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Abstract—We introduce Quantitative Market Situation Em-
beddings (QMSEs), a pioneering artificial intelligence (AI)-driven
methodology for encoding distinct temporal segments of stock
markets into high-dimensional contextual embeddings exclusively
leveraging quantitative stock data. Building upon prior research,
we construe quantitative stock data analogously to Natural
Language Processing (NLP) data, thereby adopting Doc2Vec
methodologies to effectuate the embedding of stock data similar
to document-level representations. We ascertain the efficacy of
QMSEs in representing market dynamics by assessing their abil-
ity to discern various significant economic downturns post-2000,
including but not limited to, the events of 9/11, the Subprime
Crisis of 2008, and the Covid-induced market disruption. More-
over, we elucidate the practical utility of QMSEs through their
application in employing distance metrics to gauge the rarity
of market scenarios, serving as a regularizer in the training of
quantitative stock AI models. Subsequently, we proceed to assess
the algorithmic identification of analogous market conditions,
aiming to elucidate their potential implications for future stock
movements. Additionally, we demonstrate the efficacy of QMSEs
in reducing data requirements for quantitative stock AI models
by leveraging them as condensed representations of stock data.

Index Terms—stock price prediction, stock movement predic-
tion, quantitative analysis, stock embeddings

I. INTRODUCTION

The endeavor to forecast stock prices, inclusive of both
Stock Price Prediction (SPP) and Stock Movement Prediction
(SMP), has emerged as a focal point within the domain of
machine learning (ML) research. The pervasive notion of the
inherent difficulty in these tasks [1] finds its roots, at least
partially, in the non-stationary nature inherent to stock markets
[25]. Efforts directed towards SPP/SMP typically fall into
two methodological approaches, forming a dichotomy in their
strategies. Quantitative analysis, as defined by Defusco et al.
[32], aims to predict future price movements through historical
market data analysis. In contrast, fundamental analysis relies
on diverse data sources like annual reports, news, or analogous
information streams to make predictions [38]. As established

by Voigt et al. [36] quantitative analysis can be mathematically
expressed as

Pθ(X
(t+1)

∣∣{X(t), . . . , X(t−∆t)}) (1)

for a ML model with parameters θ, with X(t) being the
stock data at timestep t. Similarly, in the NLP domain,
Unconditional Language Modeling (ULM) aims to ascertain
the probability of a subsequent word token w(l+1) by con-
sidering all prior word tokens

{
w(i)

}l
i=0

. Building upon the
observed parallels, Voigt el al. [36] examined the viability of
implementing NLP methodologies for SPP/SMP.

In the realm of NLP, rather than employing ULM, the
concept of Conditional Language Modeling (CLM) is often
favored. CLM integrates an additional context Π, whereby
the probability of the subsequent word token w(l+1) is articu-
lated as Pθ(w

(l+1)|Π, {w(l), . . . , w(1)}) [15]. This contextual
information can take various forms, such as another text
corpus [15] or a task description [39]. Fundamental stock
analysis (if retaining consideration for historical stock data)
can be defined as Pθ(X

(t+1)|Π, {X(t), . . . , X(t−∆t)}), where
Π encompasses fundamental data derived from sources such
as those exemplified earlier. In the finance domain, studies
such as [40] adhere to this, emphasizing the incorporation of
contextual information. Moreover, there exists the capability
to forecast price movements exclusively utilizing textual data,
as demonstrated in [41], where the formulation simplifies to
Pθ(X

(t+1)|Π).
One pertinent aspect for CLM in NLP involves specifying

the document type as Π. Doc2Vec methodologies aim to
encapsulate sentences, paragraphs, or entire documents (here-
inafter referred to as the latter) as contextualized embeddings,
mirroring the framework of Word2Vec. In Doc2Vec, akin to
Word2Vec, the embedding vectors’ similarities are intended
to reflect the documents’ similarities, positioning embedding
vectors of similar documents near within the vector space.
Consequently, these embedding vectors can be interpreted
as representations of the document type. In the realm of
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(a) 9/11, 2001 (b) Iraq War, 2003 (c) Subprime Crash, 2008 (d) Covid-19, 2020 (e) Ukraine War, 2022

Fig. 1: 3D-PCA visualization depicting the evolution of e⃗ across five pivotal events triggering substantial stock market
fluctuations. Red markers indicate e⃗ representations pre-event, while blue markers signify post-event dynamics.

structuring text, documents serve as the conventional structure.
However, when considering historical stock prices X as an
equivalent to textual data [37], the inquiry emerges regarding
the analogous construct to a document. Gabaix et al. [14]
propose leveraging investors’ portfolios, predominantly com-
prising funds and indices, as a framework for categorizing
distinct companies ci. While the creation of embeddings for
ci, as described in Section II, has been explored within
the field of ML, we direct our attention towards an ap-
proach aligned with our conceptualization of interpreting stock
trends akin to linguistic structures. Conceiving documents as
a (finite) collection of textual data

{
w(i)

}l<∞
i=1

, we define
“Market Situations” as a fixed temporal window of size ∆ρ
comprised of concatenated “Market Snapshots” [37], denoted
as X(t) ∈ R|C|×1. Each Market Snapshot encapsulates the
pricing information of all companies ci ∈ C at a given time
step t [37]. Drawing inspiration from Doc2Vec methodologies,
we endeavor to construct contextualized embedding vectors for
these “documents”, thereby representing “Market Situations”
to elucidate specific market conditions and facilitate compara-
tive analyses. The embedding of market situations entails the
generation of contextualized embeddings e⃗ for each timeframe,
as illustrated in Figure 1.

We posit that the conceptualization of expressing “Situ-
ations” as distributed embeddings parallels the concept of
Event Embedding models, exemplified by [7]. In these models,
structured representations of events are derived from funda-
mental news data, facilitating SMP. In a broader sense, these
event embeddings serve as embedded depictions of market
situations, thereby constituting a foundational counterpart to
our quantitative methodology.

In this work, we delineate several scenarios in the ensuing
discourse wherein the Quantitative Market Situation Embed-
dings (QMSE) e⃗ can be deployed. Akin to the CLM, where
the document type information can be incorporated into the
model as Π, the QMSEs can be conveyed to a quantitative
SPP/SMP model (Π = e⃗). Additionally, the inclusion of data
pertaining to the current market conditions and its divergence
from typical patterns can aid in stabilizing training. By being
cognizant of exceptional circumstances, the model can adapt
the learning process, as current data may not generalize well to

conventional stock market dynamics. Given that e⃗ is designed
to “summarize” the stock market over a time lag ∆ρ, it
follows that the volume of data required to represent extended
stock time series may be diminished. This becomes par-
ticularly advantageous considering the increasing popularity
of Transformer models [35] in quantitative SPP/SMP tasks.
Notably, Transformer models exhibit quadratic time and space
complexity [35], rendering them susceptible to challenges
when handling lengthy input sequences, as evidenced in recent
works such as [6] [37].

Analogous to event embedding models, which hypothesize
that analogous events prompt comparable fluctuations and
stock movements, one could infer that analogous market
conditions result in akin stock movements. Consequently, time
lags characterized by similar e⃗ representations are anticipated
to exhibit parallel future stock movements. However, this
notion contradicts the widely debated Random Walk Theory
(RWT) [17] in economic discourse. According to this theory,
stock market price variations are stochastic and unpredictable,
thereby suggesting that past price movements lack reliability
in forecasting future prices. Moreover, we propose future
concepts for integrating QMSE techniques into (for SMP/SPP)
Adapted Speech Models [37], as well as for applications in
fraud detection, risk minimization / portfolio optimization, an
“Emergency Switch” for automated training or flash crash
detection.

Our study contributes by undertaking a comprehensive
examination of various Doc2Vec inspired methodologies for
generating QMSEs. We empirically illustrate the efficacy of
these embeddings through their application to diverse histori-
cal stock market crashes (i.e. 9/11, the Iraq War, the Subprime
Crash, the Covid-19 Crash and the Russia-Ukraine War).
Additionally, we assess their utility across several applications,
including their integration as supplementary inputs within
quantitative SMP/SPP models, their role as regulatory mecha-
nisms for training quantitative models, their application as data
reduction techniques, and their utilization as a similarity-based
approach for SMP.

We underscore that our primary objective is not centered on
the development of superior-performing quantitative SMP/SPP
models, but rather on the exploration of the efficacy of our con-
ceptualizations concerning QMSEs within specific contexts.



Our aim is to evaluate the viability of these concepts within
these exemplars, with the ultimate goal of their application
to state-of-the-art (SOTA) SPP/SMP models. To achieve this,
we conduct model training utilizing distinct baseline models
on sixty-minute resolution quantitative intraday stock data en-
compassing 309 Standard & Poor’s 500 (S&P-500) companies.

II. RELATED WORK

In the ensuing discussion, we delve into related research cat-
egorized into the three relevant domains for the construction of
the QMSEs: contextualized embeddings in finance, adaptable
Doc2Vec methodologies, and quantitative SPP/SMP models as
an orientation baseline.

a) Contextualized embeddings in Finance: Contextual-
ized embeddings, such as GloVe [27], the BERT embeddings
[5], or the Skip-Gram embeddings [23], represent prevalent
strategies in NLP for embedding tokenized words into high-
dimensional embedding spaces. The Word2Vec methodology
employs either a Continuous Bag of Words (CBOW) approach
or a Skip-Gram approach [23] to predict word tokens based on
their surrounding words or vice versa, thereby training word
embeddings. The resulting embeddings encode relationships
of the word tokens based on their positions within the vector
space. As discussed in Voigt et al. [37], the adaptation of
this concept within the stock domain is actively addressed in
contemporary research. Here it is customary to embed ci enti-
ties to elucidate interrelationships among distinct companies.
Such embeddings prove valuable in portfolio optimization
and risk management strategies, facilitating investments in ci
entities characterized by minimal correlations [8]. In addition
to the Stock2Vec models discussed by Voigt et al. [37],
which directly adapt Word2Vec algorithms [37], various other
ci embedding methodologies are present in literature (also
discussed in [37]). Dolphin et al. [8] endeavor to forecast
companies with comparable returns (x(t)

i − x
(t+1)
i ), while

Yoo et al. [42] incorporate embedding generation within their
model pipeline. Sarmah et al.’s model [33] applies techniques
inspired by Word2Vec strategies to sentence-like structures
generated from stock correlations. In contrast, Gabaix et al.’s
approach [14] employs portfolios of investors to facilitate
the generation of embeddings for companies. The explicit
embedding of entire market scenarios based on quantitative
stock data to depict relationships across specific time intervals
represents an approach, which, to the best of our knowledge,
is entirely novel within the realm of quantitative data analysis.

b) Doc2Vec in NLP: Conceptually aligning X(t) with
word tokens, as detailed in [37] and [36], and mapping the
sequence

[
X(t), X(t−1), . . . , X(t−∆t)

]
to documents, we draw

inspiration for our embedding methodology from Doc2Vec
models. Doc2Vec models, as expounded upon in Section I,
serve within the NLP domain to encode entire documents
into contextualized, high-dimensional vector representations.
These representations are commonly employed in tasks like
information retrieval, document classification, clustering, text
generation and for recommender systems.

One of the pioneering models addressing the embedding of
extended textual units, ranging from paragraphs to entire docu-
ments, in contrast to word embedding methodologies, was the
Paragraph Vectors model proposed by Le and Mikolov [20].
The Skip-Thought model extends the Skip-Gram approach
to the sentence level [19]. The advent of Transformer-based
architectures in NLP has led to the emergence of models like
Sentence-BERT, introduced by Reimers and Gurevych [31],
which leverage large language models (LLMs) for the purpose
of document embedding akin to Doc2Vec. Furthermore, there
exist more lightweight methodologies utilizing Autoencoders,
such as the one proposed by Bowman et al. [2], employing
Long Short-Term Memory (LSTM) [16] networks for both en-
coding and decoding, aimed at reconstructing input sentences
from latent representations.

c) Quantitative Stock Prediction: As previously ac-
knowledged, there exists a notable preference for fundamental
models over quantitative models within the domain of ML-
based SPP/SMP, with the latter often struggling to attain
comparable performance levels. We shall abbreviate this dis-
cussion, as our primary objective, as articulated in the intro-
duction, does not entail surpassing SOTA models in SSP/SMP.
This divergence in performance can be partially ascribed to
theories such as the RWT and the Efficient Market Hypothesis
(EMH) [12], which posit that asset prices encapsulate all
available information. Consequently, some scholars advocate
prioritizing fundamental data in light of these theories [22].
Noteworthy quantitative models have been previously delin-
eated in [26] [36] [37]. However, for the sake of clarity and
context within this discourse, we shall briefly enumerate a
select few of these models.

While SSP remains less popular than SMP in the literature,
efforts have been made to develop models tailored to this area.
For instance, Qin et al. [28] proposed a model that achieved an
root-mean-square error (RMSE) of 0.31 on NASDAQ intraday
data at one-minute resolution, surpassing their baseline estab-
lished using Recurrent Neural Networks (RNNs) [10], which
achieved only a 0.96 RMSE. Feng et al. [13] integrate external
data pertaining to industries and sectors. Except for this,
they embrace a quantitative methodology, yielding outcomes,
with reported RMSE values of 0.015 for NYSE data and
0.019 for interday NASDAQ data. Additionally, the LSTM
baseline model also achieves an RMSE of 0.019 on NASDAQ
and 0.015 on NYSE, demonstrating a performance nearly
indistinguishable from that of the main model.

In the realm of SMP, notable quantitative models have
emerged. For instance, Ding et al. [6] developed a
Transformer-based model that achieved an accuracy of 57.3%
on interday data sourced from NASDAQ stocks. Remarkably,
the same model attained a higher accuracy of 58.7% when
applied to intraday China A-shares data at a 15-minute res-
olution. In comparison, the baseline LSTM model achieved
accuracies of 56.7% on the China A-shares data and 53.89%
on the NASDAQ data. The model developed by Nguyen, Thu,
and Yoon [25] demonstrates notable performance, achieving
an average SMP accuracy of 60.7% across various interday



datasets of S&P 500 and KOSPI data and single ci. The
authors present baseline models, leveraging accuracies ranging
from 51.49% to 57.36%.

III. MODELS

We define the whole stock data of |C| companies ci ∈ C
over the whole available time T as X ∈ R|C|×T. In each
training step i we extract a sliding window of size ρ for
the model introduced in Paragraph III-0a as X (i)[j, v] =
X[j, v] with i ≤ v ≤ i + ρ and accordingly we define X̂ (i)

with ρ := ∆t for the baseline model in Paragraph III-0b. For
simplicity we omit i in the following.

Following Yoo et al. [42] we employ a linear layer with
parameters shared over all ci with with ReLU activation
function to convert the raw price features X into a latent
feature representation X̄ after passing X in a tanh(.) function.

a) Market Embedding Models: The Doc2Vec models
discussed in Section II can be broadly classified into two over-
arching categories. The first encompasses the less prevalent
models, such as Skip-Thought [19], which employ Word2Vec
methodologies at the document level. The second category
comprises Encoder-Decoder architectures, which are also com-
paratively more widespread in application. As the first category
failed to yield usable outcomes in our preliminary (untabu-
lated) experiments, we have directed our attention towards the
latter ones.

Encoder-Decoder architectures operate on the principle of
information transformation. Initially, an Encoder function E(.)
transforms the input into a latent representation e⃗, which
encapsulates essential features of the input data. Subsequently,
this latent representation is utilized by the Decoder function
D(.) to regenerate the input as ŷ, with the target variable
y = X being the original input.

Particularly for textual data and stock price prediction tasks,
the utilization of recurrent architectures for both E(.) and
D(.), seems intuitive. This approach has been previously
adopted in the models outlined in Section II. The most
notable advantage of employing recurrent architectures is their
ability to handle arbitrarily long input sequences during the
encoding and decoding processes. However, our empirical
findings reveal that while recurrent Encoder/Decoder models
excel in faithfully reproducing input data, they fall short in
generating abstracted representations. Consequently, we shall
provide only a brief overview of this approach. For E(.) and
D(.), we have the option to employ either Transformer based
Encoder/Decoder architectures, as introduced by Vaswani et al.
[35], or RNNs (and variants such as LSTM or Gated Recurrent
Unit (GRU) networks). It is possible to employ complete
Doc2Vec models by utilizing X as the embedding, thereby
bypassing the typical embedding of w(i). Although we con-
ducted several (untabulated) experiments employing Sentence-
BERT [31], we refrained from pursuing this approach further
for analogous reasons as those for the RNN/Transformer-based
models delineated in Section IV .

Autoencoders are extensively employed models for training
embeddings, adept at condensing large vectors of information

into compact representations. Within the financial domain, for
instance, Bao, Yue, and Rao [1] introduced an architecture
built upon LSTM networks, leveraging Autoencoders to ex-
tract abstracted and generalized representations of X(t).

The Autoencoder model A(.) is assembled from an encoder
E(.) and a decoder D(.) and we define

A(X ) = σ(D(E(f(X )))) (2)

where D(.) and E(.) are simple multi layer neural networks
using the tanh(.) function between the N layers ln. The
function f(.) is used to flat the input of dimensions |C| × ρ.
Here ∀n : dim(WlDn

) = dim(WlEN−n
) holds true with

dim(WlDn
)[0] < |C| · ρ. To initiate the model training, we

establish the loss function as LA = MSE(A(X ),X ) (with
MSE being the mean-squared-error) aiming to guide the model
towards generating compressed vector representations. The
QMSE e⃗ ∈ Rω is defined as e⃗ = E(f(X )).

b) Baseline Models: We establish two baseline models
for quantitative stock price prediction: the LSTM-based model
ML and the RNN-based model MR. These models are con-
structed in accordance with the outlined previous literature,
as exemplified by Feng et al. (for LSTMs) [28] (for RNNs),
Ding et al. (for LSTMs), or [1] (for RNNs and LSTMs), as
discussed in Section II. In our approach, we employ a unified
vector z for all models, which is subsequently inputted into
a linear prediction layer equipped with a Sigmoid function
to generate the final prediction ŷ. We assign z[i] = hn[1, i]
with hn being the last hidden state [16] of either the RNN or
the LSTM. In our training regimen, we employ either SPP or
SMP. Regarding SPP we delineate the MSE loss function and
the target y = X(t+1). For SMP we establish

y = I(t)(X(t) > X(t+o)) (3)

drawn from the work of Yoo et al., to signify a binary label
whether a given stock price has experienced an increase. We
set o = 1 across all experiments. For SMP, we utilize the
binary cross-entropy function as the loss metric (and transform
y to be either 0 or 1).

c) Regulator Model: As delineated in Section I, we em-
ploy QMSEs as a regulatory mechanism during training. This
serves the purpose of discerning whether the current training
data, potentially derived from extraordinary events, may be un-
suitable for transfer and generalization to other contexts. Our
underlying assumption posits that atypical market situations
arise due to exceptional occurrences, thereby necessitating a
reduction in training progression. This adjustment might help
the model training, as the existing data may insufficiently
encapsulate the intricacies of “typical” and therefore to some
extent predictable market dynamics.

To gauge the likelihood that the current training data
originates from an exceptional circumstance, we quantify
its deviation from other QMSEs. Through our conducted
experiments, preliminary findings suggest that calculating the
distance from all QMSEs may not be warranted. Instead,
we compute the distance d to the preceding κ QMSEs.
This approach enables the detection of significant deviations



from the prevailing market situations, potentially indicating
exceptional situation. Given that d relies on the distances of
e⃗ rather than the absolute values of X , our objective is to
discern relationships and, particularly, movements that may
elude capture by conventional metrics such as Exponential
Moving Averages or volatility calculations (as visualized in
Figure 3). We define the regulator model (returning d) as

R( ˆX (i)) =

∥∥∥∥∥∥
 1

κ
·

i−1∑
j=i−(1+κ)

E(f(X (j))

− E(f(X (i)))

∥∥∥∥∥∥
2

.

(4)
As X(t) is incorporated into the sliding window with each

successive time step t, the system evaluates the congruence be-
tween this new data and the previously observed information.
The magnitude of d directly correlates with the divergence
from all other e⃗ vectors associated with the preceding κ
market scenarios. In essence, an escalating d signifies an
exceptionally rare market situation relative to the current time
period. To integrate this concept into our training methodology,
we posit that weight updates during backpropagation should
be attenuated, or regulated, for unusual market scenarios. A
regulation of training progress, akin to the introduction of
noise, has previously been proposed by Yue et al. [30]. A
straightforward approach to achieve this entails adjusting the
loss term as L := L̂ ·

(
1 + (1 + d)−1

)
.

d) Neighbour Similarity for Stock Movement Prediction:
Assessing contextualized embeddings presents a significant
challenge, reflecting the broader effort within the research
community to establish consistent quality metrics for evalu-
ating word embeddings. One approach involves scrutinizing
nearest neighbors (nearest neighbours approach (NNA) in
the following) and assessing whether certain attributes of
the nearest neighbor align with those of the respective data
point, thereby discerning whether the embedding encapsulates
meaningful relationships. While defining objective criteria in
NLP poses smaller difficulty, this task becomes considerably
more intricate within the financial domain [33]. In works such
as [8] and [33], the proposition arises to ascertain whether
the nearest neighbors of ci represent similar companies or
to cluster distinct ci instances to ascertain if their respective
industries correlate with the clusters.

We extend our investigation to examine the hypothesis that
analogous market scenarios exhibit proximity within the vector
space, with the expectation that discernible stock movements
can be extrapolated from the prevailing market situations.
To test this, we employ SMP, an idea which operates under
the premise that similar market embeddings, indicative of
analogous stock market conditions, are expected to correlate
with comparable future stock movements. Accordingly, if
∥ e⃗ (i) − e⃗ (j) ∥2 is small, X (i) and X (j) are similar and I(i)
and I(j) are expected to exhibit similarity across numerous
instances ci ∈ C. Conversely, if ∥ e⃗ (i) − e⃗ (j) ∥2 is large,
it may suggest a limited similarity in directional movements,
thus implying a relationship where I(i) ≈ I(j) ·(−1) holds true.

Therefore we define the prediction of movements for t+1 as

ŷ = sign

(
1

|K|
·
∑
ĕi∈K

(1 + ĕi)
−1 · I(i)

)
(5)

with K = topk(E, k) and E = {∥ e⃗ (j) − e⃗ (t) ∥2}. Vice versa
E = {− ∥ e⃗ (j) − e⃗ (t) ∥2} can be used to predict I · (−1).

e) Data reduction: Given that e⃗ serves as an unweighted
representation derived from

[
X(t) . . . X(t−ρ)

]
, one might con-

jecture that a model could achieve comparable learning effi-
cacy when trained on e⃗ instead of the raw stock data itself.
As e⃗ encapsulates dense information spanning a timeframe
ρ, we investigate whether the omission of a fraction of X(t)

could yield comparable performance. In addition to models
processing e⃗ directly, we explore a sliding window approach
using ϕ−1 of the datapoints to ascertain the extent to which e⃗
accurately reflects the market dynamics within the timeframe
∆t. For this we redefine the input U to the baseline models
as U (j) = X̂ (1+(j−1)·ϕ).

IV. EXPERIMENTS

Our findings will be presented in the subsequent sections,
with the interpretation of the results deferred to Section V.

a) Setup: We leverage a dataset of stock data graciously
provided by Alpha Vantage, a prominent stock data provider.
Our initial set of companies, denoted as C, comprises 309
companies selected from the S&P-500 Index. The stock data
spans from January 2000 to December 2023. To ensure data
integrity and mitigate potential issues arising from missing
or padded values, we include only those ci for which data
is available in the year 2000. Notably, missing values are
more prevalent, particularly in intraday data, and this challenge
becomes more pronounced with finer time granularities. To
address missing data, we implement a padding procedure
wherein we recursively assign x(t) := x(j), with ∄x(i) ∈
R : j < i < t. Additionally, we initialize x(1) := 0 if
the initial value is absent. For intervals with a granularity
of sixty minutes, the proportion of padded data amounts to
approximately 22%. While padded data yields satisfactory
results for SPP, as demonstrated in [37], training A(.) at higher
granularities (e.g., minute or 15-minute resolutions) has proven
challenging to stabilize. Furthermore, training for interday data
presents its own set of challenges, notably the issue of too few
data points (a well-documented concern in quantitative stock
price prediction [25]) which frequently results in overfitting
θ. Stock data is typically furnished in interval-based formats,
encompassing features as Closing Price, Opening Price, High-
est Price, Lowest Price, and Trading Volume (OHLCV). In
our analysis, unless otherwise specified, we will primarily
utilize the Closing Price following [37] [1] [13] [25]. We
perform min-max normalization on all xi individually for each
ci and exclude 0 values from the normalization process as
[13]. This normalization procedure is essential as companies
with high stock prices may disproportionately influence the
range of values for other ci. The dataset was partitioned into
three subsets: a validation set comprising 9 % of the data,



Fig. 2: 3D-PCA visualization of e⃗ for September 2001 for a
Transformer based model.

a test set comprising 10% of the data, and a training set
encompassing the remaining data. For the test set and vali-
dation set, six contiguous sequences were extracted from the
time series. Only test set data was used for the visualizations
in Paragraph IV-0b. Each experimental run was repeated 10
times, and the mean performance was computed across these
repetitions. We ensured that every data point was included in
the test set at least once. The model parameters were tuned
using the training set, while the model hyperparameters were
optimized using the validation set. The number of epochs
for training each model was predetermined through multiple
experiments with a maximum of 20 epochs and tailored to each
model individually conducted prior to the main experiments.
We employed the Adam optimizer with a weight decay of
0.002 [18].

b) Embedding Models: Following [33], embedding eval-
uation can be conducted using either “Extrinsic Evaluators”
[33], wherein the embedding vector e⃗ is utilized in downstream
tasks (as done in Paragraph IV-0c), allowing for comparison
based on performance metrics, or “Intrinsic Evaluators” [33].
The latter includes methods such as the NNA suggested in
Paragraph III-0d, which focuses on assessing intrinsic proper-
ties of the embeddings.

For training A(.), we conducted a hyperparameter grid
search and ended with a learning rate of 1×10−4 and a
relatively small batch size of 16. In addition to varying layers,
we explored the utilization of different ω values. Notably, we
observed that higher values of ω yielded superior outcomes in
terms of LA. This observation can be rationalized by the notion
that larger e⃗ dimensions facilitate a simpler reconstruction of
the |C| × ρ input data points, as compression of knowledge
becomes less stringent. However, our primary focus lies not
solely in minimizing LA, as we consider this metric as auxil-
iary. Rather, our paramount objective is to identify analogous
market situations. Hence, smaller values of ω carry greater
significance in our analysis. Ultimately, we opt for employing
a single-layer Autoencoder architecture for A(.) with ω = 20
independent of LA. This choice contrasts with the multiple-
layer architectures commonly employed in comparable studies,
such as those discussed in [1] and [3].

The QMSEs produced through the application of A(.)
exhibit proficiency in abstracting market situations. This pro-
ficiency is manifested in the discernment of rare occurrences

i.e. crashes facilitated by the utilization of e⃗ or d. In Fig-
ure 1, we present a three-dimensional visualization of e⃗,
wherein pre-event embeddings are distinguished by a distinct
color from post-event embeddings. In Figure 3 we provide
visualizations of d. The efficacy and utility of the QMSEs
are prominently displayed, as evidenced by the presence
of relatively clear clusters for most events (with exceptions
discussed in Section V). This observation underscores the
commonality and proximity of pre-event scenarios, contrasted
sharply with the considerable divergence characterizing post-
event scenarios, resulting in clusters exhibiting significantly
greater inter-cluster distances. This implies that, for each
trading interval, situations akin to the current one are notably
absent. Henceforth, our focus will be directed solely towards
A(.) in all subsequent experiments.

The architectures utilizing Transformers failed to yield
stable results for e⃗. This instability is evident in the con-
siderably high standard deviation observed in (untabulated)
training runs for the loss, particularly noticeable with small ω
values. Notably, the distances between different Transformer-
generated embeddings, exhibit a mean pairwise distance of
1.41 (ω = 64), markedly lower than the average distances
of 2.46 observed with A(.) embeddings. Additionally, exper-
iments utilizing cluster algorithms, such as DBSCAN [11],
encountered challenges in organizing the Transformer-based
QMSEs into meaningful structures. For instance, DBSCAN of-
ten failed to identify distinct clusters and frequently classified
all e⃗ vectors as noise. Although RNN-based models demon-
strated relatively stable outcomes in terms of loss values, the
issue of small distances and the absence of discernible cluster
structures persists.

We performed several preliminary experiments (untabu-
lated) utilizing embeddings generated by both RNNs and
Transformers for the SPP/SMP baseline models for producing
representations U or d. The performance of these models
was inferior compared with those generated by A(.). More-
over, when employing Sentence-BERT embeddings, this issue
was exacerbated, further diminishing the effectiveness of the
models. In Figure 2, we juxtapose the e⃗ generated through
a Transformer-based approach. Using the 9/11 Crash as an
illustrative example, we observed the effectiveness of the
visualization for A(.)-derived embeddings, a distinction that
cannot be replicated with Transformer-generated e⃗.

c) Quantitative Baseline Models: The results for the best
baseline for SPP/SMP models for each approach (U and R(.))
and each ∆t are reported in Table I. We conducted experiments
across a range of model sizes, layer configurations, and varia-
tions; however, we opted not to include tabulated results for all
iterations due to their inability to match the performance levels
achieved by the models listed (often below 50 % for SMP). In
addition to varying model sizes, we conducted experimenta-
tion with different hyperparameters, including batch size and
learning rates. Ultimately, for the SMP model, we settled on
a learning rate of 2×10−3 and a batch size of 16. The RMSE
for SPP is reported for the normalized values. Comparatively,
the baseline performance aligns with the results achieved by



Fig. 3: Visualization of d during significant economic events over the past 24 years. Please acknowledge that the closure of
the New York Stock Exchange for four days following the 9/11 events resulted in a limited dataset during that period. The
X-axis represents the time steps in hours. The black line symbolizes the time step of the respective event. The Y-axis, which
represents d, is not labelled, as the values vary greatly over time (for each event) and we prefer relative representations for
visualization purposes.

the baseline models referenced in Section II or even the actual
models.

In all tabulated experiments employing the U approach, we
consistently set ϕ = 2 as larger values invariably result in
model performance plateauing at 50% accuracy for SMP or
even lower, rendering the models untrainable. We established
the value of ρ = 6 through empirical experimentation. Sub-
sequently, to corroborate this determination, we test the best
performing SMP baseline model (single-layer ML256), and
systematically explored various parameter configurations for
ρ. The results of these investigations are illustrated in Figure 4.

For the respective best performing SMP and SPP model
(single-layer ML256 and single-layer MR256) we also experi-
mented with using e⃗ as the input without using U or ϕ. The
performance was 53.35±0.12 for SMP and 0.083±0.011 for
SPP. To ensure that the model benefits specifically from the
weighted loss function rather than solely from a diminished
L, we conducted three separate training iterations for each
model. In these iterations, the L is scaled by the mean value
of 1 + (1 + d)−1 computed across the entire training dataset
(1.209), with worse performance in all cases.

Experiments involving the inclusion of Π = e⃗, inspired by
a CLM approach (Pθ(X

(t+1)|Π, X(t), . . . , X(t−∆t))), are not
tabulated. We explored two methods: appending e⃗ to X̄ or scal-
ing the latent representation by assigning ̂̄X[i] := X̄[i]+ e⃗ [i].
Consequently, we experimented with reducing the sizes of the
baseline models to accommodate small ω values. However,
this adjustment often resulted in models achieving only 50%
accuracy in SMP or performing even worse. Scaling X̄ did
not yield any improvement and typically extended the training
duration until convergence.

d) Neighbour Similarity: The SMP methodologies have
consistently yielded a stable yet relatively modest test set
accuracy, averaging approximately 0.52 ± 0.023, across all
price features except for trading volume. Furthermore, the
correlation scores between accuracy and summed vector dis-
tances (or their inverse) persist at a consistent but diminutive
scale, ranging between 0.01 and 0.04 The sole exception
lies in the prediction of trading volume. Employing inverted
distance vectors exhibits promise, resulting in test set accu-
racies of 0.63± 0.03, while utilizing nearest distances yields

accuracies of 0.56 ± 0.02. In Figure 5, we visually depict
the notable correlations with scores of 0.25 ± 0.02. This
observations remain consistent across various values of κ,
including 5, 20, 100, 1000. We did not discern any correlation
between κ and accuracy, nor did we observe any enhancement
with different κ values. This approach has been validated
across both interday data and the otherwise utilized sixty-
minute intraday data.

V. DISCUSSION AND FUTURE WORK

Considering the inherent non-stationarity of stock data
alongside established economic theories like the RWT and
EMH, which cast doubt on the predictability of stock prices,
there arises a pertinent inquiry regarding the characterization
of every market scenario as potentially exceptional, while
other works such as [34] acknowledge “standard market condi-
tions”. Therefore it becomes imperative to view every market
condition in a time-dependent context, utilizing parameters
such as κ, ρ, or ∆t. Despite acknowledging the critical
considerations inherent in the discussed concepts, we defer
the resolution of these questions to the field of economics, fo-
cusing instead on the (at least partially) successful application
of our findings.

As noted, for instance in [33], the absence of objective
quality criteria for embeddings necessitates our reliance on
the efficacy of QMSE visualizations, particularly during signif-
icant events post-2000. This approach allows us to identify and
discard inadequately performing QMSE methods, primarily
through clustering and distance measurements but also through
the satisfying visualizations of e⃗ where we were able to clearly
recognize major crash events. The visual representations of the
Subprime Crisis and the Iraq war-induced market crash exhibit
less clarity compared with other events. In the context of the
Subprime Crisis, the ambiguity potentially arises from its pre-
existing trajectory prior to the Lehman Brothers bankruptcy,
which acted as a significant catalyst rather than an isolated
event. Similarly, the complexities surrounding the Iraq war
are attributable to heightened political tensions preceding its
commencement [24].

In our pursuit of generating robust embeddings, the utiliza-
tion of f(.) and flattening seems crucial, as recurrent methods



failed to yield satisfactory results. Conversely, we speculate
that the generated representations exhibit proficiency in re-
construction, as evidenced by the RMSE, yet lack sufficient
abstraction of complex market scenarios. Additionally, given
the importance of small ω values, we posit that a dense
abstracted representation of the market situation is paramount.

The evaluation capabilities for QMSEs extend beyond mere
illustration, with practical utility evident in downstream appli-
cations. As demonstrated in work such as [8], the potential
for assessing portfolio management and risk mitigation is
considerable. This can be realized through trading simulations
akin to those presented in [9] or [13] (for SPP).

Future research endeavors will encompass the evaluation of
QMSEs across diverse market contexts, particularly at smaller
time resolutions or an expanded C. In this study, our models
are trained on intraday data with 60-minute resolution. The
primary rationale, as expounded in Section IV, pertains to
challenges in achieving training stability at finer frequencies,
likely attributable to data incompleteness. Utilizing QMSEs at
shorter time intervals holds promise for discerning transient
phenomena such as flash crashes, characterized by rapid and
volatile price declines followed by swift recoveries [21].

The baseline models exhibit a performance on par with
the baseline standards observed in other quantitative models
discussed in Section II. As emphasized from the outset, the
primary objective of this study is not to achieve exceptional
SMP/SPP results but rather to leverage QMSEs, with the
baseline models serving as a reference point. We have il-
lustrated that the integration of R(.) augments the training
regimen across various scenarios, particularly evident in larger
models and for SPP, albeit without consistent superiority over
smaller counterparts. Notably, while the efficacy of R(.) did
not uniformly enhance performance, a discernible reduction
in standard deviation was observed. This reduction suggests
a potential successful stabilization of the training process,
possibly achieved by mitigating the influence of highly un-
common training data. This discrepancy could stem from
the capacity of larger or more intricate models to capture
detailed patterns, which in turn may amplify the impact of
exceptional situations or noise, as large ML models are shown
to be able to fit random noise data [43]. Irrespective of the
optimal performance achieved by the baseline models, it is
imperative to acknowledge that more complex models might
derive substantial benefits from QMSE-dependent loss regu-
lation. This observation holds significance when juxtaposed
with SOTA quantitative models discussed in Section II, which,
along with fundamental models, exhibit significantly greater
complexity compared with the baseline models discussed in
Paragraph III-0b. Moreover, efforts will be directed towards
devising strategies to incorporate Π = e⃗ for CLM inspired
approaches, given our unsuccessful experimentation in this
regard.

Replacing the data with U results in inferior performance,
particularly noticeable with less complex models where the
degradation is more pronounced. However, even with this
substitution, the model maintains a degree of predictive ca-

Model R(.) Default U
SPP SMP SPP SMP SPP SMP

∆ = 8
1αL 8.7± 2 3.5± 3 8.5± 4 3.5± 2 8.8± 2 1.6± 1
2αL 8.6± 2 3.7± 6 8.7± 5 3.5± 4 9.1± 3 3.1± 4
1βL 9.1± 1 3.9± 3 8.6± 4 4.5± 3 9.0± 4 4.5± 3
2βL 8.6± 3 4.2± 3 8.8± 5 3.5± 4 9.0± 3 1.5± 3
1γL 9.0± 1 3.9± 4 8.7± 6 3.7± 3 8.7± 8 3.5± 5
2γL 8.6± 4 3.8± 3 8.3± 4 3.7± 2 9.0± 4 1.9± 4
1αR 8.8± 1 4.3± 3 8.6± 5 4.3± 9 8.8± 7 3.1± 3
2αR 8.6± 2 4.1± 3 8.9± 6 3.4± 3 9.4± 3 2.1± 3
1βR 8.7± 2 2.9± 2 8.9± 5 3.2± 5 9.1± 1 3.4± 6
2βR 9.1± 2 5.1± 3 9.2± 6 3.3± 3 9.8± 4 3.0± 4
1γR 8.9± 1 3.4± 1 9.2± 3 3.0± 3 9.9± 7 2.8± 4
2γR 9.2± 2 3.8± 2 8.8± 5 3.1± 3 9.2± 4 0.9± 3

∆ = 32
1αL 9.8± 2 4.5± 2 9.2± 5 6.2 ± 3 8.6± 3 2.2± 4
2αL 9.8± 1 5.5± 1 9.0± 2 4.7± 2 9.2± 2 4.0± 5
1βL 9.5± 1 4.5± 3 9.7± 2 4.7± 5 8.9± 2 4.5± 6
2βL 3.2± 2 5.5± 3 9.2± 2 4.5± 4 9.2± 4 2.7± 3
1γL 10.9± 2 4.8± 2 9.9± 5 4.7± 6 8.4± 4 4.0± 8
2γL 8.9± 1 4.5± 3 8.6± 4 4.5± 5 9.2± 6 2.2± 5
1αR 8.2 ± 1 3.1± 3 9.4± 4 3.2± 7 8.4± 1 2.0± 5
2αR 8.6± 1 5.0± 3 9.2± 5 4.1± 7 9.4± 5 2.1± 3
1βR 8.4± 3 8.3± 3 9.8± 4 3.9± 4 9.7± 9 3.8± 3
2βR 8.6± 2 4.9± 2 9.1± 3 4.2± 3 9.2± 3 4.0± 2
1γR 9.9± 2 4.1± 3 9.6± 2 4.1± 4 9.7± 5 3.7± 1
2γR 9.5± 3 4.0± 2 9.0± 3 3.8± 1 9.2± 4 2.5± 2

∆ = 64
1αL 9.3± 4 4.7± 2 9.7± 1 5.0± 6 9.9± 3 2.5± 9
2αL 9.7± 1 3.7± 1 8.6± 2 4.2± 7 8.9± 3 2.8± 2
1βL 9.3± 1 3.5± 2 9.7± 2 3.5± 9 9.8± 4 3.5± 5
2βL 9.7± 2 4.5± 1 9.9± 4 3.7± 6 10.3± 3 3.7± 3
1γL 8.3± 2 3.5± 2 9.8± 2 3.7± 8 9.8± 6 2.3± 9
2γL 10.2± 5 5.0± 2 9.7± 1 4.5± 7 9.8± 3 2.7± 6
1αR 9.0± 5 3.2± 2 8.3± 2 3.6± 3 9.0± 5 3.4± 9
2αR 8.3± 3 3.0± 1 8.3± 1 3.2± 5 8.8± 2 2.8± 6
1βR 8.4± 2 3.1± 3 8.8± 4 4.0± 9 8.8± 2 3.5± 4
2βR 8.5± 2 3.9± 3 8.8± 5 3.8± 9 9.4± 8 3.6± 7
1γR 8.5± 2 4.1± 2 9.4± 4 3.7± 8 9.9± 3 2.3± 6
2γR 8.4± 1 4.0± 1 9.0± 5 3.0± 8 9.5± 2 1.8± 6

TABLE I: Presentation of results from the most effective
baseline models. The first number in the “Model” column
denotes the layer number. The “L” and “R” encode ML or
MR respectively. The models sizes are indicated by α = 256,
β = 512 and γ = 768. The deviations are scaled by 10−1

for SMP and 10−3 for SPP. SPP RMSE values are scaled by
a factor of 10−2. The SMP accuracies in % were subtracted
with 50 for presentation reasons.

pability, consistently surpassing the accuracy expected by
chance. In forthcoming experiments, particularly those entail-
ing the utilization of resource-intensive Transformers, there
exists an opportunity to redefine U by imposing 0 < ϕ < 1
to effectively mitigate input dimensionality. One such so-
phisticated model, employing Transformer-based architectures,
was delineated by Voigt at el. as “Adapted Speech Models”
[37], a pioneering approach wherein we conceptualized the
transformation of X into a structure reminiscent of NLP-
like-sentences. This intricate process entails the flattening of
X(t) and the incorporation of current stock prices to refine
multidimensional contextualized embedding vectors for each
ci. Subsequently, the transformed representation is fed into
adapted language models such as BERT [5], GPT-2 [29], or



Fig. 4: Comparing LA and the SMP accuracy for different ρ
values using ML256 and R(.).

TransformerXL [4]. Additionally, we will explore the possibil-
ity of enhancing the representational capacity of our model by
feeding

[
e⃗ (t), e⃗ (t−1), . . . , e⃗ (t−∆t)

]
into the Adapted Speech

Models. This approach allows for a departure from (stock)
regression data (by using embeddings) while mitigating the
computational burden associated with scaling the input length
by |C|.

The NNA performs very weakly and shows that similar
macro situations, at least from those learned by A(.), are
indicative of future price developments without learning com-
plex rules through another ML model (as done in most event
embedding model like [7]). Notably, its robust performance in
forecasting trading volume warrants attention. We hypothesize
that this may stem from its easier predictability, possibly owing
to a stronger correlation with market conditions.

VI. SUMMARY

In summarizing our findings, we have expanded upon the
existing research trajectory, illustrating how quantitative stock
price prediction shares similarities with language modeling,
as demonstrated in prior studies such as [36] [37]. In this
context, we have investigated the adaptation of Doc2Vec
models to stock market data, culminating in the derivation of
QMSEs through the modification of a Autoencoder model with
flattened input. Subsequently, we conducted direct assessments
of the QMSEs, particularly focusing on their performance
during significant economic events, as illustrated in Figure 1.
Moreover, we explored diverse applications of the QMSEs,
including their utility in regulatory frameworks for training
purposes and their potential for reducing input data in SMP
/SPP tasks. Finally, we endeavored to ascertain whether close
QMSE values exhibit correspondingly similar future stock
movements, thus probing the predictive capabilities of our
model.
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Fig. 5: Y-Axis: mean distance, X-Axis: accuracy. 1) Corre-
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