted in different metrics applied in said heat maps such as the distance of
passersby and in the idea to analyze curvatures of pathways. Furthermore, as demon-
strated in spatial models, the space in front of the Ambient Surfaces was divided into
different zones following metrics suggested by Michelis and Müller (2011).

Our research, however, differs from existing work in two fundamental ways. First,
it considers behavioral data stemming from a semi-public, professional environment,
while the majority of audience behavior tracking research can be associated with more
public contexts such as walkways in cities (e.g., Williamson & Williamson, 2014) and
university sites (e.g., Elhart et al., 2017). Instead of unveiling behavior of a notable
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Figure 2.: Both Ambient Surfaces at their installation location, equipped with two
Microsoft Kinect v2 sensors.

amount of first-time users, the audience behavior distilled here shows insights on how
ASD professionals appropriate ambient displays in their everyday work life. Results al-
low for inspecting authentic behavior beyond issues known in ambient display research
such as the novelty effect (Koch, von Luck, Schwarzer, & Draheim, 2018). Second, dif-
ferences become apparent in the principles behind the display solutions. In contrast
to, for instance, Mäkelä et al. (2018) and Germany et al. (2019), it was fundamentally
not aimed at repeatedly attracting passersby to encourage engagement with the Am-
bient Surfaces but to display information that ASD team members deemed relevant to
be conveyed. Patterns obtained were intended not to be a result of somewhat biased
actions caused by any attention-grabbing features our solution could offer.

3. Research prototype and context

Our Ambient Surfaces solution (see Figure 2) represents a sub-class of ambient displays
that leverages screen-based technology and targets “supporting informal, nonurgent
communication, collaboration, and awareness” (Huang, Mynatt, Russell, & Sue, 2006,
p. 37). It consists of three components: a custom software application, interactive dis-
plays, and compact desktop computers. The software handles touch interactions with
the displays and creates the corresponding visualizations. It builds on the Microsoft
.NET framework1, specifically on its graphical subsystemWindows Presentation Foun-
dation (WPF)2 to render user interfaces. We used this software suite because we have
gathered experiences with it during first, preliminary field deployments and accumu-
lated a notable amount of practical knowledge with it throughout past research (e.g.,

1https://docs.microsoft.com/en-us/dotnet/
2https://docs.microsoft.com/en-us/dotnet/framework/wpf/
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Figure 3.: The ground level floor plan of the department’s two-story building. The two
squares indicate the locations of both Ambient Surfaces (System 1 on the right; Sys-
tem 2 on the left). Abbreviations: CR = Conference Room; K = Kitchen; L = Lobby ;
O = Office; P = Printers; S = Storage Room; R = Restrooms.

Schwarzer et al., 2016). The design process was guided by the related literature. A cen-
tral puzzle of the design was, as Parker, Tomitsch, Davies, Valkanova, and Kay (2020)
highlight, the value that the Ambient Surfaces could potentially deliver to users. For
instance, we geared toward creating some kind of ownership and control about the
messages being spread (Parker et al., 2020). Simultaneously, the interaction modali-
ties were kept to a minimum (i.e., scrolling gestures and selection) to avoid frustration
of users (Ardito et al., 2015). With data stemming from a variety of different sources,
we also tried to prevent issues seen with awareness tools that yield information from
only one data source such as incomplete information (Ye, Ye, & Liu, 2018). Both
displays (each ≥ 46 inches in size) were mounted on a rack with rolling wheels in a
landscape configuration. The total height of each installation was circa 1.80 meters,
while both displays provided a 1080p resolution (i.e., 1,920 Ö 1,080 pixels) and infrared
touch sensors (up to 2 and 32 touches respectively). Two compact desktop computers
operated the displays and ran the software application.

At the time of this research, two Ambient Surfaces (labeled System 1 and System 2 )
were deployed in the ASD department of a German company where roughly 70 to 80
people were employed. The department’s organization could be characterized as a pro-
fessional, large-scale ASD context (Dingsøyr, Fægri, & Itkonen, 2014) as to, during the
entire study, the total number of agile teams varied between four to eight teams. The
staff was equipped with a variety of tools that assisted them in developing the com-
pany’s custom software product. For the context of this research, the following tools
deserve a special mention: Atlassian Jira (e.g., used to store user stories), Atlassian
Confluence (e.g., utilized to share architectural decisions), Jenkins (used for contin-
uous integration purposes), GoCD (leveraged to automate the build and deployment
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infrastructure), Tetris (a custom tool to visualize test summaries), and Avatar (also a
custom tool to highlight graphical test metrics). Both Ambient Surfaces were situated
in a common area (see Figure 3) which was selected because it seemed to provide the
chance of opportunistic interactions (Ardito et al., 2015; Parker et al., 2020). Card
boards, beverages, tables, restrooms, and chairs were in the vicinity of both systems.
In Figure 3, we highlight one area, labeled Lobby, which we will repeatedly refer to
below. The area Lobby highlights the space in which people went in and out from the
restrooms and fetched beverages.

In total, eight information views were deployed between 2014 and 2019 that built
on the aforementioned tools. At the time of the present research, six of the eight
views were available. System 1 contained the views labeled Team Charts (based on
Atlassian Jira), Confluence, and Bug Survey (based on Atlassian Jira), while System 2
included the views named Jenkins, Test Suites (i.e., based on Tetris), and GoCD. The
software application displayed either two of these views at a time or one view on its
own, depending on the data being presented. Overall, the views leveraged different
means to present data, whereas some views were entirely custom-made. For some of
the views, the available APIs provided the foundation to gather information (e.g., the
GoCD view), while for other views existing web interfaces were incorporated as is on
the Ambient Surfaces (e.g., the Confluence view).

4. Methods

In this section, we present the procedures, software tools, and hardware utilized for
the data collection and analysis process.

4.1. Data collection

We decided to use Microsoft Kinect cameras in our research because they were, back in
2017, reported to be state-of-the-art depth sensors (Elhart et al., 2017). Specifically,
we utilized two Kinect v2 sensors (analogously to System 1 and System 2 labeled
Camera 1 and Camera 2 ), whose depth sensors have a resolution of 512 Ö 424 pixels,
operate at 30 Hz, and can track up to 6 people at a time. Both cameras were mounted
on both Ambient Surfaces roughly 1,80 meters above ground (see Figure 2), were tilted
down at circa 13 degrees, and were approximately 0.85 meters apart (edge to edge).

We created AmbiLogger (see Figure 4) to automatically collect skeletal data. It
was developed in WPF and combined custom source code with source code from
the different available examples in the Kinect for Windows SDK 2.0 3. The tool’s
resulting data is, similar to the data in Mäkelä et al. (2018), anonymous and contains
information of coordinates in a 3D space. Furthermore, AmbiLogger was configured
to gather data from only one specific skeleton joint—the Spine Shoulder joint (see
Figure 4). On the one hand, we wanted to limit the expected large amounts of data
and, on the other hand, we wished to concentrate on the general location of people in
front of the Ambient Surfaces. We, fundamentally, experienced this body joint to be
less affected by body rotations. Compared to arm and hand joints, this joint was less
often lost during tracking. AmbiLogger also allowed disabling the preview window to
reduce resource allocations and could track up to 6 people simultaneously.

Between 6 a.m. and 8 p.m., AmbiLogger was continually executed on two separate

3https://developer.microsoft.com/en-us/windows/kinect/
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Figure 4.: The user interface of AmbiLogger while recording a scene with one person.
Left: The control panel of the tool. Right: The preview window indicating the skeleton
silhouette of a person. The red circle at the top indicates the Spine Shoulder joint,
whose coordinates were the basis for analysis.

computers. Every time a person entered the cameras’ field of view (circa 70 degrees
horizontally and roughly 60 degrees vertically), an event to start a record was auto-
matically triggered. A record ended, when the camera did not detect any more people
in the field of view. Every record included zero to many frames, depending on the
amount of data received. Listing 1 illustrates an exemplary frame extracted from one
of the record text files. In total, data had been collected between weeks 14 and 31 in
2017. Over the course of 18 weeks, AmbiLogger archived a total of 97,618 individual
records, including 34,682,188 million frames. Camera 1 contributed 50,636 records (ex-
cluding five empty files) with 19,185,149 million frames resulting in material of circa
176 hours. Camera 2 added 46,951 records (excluding 26 empty files) with 15,497,039
million frames (material of roughly 143 hours).

As the data collection process was conducted as part of a PhD study, the ethics
committee of the awarding university was initially consulted to elaborate on issues
to be considered. We explained what data was intended to be collected and how
anonymity of users was thought to be ensured (e.g., the tracking of the wearing glasses
property, included in Listing 1, was disabled). As a consequence, an ethics consent
form to be signed was prepared and a handout describing the details of the data
collection process was drafted (see handout below the right display in Figure 2). We
then contacted the software department’s management and discussed ethical concerns
with them. As a result, the management internally consulted the workers’ council,
while also the staff was encouraged to raise any potential questions and concerns.
Ultimately, the ethics consent form was signed by the management and we were allowed
to deploy the two Kinect cameras, whereas we were limited to skeleton data and data
that indicated, for instance, whether a person looked at the Kinect sensors.
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1 2017=04=04 13 : 53 : 4 3 . 9 45 +02:00 # // Timestamp
2 72057594037929268 # // Body t rack ing id
3 1019936248 # // Record id
4 5 # // Body id (1=6)
5 1 # // Number o f people in frame
6 Unknown # // Property happy
7 No # // Property engaged
8 Unknown # // Property wearing g l a s s e s ( d i s ab l ed )
9 Unknown # // Property l e f t eye c l o s ed

10 Unknown # // Property r i gh t eye c l o s ed
11 Unknown # // Property mouth open
12 Unknown # // Property mouth moved
13 Yes # // Property look ing away
14 Unknown # // Property hand l e f t s t a t e
15 NotTracked # // Property hand r i gh t s t a t e
16 0 ,3046448 # // x ( meters )
17 0 ,2297372 # // y ( meters )
18 4 ,262015 # // z ( meters )
19 4 ,27906041643319 // Distance to Kinect s ensor ( meters )

Listing 1: An exemplary frame gathered by the AmbiLogger tool and extracted from
an archived record text file.

4.2. Data analysis

We touch on three topics in this section: first, the means chosen to analyze spatial and
temporal audience behavior are introduced; second, the data set utilized is presented;
and third, the topic of data filtering is elaborated on.

4.2.1. Analysis approaches

It can be complicated to capture aspects of spatial and temporal audience behavior
(Elhart et al., 2017). We therefore consulted the literature and built our analysis on
existing work. In the end, we followed three central themes: first, we aimed at creating
means to explore the more general facets of the spatial audience behavior in front of the
Ambient Surfaces; second, we targeted identifying people’s entry and exit directions
with respect to the cameras’ field of views; and third, we pursued quantifying temporal
aspects of the audience behavior.

General facets of spatial audience behavior We developed AmbiMapper, a con-
sole application to selectively choose skeletal data and to create custom heat map
visualizations for the purpose of data exploration. These visualizations have a 1080p
resolution and consist of 20,736 individual tiles (each 10 Ö 10 pixels in size), a scaling
in meters, nineteen different color increments to differentiate values, and four high-
lighted zones (labeled Z1, Z2, Z3, and Z4 ). These zones aided investigating spatial
behavior in relation to the different distances (d) users had with respect to both Am-
bient Surfaces. We used metrics presented by Michelis and Müller (2011) to define
these zones. The authors describe that direct interaction typically to occur in a small
area around a display of about 1 meter, while they specify a passerby as everyone
that is in a radius of 4 meters. Between both these scales, we evenly divided the four
zones: (1) zone Z1 : d ≤ 1 meter; (2) zone Z2 : 1 meter < d ≤ 2 meters: (3) zone Z3 :
2 meters < d ≤ 3 meters; (4) zone Z4 : 3 meters < d ≤ 4 meters.

We used different metrics in the heat map visualizations which we will henceforth
refer to as modes M1 to M4. Any of these modes has a central measurement upon
which a heat map visualization was created and that was calculated on a per-tile
basis. Depending on these metrics, the background color of each individual tile was
configured. Fundamentally, the four modes M1–M4 were analyzed in relation to the
four zones Z1–Z4, while they address different questions:

11
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Figure 5.: A visualization of exemplary data from Camera 1 split into the five entry
and exit direction areas L–R (scaling in meters).

• M1 concerns the question of in which areas were most of the frames collected
(measure: the number of frames).

• M2 targets the question of in which areas people spent most of their time (mea-
sure: the number of frames in relation the number of records).

• M3 addresses the question of in which areas people were most notably walking
past (measure: the number of tracking ids detected).

• M4 aims at the question of in which areas people showed strong levels of engage-
ment with the Ambient Surfaces. To this end, we leveraged one specific .NET
framework property—the property Engaged. This property indicates whether it
appears that a person is engaging with the Kinect sensor. Values for this property
are Yes, No, Maybe, and Unknown (measure: the number of Yes values).

Spatial audience behavior: Entry and exit directions To investigate how indi-
viduals and groups of individuals walked through the scene in front of both Ambient
Surfaces, we divided the horizontal field of view of both cameras in five evenly-sized
areas (see Figure 5). These areas are labeled as follows: Left (L), Left to center (LC ),
Center (C ), Right to center (RC ), and Right (R). For each record, we considered
both the first and the last frame and calculated the corresponding areas in relation to
the location of the Kinect sensors (i.e., the coordinate system’s origin). To this end,
we used the arctan function given that a frame’s x and z coordinates were known in
advance to map a calculated angle to the five mentioned areas.

Temporal facets of audience behavior We, similarly to Mäkelä et al. (2018) and
Williamson and Williamson (2017), leveraged the Audience Funnel framework (Miche-
lis & Müller, 2011), whereas we concentrated on the model’s phases denoted as Pass-
ing by, Viewing and Reacting, and Direct Interaction. The reason was twofold: first,
we wanted to limit the overall complexity of analyses. For instance, the fifth phase
(i.e., Multiple Interactions) and the sixth phase (i.e., Follow up Actions) would have
required additional time-intensive steps such as interviews; second, one phase (i.e.,
Subtle Interaction) was not applicable to our research. As Wouters et al. (2016) ex-
plain, applying existing models to other domains can unveil differences with respect to
the existence or absence of certain parts. Specifically, as most employees were familiar
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1 2017=04=04 13 : 58 : 3 8 . 1 07 +02:00 # // Timestamp
2 72057594037929880 # // Body t rack ing id
3 2052127216 # // Record id
4 0 ,9871798 # // =x (meters , i nve r t ed )
5 1 ,593787 # // z ( meters )
6 No // Value o f engaged property

Listing 2: An exemplary frame extracted from a revised record text file. The x-axis is
inverted because the Kinect sensor interprets the scene from the user’s point of view.

with both the presence of the Ambient Surfaces and the information conveyed since
February 2014, we did not expect staff members to proactively cause reactions by the
display (e.g., because they expected unknown interaction capabilities).

The analysis built on two specific metrics. On the one hand, on the mentioned
.NET framework’s tracking id, which is an identifier that is automatically assigned to
a person when a Kinect sensor detects their presence. Every record can include one to
many of these tracking ids. On the other hand, on the mentioned Engaged property.
In combining both tracking ids and the Engaged property, we were able to deduce
conclusions considering the three mentioned phases as follows:

(1) Passing by : Everyone who was in the vicinity of the Ambient Surfaces without
paying any attention to one of the Kinect sensors (i.e., Engaged property values
other than Yes).

(2) Viewing and Reacting : People who in some way seemed to show some level
of engagement. To elaborate on this phase, we grouped the different levels of
engagement in ten categories, while a category indicates a tracking id’s amount
of Yes values in relation to all other values of the Engaged property in percent.

(3) Direct Interaction: Every person who was in the close vicinity to both Ambient
Surfaces (i.e., in zone Z1 ).

4.2.2. Selecting data for analysis

Initially, we tried to answer the question of what data to focus on. During this initial
stage and like Mäkelä et al. (2018), we experienced our working machines sometimes
running out of memory due to the sheer amount of data. We played with several pa-
rameters of the heat map visualizations and repeatedly revised resolutions, the scaling,
and colors to name just a few of these parameters. As a result, we reduced the overall
data required to be analyzed. Among others, we removed values from the y-axis, be-
cause we were not interested in, for instance, the size of a person. Instead we geared
toward determining a person’s location in a 2D plane (i.e., values of both the x-axis
and z-axis). AmbiMapper crawled all archives stored by AmbiLogger and respectively
created revised record files for Camera 1 and Camera 2 (see Listing 2).

In total, we applied six rules in the selection process. First, we removed all data
recorded on weekends (16 records). Second, we did not consider data collected prior
to 7:00 a.m. and after 6:00 p.m. to focus on the working hours (8,514 records) and,
simultaneously, to avoid temperature influences—it is recommended to run the Kinect
v2 sensor at least 25 minutes prior to capturing data (Wasenmüller & Stricker, 2017).
Third, we removed all records that included tracking ids with a total of less than 15
frames to ensure a certain minimum of activity (5,208 records). Fourth, records were
not considered if they incorporated tracking ids that showed 100 % of engagement. Due
to the Engaged property’s sensitivity, it seemed implausible to us that a person was
looking at the Kinect sensors for the entire duration of a record (1,147 records). Fifth,
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Figure 6.: Heat maps of data (scaling in meters) collected with Camera 2 indicating
areas with many frames (black) and areas with no frames (white). The amount of tiles
in the heat maps was doubled to better contrast the erroneous data (see highlighted
areas). Left: Data without any rules applied; Right: Data with the six rules plus a
moving average filter applied.

we dealt with erroneous data. The Kinect v2 sensor can sometimes produce erroneous
data in the form of erratic 3D coordinates (Mangal & Tiwari, 2020), jitter (Niu, Wang,
Wang, & Ran, 2020), and noise in the form of flying pixels or multipath interference
(Wasenmüller & Stricker, 2017). We found that Camera 2 was particularly prone to
erroneous data. Similar to Niu et al. (2020), we also experienced that occlusion or a
subject slightly moving out of the camera’s field of view seemed to cause these issues.
Erroneous data was most notably observable in front of area Lobby. The resulting
heat map visualizations showed vertically aligned patterns comparable to sand ripples
(see Figure 6). To us, this observation seemed to best fit the description of flying
pixels (i.e., erroneous depth estimates), which are a common problem of Time-of-
Flight cameras (Wasenmüller & Stricker, 2017). For Camera 1, however, we did not
visually observe this issue to a comparable extent. We, ultimately, decided to discard
records, where huge jumps (> 0,5 meters) on the x-axis or z-axis were measured (4,614
records). In doing so, we could remove the observed patterns. Finally, we excluded all
records from analysis which showed no level of engagement (54,964 records). We did so
mainly because we wanted to focus on user behavior that could be somewhat related
to the Ambient Surfaces and not to random events such as spontaneous discussions in
the vicinity of both systems. In total, roughly 24 % of records respectively remained
(Camera 1 : 11,989 records; Camera 2 : 11,135 records). Table 1 summarizes the records
that were used for the subsequent data filtering process.

4.2.3. Data filtering

Applying filters is suggested in the literature (Niu et al., 2020). In the end, we decided
for a moving average filter with an interval of 20 values. We did so, because this
interval seemed to provide a reasonable trade-off with respect to filtering the data
and not losing nuances in the data for investigations such as walking paths analyses.
Specifically, the filter was applied to the values of both the x-axis and z-axis. The
result of the filtering process were eight text files that respectively included records
according to their number of people detected (i.e., six files for 1–6 people, one file for
more than 6 people, and one file for all the data). We note, however, that there is
additional research required with respect to more sophisticated filter techniques. We
chose the moving average filter primarily because it is easily implemented, while also
being capable of improving data quality by up to 21 % (Niu et al., 2020).
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Table 1.: Records summary for Camera 1 and Camera 2.

Camera 1 Camera 2

Records in total 11,989 (1,960,886 frames) 11,135 (1,807,892 frames)

People detected (within 4 meters) 16,187 14,384

Engaged property Yes values (median) 9.84 % 13.04 %

Records with 1 person 9,425 9,027

Records with 2 persons 1,553 1,354

Records with 3 persons 525 416

Records with 4 persons 257 169

Records with 5 persons 112 97

Records with 6 persons 50 36

Records with 6+ persons 67 36

Duration (min) 0.42 seconds (15 frames) 0.41 seconds (15 frames)

Duration (max) 0.34 hours 0.12 hours

Duration (overall) 17.86 hours 16.48 hours

Duration (median) 1.95 seconds 2.48 seconds

5. Results

The results presentation is organized analogously to the earlier indicated three cen-
tral themes of analysis. Initially, results regarding the more general facets of spatial
audience behavior are presented. Then, an overview of entry and exit directions is
provided. Lastly, the temporal facets of the audience behavior are illustrated.

5.1. General facets of spatial audience behavior

Figure 7 shows the heat maps according to modes M1–M4. It is noted that the data
of both Kinect sensors contained a different scaling on the x-axis, while the heat maps
were mapped to a 1,080p resolution hence zone boundaries and the field of view vary.
However, Camera 1 detected 1,665,013 frames in zones Z1–Z4 (Camera 2 : 1,599,574
frames). Of the total number of tiles included in each visualization (i.e., 20,736 tiles),
the data of Camera 1 recorded values for 9,296 tiles within the radius of zones Z1–Z4,
while 7,858 tiles got no corresponding data in this area (Camera 2 : 7,288 tiles with a
value; 9,356 tiles without one). Beyond zones Z1–Z4, Camera 1 stored values for 2,499
tiles and no values were available for 1,083 tiles (Camera 2 : 2,177 tiles with a value;
1,915 tiles without a value). In sum, the data of Camera 1 resulted in 11,795 tiles
(circa 57 %) having values (Camera 2: 9,465 tiles, roughly 46 %). It can be observed
that a concrete wall near to Camera 2 resulted in an increased number of tiles without
any values (see zone Z4 in Figure 7a). The aforesaid 9,296 tiles linked to Camera 1
divide across zones Z1–Z4 as follows: 343 tiles in Z1 ; 1,879 tiles in Z2 ; 3,199 tiles
in Z3 ; and 3,875 tiles in Z4. Analogously, the 7,288 tiles relating to Camera 2 break
down as follows: 292 tiles in Z1 ; 1,630 tiles in Z2 ; 2,178 tiles in Z3 ; and 2,648 tiles in
Z4. This total of 16,044 tiles defines the field of view of both cameras in zones Z1–Z4.

Table 2 presents percentage values that are a product of relating all tiles in zones Z1–
Z4 to a predefined threshold. It allows to deduce conclusions regarding the magnitude
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(a) Mode M1 : Increment of 50 frames; 100 % = 901 frames or more.

(b) Mode M2 : Increment of 1 ratio of frames to records; 100 % = 19 times more (or higher)
frames than records.

(c) Mode M3 : Increment of 30 tracking ids; 100 % = 541 tracking ids or more.

(d) Mode M4 : Increment of 10 Yes values (Engaged property); 100 % = 181 Yes values or
more.

Figure 7.: Heat map visualizations of both Camera 1 (right) and Camera 2 (left)
according to modes M1–M4 (scaling in meters). Zones Z1–Z4 as well as the entry
and exit direction areas L–R are indicated in each of the visualizations.
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Table 2.: Percentage values of relating the total number of tiles in zones Z1–Z4 to
tiles meeting the thresholds T1–T3 according to modes M1–M4.

Camera 1 Camera 2
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4

T1

M1 40 % 13 % 27 % 49 % 45 % 35 % 49 % 43 %

M2 83 % 43 % 23 % 28 % 83 % 33 % 9 % 22 %
M3 0 % 1 % 32 % 43 % 0 % 20 % 56 % 39 %

M4 4 % 6 % 5 % 29 % 8 % 11 % 25 % 32 %

T2

M1 15 % 2 % 6 % 15 % 12 % 7 % 17 % 12 %

M2 44 % 12 % 6 % 13 % 45 % 8 % 2 % 11 %
M3 0 % 0 % 6 % 18 % 0 % 4 % 22 % 13 %

M4 0 % 2 % 1 % 11 % 1 % 2 % 5 % 15 %

T3

M1 7 % 1 % 3 % 6 % 4 % 2 % 6 % 4 %

M2 29 % 6 % 3 % 8 % 28 % 3 % 1 % 7 %
M3 0 % 0 % 3 % 8 % 0 % 1 % 13 % 4 %

M4 0 % 1 % 0 % 3 % 1 % 1 % 2 % 8 %

of tile values in light of one of the four predefined modes. Specifically, Table 2 provides
three thresholds: first, T1 at the fourth color increment of a heat map visualization
(i.e., values ≥ 4

19); second, T2 at the ninth increment (i.e., values ≥ 9
19); and, finally,

T3 at the fifteenth increment (i.e., values ≥ 15
19). In the case of Camera 1, for example,

zone Z1 in mode M1 indicates roughly 40 % of its tiles (136 out of 343 tiles) met
T1 with values of at least 151 frames each (50 frames per increment). This value
correspondingly lowers to 15 % for T2 and 7 % for T3.

Based on Figures 7a–7d and Table 2 the following conclusions are drawn. Evidently,
the closer distance of Camera 2 to the main walking path of employees left to both
Kinect sensors is reflected in the results. Figure 7a, for instance, demonstrates this as
to zone Z3 on both cameras shows notable visual and numerical differences. Whereas
roughly 27 % of tiles (threshold T1 ) in the case of Camera 1 contain at least 151
frames, this number increases to circa 49 % for Camera 2. Furthermore, Figure 7a
pinpoints areas where the most frames were collected (i.e., magenta clusters). While
there are spots in the near vicinity of the Kinect sensors, foremost the main pathway
as well as area Lobby and the card boards are highlighted. Areas with a lower number
of frames are indicated, for instance, on the right in zone Z3 of Camera 1. Figure 7b
markedly contrasts Figure 7a. It is evident that people spent more time in front of
the Ambient Surfaces and in the area around the card boards. Compared to all other
zones, zone Z1 shows in both cases the highest relative percentage values in mode
M2 (thresholds T1–T3 ) which is reflected by the accumulation of magenta-colored
tiles in this area. Aside from the location in front of the card boards, zones Z3–Z4
play a negligible role in the visualizations of mode M2. Figure 7c underlines that the
most people were detected in the main walking path left of both Kinect sensors. This
area was, apparently, heavily used to move through the building (e.g., arriving at
work or having lunch in the canteen). There are no other areas where a comparably
high number of people was detected, especially near to the Ambient Surfaces (i.e.,
zones Z1 and Z2 ). Interestingly, the measurement of people’s levels of engagement
reflects this finding since the highest levels of engagement were detected in the same
area, specifically in area Lobby (see Figure 7d). Apparently, people, although in a
notable distance to both systems (roughly 3–4 meters), regularly looked at the Ambient
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and Camera 2. Note: In the underlying calculations, a tracking id could be included
in multiple classes (i.e., zones Z1–Z4 ).

Surfaces while passing by. In all other instances, the data is scattered across both field
of views. Compared to Camera 1, the heat map visualizations of Camera 2 include
more tiles showing at least a minimum of data (see the darker teal color tones in
Figure 7d) and, simultaneously, more tiles with higher values according to thresholds
T1–T3 (see mode M4 in Table 2).

Finally, Camera 1 detected more unique tracking ids (16,188) than Camera 2
(14,383) in zones Z1–Z4. Only a little number of tracking ids (768) was recorded
outside the four zones. Following Figure 8, Camera 1 recorded the most tracking ids
in Zone Z4 (15,875), while Camera 2 did the same in zone Z3 (13,461). Zone Z2, in
particular, shows markedly strong differences for both cameras. The amount of de-
tected tracking ids by Camera 2 is more than four times the number recorded by
Camera 1. It is evident that the closer distance of Camera 2 to the main walking path
led to notably higher numbers of passersby detected in zones Z2 and Z3.

5.2. Spatial audience behavior: Entry and exit directions

Figure 9 presents the entry and exit directions grouped by the number of tracking
ids detected, while the different areas L, LC, C, RC, R can be visually interpreted in
Figures 7. Considering all records, most of the records of Camera 1 (8,022 records)
originated in area LC, while the majority of records of Camera 2 (5,297 records)
began in area C. Principally, there is an observable shift regarding the numbers of
record entry directions. Whereas the entry direction values for Camera 1 are always
the highest in areas LC and C, they are the highest in areas C, RC, and R for
Camera 2. Both cameras, however, have in common that most records ended in area
L—i.e., most people exited the scene left of both Ambient Surfaces. Except in one
case (i.e., Camera 2, 6+ Persons), the corresponding column has the highest values
compared to all other exit direction areas. In the case of Camera 2, the area RC has
always the highest values of the remaining exit directions. With respect to Camera 1,
the second highest values for the exit directions can be observed in areas LC and C.

5.3. Temporal facets of audience behavior

Below, findings are presented regarding the Audience Funnel framework’s phases of
Passing by, Viewing and Reacting, and Direct Interaction.
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Figure 9.: Entry and exit directions of records for both Kinect sensors were grouped
by the number of people detected. The two highest values of each group and direction
are highlighted.

5.3.1. Phase: Passing by

Considering that all records were excluded where no level of engagement was measur-
able, still almost 17 % of all tracking ids showed no engagement at all. In total, 5,167
out of 30,571 tracking ids could be categorized as passersby. Figure 10a illustrates
the corresponding pathways with only little activity directly in front of both Ambient
Surfaces, while there are two places that indicate high numbers of passersby: first, the
area top-left to both systems (i.e., the main walking path of employees); and, second,
the area in front of the card boards. It is evident that the area around the card boards
had been frequently used for activities such as meetings and discussions.

5.3.2. Phase: Viewing and Reacting

The 25,404 remaining tracking ids of both cameras (circa 83 %) show at least a mini-
mum level of engagement. Most tracking ids (10,966) indicated a level of engagement
of between 0 % and 10 %. Compared to the total number of passersby, more than twice
as many people evidently paid at least a little attention to the Ambient Surfaces. For
all other cases, Figure 11 indicates that the higher the measured level of engagement,
the lower is the corresponding number of detected tracking ids. Interestingly, the ac-
cording line chart curvatures illustrated suggest that this observation seems to follow
behavior, to a lesser or greater extent, seen in exponential decay functions. In sum, the
relative changes in the levels of engagement are slightly higher on Camera 1 than on
Camera 2. It is also apparent that both cameras detected notably different numbers of
tracking ids for the level of engagement between 0 % and 10 %. We attribute this result
to the fact that Camera 1 was able to better capture the area in front of the cards
boards where meetings were regularly held. Furthermore, independently of the level
of engagement, Camera 1 initially captured the most people in area LC. While for
Camera 1 no other correlation was found between the different levels of engagement
and the way people were recorded to enter the scene, the data of Camera 2 indicated a
shift from the area RC to the area LC. Whereas the lowest levels of engagement could
be linked to tracking ids originating in area RC, higher levels could be correlated to
area C. However, the two highest levels of engagement could be related to people that
were initially observed in area LC.

Finally, Figure 10b and 10c visualize the pathways of the 25,404 tracking ids. While
Figure 10b shows the data with a 1–9 % level of engagement, Figure 10c depicts the
sum of the remaining levels of engagement (i.e., 10–99 %). In contrast to Figure 10a,
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(a) Level of engagement: 0 %.

(b) Level of engagement: 1–9 %.

(c) Combined levels of engagement: 10–99 %.

Figure 10.: Scatter plots of Camera 1 (right) and Camera 2 (left) showing the walking
paths of people according to their levels of engagement (scaling in meters; black = data
points; white = no data).

Figure 11.: The number of detected tracking ids in relation to the ten different levels
of engagement (e).
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Figure 12.: Scatter plots of Camera 1 (right) and Camera 2 (left) illustrating the
walking paths of people that engaged in direct interaction (scaling in meters). The
different paths are highlighted according to their area of origin (i.e., L–R).

these two illustrations indicate notable amounts of gatherings in front of both Ambient
Surfaces. While the main walking path and the area in front of the card boards still
show high numbers of detected people, there are simultaneously multiple spots where
the data accumulated. In Figure 10b these spots are scattered across the entire field
of view of both cameras, whereas in Figure 10c these areas are more in closer distance
to the Ambient Surfaces. Figure 10c, furthermore, unveils that the area in front of
the card boards is less frequently used considering the increased level of engagement.
In all visualizations (i.e., Figures 10a–10c), however, the main walking path left to
both Ambient Surfaces shows frequent usage. Consequently, any extent of viewing
and reacting behavior can be linked to this particular area, including area Lobby.

5.3.3. Phase: Direct Interaction

In total, 223 unique tracking ids were identified in zone Z1 of Camera 1, whereas
290 tracking ids were correspondingly detected with Camera 2 in the same area. This
accumulates to roughly 0.01 % (Camera 1 ) and to circa 0.02 % (Camera 2 ) of all
people detected in zones Z1–Z4. Figure 12 illustrates the walking paths of the 513
tracking ids, which, at times, look like somewhat straight lines, while there are also
instances where a person seemed to move back and forth or up and down. In the
near vicinity of both systems, the walking paths accumulate and are hardly separable
from one another. Interestingly, the main walking path left to both Ambient Surfaces
is hardly recognizable in these illustrations—particularly in the case of Camera 1.
In addition, Figure 12 depicts from which direction people entered the scene. While
Camera 1 initially detected most people in area C (L: 26, LC : 58, C : 82, RC : 43, R:
14), Camera 2 did the same in area RC (L: 37, LC : 29, C : 78, RC : 104, R: 42).

6. Discussion

A careful study of the literature led us to discuss the originality of our work in light of
four individual contributions. First, it is returned to the leveraged approach to separate
passersby from real users and how it extends existing knowledge. Second, attention is
drawn to findings expanding on existing spatial and temporal models suggesting the
necessity to incorporate incidents of unprovoked, direct interaction in future models.
Third, it is concentrated on the novel characteristics of our skeletal data set. Finally,
it is focused on how our research adds to the exploration of skeletal data. Analogously
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to these contributions, we describe research implications, underline their practical and
scientific usefulness, and elaborate recommendations for future work. The discussion
is concluded with a presentation of research limitations.

6.1. Separating passersby from real users

Our work strongly builds on the .NET framework’s Engaged property to allow for de-
ducing different levels of engagement. In a nutshell, the property assists in determining
whether a person is looking at a display or not. It helps to isolate and gather data
about, for example, people that choose not to interact (Williamson & Williamson,
2014). To the best of our knowledge, related research, so far, has not been focusing on
the task of separating passersby from real users. While already a decade ago Miche-
lis and Müller (2011) discussed this issue, also more recent research notes limitations
in this regard (Mäkelä et al., 2018). The implication is that audience behavior can
prospectively be analyzed in greater detail compared to how it was done in the past.
Future research may start to more systematically identify areas in front of display
installations in which people show lower or higher levels of engagement. We think that
our results can add manifold quantitative nuances to, for example, passive engagement
zones seen in observation-based models such as these from Memarovic et al. (2012) or
Boucher et al. (2021).

As there is a demand for improved evaluations methods in long-term ambient display
deployments (Mäkelä et al., 2018), the opportunity to classify users more granular may
contribute a useful tool for scientists on this avenue. Said separation may also assist
with the challenge of modeling people’s behavior with public and semi-public displays
(Ardito et al., 2015). Future work may collect and compare levels of engagements
from public and semi-public spaces to unveil similarities and differences between these
settings. Additionally, future models may incorporate the different levels of engagement
and linking them to, potentially even statistically significant, outcomes. We do think
that the presented approach can also serve as a useful tool for practitioners such
as user interface designers and staff members in companies. Based on the varying
levels of engagement, interface designers may investigate whether changes in the user
interface entail different behavior, while employees may test different display locations
to increase the visibility of content. As Elhart et al. (2017) note, comprehensive reports
of audience behavior can assist display owners to optimize their installations.

6.2. Direct interaction without apparent incentives

Existing spatial and temporal models assume passive, unrelated behavior at the early
phases of the interaction process, followed by phases describing increased attention
leading to direct interaction (e.g., Boucher et al., 2021; Germany et al., 2019). Con-
sidering, however, results from this research, we see reason to hypothesize that this
chain of subsequent phases is, at times, bypassed entirely. In this context, attention is
drawn to Figure 10a and 12. While Figure 10a demonstrates the curvature of the main
walking path, Figure 12 allows to inspect the pathways of people engaging in direct
interaction. What makes Figure 12 unique is that it highlights pathways that are, to
a lesser or greater extent, directly orientated toward the Ambient Surfaces (e.g., the
purple walking paths for Camera 1 ). Without any notable reason or incentive to do so,
people, in such instances, seemingly were coming from area Lobby to engage in direct
interaction. Ultimately, we attribute this behavior to the fact that, as we previously
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learned (Schwarzer et al., 2021), at least some of the employees appropriated the Am-
bient Surfaces as to they regularly checked for new information on the screens. In said
cases, people might have fetched a beverage from area Lobby and, on their way back
to the office, intended to inspect, for instance, a project’s build status. Apparently,
there was no need to entice people in these instances to interact, what is usually a
major challenge in related, public display settings (Williamson & Williamson, 2014).

Overall, we do think that this discovery is, foremost, useful from a scientific point of
view. While we acknowledge that most existing models build on rather public environ-
ments (i.e., usually more first-time users and less repeating users), we nonetheless do
see implications for future research. What other scientists can draw from this finding
is that future audience behavior models should consider some degree of appropria-
tion as, we believe, existing models lack to incorporate such behavior. Considering
the increasing number of both public and semi-public display installations (Ardito et
al., 2015), we do see the relevance for such research in the future. Simultaneously, we
do conclude that these examples contribute some nuances toward the goal of devel-
oping a more comprehensive understanding of the attention people give to ambient
displays (Parker et al., 2018). Future research may focus on said instances of direct
interaction to, for instance, systematically train machine learning algorithms that are
subsequently applied to data of similar contexts. The goal would be to automatically
gather more cases to underpin and describe their occurrence quantitatively.

6.3. The size and nature of the skeletal data set

Following Mäkelä et al. (2018), data collection approaches based on skeletal data
are ecologically valid methods for evaluations. The data gathered allows rich insights
regarding interaction and non-interaction that would be otherwise hard to obtain
(Williamson & Williamson, 2014), whereas real-world experiences are integral to au-
thentic experience (Williamson & Williamson, 2017). We did collect people’s experi-
ence in the wild and gathered skeletal data over the course of several months. Hence,
we do believe that the skeletal data underlying the results shows high ecological valid-
ity. Additionally, and similar to Williamson and Williamson (2014), we do also think
that the data collected is without bias (i.e., incorporating information from both in-
teracting and non-interacting users alike) and has high spatial and temporal accuracy.
We build this argument on the fact that the Ambient Surfaces were operational for
more than 3 years prior to the deployment of both Kinect sensors. Furthermore, we do
not think that the presence of the cameras led to any notable unnatural behavior as,
for instance, discussed by Shi and Alt (2016). We do so primarily because employees
and the management were part in the Kinect sensors’ deployment process (e.g., discus-
sions of ethical concerns) and the cameras went operational several weeks after their
initial installation. We did also not leverage attention-grabbing features to artificially
attract users that could have likely raised concerns regarding the novelty effect.

The data set analyzed incorporating information of more than 30,000 passersby, is,
in comparison, one of just a few sets that large. As far as we know, the data sets from
Elhart et al. (2017) and Mäkelä et al. (2018) are one exception to this rule (circa 40,000
and 100,000 passersby respectively). We do, furthermore, believe that the present study
is the first one building on skeletal data stemming from a professional context. Our
data set arguably allows rich insights on how ambient displays are appropriated in
everyday work life and our findings can, therefore, build the foundation for revelatory
research to come. Patterns in the data set are a product of authentic, social behavior
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and are not skewed by, for instance, a high number of first-time users who could have
very likely affected the data due to effects related to the issue of curiosity (e.g., the
novelty effect). As we concluded recently (Schwarzer et al., 2021), more research is
necessary with respect to longitudinal deployments of ambient displays in authentic
environments such as in the ASD context. We do think that the data set collected is a
promising stepping stone on this avenue. The quantitative results drawn from the data
set extend previous research by, for example, substantiating existing spatial models
with respect to their largely observation-based distance measurements of the various
interaction zones (see Figure 8). Researchers and practitioners may derive from that
suggestions on how to redesign workspaces or whether to relocate display installations.

6.4. Exploration of skeletal data

A recent study from Mangal and Tiwari (2020) concludes that skeleton tracking with
Kinect v2 sensors needs additional exploration. Similarly, Mäkelä et al. (2018) conclude
that skeletal data has not been fully utilized. Among others, a lot of manual work is
still required to go through such data. At the same time, depth data has often been
used in combination with other methods as supporting evidence (e.g., observations
and interviews). With our study, we hope, however, demonstrating useful insights on
how depth data, particularly Kinect v2 skeletal data, can serve as the primary data
source. By respectively illustrating our data collection, preprocessing, and analysis
procedures, our work adds to the development of fully automated tools to capture
audience behavior in real-world deployments. Simultaneously, with the exploration of
our skeletal data set, we hope to contribute to a better understanding of how ambient
displays are really used in the wild (Parker et al., 2018). Considering that patterns in
data will be the foundation for future innovations, services, and interactions (Brown,
Bødker, & Höök, 2017), our research can arguably distill insightful nuances on this
path. Like Elhart et al. (2017), we do believe that our analysis approach can be both
useful for other researchers to evaluate their own display solutions and beneficial in
terms of strengthening the quantitative foundations for our field.

Results drawn from the data set are, to a lesser or greater extent, similar to and
different from those captured in related studies. We now discuss these aspects in more
detail. As shown in Figure 7d, the highest levels of engagement were found circa 3–
4 meters away from both Ambient Surfaces (i.e., in area Lobby). We therefore, on
the one hand, concur with Germany et al. (2019) that attention leading to awareness
and, finally, screen interaction may not necessarily depend so much on the question
of distance but more on the question of a message’s clarity conveyed by a display. On
the other hand, however, the mere presence of the Ambient Surfaces might have as
well created incidents of interaction (Wouters et al., 2016) which, on their own, could
be one of the main triggers to start an interaction in the first place (Ardito et al.,
2015). Evidently, we (Schwarzer et al., 2021) and others (Michelis & Müller, 2011)
observed people typically looking briefly at display installations while passing by. Our
data suggests this effect occurring most markedly in area Lobby (see Figure 3)—after
people, for instance, fetched a beverage. Placing the Ambient Surfaces in the near
vicinity of the main pathway of employees, including area Lobby, apparently created,
time and time again, situations to interact actively and passively. We therefore see
parallels to related research in public settings. Here, a closer proximity of a display
to the main walking path of pedestrians correlates to higher user engagement—and
vice versa (Parker et al., 2018). Our results underline this relationship as to the lev-
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els of engagement are indeed slightly higher in the case of Camera 2 (see Table 2).
Similarly, Camera 2 indicates higher levels of engagement, for example, in areas C
and RC (see Figure 7d). Yet, the larger distance of Camera 1 to area Lobby led to
no measurable and observable shifts in the levels of engagement to the right. It seems
that staff members, at many occasions, looked at both Ambient Surfaces somewhat
equally when a situation happened to occur. We know from past research (Schwarzer
et al., 2021) that interaction is largely linked to spontaneous incidents which, in our
view, underlines the relevance of a closer distance between the main walking path and
a display’s location. Had both systems been placed distant to any major pathway,
instances of interaction would have been created less often.

Attention is now drawn to the Audience Funnel framework’s user classification. In
comparison to the studies from Michelis and Müller (2011) and Mäkelä et al. (2018),
the following can be observed. First, as we removed all records including no engage-
ment at all from analysis (54,964 records in total), we drastically lowered the num-
ber of passersby. While in both mentioned studies, most people where categorized as
passersby, we only identified roughly 17 % of people spending no attention toward the
Ambient Surfaces. All other tracked staff members showed at least a minimum level
of viewing and reacting behavior (i.e., circa 83 %). Second, we identified both smaller
and similar numbers of people engaging in direct interaction (Camera 1 : 1.4 % of peo-
ple; Camera 2 : 2.02 % of people). While Michelis and Müller (2011) observed almost
a third of people directly interacting, Mäkelä et al. (2018) identified, interestingly,
a comparable small number of direct interaction (1.4 %). For the large differences
between our numbers and those from Michelis and Müller (2011), we see two main
reasons. On the one hand, there was only a very little number of first-time users in
out setting, if at all. There was, in fact, a high number of returning users who were
familiar with the contents displayed. On the other hand, the user interface of the Am-
bient Surfaces did not require touch interactions to unveil information in every case.
Hence, people could often interpret information without the need to enter zone Z1.
Third, similar to Mäkelä et al. (2018), Table 1 suggests that most times a person was
detected, they were tracked as lone passersby (circa 80 % of records). However, we
saw a higher relative amount of people entering zone Z3. While Mäkelä et al. (2018)
tracked roughly 22 % of passersby to enter the space less than 2.80 meters away, our
results respectively indicate 64 % (Camera 1 ) and 95 % (Camera 2 ) of employees
were tracked at least once in Zone Z3. We attribute these differences primarily to
the very close proximity of both Ambient Surfaces to the main walking path. Finally,
in contrast to findings from Mäkelä et al. (2018), people in our study most notably
approached the Ambient Surfaces from the front, meaning areas LC, C, and RC (see
Figure 9). Yet, we concur with Mäkelä et al. (2018) as to direct interaction is more
likely to occur when people were entering the scene from the top.

6.5. Research limitations

Our work is not without limitations. Similar to Elhart et al. (2017) and Mäkelä et
al. (2018), we note that the Kinect sensor’s restricted horizontal and vertical field of
view allowed only to capture a limited corridor, not the entire scene, in front of both
Ambient Surfaces. Thus, we were able to solely investigate this narrower corridor. The
field of view was also restricted by the earlier mentioned concrete wall that led to the
prominent curvature of the main pathway of people. Hence, the investigated audience
behavior underlies limitations regarding spatial conditions. Furthermore, situations
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such as passersby walking behind other people or people standing in front of others
may have resulted in wrongly grouping records according to their total number of
detected people. For such incidents, Mäkelä et al. (2018) discuss the possibility of
relocating cameras. In our case, a setup consisting of multiple Kinect sensors placed
at different locations (e.g., in each corner) could have mitigated this issue by cross-
comparing the sensor data. It is, additionally, not possible to determine returning
users based on skeletal data alone (Mäkelä et al., 2018), while there is also the chance
that one to many staff members particularly affected the results. As we, again, learned
in previous research (Schwarzer et al., 2021), people reported to have, to a lesser or
greater extent, appropriated the Ambient Surfaces in their daily routines. Also, the
fact that the Kinect sensor better recognizes people coming from the front, may have
led to a bias in the calculations of entry and exit directions.

We also found that the Engaged property has its limitations. For example, it is
possible to trick the underlying algorithms by facing the sensor directly, while, simul-
taneously, gazing in another direction. In such cases, the algorithm wrongly assumes
that a person is directly looking at the sensor (i.e., the Engaged property value equates
to Yes). We do not believe that any employee was aware of this technical issue. For
instance, there was no visual feedback implemented in the user interface that would
have indicated changes in the property’s value. Nonetheless, we found this information
worth noting because we experienced this effect throughout our experimentation. The
Engaged property sometimes also wrongly estimates that a person is directly facing
the sensor at all times while walking past. In instances, the sum of a tracking id’s
Yes values added up to a level of engagement of 100 %, while a person was clearly
walking away from the sensor. We double-checked such examples by replaying them
in the Kinect studio software. As a result of this observation, we ultimately removed
all tracking ids showing such behavior prior to analysis. The rather small distance be-
tween both Kinect sensors (roughly 0.85 meters apart), we do, however, not consider
an issue because we experienced the Engaged property to be very sensitive in detecting
people’s principle viewing directions.

It is also worthwhile mentioning that our analysis entirely built on the Spine Shoul-
der joint. While we observed this joint not being as prone to tracking issues such the
arm joints (e.g., during body rotation), other joints may have unveiled richer findings.
Like Mäkelä et al. (2018) we did not track joints from the lower body because, again,
we were interested in a person’s general location in front of both Ambient Surfaces. Fi-
nally, we like to draw attention to our rather strict data selection procedure. Based on
six specific rules, we limited the available data for the present study. We admit that a
less rigorous selection process would have potentially revealed additional results, while
we, at the same time, still see difficulties in assuring high quality in a chosen subset
of the data (e.g., defining thresholds for erroneous data). Thus, the conclusions drawn
in this article could have pointed one way or the other depending on the underlying
data set. For example, the total number of passersby would have been notably higher
when no data would have been removed.

7. Conclusion

In this research, we investigated the spatial and temporal audience behavior around
a custom, semi-public ambient display installation. Specifically, we observed said be-
havior in a professional, large-scale ASD environment where we deployed two of our
Ambient Surfaces solutions for roughly 5 years. Throughout 18 weeks in 2017, behav-
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ioral information of more than 30,000 passersby was collected using our AmbiLogger
tool and two Microsoft Kinect v2 cameras. Ultimately, the present research adds to
existing knowledge in four specific ways. First, the study envisions novel means to
separate passersby from real users, including their levels of engagement. Second, find-
ings suggest exiting models of audience behavior lacking to incorporate instances of
unprovoked, direct interaction. Third, building on a large, revelatory skeletal data set
distilled from a professional context, this research contributes manifold nuances to a
field predominantly informed by studies in public environments. Finally, by elaborat-
ing the procedures to collect, preprocess, and analyze skeletal data, our study adds to
the exploration of such data.

Overall, we see great potential for future research on audience behavior around
ambient displays—with both a positivist and a more pragmatic lens. We concur with
Williamson and Williamson (2014) as to we similarly find our work to only scratch the
surface when it comes to fruitful directions for research in this domain. To advance
on the present study, we are currently working on correlating skeletal data with touch
interaction data to learn more about the context of direct interaction. We are also
elaborating on the question of whether there is a link between people’s pathways and
the visualization of specific contents. Furthermore, while we were largely focusing on
absolute positions of people around the Ambient Surfaces so far, we are now shifting
our emphasis to vector-based analyses to compare curvatures of pathways in light of,
for instance, similarities in the movement.
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