
Scalable Context-Aware Development Infrastructure
for Interactive Systems in Smart Environments

Tobias Eichler
Department of Computer Science

Hamburg University of Applied Sciences
Hamburg, Germany

Tobias.Eichler@haw-hamburg.de

Susanne Draheim
Department of Computer Science

Hamburg University of Applied Sciences
Hamburg, Germany

Susanne.Draheim@haw-hamburg.de

Christos Grecos
Department of Computer Science
Central Washington University

Ellensburg, WA, USA
Christos.Graikos@cwu.edu

Qi Wang
School of Engineering & Computing

University of the West of Scotland
Paisley, UK

Qi.Wang@uws.ac.uk

Kai von Luck
Department of Computer Science

Hamburg University of Applied Sciences
Hamburg, Germany

Kai.vonLuck@haw-hamburg.de

Abstract—Context-aware systems for smart environments can
be very complex and demanding for developers especially in
distributed computing and communication environments. We
propose a new development infrastructure, that targets this
challenge by improving the general system’s scalability and
traceability. The infrastructure has been developed for and
tested in two research labs for smart environments and human
computer interaction. First measurements show that the platform
has high scalability and low message latency that is perfectly
suitable for interactive projects and virtual reality experiments.

Index Terms—context awareness, scalability, middleware,
multi-agent systems, smart environments

I. INTRODUCTION

Systems for smart environments are often based on multi-
agent systems, which are highly parallel, distributed and
message based. The complexity in these systems is usually
not caused by individual software components, but by the
combination of a large number of communicating agents
[1]. To handle this complexity a middleware and special
development tools are investigated in this PhD research. We
present an agent-based, context-aware development infras-
tructure that is particularly designed for smart environments
and fast development cycles. The messaging is based on
the publish/subscribe model, which is suitable for distributed
middleware [2], to handle fast event propagation and to support
easy access for developers to all messages. The proposed
system is employed as a base for multiple research projects
in our laboratories. On top of this infrastructure we describe
first approaches to improving the development process of such
systems. Sections II and III describe the targeted environment
and the requirements for the system in more detail. Section IV
contains an overview of the overall system architecture, and
Section V reports latency and scalability evaluation results. In
Section VI we present one of our case studies we conducted
based on the developed infrastructure. Finally we highlight the
plan for future work in Section VII.

II. ENVIRONMENT

Our approach is based on the analysis of projects in two re-
search laboratories. The main topics of our research group are
smart environments, human computer interaction and virtual
reality (VR).

The Living Place Hamburg [3] is a 144 m2 fully functional
loft style apartment on the campus of the Hamburg University
of Applied Sciences (HAW). The Living Place is separated
into the living area, where experiments with smart objects
and pervasive systems are conducted, and a control room
for evaluation purposes. The Creative Space for Technical
Innovations (CSTI) is a laboratory for experiments with inno-
vative technologies for smart environments, smart objects and
new interaction concepts at the HAW. The CSTI approach
is based on supporting diverse experiments with proof-of-
concept prototypes developed in short cycles [4].

III. REQUIREMENTS

There are a number of requirements resulting from the
research topics and the targeted environment. One of the
main goals of the system is to enable developers to change
components and add new ones easily. This is needed for rapid
prototyping of context-aware software components. In addition
to the basic requirements for a middleware identified in [5],
like support for heterogeneity and tolerance for component
failures, there are a number of requirements that are new or
different based on our specific use case.

• Traceability and Control - The system is used in a
research context and should be easily expandable. All
messages between agents have to be accessible by all
permitted components and developers due to subscrip-
tions. The messages have to be human readable or
can be transformed into human readable information.
At any time it has to be possible to send messages
from outside of the system to all existing groups for

Fifth International Workshop on Pervasive and Context-Aware Middleware 2017

978-1-5386-3839-2/17/$31.00 ©2017 IEEE 147

Management Layer

Agent Runtime
Lifecycle Management

Messaging Management

Middleware Management

Monitoring Layer

Agent Lifecycle /
Graph Overview

Message Analysis

Cluster MonitoringMiddleware Node 1Middleware Layer

Messaging Layer

Agent Layer

Use Case Layer

GUI Layer

Middleware Node 2 Middleware Node n

Subscribe Publish

Agent 1 Agent 2 Agent n

Framework 1 Framework 2 Framework n

Debugging Tools Context Query Applications

System Overview Test Environment IDE

System Admin DeveloperUser

Fig. 1: System architecture overview

debugging purposes. Agent information, group names and
their subscriptions have to be available at runtime to
support system monitoring and inspection

• Support for Mobility - The system is able to automati-
cally spawn new agents in a controlled environment. This
can be used to react to context changes or as a mechanism
for fault tolerance. Additionally this feature is used to
create controllable testing environments.

• Agent Management - The system has to provide run-
time information like component names, identifiers, the
execution environment and software dependencies, about
all agents. The life-cycle of agents has to be manageable
by the system. An agent can be migrated or cloned to
other runtime environments over the network.

• Scalability and Latency - The system has to handle
components with frequent user interaction and high mes-
sage throughput to support sensors for gesture recognition
and head-mounted displays. Gesture detection sensors can
produce a huge amount of data that needs to be handled
by the system.

IV. THE PROPOSED ARCHITECTURE

The overall architecture of the system can be partitioned
into five layers, as shown in Fig. 1. The bottom layer, called
Middleware Layer, is the foundation for the messaging of the
system. It delivers messages over TCP, SCTP and Websocket
connections, and manages and monitors the system. The next
layer of abstraction is the Messaging Layer, which implements
the publish/subscribe based group communication. Messages
can be sent to arbitrary groups, which can be subscribed by
all agents in the system. Agents use the Messaging Layer
to offer different services to the rest of the system. Multiple
agents can work together to implement more complex tasks,
e.g. the aggregation and interpretation of sensor data. This
agent groups are located in the Agent Layer. The Agent Layer
supports the Use Case Layer, which contains all applications,
the context handling and the debugging tools. The interaction
of users, system admins and developers with the system
is handled by the GUI Layer. The platform consists of all
components in the system, including the middleware, runtime
environments and all agents.

A diagram of the platform architecture can be seen in
Fig. 2. The platform consists of at least one middleware
node. All nodes manage their cluster membership by heartbeat
messages. They provide a publish/subscribe based commu-
nication service for the agents. Additional services such as
monitoring or failure handling are implemented as agents. The
platform can be controlled by a web interface, which is a fully
featured agent implemented with web technologies. External
messaging systems, like Java Messaging Services (JMS) or
other middleware systems can be transparently connected to
the system.

A. Interface Libraries and Framework

Interface libraries are used to specify the possible messages
between agents. This allows developers to use messages in
integrated development environments like a common method
call including auto-completion and type checking. The li-
braries are managed by an artefact managing system and are
versioned to avoid conflicts. The middleware can check at
runtime if a subscription uses the correct interface with the
correct version.

An interface library generator is used to generate libraries
in multiple target languages based on a simple message DSL.
These libraries include the native message representations (e.g.
Java classes and interfaces) and the serialization code for all
supported methods. Currently supported languages are Java,
Scala, C++ for native code and Javascript, which allows the
easy development of graphical web interfaces for services. For
the development of new agents a framework is provided, which
handles the connection to a middleware node, implements
an auto-reconnect mechanism and hides the serialization of
messages.

All agents communicate exclusively with messages over
the group based publish/subscribe service provided by the
middleware. Direct communication (Unicast) can be achieved
by sending a message to a group with a single subscriber. This
ensures that all communication channels can be monitored at
any time.

Groups exist if there is at least one subscriber. Messages sent
to non existing groups are discarded. The messaging follows a

Fifth International Workshop on Pervasive and Context-Aware Middleware 2017

148

Middleware
Node 1

Fr
am

ew
or

k

Agent

Middleware-
Node n

 Control messages
 Heartbeats

Agent

JSON

JSON

WebinterfaceJSON

AgentAgent

Runtime environment

Native-
objects

Control Agent

External systems
like message brokers

JMS

Fig. 2: Platform Architecture

at-most-once delivery semantic. If other semantics are needed
they can be implemented based on the provided services. A
redelivery or reordering of messages could slow down the
system and increase message latency. Many components, e.g.
many sensors that can have a high message frequency, do not
need a reliable message delivery.

The system supports multiple message formats. The default
is JSON. This format is especially useful during testing,
because it can be easily read by humans and is supported
by many programming languages. In production systems a
binary json format is used, which results in much smaller
messages, that can be generated and parsed a lot quicker. If
an even smaller format is needed other formats like Google
Protobuf can be used. The configuration can be generated out
of the interface definition or defined manually. If this message
formats are used, components can only deserialize messages
with access to the message definition.

The used message format can be set by configuration or
automatically by the system. All components can communicate
which formats they understand. The middleware can translate
message formats if needed to allow communication between
agents with different capabilities.

B. Runtime and Event Sourcing

For the dynamic deployment and controlled execution of
the software components, a runtime environment is needed. It
can take software artefacts and execute them with provided
configuration on a specific host. This allows the system to
create and stop agents dynamically at any time. The running
components can be monitored by the environment allowing
notifications on failures or shutdowns.

Agents can be moved between runtime environments if they
are stateless or have a persisted execution state. Each message
sent to an agent is saved to an distributed database. This Event
Sourcing can be enabled by the developer of an agent. If the
runtime environment fails, another node can restart the agent,
replay all messages and continue from there. To optimize this
procedure each agent can save snapshots of its state, so that
on restart of an agent the node only has to load the latest
snapshot and newer messages. All messages that are older than
the latest snapshot are deleted from the database. If the state

of an agent is persisted with this feature, the current state of
this agent can be analyzed by the developers and all permitted
system components.

V. LATENCY AND SCALABILITY EVALUATION

For our user interaction projects, a low message latency is
very important. This platform is being used for virtual and
augmented reality experiments, where the latency between
the tracking sensors and the visualization is critical [6]. For
example head-mounted displays with latency issues can cause
severe motion sickness.

The testing environment for the measurements consists of
eight computers connected over an local 1Gbit network switch.
One of the hosts is used as a control node with the database for
the test system. This host is used to deploy any desired number
of agents on the other hosts. There are two different agents
that are used for this latency test. One sends a message every
configured time period and the other receives the message and
sends it back. This means that the full round trip time including
the serialization an deserialization is measured. Each agent pair
uses an separated group for the communication.

Fig. 3 shows the message latency on eight middleware nodes
and seven runtime environments with a variable number of
agents sending a message every four to five seconds. This
means there are up to 27,000 messages per second passed
between the agents without counting the system messages like
the heartbeats between the middleware nodes.

The average message latency with 120,000 agents is under
12 milliseconds and reaches a maximum of 30 milliseconds.
This is an extremely large number of agents for a smart envi-
ronment with such a high message frequency. In comparison,
in most of our targeted environments, there are fewer than
1,000 concurrent agents running at a time.

40 60 80 100 120
0

10

20

30

Number of agents in thousands

L
at

en
cy

[m
s]

Fig. 3: Test with different numbers of agents, eight middleware
nodes and seven runtime environment.

Smart environments can consist of many communicating
agents with different message traffic. The platform have to
scale with the size of the system. It is possible to add a new
middleware node at any time to decrease the message latency
of the system if it is overloaded. Fig. 4 shows the result of a
test with a fixed number of 10,000 agents on a variable number
of middleware nodes with runtime environments. Each agent
sends a message every 300 to 400 milliseconds.

It can be seen that two middleware nodes can handle the
10,000 agents with about 60 ms message latency. However,

Fifth International Workshop on Pervasive and Context-Aware Middleware 2017

149

there are messages that require twice as much time, because
the system is running on maximum load. With four and six
middleware nodes the latency and the deviation decreases
significantly to about 5.5 milliseconds, which is suitable for
our purposes.

2 4 6
0

50

100

Number of middleware nodes with runtime environment

L
at

en
cy

[m
s]

Fig. 4: Test with 10,000 agents and different numbers of
middleware nodes with runtime environments.

VI. CASE STUDY: SENSOR FUSION FOR VR INTERACTION

The proposed platform was tested with multiple projects
in the presented laboratories. One of many case studies, that
combines most of our research topics is the sensor fusion
project for omnidirectional skeleton tracking.

Skeleton tracking of body parts can be useful to implement
gesture recognition. Popular sensors like the Microsoft Kinect
2 have an interaction area of only a few meters. For the
implementation of interaction areas in the size of a full
apartment, like the Living Place Hamburg, or the implemen-
tation of omnidirectional tracking multiple sensors have to be
employed.

One use case for this sensor fusion is walking in place
detection for natural interactions with VR worlds [7]. To
implement this walking in place detection it was necessary to
measure the position of the legs and feet of one person with
low latency. The tracking had to be omnidirectional because
the user can freely rotate herself. To achieve this, we had to
use multiple Kinect 2 sensors for the skeleton detection. It was
feasible to implement the needed components for this projects
in a few weeks based on our messaging platform.

We are currently working on an generic tracking system,
which can handle multiple static and dynamic coordinate
systems with automatic calibration. One example for a dy-
namic coordinate system is a hand motion sensor, which is
mounted on a head-mounted display. The display is tracked
in one coordinate system together with controllers etc. and
the mounted sensor has a variable origin based on that. This
is needed to implement multiple user interaction with VR
environments. The platform handles the coordination between
the distributed components and helps the developers to debug
this system.

VII. CONCLUSION AND FUTURE WORK

We presented an agent based development infrastructure for
smart environment with publish/subscribe based messaging,

which is designed for fast development cycles and rapid pro-
totyping in research laboratories. The messaging latency of the
system is fast enough to support latency critical applications,
such as user interaction and VR projects. A case study in
which we implemented sensor fusion with multiple Microsoft
Kinect 2 skeleton sensors for interactive projects in VR
showed that the infrastructure can improve the development
process.

To improve the development process based on this platform
we plan to integrate additional features based on a complex
event processing (CEP) [8] engine to handle the context
information and to allow the implementation of new behavior
based on context changes with CEP queries. It has been shown
that centralized and distributed CEP engines can improve
the context handling in systems for smart environments and
Internet of Things applications [9], but the most difficult part
of the architecture design, will be the seamless integration into
this kind of system.

Moreover, this feature should help with the analysis of
system events and system state during the whole development
process. This allows the developer to obtain an understanding
of the system structure and potential errors more quickly with
CEP Queries that filter the agent graph and show aggregated
information about a subsystem. It is planned to build this
features into development tools and to generalize it to provide
an integrated development environment (IDE) for agent based
smart environments. This IDE should improve the system
monitoring, debugging and programming of new components.

REFERENCES

[1] D. J. Cook, “Multi-agent smart environments,” J. Ambient Intell. Smart
Environ., vol. 1, no. 1, pp. 51–55, Jan. 2009.

[2] G. Cugola and H.-A. Jacobsen, “Using publish/subscribe middleware for
mobile systems,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 6, no. 4,
pp. 25–33, Oct. 2002.

[3] J. Ellenberg, B. Karstaedt, S. Voskuhl, K. von Luck, and B. Wendholt,
“An environment for context-aware applications in smart homes,” in
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), 2011.

[4] M. Resnick, “All i really need to know (about creative thinking) i learned
(by studying how children learn) in kindergarten,” in Proceedings of the
6th ACM SIGCHI Conference on Creativity &Amp; Cognition, ser. C&C
’07. New York, NY, USA: ACM, 2007, pp. 1–6.

[5] K. Henricksen, J. Indulska, and T. Mcfadden, “Middleware for Distributed
Context-Aware Systems,” in Proceedings of the 2005 Confederated inter-
national conference on On the Move to Meaningful Internet Systems -
Volume / Part I, 2005, pp. 846–863.

[6] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks, Jr., “Effect
of latency on presence in stressful virtual environments,” in Proceedings
of the IEEE Virtual Reality 2003, ser. VR ’03. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 141–.

[7] E. Langbehn, T. Eichler, S. Ghose, K. von Luck, G. Bruder, and
F. Steinicke, “Evaluation of an omnidirectional walking-in-place user
interface with virtual locomotion speed scaled by forward leaning angle,”
in Proceedings of the GI Workshop on Virtual and Augmented Reality
(GI VR/AR), 2015, pp. 149–160.

[8] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[9] C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W. Feng,
“Complex event processing for the internet of things and its applications,”
in 2014 IEEE International Conference on Automation Science and
Engineering (CASE), Aug 2014, pp. 1144–1149.

Fifth International Workshop on Pervasive and Context-Aware Middleware 2017

150

