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Abstract

In recent years, the demand for sophisticated surveillance systems has risen signi-
ficantly. A special case is indoor surveillance in smart environments such as smart
homes or smart rooms. While general surveillance systems attempt to control
access to resources or to detect individuals on a watch list, the aim of surveil-
lance in smart environments is to capture human behaviour details in order to
provide automated services. For example, when a person is watching TV, the
smart home could automatically provide a list of preferred channels depending on
who is watching TV.

This thesis investigates novel tracking, detection and verification algorithms in
order to identify a person and to estimate his/her position, based on the last
known position and his/her speed with improved real-time performance.

In particular a novel head detector is proposed that combines a human head, an
upper-body and a body detector with a sigmoid function in order to derive a con-
sensus decision. Based on this head detector a real-time framework for multi-target
tracking is designed. This framework is first developed for perspective cameras and
then later extended to fisheye cameras. Finally, two complete frameworks for video
face recognition are presented. The first framework is based on visual tracking and
Local Binary Pattern face recognition whereas the second relies on multi-target
tracking, Local Quantized Pattern feature vectors and set-to-set similarity.

In order to evaluate the performance of the proposed approach a number of ex-
periments were made on multiple datasets. Face recognition and face tracking has
been evaluated on Honda/UCSD Video Database (100% accuracy), Smart Home
Dataset (83.44% accuracy), YouTube Face Database (83.44% accuracy), YouTube
Celebrities Dataset (84.07% accuracy) and the ChokePoint Dataset (100% accur-
acy). Face detection has been evaluated on the FDDB dataset and the AFW
dataset (AP 95.32%). Head detection has been evaluated on the Town Centre
Benchmark where an MR of 58% was achieved. Finally, multi-target tracking
has been evaluated on the Town Centre Benchmark (MOTA 81.55%), Parking
Lot Benchmark (MOTA 79.71%), Bomni-DB (MOTA 78.55%) and LivingPlace
Fisheye Benchmark (MOTA 69.53 %).
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Chapter 1

Introduction

In recent years, the demand for vision based surveillance systems has increased

significantly. A special case is indoor surveillance in smart environments such

as smart homes or smart rooms. While general surveillance systems attempt to

control access to resources or to detect individuals on a watch list, the aim of

surveillance in smart environments is to capture human behaviour details in order

to provide automated services. For example, when a person is watching TV, the

smart home could automatically provide a list of preferred channels depending on

who is watching TV.

The concept of smart environments evolves from the definition of Ubiquitous Com-

puting that, according to Mark Weiser, refers to the idea of:

"‘a physical world that is richly and invisibly interwoven with sensors,

actuators, displays, and computational elements, embedded seamlessly

in the everyday objects of our lives, and connected through a continuous

network"’ [Weiser et al., 1999].

Smart homes further develop this idea with the aim to create an environment which

behaves intelligently, recognizes the user, learns or knows her/his preferences, and

has the capability to exhibit empathy with the user’s mood and current overall

situation [Augusto, 2009]. In smart homes, learning means that the environments

1



Introduction 2

Figure 1.1: Living Place Hamburg top down view.

must gain knowledge about the preferences, needs, and habits of the user in order

to be in better position to assist the user adequately [Juan Carlos Augusto, 2006,

Aztiria et al., 2012]. Camera-based sensors in combination with computer vision

technologies provide a setting that allows gaining this knowledge. It is physically

intangible and depending on the number, the location and the type of cameras

that are used. It is not necessary that the user is at a particular place in order to

operate.

This thesis is part of the Living Place Hamburg (LPH) smart home project. It

is mainly funded by the Hamburg Ministry of Commerce and the Ministry of

Science and Research. The LPH covers different areas of IT-based urban living.

In addition to typical questions from the smart home area, general questions of

urban living are investigated. It is a 140m2 loft style apartment located at the

campus of the University of Applied Sciences (HAW) in the centre of Hamburg

(see Figure 1.1 and 1.2). The apartment consists of one large room with different

sections for dining, living, cooking, sleeping and working as well as a separated

bathroom. The LPH is a complete functional apartment and therefore suitable

for making experiments under real-life conditions. Experimental living can range
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Figure 1.2: Living Place Hamburg side view.

from hours to several days. All these experiments can be controlled and supervised

through a controller room [Place, 2012]. The camera installation consists of five

pan-tilt-zoom cameras and three 360◦ cameras.

The research aim of the LPH is to analyse the relations between inhabitant and

smart home and therefore to develop smart indoor environment that can identify

and track their inhabitant as unobtrusively as possible and answer queries about

their whereabouts and emotional state.

This thesis is part of multiple works that are dealing with these topics. The

scope of this work is limited to developing and investigating tracking, detection

and verification algorithms in order to identify a person and to estimate his/her

position, based on the last known position and his/her speed. Results of this

work are input to later work that focuses on facial expression recognition, emotion

recognition and smart home interaction. Figure 1.3 shows an overview of the

framework.
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Smart Home

Figure 1.3: Overview of the LPH framework. The area marked with a red
dotted line is the scope of this thesis.

1.1 Challenges

A significant volume of research has been done on human detection [Dollár et al.,

2012], however most of this research focuses on full body detection of standing

people. This is perhaps a reasonable assumption in an outdoor scenario, such as

a shopping street, however, in an indoor scenario it is not. In indoor locations

people are regularly sitting and they are often occluded by objects such as tables

or chairs. In order to solve this problem new strategies are necessary that focus

on regions of the body, that are visible if a person is sitting or occluded, such as

upper body and head regions.

Furthermore, another challenge for detectors is the computational costs. Detectors

recently evaluated on the Caltech Pedestrian dataset range in time from 1 to 30

seconds per frame on 640 × 480 resolution videos [Dollár et al., 2012]. In an

application such as indoor surveillance, real-time is needed for High Definition

(HD) resolution videos (1920 × 1080), and in order to achieve this, appropriate

strategies are needed that minimise the computing cost. At least HD resolution

is needed, because experiments have shown that videos with lower resolution are

not sufficient to reliable detected upper body and head regions of humans that are

further away from the camera.
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However, human detection is only the first step for a reliable indoor tracking sys-

tem. The next step is a robust tracking model which accurately represents the

error characteristics of the detections. The main challenges for such a model are

false detections, imperfect detection, low resolution, abrupt motion, and illumin-

ation and appearance changes. A good tracking model must be robust to such

problems and simultaneously accurate enough to create robust location estimates.

Another difficulty of camera based human tracking systems, particularly in indoor

environments like the LPH, is the limited field of view of a single camera. A

solution for this problem is to use multiple cameras to monitor a wider field of

view. However, using multiple cameras has its own challenges. For example, to

compute the topology of camera network a precise calibration step is necessary

or if a human is observed in different camera views an association step has to be

applied [Wang, 2013]. Apart from these aspects, it is not always possible to install

multiple cameras.

In addition to the indoor position system, an important challenge is the identi-

fication of a person through face recognition. Numerous approaches have been

developed for face recognition, however the majority of these approaches focus on

still image recognition [Zhang and Gao, 2009]. In this thesis the focus is on video-

based face recognition. Compared to still image face recognition, video-based face

recognition has great advantages because videos contain more abundant inform-

ation than a single image. As a result, more accurate results can be achieved by

fusing information of multiple frames. However, video-based face recognition also

suffers from several problems such as low quality images, illumination changes,

pose variations and occlusions. In order to perform robust video face recognition

intelligent strategies are needed to utilise information from multiple frames while

retaining robustness to pose, lighting conditions and other misleading cues.
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1.2 Objectives of Research

The objectives of this research are derived from the shortcomings of current ap-

proaches and motivated by the challenges in the smart living environment. The

overall objective is to build a camera based human localization and recognition sys-

tem. In this thesis, the overall objective is decomposed into four specific objectives

which are addressed separately:

1. To design new frameworks for more accurate identification of individuals in

video face recognition.

2. To investigate more reliable detection of individual people from overhead

surveillance cameras under different viewpoints.

3. To devise more robust real-time systems for tracking multiple individuals

through camera views, where inter-person and object occlusion may be

present.

4. To implement and empirically evaluate the performance of the proposed

approaches using different datasets.

1.3 Limitations

Several problems such as illumination changes, pose variation, and occlusion are

difficult to solve and not all of them can be solved in this work. That is why the

scope of this thesis is reduced with the following limitations:

• Known area: The final experiments are conducted in the LPH.

• Good light conditions.

• Humans have to be in an upright sitting or standing position.

• Frontal face with good resolution for face recognition.

• Good training data for face recognition.
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1.4 Contributions

The major contributions of this thesis can be summarised as follows:

• Two fully automatic frameworks for video face recognition are proposed

which include face detection, face tracking, face alignment and video face re-

cognition. For the first framework a novel algorithm for building face tracks

in real-life scenarios is proposed, that combines face detection and optical

flow tracking to a face tracking algorithm. The temporal information which

is provided by the face tracks is used to significantly improve the recognition

rate of Local Binary Pattern (LBP) face recognition in video scenes. The

second framework is based on multi-target tracking, where a novel face de-

tector is combined with a head detector in order to create detections that are

then used to build tracks. Two novel set-to-set similarity measuring schemes

are proposed that determine whether faces appearing in the two tracks are

the same subject.

• A combined detector is proposed to solve the problem of robust head de-

tection. The idea is not to rely on a single detector. Instead, a head, an

upper-body and a body detector are used for decision making by combining

their individual opinions to derive a consensus decision.

• A real-time multi-target tracking system that effectively deals with false

positive detections is proposed. In order to achieve this, a novel motion

model is proposed that treats false positives on background objects and

false positives on foreground objects such as shoulders or bags separately.

In addition, a schema is proposed that includes the identification of true

positives with the data association instead of using the internal decision-

making process of the detector. Experiment results show that the system is

superior to previous works.

• Finally, a second approach is proposed for real-time multi-target tracking,

which extends the first approach for fisheye cameras. A camera model is
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described that allows fast projection between a fisheye image and a corres-

ponding set of perspective images. These perspective images allow the ap-

plication of standard detection algorithms. Then an algorithm is proposed

that automatically generates, from annotated heads in fisheye images, sets

of aligned heads in perspective images that are then used to train a com-

bined multi-view detector. Based on this head detector, the first real-time

multi-target tracking algorithm is extended for tracking humans on calib-

rated fisheye cameras. In addition, a new dataset for tracking humans in

fisheye videos is created on which evaluation is performed.

1.5 Thesis Organisation

The rest of this thesis is organized as follows: Chapter 2 discusses related work on

tracking and face recognition. Chapter 3 describes an entire framework for video

face recognition from tracking to recognition. Next, in Chapter 4, a detector is

proposed for robust head detection. Chapter 5 describes a real-time multi-target

tracking system. In Chapter 6 a face detector, a novel set-to-set similarity measure

and a fully automatic framework for video face recognition are presented. Chapter

7 describes an extended framework for multi-target tracking in videos captured

with fisheye cameras. Finally, this thesis ends with a summary of conclusions and

future work in Chapter 8. The relation between the different chapters is shown in

Figure 1.4.
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Chapter 2

Review of Related Literature

The aim of this chapter is to provide a summary of recent methodologies employed

for tracking and face recognition. In section 2.1, tracking approaches are described.

These approaches have been divided into visual tracking and multi target tracking

techniques. Section 2.2 provides information on face recognition. The focus of this

review is on papers directly related to the methods proposed in this thesis, hence

papers that use the same base algorithm. Furthermore, papers are reviewed that

were evaluated on the same datasets that were used in this thesis for evaluation.

Finally, pioneer work was include that was consistently mentioned in the related

papers.

2.1 Tracking

Camera based tracking can be divided into two subcategories: visual tracking

and multi-target tracking. Visual tracking focuses on tracking a single target

or multiple targets separately whereas multi-target tracking focuses on tracking

multiple targets jointly. In the following both approaches will be reviewed.

10
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Figure 2.1: Illustration of complicated appearance changes in visual object
tracking (taken from: [Li et al., 2013b]).

2.1.1 Visual Tracking

Visual tracking approaches focus on tracking a single target or multiple targets sep-

arately. These methods are able to track targets without regard to their category,

from a manual initialization; no offline trained detector is needed, and tracking is

usually based on appearance only to deal with abrupt motions. From the given

label in the first frame, an appearance model is learned online to discriminate

the target from all other regions; the appearance model is usually online updated

to deal with illumination and view angle changes [Yang and Nevatia, 2014] (see

Figure 2.1). In this section recent algorithms are reviewed in terms of the main

modules that were defined in [Wu et al., 2013]: representation schemes, search

mechanisms, and model update, context and fusion of trackers.

2.1.1.1 Representation Schemes

Object representation reflects the statistical characteristics of object appearance

and is one of the main parts in every visual tracker. A wide range of schemes have

been proposed [Li et al., 2013a, Wu et al., 2013]. One of the simplest and widely

used representation for the object region are raw intensity or colour values. Such
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representations are usually constructed as either vector-based [Silveira and Malis,

2007, Ross et al., 2008] or matrix-based [Bolme et al., 2010, Henriques et al., 2012,

Ben-Ari and Ben-Shahar, 2013]. In addition to raw pixel values, many other visual

features have been used for visual tracking, such as colour histograms [Bradski,

1998, Comaniciu et al., 2003], Histograms of Oriented Gradients (HOG) [Tang

et al., 2007], covariance region descriptor [Tuzel et al., 2006, Wu et al., 2012a],

Haar-like features [Grabner et al., 2006], binary pattern [Kalal et al., 2010, Dinh

et al., 2011, Kalal et al., 2011] and keypoint descriptors such as SIFT [Zhou et al.,

2009] or SURF [He et al., 2009].

Since the work of Lucas and Kanade [Lucas and Kanade, 1981], optical flow has

been consistently used to capture the spatio-temporal motion information of a

target [Avidan, 2004, Kalal et al., 2010, Kalal et al., 2011]. Optical flow represents

a dense field of displacement vectors of each pixel inside an image region.

Figure 2.2: Illustration of tracking-by-detection based on online boosting
(taken from [Grabner et al., 2006]).

Recently, tracking-by-detection for visual tracking has become popular. In such

methods tracking is viewed as a binary classification issue where an online learned

classifier is used to discriminate the target from the background. Several learning

algorithms have been proposed, such as SVM [Avidan, 2004, Hare et al., 2011,
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Bai and Tang, 2012], random forests [Dinh et al., 2011, Kalal et al., 2011] and

boosting [Grabner et al., 2006, Avidan, 2007]. For example Figure 2.2 illustrates

a tracking-by-detection based on online boosting which was proposed by [Grabner

et al., 2006]. Given an initial position of the target in time t, their algorithm

first evaluates a classifier at all possible positions in a surrounding search region

in frame t+ 1. The achieved confidence map is analysed in order to estimate the

most probable position and finally classifier is updated.

2.1.1.2 Search Mechanism

In order to search the target location, several methods have been proposed. If

the objective function is differentiable with respect to the motion parameters the

estimation process can be in the form of gradient ascent (descent)-based maximiz-

ation (minimization) [Lucas and Kanade, 1981, Comaniciu et al., 2003]. However,

these objective functions are usually non linear and contain many local minima

[Wu et al., 2013]. Other methods adopt sliding window to avoid this problem

[Avidan, 2004, Grabner et al., 2006, Avidan, 2007, Dinh et al., 2011, Hare et al.,

2011, Kalal et al., 2011, Bai and Tang, 2012]. In order to reduce the computa-

tional load most algorithms are only applied in a small search window around

the estimated target location (Figure 2.2 shows a sample). In [Henriques et al.,

2012] a Fourier analysis based approach is proposed that allows the use of the

Fast Fourier Transform (FFT) to quickly learn and detect from all sub-windows,

without iterating over them. Other widely used algorithms are stochastic search

algorithms such as particle filters [Perez et al., 2002, Ross et al., 2008, Zhong et al.,

2012] which are a set of online posterior density estimation algorithms that estim-

ate the posterior density of the state-space by directly implementing the Bayesian

recursion equations.

2.1.1.3 Model Update

While early visual tracking approaches used models that do not change [Brad-

ski, 1998, Perez et al., 2002, Collins, 2003, Comaniciu et al., 2003, Adam et al.,
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2006, Ben-Ari and Ben-Shahar, 2013], most of the recent approaches use adaptive

models to account for appearance variations during tracking. For templates that

problem has been addressed by a combining static and adaptive template updating

[Matthews et al., 2004, Dowson and Bowden, 2005, Rahimi et al., 2008], as well as

by updating reliable parts of the template [Jepson et al., 2003, Adam et al., 2006].

Templates have limited modelling capabilities, since they learn visual representa-

tions for the foreground object region information while ignoring the influence of

the background. As a result, they often suffer from inaccuracies caused by the

background regions with similar appearance to the object class [Li et al., 2013a].

In comparison, discriminative approaches update models with positive and negat-

ive (background) samples, with the aim to maximize the separability between the

target and non-target regions. Several update algorithms have been proposed via

online mixture models [Jepson et al., 2003], online boosting [Grabner et al., 2006],

incremental subspace update [Ross et al., 2008], P-N learning [Kalal et al., 2011]

and Regularized Least Squares (RLS) [Henriques et al., 2012].

2.1.1.4 Context and Fusion of Trackers

In order to improve tracking, recently some authors proposed approaches that

exploit context information by mining auxiliary objects or local visual informa-

tion surrounding the target to assist tracking [Yang et al., 2009, Grabner et al.,

2010, Dinh et al., 2011]. Therefore, the region around the target is searched for

supporting objects that have a similar motion model. These supporting objects

are especially helpful to determining the position of the target when it disappears

from the camera view or undergoes a difficult transformation.

Besides context information, authors proposed fusion methods to improve tracking.

Several authors combines static and adaptive models in order to reduce the drifting

problem that appears by self updates of online learning methods [Santner et al.,

2010, Kalal et al., 2011, Dinh et al., 2011]. Multiple parallel running trackers

[Kwon and Lee, 2011] and multiple feature sets [Yoon et al., 2012] are combined

in a Bayesian framework to better account for appearance changes. Chan et al.
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[Chan et al., 2013] proposed a collaborative tracking algorithm that uses a Bayesian

framework to combine self-information and information from other objects based

on a motion similarity measure.

More detailed reviews can be found in [Yilmaz et al., 2006, Yang et al., 2011, Li

et al., 2013b] and a large benchmark of visual tracking algorithms can be found

in [Wu et al., 2013].

2.1.2 Multi-Target Tracking

Multi-target tracking methods focus on tracking multiple targets of a pre-known

class simultaneously. They usually first apply a pre-trained detector and then try

to find a global optimal solution for all targets that associates all detections into

tracks (data association).

Multi-target video trackers can be divided into causal and non-causal methods.

Causal methods use only current and past observations to estimate the current

state. Non-causal methods use also future information to estimate the current

state. Although non-causal approaches are not suitable for time-critical applica-

tions, they can resolve ambiguities more easily. Since this work focuses on real-time

tracking, the literature review focuses on causal methods.

Multi-target tracking can be divided in the detection and the data association

steps. In the detection step a detector that was trained for a pre-known class

is applied to detected all objects of this class. Data association describes the

process of associating detections over multiple frames into tracks in such a way

that detections of the same person belong to one track. Figures 2.3 illustrates this,

the detections are represented by rectangles which were associated into tracks.

Detections of the same track have the same colour. In the following both steps

are reviewed separately.
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Figure 2.3: Detections that were associated into tracks.

2.1.2.1 Human Detection

One of the first sliding window detectors was proposed by Papageorgiou et al.

[Papageorgiou and Poggio, 2000] which used Haar wavelet features in combination

with a Support Vector Machine (SVM). Viola and Jones [Viola and Jones, 2002]

built upon these ideas, by using AdaBoost to train a cascade structure classifier

for efficient detection, and introducing integral images for fast Haar-like feature

computation. Inspired by SIFT [Lowe, 2003], Dalal and Triggs [Dalal and Triggs,

2005] popularized HOG features for detection. The essential thought is that ap-

pearance and shape of an object can be described by the distribution of local

intensity gradients or edge directions. In practice this is implemented by dividing

the image window into small spatial regions (cells) and then accumulate for each

region a local 2D histogram of gradient direction or edge orientations (see Figure

2.4). The combined histogram entries form the representation [Dalal and Triggs,

2005]. Since their introduction, several variants of HOG features have been pro-

posed and nearly all modern detectors utilise them in some form [Dollár et al.,

2012].

Several other features have been used for detection, such as shapelets [Sabzmey-

dani and Mori, 2007] which are a set of automatically learned gradient-based



Review of Related Literature 17

Figure 2.4: Illustration of the HOG feature (taken from: [Dalal and Triggs,
2005]) (a) The average gradient image over the training examples. (b) Each pixel
shows the maximum positive SVM weight in the block centred on this pixel. (c)
Likewise for negative SVM weights. (d) A test image. (e) Its computed HOG
descriptor. (f) The HOG descriptor weighted by the positive SVM weights. (g)

Likewise for negative SVM weights.

features. Boosting was used in order to combine multiple shapelets into an over-

all detector. Shape Context [Belongie et al., 2002] has originally been proposed

as a feature point descriptor and was later exploited for people detection [Leibe

et al., 2005]. The descriptor is based on edges which are then stored in a log-polar

histogram. Granularity-tunable features were proposed in [Liu et al., 2009] that

use granularity to define the spatial and angular uncertainty of line segments in

Hough space. An extension to the spatial-temporal domain was proposed in [Liu

et al., 2010]. In films and videos motion features can be used to improve detecting.

Motion features were successfully incorporated into detectors in [Viola et al., 2005]

by computing Haar-like features on difference images. Dalal et al. [Dalal et al.,

2006] used motion descriptors based on optical flow.

While no single feature has been shown to outperform HOG, additional features

can provide complementary information [Dollár et al., 2012]. Wojek and Schiele

[Wojek and Schiele, 2008] combined several features such as Haar-like features,

shapelets, shape context, and HOG features and showed that the combined feature

outperforms any individual feature. This approach was extended by Walk et al.

[Walk et al., 2010] by introducing self-similarity on colour channels and motion

features. Dollar et al. [Dollár et al., 2009] proposed a framework for integrating

LUV colour channels, grayscale, and gradient magnitude quantized by orientation

features.
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Several method based on part-based models have been proposed, Mikolajczyk et

al. [Mikolajczyk et al., 2004] modelled humans as flexible assemblies of parts,

which are represented by SIFT-like local features which captures the spatial lay-

out of the part appearance. In [Felzenszwalb and Huttenlocher, 2005] pictorial

structures for object recognition were proposed that represent objects by a col-

lection of parts arranged in a deformable configuration. Each part captures local

appearance properties of an object while the deformable configuration is charac-

terized by spring-like connections between certain pairs of parts. Felzenszwalb et

al. [Felzenszwalb et al., 2010b] described a latent SVM formulation that repres-

ents highly variable objects using mixtures of multi scale deformable part models.

These part-based models are trained from overall bounding boxes without part

location labels. Shu et al. [Shu et al., 2012] extended the approach with partial

occlusion handling for multiple person tracking by examining the contribution of

each individual part through a linear SVM.

Considerable effort has also been devoted to achieve real-time performance. Zhu

et al. [Zhu et al., 2006], proposed fast computation of gradient histograms using

integral histograms. However, the proposed system was real time for single scale

detection only. Zhang et al. [Zhang et al., 2007] proposed a coarse-to-fine detection

scheme that rejects the majority of negative windows at lower resolution, leaving

a relatively small number of windows to be processed in higher resolutions. Prior

knowledge is often used [Sudowe and Leibe, 2011, Benenson et al., 2011, Benenson

et al., 2012] to reduce the search space thereby improving both speed and quality.

Several authors ported their algorithm to GPUs [Wojek et al., 2008, Prisacariu

and Reid, 2009, Benenson et al., 2012] or used parallel implementation on multiple

CPUs [Benenson et al., 2012].

A frequently used method for speeding up classifiers is to split them up into a

sequence of simpler classifiers [Viola and Jones, 2002, Felzenszwalb et al., 2010a,

Zhu et al., 2006]. By having the first stages prune most of the false positives, the

average computation time is significantly reduced. In order to do fast multi-scale

detection, Dollár et al. [Dollár et al., 2010] demonstrated how features computed

at a single scale can be used to approximate features at nearby scales. Figure 2.5
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Figure 2.5: Example of approximated features (taken form [Dollár et al.,
2010]).

shows some sample. For each image set, the original image (cyan border) is taken

and an upsampled (blue) and downsampled (yellow) version are generated. Shown

at each scale are the image (centre), gradient magnitude (right) and gradient

orientation (bottom). At each scale a gradient histogram with 8 bins is computed

and each bin is normalized by .5 and .32−1 in the upsampled and downsampled

histograms respectively [Dollár et al., 2010]). This approach was further improved

in [Dollár et al., 2014].

2.1.2.2 Head Detection

Person detection is a well-studied problem in computer vision with many methods

and evaluation benchmarks available. However, most of the methods consider

full-body (pedestrians) or upper-body detection. In theory, the same algorithms

can be used for head detection, but in practice, these algorithms do not achieve

a satisfactory result. In order to overcome this problem, several authors have

proposed strategies to exploit additional features.

Zhang and Gao [Zhang and Gao, 2009] constructed a categorical model for hair

and skin, and trained the model in four categories of skin representing the dif-

ferent illumination conditions (bright, standard and dark) to increase pedestrian

detection rates during an occlusion event. Head detection using a skeleton graph

is proposed in [Merad et al., 2010]. The skeleton graph is extracted from the

foreground mask which is obtained with background subtraction.

In [Venkatesh et al., 2012], interest points are detected using gradient information

in order to approximately locate top of the head regions to reduce the search
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space. The interest points are then masked using a foreground region obtained

using background subtraction techniques. A sub-window is then placed around the

interest points, and it is classified as a head or non-head region using an AdaBoost

classifier. Xie et al. [Xie et al., 2012] detected heads using the HOG feature. To

improve the detection result, motion and appearance features are extracted and

then the Bayesian posterior is used to represent the probability of the detected

region belonging to actual human head region.

Marin-Jimenez et al. [Marin-Jimenez et al., 2014] proposed a two-level pipeline in

what an upper-body detector is applied and then heads are detected within the

upper-body detection areas. For both the upper-body and the head detector, they

trained a part-based model.

2.1.2.3 Data Association

Early work mostly focused on recursive methods, where the current state is estim-

ated only using information from previous frames. The Kalman filter approaches

[Black et al., 2002] are a prominent example. The Kalman filter consists of a

prediction and an update step. In the prediction step, the Kalman filter produces

estimates of the current state variables, along with their uncertainties. In the

update step, the estimate is updated using a state transition model and meas-

urements. Another popular approach is particle filtering [Isard and Blake, 1998]

(also known as Sequential Monte Carlo), where a set of weighted particles-sampled

from a proposal distribution is maintained to represent the current, hidden state

[Giebel et al., 2004, Okuma et al., 2004, Breitenstein et al., 2009]. This allows

handling non-linear models and multi-modal posterior distributions.

More recently, non-recursive tracking methods have grown more and more pop-

ular. The commonality of these methods is that all trajectories are estimated

jointly within a given time window. A number of methods have recently been

proposed. Classical approaches are Joint Probabilistic Data Association Filter

(JPDAF) [Fortmann et al., 1983] and Multi Hypotheses Tracking (MHT) [Reid,
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1979]. MHT considers multiple possible associations over several time steps. JP-

DAFs instead tries to make the best possible assignment in each time step by

jointly considering all possible associations between targets and detections [Breit-

enstein et al., 2011a]. As the number of observation grows, the complexity of both

methods becomes unmanageable in practice [Ge and Collins, 2008].

The Hungarian algorithm [Kuhn, 1955] is another algorithm that can be used

to find the best assignment of possible detection-track pairs in a runtime that is

cubic in the number of targets. Stauffer [Stauffer, 2003] first obtained tracklets

by performing a conservative frame-to-frame correspondence, and then associated

these tracklets by the Hungarian algorithm. This approach was further extended

[Kaucic et al., 2005] by introducing a segmentation based scene understanding

module to estimate the locations of scene occlusions. Singh et al. [Singh et al.,

2008] used a Multiple Hypothesis Tracker to grow tracklets before associating

them by the Hungarian algorithm. Huang et al. [Huang et al., 2008] linked

detections based on conservative affinity constraints to tracks. In a second level

these tracks are then further associated based on more complex affinity measures,

with the Hungarian algorithm, to form longer tracks. Some authors [Wu and

Nevatia, 2007, Breitenstein et al., 2011b] used a greedy matching algorithms that

achieves equivalent results to the Hungarian Algorithm but at lower computational

complexity.

Another popular method is Markov Chain Monte Carlo Data Association (MCM-

CDA), which was first introduced for tracking a single or fixed number of targets

[Pasula et al., 1999]. Oh et al. [Oh et al., 2004] extended the approach for

general multiple-target tracking problems, in which unknown numbers of targets

appear and disappear at random times. They presented a multi-scan MCMCDA

algorithm that approximates the optimal Bayesian filter. Later, MCMCDA was

adapted specifically for visual tracking by associating object detections resulting

from background subtraction [Yu et al., 2007] and a boosted Haar classifier cascade

[Liu et al., 2007b]. Ge and Collins [Ge and Collins, 2008] further developed this

approach by using not only object detections but also tracklets, which were created

by using a standard tracking algorithm for a short period after each detection.
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Automatic parameter estimation was proposed in [Liu et al., 2007a] as a linear

programming problem, but labelled sequences are required. Automatic parameter

estimation from unlabelled data was proposed by Ge and Collins [Ge and Collins,

2008], their algorithm learns the model parameters by interleaving the MCMCDA

sampling with a Gibbs sampler that updates the model parameters. Benfold and

Reid [Benfold and Reid, 2011] combined asynchronous HOG detections with simul-

taneous Kanade-Lucas-Tomas (KLT) tracking in an accurate real-time algorithm.

In addition, they presented a novel approach for false positive detection by creat-

ing a separate model for false positives and combining the identification of false

positives with data association.

Several other methods have been proposed to find global optimum. Berclaz et al.

[Berclaz et al., 2011] formulate multi-target tracking as an Integer Programming

(IP) problem and demonstrated how the k-shortest paths algorithm can be used

to solve this problem. Milan et al. [Milan et al., 2013] proposed a mixed discrete-

continuous conditional random field that handles inter-object exclusions at two

levels: at the data association level based on non-submodular constraints and at

the track level. Brendel et al. [Brendel et al., 2011] divided the data association

problem into disjoint subgraphs and then formulate associating object detections

with tracks as finding the Maximum-Weight Independent Set (MWIS) of these

graphs.

2.1.3 Fisheye Camera Multi-Target Tracking

One method proposed in this thesis involves tracking on cameras with fisheye lens,

that is why this section gives a review about previous tracking methods on cameras

with fisheye lens. A fisheye lens is an ultra wide-angle lens that produces strong

visual distortion intended to create a wide hemispherical image.

One of the early works in human tracking in fisheye videos is done by Wang

[Wang, 2006] who used motion history images to find a target and then tracked

the target by using CamShift. Kubo et al. [Kubo et al., 2007] applied first
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background subtraction and then grouped the foreground pixels by clustering.

Subsequently an ellipse as geometrical model was fitted to the groups. Saito

et al.[Saito et al., 2010] introduced a probabilistic model to describe the wide

variation of human appearance in hemispherical image. They model a human

as variable shape features of body silhouettes and head and shoulder contours.

Non linear template models are built by the combination of Principal Component

Analysis (PCA) and Kernel Ridge Regression (KRR). Finally, the problem of

human detection was formulated as a Maximum a Posteriori (MAP) estimation

problem using the above model.

More recently, a two step system was proposed by Yuan et al. [Yuan et al., 2011].

In the first step they tried to detect possible head candidates, therefore they

extracted edges of the input image using the Sobel operator then they computed

the subtraction between the input edge image and a background edge image.

Afterwards, they used an ellipse detector to find possible head candidates. In

the second step, a bounding box was constructed depending on the position of the

head candidates and then a classifier was applied to categorise the bounding boxes

into humans and non humans.

Vandewiele et al. [Vandewiele et al., 2012] presented a system based on a network

of fisheye cameras designed to track customers in a retail store. They detected

moving objects with background subtraction and in order to detect people they fit

an ellipse around each connected component of foreground pixels. The detections

were then associated to a track using the position on the ground plane and an

appearance model.

2.2 Face Recognition

The process of face recognition can be roughly divided into four parts: face detec-

tion, face alignment, feature extraction and recognition (see Figure 2.6). In the

following, each of these topics are reviewed and in addition recent video based face

recognition methods are reviewed explicitly. For recognition the review focuses on



Review of Related Literature 24

Face Detector

Face Alignment

Face Recognition

Figure 2.6: Face recognition framework overview

metric learning methods since that are the most related methods to the methods

proposed in this thesis.

2.2.1 Face Detection

In section 2.1.2.1 methods for human detection were reviewed and the same meth-

ods are often used for face detection. That is why in this section only a short

review is done on methods that were specially designed for face detection, a more

detailed review can be found in [Zhang and Zhang, 2010].

Viola and Jones [Viola and Jones, 2002] proposed a method to combine integral im-

age based Haar-like features, the Adaboost based classifier and cascade based fast

inferences. The authors in [Lienhart and Maydt, 2002] proposed an extended set

of Haar features for different views of faces. Zhang et al. [Zhang et al., 2004] used

AdaBoost learning to select a set of local regions and their weights with respect

to Local Binary Pattern (LBP) features for face detection. Furthermore, skin col-

our modelling has been proposed for face detection. Greenspan et al. [Greenspan

et al., 2001] used Gaussian Mixture Models for modelling the skin colour distribu-

tion. Yan-Wen Wu et al. [Wu and Ai, 2008] used AdaBoost algorithm combined

with skin colour segmentation. The segmentation is obtained by single Gaussian

model fitting and morphological operations on binary images. Kai-Biao Ge et al.
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[Ge et al., 2011] suggested an AdaBoost algorithm combined with skin segment-

ation and LBP based face description. Ban et al. [Ban et al., 2014] proposed a

boosting-based face detection method using skin colour information without any

parametric fitting or morphological operations.

Part based models have also been exploited for face detection. Early work has been

proposed by Heisele et al. [Heisele et al., 2001] whose system consists of a two-level

hierarchy of SVMs. On the first level component classifiers independently detect

components of a face. On the second level the authors checked the geometrical

configuration of the detected components. Cevikalp et al. [Cevikalp et al., 2013]

combined a cascade of binary and one-class type classifiers for root detection and

SVM like learning algorithm for part detection. Yan et al. [Yan et al., 2013]

proposed a hierarchical part based structural model to explicitly capture large

appearance variations such as pose and expression.

2.2.2 Face Alignment

A big challenge of unconstrained face recognition is the large amount of intra-

class variability, due to factors such as illumination changes, pose variation, and

perspective transformation. This intra-class variability can often be much larger

than inter-class differences.

Removing undesired intra-class variability by aligning the faces to some canonical

pose or configuration can lead to significant gains in recognition accuracy on un-

constrained face recognition. This is true even for algorithms that were explicitly

designed to be robust to some misalignments [Wolf et al., 2010].

Face alignment can be divided into two categories: fiducial point (or landmark-

based) alignment and unsupervised alignment. Fiducial point alignment localizes

facial feature points, such as corners of the eyes, mouth and the tip of the nose and

then computes a similarity transformation which attempts to bring these points

to a fixed location. Whereas in the unsupervised alignment case, a set of poorly

aligned images (e.g. images from a detector) is taken and it is attempted to make
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Figure 2.7: Multi resolution Active Appearance Model search for two faces,
each starting with the mean model displaced from the true face centre (taken

from [Cootes et al., 2001]).

the images more similar to each other by using a measure of joint similarity such

as entropy [Huang et al., 2007, Huang et al., 2012b].

2.2.2.1 Deformable Model Fitting

One of the first most popular methods for fiducial point alignment is deformable

model fitting. Deformable model fitting is the problem of registering a paramet-

rized shape model to an image such that its landmarks correspond to consistent

locations on the object of interest [Saragih et al., 2009]. The deformable model is

first constructed from a set of training samples [Cootes et al., 2001] and then fits

to the input image. Perhaps the most popular deformable models are the Active

Appearance Models (AAM) [Cootes et al., 2001]. AAM combine a model of shape

variation with a model of texture variation and then search a face by minimising

the error between an input image and the model (Figure 2.7 shows an example

of such an optimization). A face model that is similar in many ways to AMMs is

the 3D Morphable Model (3DMM) [Blanz and Vetter, 1999]. The main difference

between them is that the shape model of an AAM is 2D, whereas the shape model

of a 3DMM is 3D.

Another successful deformable fitting model is the Constrained Local Model (CLM)

[Cristinacce and Cootes, 2008, Saragih et al., 2009]. The CLM approach learns

the variation in appearance of a set of template regions. The template regions
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Figure 2.8: Selected landmark localization results from the work of Yu et al.
(taken from [Yu et al., 2013]).

are then used as feature detectors in a local search, constrained by the full shape

model.

Recently, regression-based approaches are getting more and more popular. This

approaches learn a regression function that directly maps image appearance to

the target output. Cao et al. [Cao et al., 2012] proposed a shape regression

method that automatically encodes the shape constraint by jointly regressing the

entire shape and minimizing the alignment error. Zhu and Ramanan [Zhu and

Ramanan, 2012] proposed a tree structured part model of the face, which both

detects faces and locates facial landmarks. Yu et al. [Yu et al., 2013] did speed

up this approach by simplifying the mixture of parts for face detection and initial

landmark localization (Figure 2.8 shows some results). Smith [Smith et al., 2014]

further improved this approach by modelling the full interactions between each

landmark and its surrounding local features.

Fiducial point detectors are another popular approach. The general idea is to

train a classifier to respond to a specific fiducial point. Everingham et al. [Ever-

ingham et al., 2006] proposed a generative model of the fiducial point positions

which is combined with a discriminative model of the fiducial point appearance.

The probability distribution over the joint position of the fiducial point is mod-

elled using a mixture of Gaussian trees. The appearance of each fiducial point

is assumed independent of the other fiducial points and is modelled by a fiducial

point/non-fiducial point AdaBoost classifier. In [Zhan et al., 2007] a Viola-Jones

[Viola and Jones, 2002] detector is applied to detected fiducial point. Belhumeur

et al. [Belhumeur et al., 2011] proposed an approach which combines the output

of Support Vector Regressor (SVR) with a non-parametric set of global models

for the part relative positions. Taigman et al. [Taigman et al., 2014] detected

fiducial points with a SVR trained to predict point configurations from an image
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descriptor and then combined the output with a 3D shape model. The 3D shape

model is then used to generate a 3D-aligned version of the face.

After finding the fiducial points, the faces can be warped to a conman face model

using a similarity transformation. The similarity transformation defines the map-

ping between a fiducial point (u, v) and a model point (x, y) in terms of scaling s,

rotation θ and translation tx, ty :

u
v

 =

m1 −m2

m2 m1


x
y

+

tx
ty

 (2.1)

where m1 = s cos θ and m2 = s sin θ. In order to find m1,m2, tx and ty a linear

system can be defined:



x1 −y1 1 0

y1 x1 0 1

x2 −y2 1 0

y2 x2 0 1
... ... ... ...

xn −yn 1 0

yn xn 0 1
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m2

tx
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u1

u2

v2
...

un
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(2.2)

This linear system can be written as:

Ax = b (2.3)

The least-squares solution for the parameters x can be determined by solving the

corresponding normal equations:

x = (ATA−1)AT b (2.4)
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which minimizes the sum of the squares of the distances from the projected model

locations to the corresponding image locations. Once the transformation paramet-

ers m1,m2, tx, ty are obtained, the probe face can be transformed according to the

2D spatial similarity transformation.

2.2.2.2 Unsupervised Alignment

One of the early works of fully unsupervised face alignment from exemplars has

been proposed by Frey and Jojic [Frey and Jojic, 1999]. They developed a method

based on an Expectation-Maximization (EM) algorithm. The approach employed

discrete hidden variables to model unwanted spatial variation. In [la Torre and

Black, 2003] an extension of this approach was proposed, that learns a subspace,

which is invariant to affine or higher order geometric transformations.

Learned-Miller [Learned-Miller, 2006] proposed a framework known as congealing

that iteratively aligns an image set by minimizing the entropy function of the

set. It was originally applied to joint alignment of binary images but was later

applied to more complex object classes such as faces and cars [Huang et al., 2007].

Huang et al. [Huang et al., 2012b] incorporated deep learning into the congealing

alignment framework in order to obtain features that can represent the image

at different resolutions based on network depth and are tuned to the statistics

of the specific data being aligned. Cox et al. [Cox et al., 2008] extended the

congealing framework by introducing a sum of square differences cost function.

The alignment was formulated under the Lucas-Kanade framework [Lucas and

Kanade, 1981], and the optimization was iteratively solved by a Gauss-Newton

gradient descent approach.

Zhu et al. [Zhu et al., 2009] extended this approach with a template based op-

timization scheme. They first fitted a set of template images to the input image

by a deformable Lucas-Kanade fitting scheme and then the input face image was

rectified into the canonical frontal view. Ni and Caplier [Ni and Caplier, 2011]

applied a forward formulation of entropy function to estimate all transformation

parameters at the same time rather than sequentially and later [Ni et al., 2012].
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Figure 2.9: The basic LBP operator (taken from [Ahonen et al., 2004]) .

They improved this approach by switching the role of template and test data in

order to reduce the computational cost in re-calculating the Jacobian and Hessian.

Peng et al. [Peng et al., 2010] proposed an approach called RASL that aligns

images by sparse and low-rank decomposition. RASL is able to handle both spatial

misalignment and corruptions (e.g., occlusion and shadows).

2.2.3 Feature Extraction

The simplest form of representing a face is to use the pixel intensity values directly

[Turk and Pentland, 1991]. However, because of its simplicity, this method is

unable to capture complex textures and to handle the large variations which are

generally found in human faces. Another limitation is that the feature vector is

often in a very high dimensional space.

One of most used features are Local Binary Pattern (LBP). They are based on the

idea that small patterns of qualitative local gray-level differences contain a great

deal of information about higher-level image content. The LBP operator was first

introduced by Ojala [Ojala, 1996] as feature for texture classification. It takes a

local neighbourhood around each pixel, thresholds the pixels in the neighbourhood

by the value of the central pixel and considering the result as a binary number

(Figure 2.9 shows an example). The original LBP operator was fixed to a 3 × 3

neighbourhood, but Ojala et al. [Ojala et al., 2002] proposed a multi resolution

and rotation invariant version.

A limitation of LBP is that a small change in the input image can change the

operator output and this is especially a problem in near uniform areas. In order
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to deal with this problem the authors in [Tan and Triggs, 2007] introduced a

three-level operator called Local Ternary Patterns (LTP). In ternary encoding,

the difference between the centre pixel and a neighbouring pixel is encoded by

three values (1, 0 or -1) according to a threshold τ . The ternary pattern is divided

into two binary patterns taking into account its positive and negative components.

Hussain et al. [ul Hussain and Triggs, 2012, ul Hussain et al., 2012] proposed an

extension of LTP called Local Quantized Patterns (LQP), that uses a lookup-

table-based codebook to code larger or deeper patterns than other LTPs. The

codebook is learned with a count-weighted version of k-Means. Several extensions

have been proposed over the years with a more detailed review of LBP features

and it extensions to be found in [Pietikaeinen et al., 2011].

Another method that has been successfully used in face recognition is Gabor fil-

tering. Gabor filters are linear filters which allow description of spatial frequency

structures in the image while preserving information about spatial relations which

are known to be robust to some variations (e.g. pose and facial expression changes

[Jin and Ruan, 2009]). Usually 40 filters (5 scales and 8 orientations) are used in

face recognition applications. For each Gabor filter, one value is computed at each

pixel position. In practice, the Gabor filters are often used as pre-processing step

of LBP [Nguyen et al., 2009, Nguyen and Bai, 2010, ul Hussain et al., 2012] where

LBP features are applied on the Gabor filtered images.

Scale-Invariant Feature Transform (SIFT) [Lowe, 1999] features are also often

used. They were originally designed to detect and describe interest points in

images. These features are invariant to image scale and rotation and robust to

changes in illumination, noise and minor changes in viewpoint. SIFT features were

directly used [Ozkan and Duygulu, 2006] to match interest points between faces

and then used to compute a matching score by averaging the Euclidean distance

between matched SIFT descriptors, as well as face descriptors [Cao et al., 2013]

that combine several SIFT descriptors into a final face descriptor.

Recently, some algorithm have been proposed [Huang et al., 2012a, Sun et al.,

2013, Taigman et al., 2014] that are different to hand-crafted features such as
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Figure 2.10: Visualization of sample filters from the second layer local CRBM.
(taken from [Huang et al., 2012a]).

LBP, Gabor filter and SIFT try to learn a feature representations using deep

learning (see Figure 2.10). Deep learning is a set of algorithms that attempt to

model high-level abstractions in data by using architectures composed of multiple

non-linear transformations.

2.2.3.1 Metric Learning

Several distance or similarity metric learning algorithms have been proposed over

the last years, whose aim is to learn a metric so that the distance\similarity

between positive face pairs is reduced\enlarged and that of negative pairs is en-

larged\reduced as much as possible (see Figure 2.11 for a sample distribution of

distances).

Most of the existing work on metric learning focus on the Mahalanobis distance

learning, which is defined for any x1, x2 ∈ Rd, by dM(x1, x2) = (x1 − x2)TM(x1 −

x2), whereM is a positive semi-definite (p.s.d) matrix. One early work was presen-

ted by Xing et al. [Xing et al., 2002] which learns a Mahalanobis distance metric

for k-means clustering. Their algorithm aims to minimize the sum of squared dis-

tances between similarly labelled inputs, while maintaining a lower bound on the

sum of distances between differently labelled inputs. Goldberger et al. [Goldber-

ger et al., 2004] proposed a method for learning a Mahalanobis distance metric for

the K-Nearest Neighbour (KNN) classification algorithm. The algorithm directly
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Figure 2.11: Distribution of distances before (a) and after (b) applying KISS
metric learning (taken from: [Koestinger et al., 2012]).

maximizes a stochastic variant of the leave-one-out KNN score on the training set.

Another algorithm that aims to improve KNN classification is presented by Wein-

berger et al. [Weinberger et al., 2006]. Their algorithm attempts to increase the

number of neighbours sharing the same label by learning a linear transformation

that minimises the distance between examples having matching labels and maxim-

ising the distance between examples with non-matching labels. Later [Weinberger

and Saul, 2008], the method was extended in terms of scalability and accuracy.

Davis et al. [Davis et al., 2007] used an information-theoretic approach to learn

a Mahalanobis distance metric. Their method exploits the relationship between

multi-variate Gaussian distributions and the set of Mahalanobis distances. The

general idea is to formulate the problem of learning an optimal distance metric

as that of learning the optimal Gaussian with respect to an entropic objective.

Guillaumin et al. [Guillaumin et al., 2009] used a probabilistic model to learn a

Mahalanobis distance metric. They defined the a posteriori class probabilities as

(dis)similarity measures and used maximum log-likelihood to optimize the para-

meters of the model. In [Koestinger et al., 2012], a method was presented to learn
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a Mahalanobis distance metric based on a statistical inference scheme.

A different metric has been proposed by Nguyen and Bai [Nguyen and Bai, 2010]

that uses Cosine Similarity (GS) instead of Mahalanobis distance, where cosine

similarity is defined as CSM = (x1, x2) = xT1Mx2/(
√
xT1Mx1

√
xT2Mx2). They

proposed a gradient-based optimization algorithm for learning a distance metric

based on the cosine similarity. Huang et al. [Huang et al., 2012b] showed how

this metric can be learned with a linear SVM. Recently, Cao et al. [Cao et al.,

2013] proposed a Generalized Similarity (GS) metric f(M,G)(x1, x2) = sG(x1, x2)−

dM(x1, x2), where dM is the Mahalanobis distance and sG is the bilinear similarity

function defined by sG = xT1Gx2. They also proposed a regularization framework

that learns the similarity metric over the intra-personal subspace.

2.2.4 Video based Face Recognition

Stallkamp et al. [Stallkamp et al., 2007] applied block-based Discrete Cosine

Transform (DCT) to non-overlapping blocks and used KNN to determine the

nearest neighbour in the training set. In order to get the final classification result,

they combined the classification result of each frame by a weighted contribution

function.

Zhao and Pietikainen [Zhao and Pietikainen, 2007] proposed a spatio-temporal

representation of the LBP feature called Volume Local Binary Patterns (VLBP).

The idea behind this feature is to combine motion with appearance features in

order to be robust to grey scale changes, rotations and translations related to

intra-personal variations. The VLBP feature looks at a face sequence as a rectan-

gular prism (or volume) and defines the neighbourhood of each pixel in 3D space.

In [Hadid and Pietikaeinen, 2009] the Extended Volume Local Binary Pattern

(EVLBP) was proposed, which extends the VLBP by allowing a flexible number

of points at each frame and by increasing the number of frames which are included

from three to five. In addition, AdaBoost is used to automatically determine the

optimal size and locations of the local rectangular prisms, and for selecting the
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most discriminative EVLBP patterns for recognition. Mendez-Vazquez [Mendez-

Vazquez et al., 2013] further developed this approach by proposing an additional

scale parameter which allows to encode the local spatio-temporal information by

comparing neighbouring regions at different scales in neighbouring frames.

Cevikalp and Triggs [Cevikalp and Triggs, 2010] represented face feature vectors

in a linear or affine feature space and characterize each set by a convex geometric

region (the affine or convex hull spanned by its feature points). Set dissimilarity is

measured by geometric distances (distances of closest approach) between convex

models. Hu et al. [Hu et al., 2011] represented a face set as a triplet: a number

of samples, their mean and an affine hull model. The dissimilarity of two sets

is measured as the distance between their nearest points. In [Wu et al., 2012b],

a set based discriminative ranking model was proposed which iterates between

set-to-set distance finding and discriminative feature space projection.

Wolf et al. [Wolf et al., 2011] used a SVM based set-to-set similarity called Matched

Background Similarity (MBGS). For each video, MBGS selects the nearest back-

ground feature samples from a set of background samples. Then a SVM is trained

for each video where the video samples are defined as positive and the background

samples as negative. Afterwards, each frame in the first video is classified by the

SVM of the second video and vice versa. The mean classification source then gives

the final result. This approach was further developed in [Wolf and Levy, 2013] with

a SVM variant called SVM-minus, which tries to "unlearn" the separation induced

by pose. Besides the MBGS, Wolf et al. [Wolf et al., 2011] also proposed several

other methods such as mean Euclidean distance, distance between most frontal

faces or maximum correlation, however none reached the same results as MBGS.

Li et al. [Li et al., 2013a] took a part based representation for a face track by

extracting local features (e.g., LBP or SIFT) from densely sampled multi-scale

image patches. Each local feature is augmented with its location, then a Gaussian

mixture model (GMM) is trained to capture the spatial-appearance distribution

of all face images in the training set. Zhu et al. [Zhu et al., 2013] proposed a
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set-to-set metric that models a set by an affine hull. They formulated the set-

to-set metric learning problem as a sample set pair classification problem. Each

sample pair is characterized by the covariance matrix of its two samples sets. A

discriminative function is then proposed for sample pair classification, and finally

the problem is solved by using a SVM model.

2.3 Open Research Issues

This chapter has discussed a range of methods that have been applied to tracking

and face recognition. Some of the discussed methods have achieved promising

results on challenging datasets. However, a number of problems and research

challenges remain unsolved or unaddressed. A brief overview of these research

issues and open problems is given in the following.

2.3.1 Tracking

Significant progress has been made in object tracking during the last few years.

Several robust tracking systems have been proposed which can track objects even

in more challenging scenarios. However, it is clear that several challenges still

remain. One important challenge in tracking is to develop algorithms for tracking

humans in crowded scenes. In these scenes there are usually severe occlusion, and

people are only partially visible. Algorithm are needed that are able to handle

partial occlusions in both the detection and the tracking stages.

Another challenge is the treatment of false-positive detections, especially in more

challenging scenarios where different object types such as animals, cars or bicycles

are present tracking can be difficult. One interesting solution in this context

was presented by Benfold and Reid [Benfold and Reid, 2011] who approached

this problem by creating a separate model for false-positives and combine the

identification of false positives with the data association. However, they assumed

that false positives are non-moving background objects which limit their approach.
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In general, an important issue that has been neglected in the development of

tracking algorithms is the high computational cost, most existing tracking-by-

detection systems are unsuitable for real-time systems. Particularly in scenarios

where high definition videos or multi-cameras are used is this a very challenging

problem. The detection stage is the main bottleneck, and corresponding strategies

are needed to address this issue.

2.3.2 Face Recognition

It can be seen that there are promising methods for face recognition. While the

majority of approaches focuses on still image recognition, more video-based ap-

proaches are being proposed. Although the results provided by recent methods

are improving, accurate video face recognition remains challenging. Videos are

often of low resolution and contain faces in non-frontal pose or partly occluded.

However, it also has the benefit of providing a setting in which weak evidence in

a single frame can be integrated over multiple frames to achieve a more accurate

result.

In order to exploit this additional information it is necessary to create novel

strategies that are capable of comparing image-sets and to incorporate spatio tem-

poral informations into the decision making process. In order to do so, it is not

sufficient to merely improve the recognition task but it is also necessary to develop

a robust framework that includes detecting, tracking and alignment. The most

current work focuses only on one of these tasks and ignores the others.

In addition, several improvements for still-image recognition have been proposed

such as novel features or novel metrics which possibly could also be exploited for

video face recognition.

2.4 Metrics

This section describes the metrics that are used in this thesis during evaluation.
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2.4.1 PASCAL measure

In order to judge if detections are true/false positives, the PASCAL measure [Ever-

ingham et al., 2010] is used. A detection is considered correct if the overlap ratio

between a detection Rd and a ground truth detection Rgt exceeds a threshold τ :

ao = |R
d ∩Rgt|

|Rd ∪Rgt|
> τ (2.5)

Each detection may be matched at most once. Any assignment ambiguity is

resolved by matching detections with highest confidence first [Dollár et al., 2012].

Following the methodology of [Dollár et al., 2012], the performance is then sum-

marised using the log-average Miss Rate (MR) computed by averaging miss rate at

nine False Positives Per Image (FPPI) rates evenly spaced in log-space in the range

10−2 to 100. For curves that end before reaching a given FPPI rate, the minimum

miss rate achieved is used. The log-average miss rate is similar to the perform-

ance at 101 FPPI but in general gives a more stable and informative assessment

of performance [Dollár et al., 2012].

2.4.2 CLEAR MOT metrics

The tracking performance is evaluated using the four CLEAR MOT metrics [Bern-

ardin and Stiefelhagen, 2008], the Multiple Object Tracking Precision (MOTP),

the Multiple Object Tracking Accuracy (MOTA) and the detection precision and

recall. The MOTA is a combined measure which takes into account false positives,

false negatives and identity switches:

MOTA = nfn + nfp + nmme
ngt

(2.6)

where nfn, nfp, nmme and ngt are the number of false negatives, of false positives,

of mismatches and of ground truth detections. The MOTP measures the precision
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Figure 2.12: The overlap between the detection and the ground truth rect-
angle is the union area (A) divided by the intersection area (B).

with which objects are located using the intersection of the estimated region Rd

with the ground truth region Rgt (see Figure 2.12):

MOTP = 1
ntp

ntp∑
i=1

|Rd
i ∩R

gt
i |

|Rd
i ∪R

gt
i |

(2.7)

where ntp is the number of true positives. The precision is the fraction of retrieved

instances that are relevant:

Prec = ntp
ntp + nfp

(2.8)

and the recall is the fraction of relevant instances that are retrieved:

Rec = ntp
ngt

(2.9)



Chapter 3

Real-time Video-based Face

Tracking and Recognition in

Smart Homes

3.1 Introduction

The LPH smart home project focuses on the creation of an environment that acts

as an intelligent agent, perceiving the state of the home and its dweller through

sensors and acting upon the environment through device controllers. In order to

allow comfortable usage and to treat every user individual, it is essential that the

computer system follows human interaction patterns and simultaneously is able

to identify the humans it is interacting with.

One way of identifying humans is face recognition. It allows identification without

user interaction. Furthermore a camera system in which the camera locations are

known allows the system to determine the location of a person. This allows a

smart home to interact with a human in a natural way.

Face recognition from video has received extensive attention in recent years [Wang

et al., 2009, Zhang et al., 2011]. Despite recent research, accurate face recognition

40
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remains challenging. Several problems still remain unsolved such as illumination

changes, pose variation, and occlusion. Unlike still image face recognition, video-

based face recognition provides a setting in which weak evidence in a single frame

can be integrated over a set of frames in order to achieve more accurate result.

In this chapter, a novel face tracking and recognition framework is presented.

Therefore, a new algorithm for building face tracks in real-life scenarios is pro-

posed, that combines face detection and optical flow tracking to a face tracking

algorithm. The temporal information which is provided by the face tracks is used

to significantly improve the recognition rate of LBP face recognition [Ahonen et al.,

2004] in video scenes.

The proposed approach is evaluated on the video face recognition dataset Honda/

UCSD Video Database (HUVD) [Lee et al., 2003, Lee et al., 2005] and a novel

dataset that simulates the scenario of a smart display in a normal household.

The test shows that the proposed approach operates in real-time and can handle

illumination changes, occlusions, and out-of-plane rotations.

The rest of this chapter is organized as follows. The details of the proposed

approach are provided in Section 3.2. In Section 3.3, experimental evaluation is

presented. Section 3.4 concludes the paper with a brief summary and a discussion

of the results.

3.2 Proposed Approach

The proposed probabilistic face recognition framework focuses on the utilization

of information from a tracked face to infer the complete information of the tracked

object. Instead of trying to recognise each frame separately, the most likely identity

for each track is calculated. This is done by recognising each face image in a

track with Local Binary Patterns (LBP) face recognition and then calculating the

maximum over the track.
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3.2.1 Tracking

Tracking is used to exploit the temporal information of a video scene for face

recognition (see Section 3.2.3) and to estimate the position of a face when the

face detector cannot detect it. In order to build face tracks T = {T1, T2, ..., Ti}, a

face detector is first applied on individual video frames It and then the obtained

detections Dt = {dt1, dt2, ..., dtj} are linked into tracks. The Viola Jones face

detector [Viola and Jones, 2002] is used in order to detect faces in a frame (a face

is described by a bounding box). In order to link the detections into face tracks,

a visual tracker is utilised to estimate the location of each face bounding box

from the last frame It−1 in the current frame It. In particular, a tracker based on

Lucas-Kanade optical-flow [Lucas and Kanade, 1981, Kalal et al., 2010] is chosen.

Therefore the face bounding box is initialized with a grid of points, then the

location of each point in the next frame is computed with Lucas-Kanade optical-

flow (see Figure 3.1). In order to be robust to outliers, the forward-backward error

[Kalal et al., 2010] of the resulting points is calculated. The calculation of this error

proceeds as follows: the resulting points are back-projected to the last frame It−1

and the Euclidean distance between the original points and their back-projection

is calculated. As an additional measurement, the Normalized Cross-Correlation

(NCC) [Lewis, 1995] between the original points and their projection is calculated:

NCC(Pt−1, Pt) =
∑
u,v(Pt−1(u, v) · Pt(u, v))√∑

u,v Pt−1(u, v)2 ·∑u,v Pt(u, v)2
(3.1)

where Pt−1 and Pt are patches around the points with a fixed size of 15× 15 pixel.

Afterwards, all points that have a forward-backward error higher than the mean

error are eliminated. The remaining points are then used to predict the position

of the bounding box dt−1j in It, with the predicted bounding box denoted as d̂tj.

In order to assign a face to a track, the overlap between the predicted bounding

box d̂tj of each track and each face detection Dt = {dt1, dt2, ..., dtj} is calculated.

If the overlap is higher than a threshold τ1, the face is considered as part of the

track and the track bounding box is set to the face bounding box.
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Figure 3.1: Lucas-Kanade optical-flow face tracking.

|d̂tj ∩ dtj| ≥ τ1 (3.2)

If a face cannot be assigned to a track and the face does not overlap with any

track, a new track is initialised for the face. If a track has no overlap with a face

and the mean NCC error of all points that were used to predict the bounding box

is under a threshold τ2, it is assumed that the tracker has failed and the track is

defined as inactive. If a track is inactive for more than n frames, it is deleted.

3.2.2 Reinitialisation of inactive Tracks

If the tracker has failed, it is likely that the face has been occluded by other

objects. In this section a novel approach is proposed in order to reinitialise tracks

if the face is visible again, by linking them to detection responses based on a link

probability. The link probability between the last detection of an inactive track Ti
and a detection dt,j is defined as the product of two probabilities based on location

pl(dt,j|Ti) and appearance pa(dt,j|Ti):

p(dt,j|Ti) = pl(dt,j|Ti)pa(dt,j|Ti) (3.3)
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An inactive track Ti and a detection dt,j are linked if the detection is not assigned

to an active track, if the link probability is higher than a threshold τ3 and if the

link probability is significantly higher than the link probability of any other track

(T ∪ Ti) including active tracks:

p(dt,j|Ti) > τ3 (3.4)

p(dt,j|Ti)− arg max
Tk∈T∪Ti

p(dt,j|Tk) > τ4 (3.5)

The location probability is based on the estimated location of the inactive track

at the current frame It. In order to estimate the location, a recursive estimator

is used. This means that only the last state from the inactive track is needed

to compute the estimate for the current state. In contrast to batch estimation

techniques, no history of observations and/or estimates is required. In what fol-

lows, the notation x̂t|m represents the estimate of the location x at time t given

observations up to, and including at time m:

x̂t|m = xm + ∆t · v (3.6)

with ∆t = t −m. The velocity v has been estimate before, as long as the track

was active, using an interpolate model that estimates the velocity using a weighted

sum rule:

v = (1− α) · v + α · vt (3.7)

with

vt = xt − xt−1 (3.8)

and α being the update rate.



Real-time Video-based Face Tracking and Recognition in Smart Homes 45

The difference between the predicted location x̂n|m and the observed location x is

assumed to follow a normal distribution with zero mean and variance of σ2
l :

pl(dt,j|Ti) = e

−||x̂n|m−x||
2

∆t2σ2
l (3.9)

The appearance distance is defined as the distance between the face patch st,j of

the detection dtj and the nearest neighbours of the set of face patches from the

inactive track Si = {si1, si2, ..., sin}. The probability of the appearance distance is

then modelled by a normal distribution with zero mean and variance of σ2
a:

pa(dt,j, Ti) = arg max
sin∈Si

e
−
f(st,j ,sin)

σ2
a (3.10)

where f(·, ·) is a distance function. In this thesis the Chi square statistic χ2 is

used (details about the Chi square statistic can be found in Section 3.2.3).

Since this approach is used in an online setting with a theoretically infinite number

of face patches, it is impossible to store all these patches. Therefore it is assumed

that only k patches can be retained. The best subset S∗ of patches from a set Si
is selected by maximizing the feature space that is spanned by the subset:

S∗max = arg max
S∗⊂Si
|S∗|=k

|S∗|∑
i=1

|S∗|∑
j=i+1

fx2(si, sj) (3.11)
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In order to update the subset sequentially at each frame with a new face patch

snew, the following online algorithm for selecting patches is proposed:

Input : S∗i,t−1, snew, k

Output : S∗i,t

Initialization: S∗ ← S∗t−1 ∪ snew

if |S∗| > k then

compute S∗max with Equation 3.11;

S∗i,t = S∗max;

else
S∗i,t = S∗

end
Algorithm 1: Face patch set update algorithm.

The parameters used for tracking such as (τ1 - τ4, σl, σa) were estimated on the

trainings set using Maximum-Likelihood Estimation [Myung, 2003].

3.2.3 Face Recognition

In this section a video face recognition algorithm is proposed. The algorithm

extends the still image face recognition approach of Ahonen et al. [Ahonen et al.,

2004] for video face recognition. Their approach first divides a face image into

4 × 4 regions from which the Local Binary Pattern (LBP) features are extracted

and then concatenated into a single histogram (see Figure 3.2). The recognition

is then performed by finding the nearest neighbour in a test set. To calculate

the distance between two histograms x, y, Ahonen et al. [Ahonen et al., 2004]

proposed the Chi square statistic χ2:

χ2(x, y) =
∑
i

(xi − yi)2

xi + yi
(3.12)

LBP face recognition was designed for still image face recognition. There are

several disadvantages in its use for video-based face recognition. Firstly, faces

extracted from videos have usually very low quality, the noise levels are high and
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Figure 3.2: Example of an LBP based facial representation.

the illumination may change through the video. Secondly, face images variations

such as expression, view and occlusion are higher. Furthermore the size of a face

(in pixel) changes from frame to frame depending on the distance between the face

and the camera. Despite these drawbacks videos have the advantage of providing

temporal information. In order to exploit this for face recognition, an algorithm

is proposed that maximises the recognition results over a track.

Suppose there is a dataset of LBP feature histograms s1, s2, ..., sm where each

feature histogram is associated with an identity ID1, ID2, ..., IDn and a set of r

faces that are assign to the track Ti. For each face in the track, the LBP feature

histograms f1, f2, ..., fr are calculated. In order to determine the identity of the

person represented in the track Ti, the identity of each face in the track is first

determined by calculating the nearest neighbour in the database:

IDij = arg min
i=1,2...m

χ2(fj, si) (3.13)

and then the identity of the track IDi is calculated by determining the most

frequently occurring ID in the track:

IDi = arg max
i=1,2...n

r∑
j=0

S(IDTj = IDi) (3.14)

with
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S(true) = 1

S(false) = 0
(3.15)

In order to reduce false positives, the minimum length of a track is set to 5.

If a track contains less than 5 faces, no recognition is performed. In order to

compensate for the problem of different views, multiple training samples were

used with a wide range of views. These views usually cover almost all possible

views and an example can be seen in Figure 3.4. An overview of the proposed

framework is shown in Figure 3.3.

Figure 3.3: A overview over the proposed framework.

3.3 Experimental Setup and Evaluation

In this section, the experimental evaluation of the proposed approach is discussed

in detail. The algorithm is first evaluated on the HUVD and then on a new dataset.

In order to learn the tracking parameters leave-one-out cross-validation is used.

One round of cross-validation involves partitioning the data into two subsets, per-

forming the training on the first subset (called the training set) and the evaluation

on the second subset (called the testing set). In order to reduce variability, mul-

tiple rounds of cross-validation are performed using different partitions and the
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evaluation results are averaged over the rounds. Leave-one-out cross-validation is

a particular case of cross-validation where the validation set size is fixed to one.

All tracking threshold and parameters are then learned from the trainings set.

3.3.1 Honda/UCSD Video Database (HUVD)

The HUVD is split into two subsets: the first contains 20 subjects [Lee et al.,

2003] and the second contains additional 15 subjects [Lee et al., 2005]. Each video

sequence is recorded indoors and contains about 300-600 frames with a resolution

of 640 × 480 pixels per frame. Every individual is recorded in at least two video

sequences. All the video sequences contain significant 2-D (in-plane) and 3-D (out-

of-plane) head rotations. In addition, some of these sequences contain difficult

events such as partial occlusion, the face partly leaving the field of view and large

scale changes.

The training set is used to build a LBP feature histogram database for each subject.

In order to extract the face image of a subject from the training sequences, a Viola

Jones face detector [Viola and Jones, 2002] was applied to each frame. Figure 3.4

shows a sample of face images for a subject.

To determine the accuracy of the proposed algorithm, the number of frames in

which a given face was correctly recognized is divided by the total number of

frames in the test videos. The first 5 frames were ignored because the proposed

algorithm needs at least a history of five frames to calculate an identity (see Section

3.2.3).

In order to show the advantage of using temporal information, the proposed al-

gorithm (LBPFHist) was compared to an algorithm with a conventional LBP face

recognition approach (LBPF). Therefore the same algorithm was used but the

history length was set to 1. In addition the previous results of Mian [Mian, 2008]

and Kim et al. [Kim et al., 2008] (see Table 3.1) were included.

The results show that the proposed algorithm has state-of-the-art performance.

However, the originality compare to Mian [Mian, 2008] and Kim et al. [Kim
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Table 3.1: Test results for Honda/UCSD Video Database

Approaches Dataset Accuracy
LBPF [Lee et al., 2003] + [Lee et al., 2005] 76.34%
LBPFHist (proposed) [Lee et al., 2003] + [Lee et al., 2005] 100%
Mian [Mian, 2008] [Lee et al., 2003] 99.5%
Kim et al. [Kim et al., 2008] [Lee et al., 2003] 100%

et al., 2008] is that a complete system was proposed that performs automatic

detection, tracking and online recognition in real-time. In contrast Mian [Mian,

2008] algorithm ignores tracking and Kim et al. [Kim et al., 2008] algorithm

does tracking but needs manual initialisation which makes both algorithm not

applicable in real life sceneries.

Figure 3.4: Sample faces of a subject taken for the Honda/UCSD Video Data-
base

3.3.2 Smart Home Dataset

Since the proposed algorithm gives essentially perfect results on the HUVD, a new

video face recognition dataset was created, called Smart Home Dataset (SHD).

The dataset (SHD) simulates the scenario of a smart display in a normal house-

hold where people appear and disappear in front of the display. It contains 5

subjects and consist of a training and a test set. The training set consists of an

approximately 300 frames frontal view video for each subject. In order to make

the recognition task more challenging, the training dataset is combined with the

HUVD, so that there are 40 subjects in the database. The test set consists of 7

videos with 1-4 different subjects, a resolution of 1280× 800 pixels per frame and

a length between 1800 to 5400 frames. For each subject, ground truth trajectories

were manually annotated. The trajectories begin when a face becomes visible and
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end when it disappears. A face is defined as visible when the face is not occluded

and the view differs not more than 80◦ from the frontal view. The challenges in

this dataset include inter-subject occlusions, and significant 2-D (in-plane) and

3-D (out-of-plane) head rotations.

The evaluation was performed as follows. The proposed face tracking and recog-

nition algorithm were used to calculate the track of the subject. Then all tracked

and recognised frames were compared to the ground truth. The results were

deemed correct if the bounding box of the ground truth and that of the algorithm

overlap more then 25%. In addition the false positive rate was calculated. The

results are presented in Table 3.2 and some sample images can be seen in Figure

3.5. It can be seen that the proposed algorithm LBPFHist (91.19% accuracy),

which uses temporal information, significantly outperforms the algorithm LBPF

(65.90% accuracy) which does not use this temporal information. The large differ-

ence between the results on different videos can be explained by different difficulty

levels; for example in the video Office2 are significantly more occlusion then in the

video Office1.

Table 3.2: Test results Smart Home dataset

Video LBPFHist (proposed) Accuracy LBPF Accuracy
Office1 97.88% 66.65%
Office2 77.22 52.18%
TV 99.62% 82.45%
Home1 93.68% 59.45%
Home2 96.76 77.47%
Home3 83.65% 57.21%
Overall 91.19% 65.90%

3.3.3 Performance

The test system is a desktop computer with an Intel Core i5-3470 CPU with 3.2

GHz and 8GB RAM. The algorithm ran under Windows and was written in C++.

The OpenCV Viola Jones face detector implementation CascadeClassifier and

the OpenCV Lucas-Kanade optical-flow implementation calcOpticalFlowPyrLK
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Figure 3.5: Sample results of the LBPFHist algorithm on the Smart Home
dataset.
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were used. On the test system, the test sequences of the HUVD ran with 25 fps

and an average processor load of 26% over all 4 cores.

3.4 Conclusion

In this chapter a novel face tracking and recognition framework was presented.

A tracking algorithm that combines face detection and optical flow tracking was

proposed. The tracking results are used as the basis for LBP face recognition. The

system significantly improved the recognition results by exploiting the temporal

information provided through the tracking process (recognition rate 76% to 100%

compared with a conventional LBP face recognition approach).

The evaluation was performed using the HUVD, where 100% recognition rate was

achieved. The test showed that our approach operates in real time and is able to

handle illumination changes, occlusions and out-of-plane rotations. Furthermore,

the algorithm was evaluated on a new dataset that included multiple people, a

wide range of views and constant appearing and disappearing of faces. On the

second dataset the algorithm reached a recognition rate of 91%. The test showed

that the proposed algorithm can be used for identification and tracking of people

in smart homes.

The proposed approach reaches good results for a scenario such as a smart TV.

However, in a smart environment such as the LPH a person should be tracked

regardless whether the face is visible or not. Therefore, a head detector is presented

in the next chapter that allows to detect a person from every view.



Chapter 4

Combining Detectors for Robust

Head Detection

4.1 Introduction

Detecting humans is an important task for a wide range of applications, like sur-

veillance, smart environments, or ambient assisted living. In indoor environments

such as the LPH as well as in crowded outdoor scenes such as shown in Figure

4.1, only some humans are fully visible (left image); for many others, only the

upper-body is visible, or even just the head (right image). Such impediments led

previous works such as [Benfold and Reid, 2011] and [Rodriguez et al., 2011] to

rely on head detection and ignore the rest of the body. However, robust head

detection is difficult to achieve and our experiments indicate that head detection

is not as reliable as full body detection (see Section 4.3). These observations mo-

tivated us to combine detectors to create a more robust head detector. The idea

is not to rely on a single detector. Instead, a head, an upper-body and a body de-

tector are used for decision making by combining their individual scores to derive

a consensus decision.

The proposed detectors are based on three new detectors for head, upper-body,

and body detection which were trained based on the Aggregated Channel Features

54
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Figure 4.1: Example of a crowd scene.

(ACF) detector framework of Dollár et al. [Dollár et al., 2014]. For each detector,

the head is defined as a point of reference that allows to combine the detectors by

taking only geometric properties into account. The main principle of combination

consists of estimating the head location of each part detector and then grouping

detections into disjoint subsets. For confidence score combination, the maximum

posterior probability over all parts is computed. In order to validate the findings,

the combined detector is tested on the town centre dataset [Benfold and Reid,

2011]. Results showed an 18% reduction in the log-average miss rate of the pro-

posed combined classifier. These results illustrate that combining head detectors

may perform better than a single detector.

4.2 Combined Head Detection

The proposed approach consists mainly of three steps. The first step is to train

each part detector separately. The second step is to apply the part detectors to

a test image and to group the resulting detections. The final step is to compute

the combined detection score. In the following section, each step is described in

detail.
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4.2.1 Detector

The proposed detector is based on three part detectors: a head, an upper-body

and a body detector. A separate detector is trained for each part using the ACF

detector framework of Dollár et al. [Dollár et al., 2014], which has shown high

accuracy on the related task of full-body pedestrian detection.

The ACF detection framework first smooths an input image I with a [1 2 1]/4

triangle filter and then computes several channels C = Ω(I). The channels are

divided into blocks and pixels in each block are summed. The resulting channels

are smoothed again with a [1 2 1]/4 triangle filter. Features are single pixel lookups

in the aggregated channels. Boosting is used to train and combine decision trees

over these features (pixels) in order to distinguish objects from the background.

For multi-scale detection a feature pyramid is built. At each scale, a sliding-window

approach is then used to detect objects.

In order to train the detector, a novel dataset was created that contains 650

overhead person images (plus horizontal mirror images) from different indoor and

outdoor locations. The people are usually standing but appear in any orientation

and against a wide range of backgrounds. The head locations were manually

annotated (see the red box in Figure 4.2), while the upper-body (green box) and

body locations (blue box) were estimated by a fixed ratio (see Figure 4.2). Head

images have a size of 16 × 16 pixels without and of 32 × 32 pixels with padding,

upper-body images a size of 30 × 41 pixels without and of 60 × 64 pixels with

padding and body images a size of 41×100 pixels without and of 64×128 pixels with

padding. In order to align the manual annotated heads, the automatic alignment

algorithm of Huang et al. [Huang et al., 2007] was used. This algorithm takes a

collation of images from a particular class and automatically aligns these images.

Since heads appear in reality under different rotations, alignment was limited to x

and y translation and scaling. As negative training set, background images from

the INRIA dataset [Dalal and Triggs, 2005] were used. By estimating the upper-

body and body locations based on the head location, the resulting detectors are

aligned at the head location. That allows more accurate head location estimation
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Figure 4.2: Annotations estimation ratios.

based on this detector output rather than if the training set were centred at the

body or upper-body location as is commonly done [Dalal and Triggs, 2005, Dollár

et al., 2012].

For each detector the same configuration was used. Ten feature channels were used:

normalised gradient magnitude, HOG (6 channels) and LUV colour channels; the

block size was set to 4× 4. AdaBoost was used to train and combine 2048 depth-

two trees over the candidate features (channel pixel lookups) in each window. The



Combining Detectors for Robust Head Detection 58

step size of the detectors is set to 4 pixels and 8 scales per octave.

4.2.2 Combining Part Detectors

The final part detectors are then applied across a test image. The same feature

pyramid is used for each detector, which speeds up the detection process (see

Section 4.3). Then the head location is estimated for upper-body and body de-

tections using the same ratio that was used to build the training set (see Section

4.2.1). In order to return one final detection, detections of different parts have to

be combined into a single detection.

In part-based models such as [Felzenszwalb et al., 2010b], the geometric relation-

ship between parts is modelled explicitly. In the developed scheme, this is not

necessary since the part detectors are aligned at the head location, so detections

can be combined in a very simple way.

The set of all part detections is first partitioned into disjoint subsets. Two de-

tections are in the same subset if their bounding regions overlap more than 50

%. Each partition yields a single final detection. The final bounding box is the

bounding box of the most confident head detection (see Section 4.2.3) and if the

partition does not include a head detection, then the bounding box of the most

confident detection of the remaining parts is used. In order to be able to compute

the combined confidence for each detection (see Section 4.2.3), the most confident

detection of each part in a partition is saved. It is worth nothing that it is not

required that all parts exist, if a partition does not include detections of all parts,

the confidence scores of the missing parts is set to zero.

4.2.3 Confidence Combination

The confidence scores of a part detection can be obtained from the boosted clas-

sifier H, which consists of K weak classifiers:
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Figure 4.3: Overview of the combined head detector.

H(x) = HK(x) =
K∑
i=1

αihi(x) (4.1)

where each hi is a weak classifier (with output -1 or 1) and αi is its associated

weight; x is classified as positive if H(x) > 0 and H(x) serves as a score. When

a person is not occluded, our experiments have shown that a body detector is

more reliable then a head detector. However, if a person is partly occluded, a

head detector is significantly more reliable than a full body detector. In order to

address this problem, occlusion information is inferred from the scores of the part

detections by selecting the part which maximises the detection score:

score(x) = arg max
1≤i≤3

P (y = 1, Hi(x)) (4.2)

where P (y = 1, Hi(x)) is the posterior probability of the i-part being a true pos-

itive. In this work the posterior is defined as a sigmoid function of the score

Hi(x):

P (y = 1, Hi(x)) = 1
1 + exp(AiHi(x) +Bi)

(4.3)

The sigmoid model is equivalent to assuming that the detection score is propor-

tional to the log odds of a positive example. The parameters A and B are learned

for each part separately from the training set (see Section 4.2.1) by the sigmoid

fitting approach proposed in [Platt, 1999]. An overview of the proposed combined

head detector is shown in Figure 4.3
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4.3 Experimental Setup and Evaluation

In order to evaluate the ability of the detector to distinguish between heads and

all other objects, experiments were done on the town centre dataset [Benfold and

Reid, 2011] which was chosen because it was designed for evaluation head de-

tection and head tracking. This dataset is a high definition video (1920x1080

pixels/25fps) of a shopping street that has a ground truth consisting of 71500

hand labelled head and body locations. Following the methodology described in

Chapter 2.4.1 the performance is summarised using thee MR and FPPI. For body

regions the PASCAL measure [Dollár et al., 2012] is employed, which states that

their area of overlap must exceed τ = 0.5 (see Chapter 2.4.1). Since head regions

are considerably smaller than full body regions, any error in the location has a

greater impact on the performance measures. This is why the measure of Benfold

and Reid [Benfold and Reid, 2011] is employed for heads, who define that the area

of overlap must exceed τ = 0.25.

Tests were performed with all three detectors separately and with the proposed

combined detector; in addition, two detectors provided by Dollár et al. [Dollár

et al., 2014] were tested. The first was trained on the INRIA [Dalal and Triggs,

2005] and the second was trained on the Caltech [Dollár et al., 2012] dataset.

Results are reported for head and body regions in Table 4.1 and some examples of

detection results are shown in Figure 4.5. In addition, in Figure 4.4 the detectors

are compared by plotting the MR against FFPI (using log-log plots) by varying

the threshold of detection confidence (details can be found in [Dollár et al., 2012]).

This is preferred to precision recall curves for certain tasks, e.g. tracking applica-

tions, as typically there is an upper limit on the acceptable FPPI rate independent

of pedestrian density [Dollár et al., 2012]. The body region for the combined, the

head and the upper-body detector as well as the head region for the upper-body,

the body, the AcfInria and the AcfClatech detector are estimated using the same

ratios used in Section 4.2.1 to create the training set.



Combining Detectors for Robust Head Detection 61

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.5

1

fppi

m
is

s 
ra

te

 

 

AcfCaltech
AcfInria
Head
Body
Upper-Body
Combined

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.5

1

fppi

m
is

s 
ra

te

 

 

AcfCaltech
AcfInria
Head
Body
Upper-Body
Combined

Figure 4.4: Log-log plots miss rate against false positives per image. Left:
Head region. Right: Body region.

The results show (see Table 4.1) that the combined head detector outperforms

all other detectors and reduced the MR for head detections from 76% (Head-

Detector) to 58% (Combined-Detector). Even in the case of the full body region,

the combined detector achieves the best result, which is particularly remarkable

since using the head is often not discriminative in various tasks. In case of the body

location, the proposed body detector and the AcfInria detector achieve similar

results, but in case of the head location the proposed body detector archives a

28 % better result. This shows the advantage of defining the head as point of

reference for the trainings image instead of the full body.

4.3.1 Performance

The combined detector needs 360 ms to process a 1920 × 1080 pixels image on

the test machine, a desktop computer with an Intel Core i5-3470 CPU with 3.2

GHz and 8GB RAM. A single detector needs 260 ms. That the combined detector

is only 38% slower is due to the fact that the most time-consuming process, the

features computation, only has to be done once.
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Figure 4.5: Some examples of detections on test images (1 + 2 town centre,
3 test image from the training set) for the final person detector.

Table 4.1: Performance on the town centre dataset

Method MR - Head MR - Body
AcfClatech [Dollár et al., 2014] 99% 96%
AcfInria [Dollár et al., 2014] 95% 72%
Head 76% 87%
Body 67% 70%
Upper-Body 66% 81%
Combined (proposed) 58% 66%

4.4 Conclusion

In this paper, a novel method was developed to combine different detectors for head

detection. Three separate detectors for head, upper-body and body detection were

trained based on the ACF detector framework of Dollár et al. [Dollár et al., 2014].

An algorithm was proposed to combine part detections that first estimates the head

location of each part detector and then groups detections by partitioning them into

disjoint subsets. The final confidence score is then calculated by maximising the

detection score over all parts. In order to validate the findings, the performance

of the detection system was examined on the town centre dataset. The results

showed that combing a head, an upper-body and a body detector gives very good

results for head detection by reducing the MR by 18%.

In the following chapter the proposed head detector is used as detector for multi-

target tracking by detection system.



Chapter 5

Multi-Target Tracking

5.1 Introduction

In this chapter, a new system for real-time multi-target tracking is presented

and analysed. Markov Chain Monte Carlo Data Association (MCMCDA) [Pa-

sula et al., 1999, Yu et al., 2007, Liu et al., 2007b, Ge and Collins, 2008, Benfold

and Reid, 2011] is adapted to estimate a varying number of trajectories given a set

of detections extracted from a video sequence. The system focuses on head detec-

tion, because heads are hardly obscured from overhead surveillance cameras. The

purpose of the system is to provide stable head location estimation in real-time

for surveillance cameras. Therefore, the approach of Benfold and Reid [Benfold

and Reid, 2011] was adapted, however several improvements were made with the

aim to reduce the number of false positive heads and to increase the number of

corrected tracked heads.

The first contribution involves the head detection. In order to be more robust

to false positive detections and to minimise the number of missed detections, a

novel schema is proposed which include the identification of true positives with

the data association instead of using the internal decision making process of the

detector. The assumption is that the average detection score of a true positive

track is higher than the average detection score of a false positive track.

63
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Figure 5.1: Results from the work of Benfold and Reid [Benfold and Reid,
2011].

The next contribution, involves the treatment of false positive detections. False

positives are a frequent problem in multi-target tracking, and they either occur on

background objects or as part of a foreground object. False positives in background

regions are stationary and often repeatedly occur on the same position. Benfold

and Reid [Benfold and Reid, 2011] have shown that such false positives can be

filtered out by creating a separate model for false positives and then combine the

identification of false positives with the data association. However, different to

background false positives, foreground false positives are the result of incorrect

detections on a foreground objects, for example incorrect head detections on other

body parts such as shoulders or on bags.

It has been noticed that such incorrect detections have the same motion model as

true positives and therefore can not be detected by the model of Benfold and Reid

[Benfold and Reid, 2011]. Figure 5.1 shows an example where the model of Benfold

and Reid [Benfold and Reid, 2011] failed to detected foreground false positive.

The left image shows the raw detections with a true positive (blue rectangle),

a background (purple rectangle) and a foreground false positive (red rectangle).

The right image shows the results after data association where the algorithm of

Benfold and Reid [Benfold and Reid, 2011] was able to remove the background

false positive but not the foreground false positive (blue rectangle). However

experiments showed, that even when the motion model of foreground false positive

is the same as of true positives, they have mostly properties which label them as

false positives. In order to filter out foreground false positives the approach of

Benfold and Reid [Benfold and Reid, 2011] was expanded with separate models for

background and foreground false positives rather than background false positives
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only.

The framework was evaluated on the town centre benchmark where a MOTA of

81.55% was achieved and on the Parking Lot benchmark where a MOTA of 79.71%

was achieved. Additional experiments assess various sub-parts of the system that

might affect the performance.

The rest of this chapter is organised as follows. A description of the system

employed can be found in Section 5.2. Experimental results are presented in

Section 5.3. Conclusions are presented in Section 5.4.

5.2 Multi-Target Tracking

In agreement with the majority of recent multi-target tracking methods [Liu et al.,

2007b, Yu et al., 2007, Ge and Collins, 2008, Benfold and Reid, 2011], tracking

by detection is pursued. Targets (pedestrians) are separated from the background

in a preprocessing step and form a set of target hypotheses, which are then used

to infer the target trajectories. In order to estimate the location of pedestrians

in the current frame and to ensure that data associations can be made correctly,

a tracker is initialised to track the relative motion for a period of time d (in our

case d = 75 frames). In order to achieve real-time performance, a multi-threaded

approach is used in which one thread produces asynchronous detections while a

second thread applies the tracking algorithm and a third thread performs data

association. Figure 5.2 illustrates the relation between each thread.

5.2.1 Data Association

Assuming there is a set of detections D = {D1, D2, ..., Dτ} in the time interval

[1, τ ], where Dt = {dt1, dt2, ..., dtn} are the detections obtained at the frame t. For

each detection, a tracker is initialised to track the relative motion for a period d

(in our case d = 75 frames). The aim is to find the hypothesis, Hi, that divides the

detections into a set of target trajectories T = {T1, T2, ..., Tj}, so that each track
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Figure 5.2: System overview.

contains all observations of a single person. In order to represent false positive

trajectories, each track has a type cj that can take the values cp for true positive,

cf1 for foreground false positive and cf2 for background false positive trajectories.

Each observation is constrained to be associated with at most one track, and only

one detection can be associated to a track at each time step.

The tracking problem is then formulated as a Bayesian problem and then the

Maximum a Posterior (MAP) estimator of the posterior distribution is taken as

the optimal solution for the hypothesis H:

H∗ = arg max(p(H|D)) = arg max(p(D|H)p(H)) (5.1)

where p(D|H) is the likelihood function that models how well the hypothesis fits

the detections and p(H) expresses the prior knowledge about desirable properties

of good trajectories. As prior the function of [Benfold and Reid, 2011] was adapted:

p(Hi) = J !
∏

Tj∈Hi

(
|Tj|
|D|

)|Tj |
p(cj) (5.2)

where p(cj) is a prior over the different track types in case of this thesis cp, cf1 and

cf2. |D| and |Tj| are the cardinalities of the sets D and Tj. The factor of J ! arises

because the ordering of the subsets is not important, so the first detection in any
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track may be encoded with any of up to J identifiers which have not already been

used [Benfold and Reid, 2011].

In order to represent both background and foreground false positives, the following

likelihood function is proposed:

p(D|Hi) =
∏

Tj∈Hi

p(dj1|cj) ∏
djn∈Tj/dj1

p(djn|d
j
n−1, cj)

 (5.3)

where djn is the n detection in a track Tj, with n indicating only the order within

the track. The link probability between two detections is then defined as the

product of four probabilities, namely the probability for size s, location x, motion

m, and detection score r.

p(dj1|cj) = p(s1|cj)p(x1|cj)p(m1|cj)p(r1|cj) (5.4)

p(djn|d
j
n−1, cj) = p(sn|sn−1)p(xn|xn−1, cj)p(mn|cj)p(rn|cj) (5.5)

The proposed link probability is designed to represent the correct data association

and track types and allows in contrast to the link probability of [Benfold and Reid,

2011] to make a distinction between true positives and foreground false positives.

In the following, each probability will be explained in detail.

5.2.2 Feature Extraction and Modelling

The features are designed to represent the correct data associations and track

types. For each detection, the size of the detection sn, the location xn, the motion

vector mn and the detection score rn with n ∈ [1, |Tj|] is encoded.
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5.2.2.1 Detection Score

Object detection algorithms like the Histograms of Oriented Gradients (HOG)

based detection algorithm used in [Benfold and Reid, 2011], utilise only the in-

formation present in a single frame to decide if a possible head candidate is a true

positive. However, in the case of multi-target tracking, each true detection is part

of a track of true detections. This additional information can be used to increase

the accuracy at each frame.

In order to exploit this additional knowledge, a novel scheme is proposed that

instead of using the internal decision making process of the detector, it includes

the identification of true positives with the data association. The assumption is

that the average detection score of a true positive track is higher than the average

detection score of a false positive track. This has two advantages: firstly the

recognition rate of false positives improves and secondly true positive detections

with low confidence are included which would otherwise be removed.

The general idea is that a head detector is trained in such a way that all possible

head candidates are returned, the ones with low confidence which are most likely

false positives. Then a probability is assigned to each detection that describes

how certain it is that this detection is a true positive and then this probability

is included in the data association process. The combined detector proposed in

Chapter 4 is used, but each part detector is retrained such that 99% of the true

detection are retained without taking false positives into account. This results in

a detector that returns almost all true positives and an acceptable number of false

positives (see Figure 5.3). A example can be seen in Figure 5.3. On the left the

result of detector trained with default configuration are shown. It can be seen

that two heads were no detected (marked with a circle). On the right the result of

a detector trained with proposed configuration, all head were detected but three

false positive detections (marked with a circle).

The probability of each detection to be a true positive is then modelled in the

same way as in Chapter 4:
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Figure 5.3: Detector results with default and proposed configuration.

f(rn) = arg max
rn

1
1 + exp(Airni +Bi)

(5.6)

where rn = {H1(x), H2(x), H3(x)} is the confidence vector that containers the

confidence of each part detector. The probability that a detection is a true positive

detection is then:

p(rn|cp) = f(rn) (5.7)

and a false positive detection:

p(rn|cf1) = 1− f(rn) (5.8)

p(rn|cf2) = 1− f(rn) (5.9)

5.2.2.2 Detection Size

Benfold and Reid [Benfold and Reid, 2011] assumed that the size of the first

detection has a global prior log-normal distribution that is independent of the

image location. However, in most scenarios that were examined the size of a true

positive detection strongly correlates with the image location x. For example, in

the town centre scene the average head size of a person on the left side is 50.3 pixels

whereas the average size on the right side is 18.7 pixels. Figure 5.4 illustrates the

relation of image location (x and y axis) to average head size (z axis) in the town

centre scene. This relation is modelled with a probability map that depends on

the image location xn, yn and assume a normal distribution:
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Figure 5.4: Mean detections size in the town centre scene summed over 100×
100 blocks.

ln(s1) ∼ N(µmap(x1, y1), σ2
map(x1, y1)) (5.10)

In contrast, the size of the foreground and background false positives is uniformly

distributed over the set of possible sizes S:

p(s1) = 1
|S|

(5.11)

For the following detections in the track, the size is then encoded by the ratio to

the previous detection:

ln
sn
sn−1

∣∣∣∣cp ∼ N(0, δtσ2
sp) (5.12)

ln
sn
sn−1

∣∣∣∣cf1 ∼ N(0, δtσ2
sf1) (5.13)

ln
sn
sn−1

∣∣∣∣cf2 ∼ N(0, δtσ2
sf2) (5.14)
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Figure 5.5: Entry map in the town centre video.

where δt is the time difference between the frames in which the detections were

made.

5.2.2.3 Detection Location

Previous approaches [Ge and Collins, 2008, Benfold and Reid, 2011] have assumed

that the locations of both pedestrians and false positives are uniformly distributed

around the image; however in the case of a stationary camera this is not true for

pedestrians. A pedestrian always has to enter the scene at some point and therefore

the first detection has to be next to an entry point. In order to model this fact,

an entry map is built. Figure 5.5 shows an example of such an entry map. The

hatched area defines the possible entry points. The probability that a track is a

true positive track depends on the distance from the first detection xn to the next

entry point ep divided by the detection size s1:

||x1 − ep||
s1

∣∣∣∣cp ∼ N(0, σ2
p) (5.15)

where || · || is the Euclidean distance.
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For false positives, it is assumed that the location of the first detection is uni-

formly distributed around the image, therefore the probability density of x1 is

proportional to the square of the object size s (in pixels), divided by the image

area α:

p(x1) = s2
1
α

(5.16)

For the following detections, the probability depends on the track type. For true

positives and foreground false positives, the probability depends on the estimated

location xest of the previous detection xn−1 at the time t, where t is the time at

which the following detection xn was made. In order to estimate the location xest,

the tracker that was proposed recently in [Ben-Ari and Ben-Shahar, 2013] is used.

This tracker combines template matching and an adaptive Kalman filter and is

able to deal with temporary occlusions. A normal distribution is assumed:

||xn − xest||
∣∣∣∣cp ∼ N(0, σ2

lp + 2σ2
d) (5.17)

||xn − xest||
∣∣∣∣cf1 ∼ N(0, σ2

lf1 + 2σ2
d) (5.18)

where 2σd is an additional uncertainty that models the error in the two detection

locations. Background false positives are the result of background objects, and

therefore the location is assumed stationary:

||xn − xn−1||
∣∣∣∣cf2 ∼ N(0, 2σ2

d) (5.19)

5.2.2.4 Motion Vector

As the last feature, a motion vector histogram similar to [Benfold and Reid, 2011]

is used. This histogram included to distinguish between background false positives

which are expected to have no movement and true positives which are excepted to
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have at least a small amount of movement. The motion vector histogram has four

bins with boundaries representing movement of 1
8 ,

1
4 ,

1
2 pixels per frame, where the

motion vector is calculated from the result of the tracking in the first five frames

immediately after the detection. A multinomial distribution is then used to model

the probability:

mn|cp ∼Mult(mp) (5.20)

mn|cf1 ∼Mult(mf1) (5.21)

mn|cf2 ∼Mult(mf2) (5.22)

The multinomial distribution is a generalization of the binomial distribution. The

parameters mp,mf1 and mf2 define for each track type the event probability of

each histogram bin.

5.2.3 Markov Chain Monte Carlo Data Association

Evaluating the space of hypotheses is extremely challenging and a closed form

solution is usually not available in practise. That is why Markov Chain Monte

Carlo Data Association (MCMCDA) [Ge and Collins, 2008, Benfold and Reid,

2011] is used to estimate the best hypotheses H∗.

The MCMCDA algorithm is based on the Metropolis Hastings algorithm. Met-

ropolis Hastings is a method for obtaining a sequence of random samples from

a probability distribution for which direct sampling is difficult. The Metropolis

Hastings algorithm generates a sequence of sample values in such a way that as

more and more sample values are produced, the distribution of values more closely

approximates the desired distribution P (H). At each iteration, the algorithm picks

a candidate for the next sample value based on the current sample value and a
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proposed distribution q(Hi → H∗). Then an acceptance function defines the like-

lihood with which the proposal should be accepted:

p(Hi+1 → H∗) = min
(

1, p(H
∗)

p(Hi)
q(Hi → H∗)
q(H∗ → Hi)

)
(5.23)

In case of MCMCDA, Metropolis Hastings sampling is used to explore the space of

data associations by generating a sequenceH0, H1, H2, ..., Hn of sample hypotheses.

The aim is to find the hypotheses H∗ with the highest probability, hence the

algorithm keeps track of the most likely hypothesis Hmax since the last received

hypothesis is not guaranteed to be the most likely. The complete algorithm is

summarized in Algorithm 2.

In this work, the MCMCDA algorithm is used within a temporal sliding window

[Stalder et al., 2010, Song et al., 2010, Benfold and Reid, 2011] representing the

most recent d frames that have been received. Doing so allows the algorithm to

recover from false associations and makes it robust against inaccurate detections

or tracking errors.

Different to recent approaches [Ge and Collins, 2008, Benfold and Reid, 2011],

this thesis proposes to use a proposal distribution that consists only of two moves.

The first move can change the data association and the second move can change

the type of a track. In the first move, a pair of trajectories is randomly selected

(Ti, Tj), as well as a switch range τ = [t1, t2] within the sliding window W . Then

all the detections in this range τ are switched between the two the trajectories.

This move substitutes all data association moves of recent approaches. Figure 5.6

compares the proposed move with the moves of [Ge and Collins, 2008] and [Benfold

and Reid, 2011]. If a move creates a new empty track, then this empty track is

removed and when one or multiple detections are added to the empty track, a new

empty track is added to the set of trajectories.

In second move, a random track Tj is selected and then the type cj of this track

is randomly switched to one of the remaining types.
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(a) Swap of a single detection
(τ = [3, 3]).

(b) Different to recent approaches, the
proposed move is also able to swap mul-

tiple detections (τ = [3, 4])

(c) The empty track allows to split and
merge tracks (τ = [3, 5]).

(d) By setting t2 to the end of the win-
dow the move creates the same result
as the switch move in [Ge and Collins,
2008, Benfold and Reid, 2011] (τ =

[4, 5])

Figure 5.6: Examples of the first move used for MCMCDA, the rectangles in
the same colour belong to the same track

5.2.4 Assignment of Detections

Recent approaches [Benfold and Reid, 2011] add a set of new detections Dt =

{dt1, dt2, ..., dtj} to data assignment by creating a new track for each detection

that only contains this single detection. However, experiments showed that this

is not the optimal solution since most of the new detections belong to existing

tracks. Finding the optimal solution for such a problem is known as assignment

problem, which can be formulated as follows.
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Input : D,T,H0, nmc,W
Output : Hmax

Initialization: H ← H0, Hmax ← H0

for i← 1 to nmc do
sample a move m from the distribution pH(m,W );
propose H ′ from the move specific proposal pm(H);
sample U ∼ Uniform(0, 1);
if U ≤ p(Hi+1 → H∗) then

H ← H ′;
if p(H) > p(Hmax) then

Hmax ← H;
end

end
end

Algorithm 2: Markov Chain Monte Carlo Data Association

Given an m× n cost matrix C let m be the number of tracks, n is the number of

detections and Ci,j the cost of assigning j-th detection to the i-th track. The aim

is to select n elements of C, so that exactly one track is assigned to one detection

and the sum of the corresponding costs is minimum.

Cm,n =



C11 C12 · · · C1n

C21 C12 · · · C1n
... ... . . . ...

Cm1 C32 · · · C1n


(5.24)

where m is the size of all recent tracks plus the number of new detections m =

|T |+ |Dt| and n is the size of all new detections n = |Dt|. The components of the

cost matrix are then defined as:

Ci,j =



1− p(Ti|dtj, ci) if i ≤ |T |

1− p(dtj|cmaxtj) if i > |T | and i = j

∞ otherwise

(5.25)

where p(Ti|dtj, ci) is the link probability between the last detection in a track

Ti and a new detection dtj (see Equation 5.5). p(dtj|cmaxtj) is the maximum of
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the first detection likelihood (see Equation 5.4) over the set of track types cj =

{cp, cfp1, cfp2}:

cmaxtj = arg max(p(dtj|ctj)) (5.26)

In this work, the Hungarian method [Kuhn, 1955, Munkres, 1957, Miller et al.,

1997] also known as Kuhn-Munkres algorithm or Munkres assignment algorithm,

is used to find the optimal assignment for the given cost matrix.

5.2.5 Parameter Estimation

The optimal model parameters are likely to depend on the tracking scenarios.

Ge and Collins [Ge and Collins, 2008] have proposed an approach for automatic

parameter estimation by interleaving the MCMCDA sampling with an additional

Metropolis Hastings update for the parameters. In this thesis, the same approach

is used to estimate the parameters, however as pointed out in [Benfold and Reid,

2011] parameter updates take considerably longer then data association updates

because the likelihood must be recalculated for all the data. In the case of a

live system, the parameters can be learned over several hours but since most of

benchmarks are only some minutes long, the videos are slowed down for training

so that there is enough time to learn the parameters. The entry points for the

entry map were manually defined.

5.3 Experimental Setup and Evaluation

In this section the performance of the proposed multi-target tracker is evaluated on

two challenging image sequences. The model parameters were learned as described

in Section 5.2.5. Since detections do occur delayed and not in every frame, the

current location is estimated with the tracker of the last detection in each track.
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Table 5.1: Town centre benchmark head results.

Exp. Method MOTA MOTP Prec. Rec. False Pos. Missed
1 Benfold

[Benfold
and Reid,
2011]

45.40% 50.80% 73.80% 71.00% 18374 20427

Proposed 81.55% 64.51% 90.87% 91.35% 6500 6127
2 Test 2A 74.61% 64.53% 91.29% 82.71% 5586 12247

Test 2B 76.53% 64.35% 85.63% 92.73% 11021 5147

5.3.1 Town Centre Benchmark

The town centre benchmark is a high definition video (1920x1080 pixels/25 fps) of

a shopping street that has a ground truth consisting of 71500 hand labelled head

locations. In Table 5.1 the results of the head location estimation are compared to

the work of Benfold and Reid [Benfold and Reid, 2011]. Some example tracking

results are presented in 5.7. The results show the advantages of the proposed

approach. It can be seen that the number of missed detections and simultaneously

the number of false positive detections are reduced. The improvement in the

proposed method is a result of two main factors: Firstly, the combined detector

produce more accurate head detections. Secondly, the schema that distinguishes

between foreground and background false positives is more robust against false

positive.

The next experiment (2) shows the impact of the different contributions for false

positive detection. Therefore, two tests are done; Test 2A illustrates the advant-

age of including the identification of true positives with the data association by

showing the recognition rate of the combined detector with default configuration

(see Section 5.2.2.1) and without including the score probability. The results show

that the number of missed detections increases from 6127 to 12247 and that the

number of false positives drops slightly from 6500 to 5586. This is due to the fact

that the proposed detector is explicitly trained such that all possible head candid-

ates get returned, even those with low confidence scores (see Section 5.2.2.1). As

a consequence, the number of missed detections drops but also some additional

false positives appear that could not be filtered in the data association step.
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Figure 5.7: Sample video frames from the town centre sequence.

Test 2B shows the advantage of creating a separate model for background false

positives by testing the proposed schema without background false positives. The

resulting schema is then similar to the schema of [Benfold and Reid, 2011]. In this

test, the number of false positives increases from 6500 to 11021, possibly because

foreground false positives get classified as true positives since they have the same

motion model. Simultaneously the number of missed detections drops 6127 to

5147, probably because true positive tracks can not be erroneously classified as

foreground false positives.

5.3.2 Parking Lot Benchmark

The parking lot benchmark is a high definition video (1920x1080 pixels/29 fps) of

a parking lot in which a group of 14 pedestrians are walking through the scene. It

has a ground truth consisting of 2500 hand labelled body locations. The challenges

in this benchmark include long-term inter-objects occlusions, camera jittering and

similarity of appearance among the humans in the scene [Shu et al., 2012]. Since

the ground truth is for body locations and the proposed algorithm only tracks

heads, the full body regions were estimated using the fixed ratio as in 4.2.1. The
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Table 5.2: Parking Lot benchmark results.

Method MOTA MOTP Prec. Rec. False Pos. Missed
Shu [Shu et al., 2012] 79.3% 74.1% 91.3% 81.7% n/a n/a
Proposed 79.71% 73.53% 95.49 91.4% 189 212

results are shown in Table 5.2. The proposed algorithm achieves similar results to

[Shu et al., 2012], however their approach is not real-time.

5.3.3 Performance

The bottleneck of most tracking-by-detection systems is the detections step, es-

pecially in HD videos. In the proposed approach this issue is addressed by a

multi-threaded approach in which one thread produces asynchronous detections

while a second thread applies the tracking algorithm and a third thread performs

MCMCDA. MCMCDA has the additionel advantage that at any instant in time it

can report its current best estimate of all target tracks. This architecture ensures

that the proposed approach runs always in real-time. However, this also means

that the accuracy of system is directly dependent on the performance of each part.

For example if the detection step would need 10 minutes, a correct data associ-

ation would be almost impossible. That is why the performance of all parts will

be evaluated individually in the following. The test system is a desktop computer

with an Intel Core i5-3470 CPU with 3.2 GHz and 8GB RAM.

Benfold and Reid [Benfold and Reid, 2011] used a GPU implementation of a

HOG detector that needed on their system 1200 ms, no details are given about

what kind of GPU was used. On the test system, which is used in this thesis,

the OpenCV CPU implementation ( HOGDescriptor::detectMultiScale ) of a full

body HOG detector needs on average 2500 ms when using only one core. Shu

et al. [Shu et al., 2012] use in their approach deformable part-based model for

human detection similar to the approach of Felzenszwalb et al. [Felzenszwalb

et al., 2010b]. Shu et al. [Shu et al., 2012] do not provide source code but the

approach of Felzenszwalb et al. [Felzenszwalb et al., 2010b] is public available,

which needs on the test system used in the thesis 6000 ms. As mention in Chapter
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4 the proposed detector needs only 360 ms, which is significantly faster then the

approaches used by Shu et al. [Shu et al., 2012] and Benfold and Reid [Benfold

and Reid, 2011].

Benfold and Reid use as tracking algorithm Kanade-Lucas-Tomasi (KLT) with 4

points, the OpenCV implementation of this algorithm ( calcOpticalFlowPyrLK )

needs on the test system per frame and detection 0.1 ms. The proposed system

uses tracking algorithm of Ben-Ari and Ben-Shahar [Ben-Ari and Ben-Shahar,

2013] which needs on the test system 0.5 ms per frame and detection. Shu et al.

[Shu et al., 2012] do not use a tracking algorithm.

For data association the proposed system as well as the system of Benfold and

Reid use MCMCDA. Experience showed that generating 5000 sample values is

sufficient reach correct data association for which the system needs average 35 ms.

Shu et al. [Shu et al., 2012] algorithm needs on a conventional desktop computer

between 200 ms and 1000 ms.

5.4 Conclusion

This chapter presents an approach for real-time multi-target tracking that effect-

ively deals with false positive detections. In order to achieve this, a novel motion

model was built that treats false positives on background objects and false posit-

ives on foreground objects separately. The novel model makes the tracker robust

against false positives and simultaneously reduces the number of missed detec-

tions. In addition, a novel detector was proposed that combines head, upper body

and body detection. The results showed that this approach is superior to earlier

approaches. For the town centre dataset the number of missed detections decreases

from 18374 to 6500 and the number of missed detections decreases from 20427 to

6127.
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In the next chapter the proposed multi-target tracking system is used to build

face tracks which are then used for video face recognition and in Chapter 7 it is

extended for multi-target tracking for fisheye cameras.



Chapter 6

Face Recognition in Videos via

Generalized Similarity

6.1 Introduction

Face recognition is an important and popular computer vision topic. Applications

of face recognition can be found in surveillance and security, human-computer

intelligent interaction and smart environments. Recently, video-based face recog-

nition has become more and more popular, where the problem becomes more

challenging due to illumination changes, pose variation, and occlusion. However,

it also has the benefit of providing a setting in which weak evidence in a single

frame can be integrated over a set of frames to achieve a more accurate result.

The video-based face recognition problem depends on two tasks: accurate face

tracking and recognition of the tracked data. Face tracking is a critical step that

first detects the face in video frames and then associates the detections to a track,

from which feature descriptors can be extracted and fed as input data to the face

recognizer. This chapter introduces a novel fully automatic framework for video

face recognition, which includes face detection, multi-target face tracking, face

alignment, and video face recognition.

83
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The contributions of this chapter are summarized as follows: The first contribution

is a novel face detector that combines a general classifier with five view-specific

classifiers. The detector uses boosted classifiers and pixel lookups in aggregated

channels [Dollár et al., 2014] as features. The detector reaches state of art results

and yields considerable speed-up compare to detector that uses only view-specific

classifiers.

Furthermore two novel set-to-set similarity measures, the Generalized Matched

Background Similarity (GMBGS) and the Mean Vector Generalized Similarity

(MVGS), are presented. These similarity measures are designed for comparing

the frames of two face videos in order to determine whether the faces appearing

in the two sets are the same subject. The GMBGS method is built upon the

Matched Background Similarity (MBGS) [Wolf et al., 2011] and utilizes the Gen-

eralized Similarity (GS) for sets. Whereas the MBGS uses a linear combination of

feature vectors from a set in order to use the GS directly. In addition, a complete

framework is presented that uses the face detector and the similarity measures in

order to create a robust video-based face recognizer. Finally, the algorithms are

evaluated on three existing datasets (YouTube Faces, YouTube Celebrities, and

ChokePoint), where recognition rate of 83.44%, 84.07% and 100% were achieved.

6.2 Proposed Approach

In this section, the proposed approach is described in detail. Firstly, the proposed

face detector is described followed by the face tracking algorithm based on multi-

target tracking. Finally, details of the proposed set-to-set similarity measures are

given.

6.2.1 Face Detection

Lots of work has been done in object and face detection in order to increase the

detection accuracy, however, improved detection accuracy has been accompanied
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by increased computational costs. As pointed out in [Dollár et al., 2014], the Viola

and Jones detector [Viola and Jones, 2002] ran at 15 frames per second (fps) over

a decade ago, on the other hand, most recent detectors require multiple seconds

to process a single image as they compute richer image representations. The aim

of this thesis is to achieve real-time performance, therefore a novel face detector

is proposed called ACFFace-5 that focuses on speed while maintaining accurate.

The ACFFace-5 was inspired by the SquaresChnFtrs-5 detector proposed in [Math-

ias et al., 2014]. There are two main differences between the proposed detector and

the SquaresChnFtrs-5 detector. Firstly, the SquaresChnFtrs-5 trains classifiers for

five different views that are later eventuated individually. The proposed detector

first evaluates a general classifier that was trained on all views and then evaluates

view-specific classifiers only on promising windows. In doing so the evaluation

cost is reduced, since for all non promising results only one classifier has to be

evaluated instead of five.

Secondly, the SquaresChnFtrs-5 detector depends on the Integral Channel Fea-

tures (ICF) [Dollár et al., 2009, Dollár et al., 2010] framework while the proposed

detector depends on the Aggregated Channel Features (ACF) [Dollár et al., 2014]

framework, which achieves slightly better results (see [Dollár et al., 2014]). Both,

ACF and ICF, use the same channel features and boosted classifiers; the key

difference between the two frameworks is that ACF uses pixel lookups in aggreg-

ated channels as features while ICF uses sums over rectangular channel regions

(computed efficiently with integral images) [Dollár et al., 2014]. Both frameworks

have similar accuracy [Dollár et al., 2014] but ICF is slower than ACF (in [Dollár

et al., 2014] 16 fps versus 30 fps) due to construction of integral images and more

expensive features.

The detector was trained on the AFLW database [Koestinger et al., 2011] that

consists of 26000 annotated faces. A frontal face detector (yaw angle ±20 degrees)

and four side views ( 20 to 60, 60 to 100, −20 to −60, −60 to −100 degrees) were

trained using 5886, 3700, 2131, 3424 and 1741 samples respectively. Pitch and roll

were kept between 22.5 degrees. Each face was resized to 80 × 80 pixels with an
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addition padding of 8 pixels to each side. As the negative training set, background

images from the INRIA dataset [Dalal and Triggs, 2005] were used.

The classifiers were trained jointly in multiple rounds of bootstrapping to make

sure that no additional false positives could be found in the negative training set.

In each round, the general classifier was trained first and then the component

classifiers. For each detector the same configuration was used. Ten feature chan-

nels were used: normalised gradient magnitude, histogram of oriented gradients (6

channels) and LUV colour channels; the block size was set to 4×4. AdaBoost was

used to train and combine depth-two trees over the candidate features (channel

pixel lookups) in each window. For the general classifier N = 512 trees were used

and for the view classifiers K = 1536 trees were used. This values were determined

empirically. The resulting classifier H has the flowing form:

H(x) =
N∑
i=1

αihi(x) + arg max
1≤v≤V

K∑
i=1

α
(v)
i h

(v)
i (x) (6.1)

where each hi is a weak classifier (with output −1 or 1), αi is the associated

weight and V are the number of components. If H(x) > 0, then x is classified

as positive and H(x) serves as the confidence score. The final confidence score is

the confidence score of the general classifier plus the maximum confidence score

of the view-specific classifiers. During evaluation, a rejection threshold τ is used

after evaluation of every weak classifier and if H(x) < τ computation stops. After

evaluation, the detected bounding boxes are concatenated and if their overlap is

greater than 0.3 then the bounding boxes with the lower scores are suppressed.

Figure 6.1 summarizes the complete evaluation process.

6.2.2 Face Tracking

In order to achieve reliable face tracking, the real-time multi-target tracking system

presented in Chapter 5 is extended for face tracking. Therefore, the combined head

detector that was used in Chapter 5 and presented in Chapter 4 was extended
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Figure 6.1: Overview of the ACFFace-5 detector.

with the ACFFace-5 detector as an addition part detector. Compared to other

approaches that rely only on face detections [Kim et al., 2008, Ortiz et al., 2013]

a combination of head and face detection has the advantage that a person (head)

can be tracked regardless whether the face is visible or not. For each face, fiducial

points are localized using the approach proposed in [Asthana et al., 2014a] that is

public available under [Asthana et al., 2014b]. The points are then used to align

the faces with a similarity transformation, as described in Chapter 2.2.2.

6.2.3 Feature Extraction

Local Quantized Patterns (LQP) [ul Hussain and Triggs, 2012] are a generalization

of local pattern features (such as LBP [Ojala, 1996]), that provide good results for

face recognition [ul Hussain et al., 2012]. Local pattern features, based on the idea

that small patterns of qualitative local gray-level differences, contain a great deal

of information about higher-level image content. LQP uses a lookup-table-based

vector quantization to code larger or deeper patterns. For example Hussain et

al. [ul Hussain et al., 2012] used a LQP pattern that involved 24 ternary pixel

comparisons whereas LBP only uses 8 binary pixel comparisons.

In the current study, LQP are used as features for face representation. Similar to

[ul Hussain et al., 2012], a disk layout is used to sample pixels from the neigh-

bourhood, to generate a pair of binary codes using ternary splits (see Equation

6.3) and to quantize each one using separately learned codebooks. The codebooks
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are learned by applying k-means clustering to all possible feature vectors (see

[ul Hussain and Triggs, 2012] for details).

Hussain et al. [ul Hussain et al., 2012] distinguish in their work between binary

and ternary coding. In the binary coding, the pixel values p are compared to the

centre c and set to 1 if p ≥ c and to 0 otherwise:

fi =


1 if p ≥ c

0 otherwise
(6.2)

Whereas in the ternary coding, a zone of width ±τ around c is quantized to 0 with

pixels above the threshold quantized to +1, and pixels below the threshold to -1,

that is, the indicator f(i) is replaced by a 3-valued function:

fi =



1 if p ≥ c+ τ

−1 if p ≤ c− τ

0 otherwise

(6.3)

In this thesis LQP features with an inner and outer disk are used. The LQP

geometry is described by a notation such as LQP 1
3 , where the subscript indicates

the outer neighbourhood radius (here 3 pixels) and the superscript indicates the

inner radius (here 1 pixels).

A feature vector of a face image is built by dividing the image into square blocks.

Each pixel contributes its vote to the histograms of the four nearest blocks, us-

ing bilinear interpolation. By using bilinear interpolation the histogram archives

robustness against slight changes in imaging conditions [ul Hussain and Triggs,

2012]. LQP histograms are extracted from all blocks (in this paper into 15×8

blocks) and, then, concatenated into a single histogram. The histogram entries

within each block are normalized using the L1-Sqrt norm; i.e., each histogram is

normalized to the sum of one and then the square-root of each value is computed.

Finally, the histogram is normalised to a length of 1 (Figure 6.2 illustrates the
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Figure 6.2: Overview of the face recognition framework.

process). This leads to a feature vector that represents both the statistics of the

facial micro-patterns and their spatial locations.

The feature histogram has a very high dimensionality; in this work, a dimension of

18,000 (8 blocks × 15 blocks × 150-word codebook). Using a high-dimensionality

feature slows down the matching process and always includes the risk of overfit-

ting. Hence, before applying any learning method, Principal Component Analysis

(PCA) is used to reduce the dimension of the original feature vector to a more

tractable number. PCA is an orthogonal linear transformation that transforms

the feature vector to a new coordinate system such that the greatest variance by

any projection of the data comes to lie on the first coordinate, the second greatest

variance, on the second coordinate and so on.

PCA strongly favours the dimensions with high variance by weighting more heavily

the components corresponding to large eigenvalues. In the case of face representa-

tion, high variance mainly results from illumination and expression changes rather

than from other discriminating information [Deng et al., 2005]. A way of reducing

the influence of large eigenvectors is the whitening transformation, which norm-

alises the PCA-based feature. Specifically, the PCA-based feature u is subject to

the whitening transformation and yields yet another feature set w:

w = Λ−
1
2

M u (6.4)
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where Λ−
1
2

M = diag{λ−
1
2

1 , λ
− 1

2
2 , ..., λ

− 1
2

M }. Different authors have shown that applying

first PCA and then the whitening transformation improve the recognition result

[Deng et al., 2005, Nguyen et al., 2009, Nguyen and Bai, 2010, ul Hussain et al.,

2012]. Therefore, all the principal components are divided by the square-roots

of their corresponding eigenvalues to have the projected features with the same

variance.

6.3 Set-to-Set Similarity

The effect of the whitening process is a change of the projected scale on each

component. As pointed out by different authors [Deng et al., 2005, ul Hussain

et al., 2012, Nguyen and Bai, 2010, Nguyen et al., 2009], this reduces the accuracy

of distance measures like L1, L2 or Mahalanobis distance. It was observed [Cao

et al., 2013] that similarity functions, such as bilinear similarity function or the

cosine similarity, are not effected by the whitening process. Motivated by these

observations, Cao et al. [Cao et al., 2013] combined the bilinear similarity xTi xj
and the Mahalanobis distance (xi − xj)T (xi − xj) and proposed a Generalized

Similarity (GS) to measure the similarity of a feature pair (xi, xj):

GS(xi, xj) = xTi xj − (xi − xj)T (xi − xj) (6.5)

This section describes two novel set-to-set similarities that utilise the GS for sets.

The first is called Generalized Matched Background Similarity (GMBGS) and is

built upon the Matched Background Similarity (MBGS) [Wolf et al., 2011]. It is

a set-to-set similarity metric designed for comparing the frames of two face videos

in order to determine whether the faces appearing in the two sets of faces repres-

ent the same subject. The second is called Mean Vector Generalized Similarity

(MVGS), and creates a single feature vector for all frames and then use the GS

directly.
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6.3.1 Generalized Matched Background Similarity (GMBGS)

Given two face videos,X1 andX2, whereXi = {xi1, . . . , xin} and xin is the n-frame

of the i-face-video encoded using a feature transform, their score is computed as

follows.

Assume a set B = {b1, . . . , bn} of background feature samples. This set of samples

contains items that are different from both X1 and X2, and that are otherwise

unlabelled. Firstly, a set of background samples B1 is determined for X1 by

finding for each member of X1, its nearest-neighbour in B. If the size of the

resulting set of nearest feature vectors is below a predetermined size C, the second

nearest neighbour is used, and so on until that size is reached. Afterwards, the

set is trimmed such that exactly C frames are collected, hence |B| = C. Then a

Support Vector Machine (SVM) is trained to distinguish between the two sets X1

and B1.

The trained SVM is then used to classify all members of X2 as either belonging

to X1 or B1. For each member of X2 a classification confidence is obtained,

reflecting the likelihood that this member represent the same person appearing in

X1. Then the mean (or alternatively, the median, the minimum, or the maximum)

is obtained of all members of X2. This provides a global estimate of the likelihood

that the person in the first video X1 is the same person as in the second video X2.

Afterwards the same procedure is carried out, reversing the roles of X1 and X2.

The final score is then determined averaging the two scores.

SVM is a large margin classifier that tries to maximize the margin around a sep-

arating hyperplane. The SVM takes in labelled training data {xi, yi}, where xi
represent the features and yi the class label, that could be either 1 or −1. The

SVM approach aims at construction a classifier of the form:

f(x) =
m∑
i=1

αiyiK(x, xi) + b (6.6)
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In the dual formulation of the training problem, the coefficients αi are obtained

by minimizing a convex quadratic objective function under constraints:

maxαW (α) =
m∑
i=1

αi −
1
2

m∑
i,j=1

yiyjαiαjK(x(i), x(j)).

s.t. α ≥ 0, i = 1, . . . ,m (6.7)
m∑
i=1

αiy
(i) = 0

where α is the Lagrange multiplier, and K(xi, xj) is the kernel function (more

details about the optimisation process can be found in [Burges, 1998]).

In order to utilise the GS for SVM classification, we incorporate the Generalized

Similarity into the kernel function and define the resulting kernel function as:

K(xi, xj) = xTi xj − (xi − xj)T (xi − xj) (6.8)

Recent studies [Nguyen and Bai, 2010, Cao et al., 2013] observed that metric

learning can improve still image face verification. Motivated by these observations,

the similarity metric learning approach proposed by Cao et al. [Cao et al., 2013]

was adapted as a pre-processing step for SVM classification. Cao et al. approach

learns two positive semi-definite (p.s.d.) matrices M and G for the generalized

similarity so that the similarity between positive face pairs is enlarged and that of

negative pairs is reduced as much as possible. The kernel becomes now:

K(M,G)(xi, xj) = xTi Gxj − (xi − xj)TM(xi − xj)

Algorithm 3 summarises the Generalized Matched Background Similarity with

metric learning.
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Function GMBGS(X1, X2, B,M,G)
Sim1 = OneSideGMBGS(X1, X2, B,M,G);
Sim2 = OneSideGMBGS(X2, X1, B,M,G);
Similarity = (Sim1+Sim2)/2;
return Similarity;

End
Function OneSideGMBGS(X1, X2, B,M,G)

B1 = FindNearestNeigbors(X1, B);
Model1 = SVMTrain(X1, B1);
Confidences = SVMPredict(X2, Model1);
Sim = Mean(Confidences);
return Sim;

End
Algorithm 3: GMBGS algorithm with metric learning

6.4 Mean Vector Generalized Similarity (MVGS)

Given a face track Xi = {xi1, . . . , xin}, the assumption of the Mean Vector Gener-

alized Similarity (MVGS) is that all faces in a face track belong to the same person.

Under this assumption it can be expected that there is a high degree of correlation

amongst the feature vectors of a track. In fact, with enough similarity between

the faces in a track, nearly the same feature vector can be expected. This fact can

be exploited by modelling each face track by a linear combination of the feature

vectors in order to create a single feature vector for all frames. Mathematically,

this means that a track is represented by the mean feature vector:

X̄i = 1
|Xi|

|Xi|∑
n=1

xn (6.9)

The advantage of a single feature vector is that the GS can be exploited directly

resulting in the following formulation for the MVGS:

MVGS(X̄i, X̄j) = X̄T
i X̄j − (X̄i − X̄j)T (X̄i − X̄j) (6.10)

The similarity metric learning approach proposed by Cao et al. [Cao et al., 2013]

can then also be used for the MVGS:
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MVGS(M,G)(X̄i, X̄j) = X̄T
i GX̄j − (X̄i − X̄j)TM(X̄i − X̄j) (6.11)

6.5 Experimental Setup and Evaluation

In this section the performance of the proposed face recognition framework is

evaluated on three benchmarks: the YouTube Face Database [Wolf et al., 2011],

the YouTube Celebrities Dataset [Kim et al., 2008] and the ChokePoint Dataset

[Wong et al., 2011]. In addition the ACFFace-5 face detector is evaluated on

the Face Detection Dataset and Benchmark [Everingham et al., 2010] and the

Annotated Faces in the Wild Dataset [Mathias et al., 2014].

6.5.1 Face Detection Evaluation

The evaluation of the ACFFace-5 detector is done on two datasets. The first is

the Face Detection Dataset and Benchmark (FDDB), which is a dataset of face

regions designed for studying the problem of unconstrained face detection. The

dataset contains the annotations for 5171 faces in a set of 2845 images taken

from the Faces in the Wild dataset. The evaluation results are shared using ROC

curves, which are computed using the Pascal VOC protocol [Everingham et al.,

2010]. In the Pascal VOC protocol a binary match/non-match label is computed

for each detection, where a match label requires at least 50% overlap ratio of the

intersection of two regions against the union of the two regions. The ground truth

of the FDDB are elliptical regions, while the output of the proposed method are

rectangles. Changing the output format form rectangles to elliptical regions imme-

diately increased the overlap and thus this procedure was applied on the detector

output rectangles. Figure 6.3 shows the ROC curve generated by ACFFace-5 de-

tector in comparison to available results on the benchmark. The related papers to

each algorithm can be found at [Jain and Learned-Miller, 2010].
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Figure 6.3: Discrete score ROC curves for different methods on the FDDB
dataset.

The second dataset is the Annotated Faces in the Wild (AFW), which consists of

205 images with 1025 annotated faces. For evaluation, the evaluation toolbox as

well as the annotations provided by Mathias et al. [Mathias et al., 2014] were used.

The results are evaluated using also the Pascal VOC criterion [Everingham et al.,

2010], and quality is summarised using the Average Precision (AP). Figure 6.4

shows the ROC curve and the AP generated by ACFFace-5 detector in comparison

to available results on the benchmark. Sample detection results are shown in

Figure 6.5. The results on both datasets show that the ACFFace-5 detector reaches

state-of-the-art performance and achieves similar results to the SquaresChnFtrs-

5 [Mathias et al., 2014]. However, the aim of the proposed detector was not to

increase accuracy but speed.

Since the aim of the proposed detector was not to increase accuracy but to develop
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Figure 6.4: Results on the AFW dataset.

a detector with low computational costs, further comparison were made of detec-

tion speed between the ACFFace-5 detector, the Viola Jones face detector and

the ACFFace-5-view detector. The ACFFace-5-view1 was trained the way as the

ACFFace-5 but only view-specific classifiers were trained that are later eventuated

individually. The ACFFace-5-view detector was included in the results in order

to show the speed advantage of the combination of a general classifier with view-

specific classifiers to view-specific classifiers only. The ACFFace-5 is implemented

using Matlab and therefore the Matlab 2014a ( vision.CascadeObjectDetector )

implementation of the Viola Jones detector was used.

The detectors were tested on three video clips. The first is the video 0098_03_006_

al_gore from the YouTube Celebrities Dataset (see Section 6.5.2.1) which has 233

frames with a resolution of 320×240 pixels, the second is the video AVSS_AB_Easy

_Divx from i-Lids dataset [AVSS, 2007] which has 5474 frames with a resolution
1The ACFFace-5-view detector was not include in the detection rate evaluation because both

detectors achieve approximately the same results.
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Figure 6.5: Sample result of the ACFFace-5 detector.

of 720 × 576. The third is a video downloaded from [Gallery, 2013] called James

Nares STREET which has 4126 frames with resolution of 1920× 1080 pixels. The

test machine was a desktop computer with an Intel Core i5-3470 CPU with 3.2

GHz and 8GB RAM.

The results are presented in Table 6.1. It can be seen that the ACFFace-5 detector

is on average twice as fast as the ACFFace-5-view detector. This shows that the

proposed combination of a general classifier and view-specific classifiers improves

speed while maintaining high accuracy. Compared to the Viola Jones face detector,

the ACFFace-5 is on average slightly slower, however since the ACFFace-5 has a

41.09% higher AP this trade-off is acceptable (see Figure 6.3 and 6.4).
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Table 6.1: Speed comparison of the face detector.

V ideo ACFFace-5 ACFFace-5-view Viola Jones
0098_03_006_al_gore (320× 240) 108.39 fps 59.95 fps 106.47 fps
AVSS_AB_Easy_Divx (720× 576) 27.84 fps 14.82 fps 38.32 fps
James Nares: STREET (1920× 1080) 5.28 fps 2.99 fps 6.22 fps

6.5.2 Face Recognition Evaluation

The GMBGS and MVGS were evaluated on three datasets. Unless otherwise

described, for all tests the parameters used are described in the following: All the

images in the face sets were histogram equalized and cropped to have dimensions

of 80×150 pixels. Tests were made with 80×140 pixels, 90×140 pixels, 80×150

pixels, 90×150 pixels, and 90×160 pixels, where 80×150 pixels achieved the best

results. The original and the flipped versions of the face images were used.

For all experiments, the total number of PCA components has been fixed to 300

as suggested in [Cao et al., 2013]. As a default, a 150-word-codebook-based LQP 1
3

descriptor with a tolerance value of 7, i.e. τ = 7 (see Figure 6.6 for a comparison

of different τ values on the YouTube Face Database) and a block size of 10 × 10

pixels is used. This results in a feature dimensions without PCA of 36,000 ( 8

blocks × 15 blocks × 2 × 150-word codebook). For selecting the background sets

for the MVGS, the nearest neighbours were used and the maximum background

set size was set to 250. In order to be comparable with other methods, results are

reported using aligned version of the face images that are provided by the dataset

if available otherwise the face images are aligned as described in Section 6.2.2.

6.5.2.1 YouTube Face Database

The YouTube Face Database [Wolf et al., 2011] is a database designed for studying

the problem of unconstrained face verification in videos. The dataset contains

3,425 videos of 1,595 different people and some sample frames can be seen in

Figure 6.7. All the videos were downloaded from YouTube. The average length of

a video clip is 181.3 frames. In addition, the dataset provides for every video frame

the face position, the three rotation angles of the head and an aligned version of
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Figure 6.6: Recognition rate of the LQP 1
3 and LQP 2

5 with τ = {1 − 10} on
the YouTube Face Database.

the face. The quality of the videos varies widely in the dataset: some videos are

of high quality, while others are very blurred.

The dataset provides a ten-fold, cross-validation, pair-matching (same/not-same)

test. The test is divided into 10 splits; each split contains 250 same and 250 not-

same video pairs. The splits are independent from each other, thus, each person

appears only in one split. In all experiments the aligned face images are used.
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Figure 6.7: YouTube Face Database sample frames.

Table 6.2: YouTube Face Database results.

Accuracy ± SE AUC ERR
MBGS L2 mean, LBP [Wolf et al., 2011] 76.4± 1.8 82.6 25.3
MBGS+SVM- [Wolf and Levy, 2013] 78.9± 1.9 86.9 21.2
APEM-FUSION [Li et al., 2013a] 79.1± 1.5 86.6 21.4
STFRD+PMM [Cui et al., 2013] 79.5± 2.5 88.6 19.9
VSOF+OSS (Adaboost) [Mendez-Vazquez et al., 2013] 79.7± 1.8 89.4 20.0
DDML (combined) [Hu et al., 2014] 82.3± 1.5 90.1 18.5
DeepFace-single [Taigman et al., 2014] 91.4± 1.1 96.3 8.6
GMBGS (proposed) 81.60± 1.0 88.8 19.0
GMBGS(M,G) (proposed) 82.0± 1.1 89.4 18.6
MVGS (proposed) 78.36± 2.0 85.8 22.4
MVGS(M,G) (proposed) 83.44± 1.8 91.60 16.8

The final results are presented in Table 6.2. ROC curves are presented in Figure

6.8. A ten-fold, cross-validation, pair-matching (same/not-same) test was used to

obtain these results. Each time, nine sets were used for training, and tested on

the tenth set. Similar to Wolf et al. [Wolf et al., 2011], results are reported by

constructing a ROC curve for all splits together, by computing statistics of the

ROC curve (area under curve and equal error rate) and by recording the standard

errors for the average recognition for the 10 splits. For the sake of clarity only the

curves of the best performing methods were plotted.

The best result on the YouTube Face Database is achieved by the method DeepFace-

single [Taigman et al., 2014], however the evaluation of DeepFace-single was not

performed with the aligned images provided by the dataset. Instead they used a

novel 3D-warped version of the face. Unfortunately neither the algorithm, nor the
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Figure 6.8: ROC curves averaged over 10 folds from the YouTube Face Data-
base.

warped images used are publicly available. Since alignment can have large impact

on the recognition rate, the results should not be compared directly.

In both cases learning a metric improves the accuracy. However, for the GMBGS

schema only a small improvement of 0.4% was reached, while the MVGS schema

showed a significant improvement of 5.08%. The accuracy of the MVGS with a

learned metric gives the best result on the original dataset as provided by [Wolf

et al., 2011] and improves the recognition rate by 1.14% compared to the second

best method DDML (combined) [Hu et al., 2014].

6.5.2.2 YouTube Celebrities Dataset

The YouTube Celebrities Dataset [Kim et al., 2008] consists of 47 celebrities (act-

ors and politicians) in 1910 video clips downloaded from YouTube and manually
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segmented into sequences where the celebrity of interest does appear. The seg-

mented dataset consists of about 1500 video clips: each one containing hundreds

of frames. Some sample frames can be seen in Figure 6.9. The frame sizes range

from 180 × 240 pixels to 240 × 320 pixels. The dataset is challenging due to

pose, illumination, and expression variations, as well as low resolution and high

compression rates.

The proposed tracking framework successfully tracked 96% of the videos as com-

pared to 92% tracked in the paper of Ortiz et al. [Ortiz et al., 2013] and 80%

tracked in the paper of [Kim et al., 2008]. The standard experimental setup se-

lects 3 training clips, 1 from each unique video and 6 test clips, 2 from each unique

video per person. A metric was not learned for this dataset because the number of

subjects was not sufficient in order to train a metric that did not overfit. Table 6.3

summarizes the evaluation results on YouTube Celebrities. Both algorithm achieve

better results then the state-of-the-art algorithm, MVGS achieved the best results,

it improves the recognition rate by 3.32%.

Table 6.3: YouTube Celebrities Dataset results.

Method Accuracy
HMM [Kim et al., 2008] 71.24
MDA [Wang and Chen, 2009] 67.20
SANP [Hu et al., 2011] 65.03
COV+PLS [Wang et al., 2012] 70.10
UISA [Cui et al., 2012] 74.60
MSSRC[Ortiz et al., 2013] 80.75
GMBGS (proposed) 81.74
MVGS (proposed) 84.07

6.5.2.3 ChokePoint Dataset

The ChokePoint Dataset [Wong et al., 2011] was created using an array of three

cameras placed above two portals (natural choke points in terms of pedestrian

traffic) to capture subjects walking through each portal in a natural way. The
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Figure 6.9: YouTube Celebrities Dataset sample frames.

dataset consists of 25 subjects (1 male and 6 female) in portal 1 and 29 subjects

(23 male and 6 female) in portal 2. The recording of portal 1 and portal 2 are

one month apart. The dataset has frame rate of 30 fps and the image resolution

is 800× 600 pixels. In total, the dataset consists of 48 video sequences and 64,204

face images. Some sample frames can be seen in Figure 6.10. In all sequences,

only one subject is presented in the image at a time.

The dataset provides a verification protocol. In this protocol, video sequences

are divided into two groups (G1 and G2), where each group played the role of

development set and evaluation set in turn. In each group, all possible genuine

and imposter pairs were generated. Parameters and thresholds are first learned

on the development set and then applied on the evaluation set. The average

verification rate (accuracy) is used for reporting results [Wong et al., 2011]. More

details about the dataset and the verification protocol can be found in [Wong

et al., 2011].

Furthermore, a metric was not learned in this dataset since the number of subjects

was not sufficient in order to train a metric that did not overfit. All results are

presented in Table 6.4. The results show the advantage of the proposed methods

which both achieved an accuracy of 100%.
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Figure 6.10: ChokePoint Dataset sample frames.

Table 6.4: ChokePoint Benchmark results.

Method Accuracy
Asym_shrp [Wong et al., 2011] 75.4
Gabor_asym [Wong et al., 2011] 84.0
DFFS [Wong et al., 2011] 83.4
Patch-based [Wong et al., 2011] 86.7
LBP + LASSO [Fusco et al., 2013, Zini et al., 2014] 93.1
LBP + MC-GrpLASSO [Fusco et al., 2013, Zini et al., 2014] 96.9
GMBGS (proposed) 100.0
MVGS (proposed) 100.0

6.6 Conclusion

This paper has presented a complete framework for video face recognition, which

includes face detection, multi-target face tracking, face alignment and video face

recognition. The contributions include a novel face detector called the ACFFace-5

detector which combines a general classifier with five view-specific classifiers. The

detector was evaluated on two datasets, where it reached state-of-the-art results.

In addition, the computation cost was compared with a face detector that only

uses view-specific classifiers and showed reductions of approximately 50%.

Furthermore, two novel set-to-set similarity measures, the Generalized Matched

Background Similarity and the Mean Vector Generalized Similarity were presented.

The GMBGS similarity measure uses a SVM in order to distinguish between same

and not same face sets and defines the GS as kernel function. Whereas the MBGS

uses a linear combination of feature vectors in order to use the GS directly. In
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both cases, LQP histograms, on which whitened PCA is applied, are used as

feature vectors. Finally, the algorithms were evaluated on three existing datasets

(YouTube Faces, YouTube Celebrities, and ChokePoint), where recognition rates

of 83.44%, 84.07% and 100% were achieved.



Chapter 7

Human Tracking and Recognition

in the Context of a Fisheye

Camera

7.1 Introduction

One of the main difficulties of human tracking systems, particularly in indoor

environments like the LPH, is the limited field of view of a single camera. A

solution for this problem is to use multiple cameras to monitor a wider field of view.

However, using multiple cameras has its own challenges. For example, in order to

compute the topology of a camera network, a precise calibration step is necessary.

Likewise if humans are observed in different camera views, an association step has

to be applied [Wang, 2013]. It is noted that it is not possible in every environment

to install multiple cameras.

Another solution to address this problem is to use fisheye cameras rather than

conventional perspective cameras. A fisheye lens is an ultrawide-angle lens that

produces strong visual distortion intended to create a wide panoramic or hemi-

spherical image (see Figure 7.1). A single fisheye camera mounted on the ceiling

is able to capture the entire room whereas a perspective camera with a field of

106
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Figure 7.1: A fisheye image example

view of 45 degree is only able to capture a small part of the room. Figure 7.2

illustrates the problem. The left image shows perspective cameras which are only

able to capture a limited field of view, even two cameras are not able to capture

a entire room. The right image shows a single fisheye camera mounted on the

ceiling which is able to capture the entire room. However, such cameras have

the drawback that captured images suffer from strong distortion and perspective

effects. Thus, for such cameras non-standard algorithms for human detection and

tracking are required.

Recent methods [Wang, 2006, Kubo et al., 2007, Saito et al., 2010, Yuan et al.,

2011, Vandewiele et al., 2012] have focused on applying detection and tracking al-

gorithms directly on the fisheye images. However, doing so has several drawbacks

such as the fact that fisheye images suffer strong distortion and perspective effects.

That is why the recent approaches mostly rely on simple detection algorithms like

blob detection with background subtraction or ellipse fitting. Unfortunately, in

real-life scenarios where illumination changes occur and objects other than humans



Human Tracking and Recognition in the Context of a Fisheye Camera 108

Figure 7.2: Perspective cameras and fisheye camera field of view.

move through the scene, such simple models tend to fail. That is why this thesis

proposes a novel approach that first projects the fisheye image into a set of per-

spective images and then applies standard human detection on these projections.

Firstly, a camera model is described that allows fast projection between a fisheye

image and a corresponding set of perspective images. This allows us to apply a

standard detection algorithm. Then an algorithm is proposed that automatically

generates from annotated heads in fisheye images, sets of aligned heads in per-

spective images that are then used to train a combined multi-view detector. In

order to achieve such conditions, a novel combination of unsupervised alignment

and unsupervised subcategory learning based on SVMs is proposed.

Finally, a system is proposed for tracking humans on a calibrated fisheye camera.

Therefore, multi-target tracking is applied. In order to evaluate the algorithm a

novel dataset for tracking humans in fisheye videos is created on which a MOTA of

69.53 % is achieved. In addition, evolution is performed on the Bomni-DB which is

an omnidirectional video tracking database where a MOTA of 78.55% is achieved.

7.2 Camera Model

This work is based on tracking by detection. In general, human detectors are

obtained by learning differences between human and not human. For the human

body, constructing such a classifier using hemispherical images becomes extremely

difficult due to the strong distortion and the complexity of articulated motion



Human Tracking and Recognition in the Context of a Fisheye Camera 109

during walking. Hence, the detector is not applied on the fisheye image itself but

instead on perspective projections. Therefore, the fisheye image is first projected

into an unit sphere that is then used to construct virtual multi-camera system

containing 9 perspective images with view of 45 degree. In this section the details

are explained.

7.2.1 Centre Perspective Projection vs. Fisheye Projec-

tion

In the central perspective projection model the angle of incidence of the ray from

an object point α1,β1 is equal to the angle between the ray and the optical axis

α2,β2 within the image space (grey line Figure 7.3) [Schwalbe, 2005].

In order to realise a wider opening angle for a lens, the principle distance (distance

between lens and image plane) has to be shortened. This can only be done to a

certain extent in the central perspective projection model. At an opening angle of

180 degrees, a ray with an incidence angle of 90 degree would be projected onto

the image plane at infinite distance to the principle point (red ray in Figure 7.3)

independently of how short the principle distance is. In order to enable a complete

projection of the hemisphere onto the image plane with a defined image format, a

different projection model becomes necessary such as the fisheye projection model

[Schwalbe, 2005].

The mathematical model of a fisheye projection assumes that the distance between

an image point and the principle point is linearly dependent on the angle of in-

cidence of the ray from the corresponding object point (see Figure 7.4). Thus

the incoming object ray is refracted in the direction of the optical axis [Schwalbe,

2005]. This principle allows the fisheye camera to capture images with a field of

view of 180 degree. In order to realise this, a system of lenses is used as shown in

Figure 7.5.
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α1 = α2, β1 = β2

Figure 7.3: Central perspective projection.
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Figure 7.4: Fisheye projection model.

7.2.2 Reconstruction of the 3D Vector Space

In order to construct a perspective projection from a fisheye image, the 3D vector

space has be to reconstructed. This can be done by projecting the fisheye image

into a sphere (Figure 7.6 illustrates the relationship). Starting with the point p on

the image plane with the coordinate (u, v) with respect to the centre of the fisheye

image, the aim is to find the corresponding 3D vector P with the coordinates

(x, y, z). If the axes of the camera and the lenses are perfectly aligned, then x and

y are proportional to u and v respectively.
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Figure 7.5: A fisheye lens system of the AF DX Fisheye-Nikkor 10.5mm f/2.8G
ED (taken from: [Toscani, 2015]).
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α · uα · v
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p

Figure 7.6: Relationship between fisheye image and a sphere.

x
y

 =

α · u
α · v

 , α > 0 (7.1)

Then the mapping between the 3D vector P = (x, y, z)T and an image point

p = (u, v)T is given by:
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P =


x

y

z

 =


α · u

α · v

g(r)

 (7.2)

where r is the distance of the point p to the image centre r =
√
u2 + v2 and g is

a mapping function that depends on the type of fisheye lens. Since P is a vector

the vector α can be included into the function g (see [Scaramuzza et al., 2006] for

proof):

P =


x

y

z

 =


u

v

g(r)

 (7.3)

In this thesis the generalized mapping function described by Scaramuzza et al.

[Scaramuzza et al., 2006] is used, which approximates the mapping by a polynomial

of degree 4:

g(r) = a0 + a1 · r + a2 · r2 + a3 · r3 + a4 · r4 (7.4)

where the coefficients a0 − a4 are parameters that have to be determined by a

calibration step which in done in this work with the Omnidirectional Camera

Calibration Toolbox1.

Natural errors in the camera settings, as well as misalignments between the camera

and the lenses, may still cause undesired distortions. In order to model these

imperfections, an affine transformation is used that describes the relation between

real distorted coordinates (u′, v′) and ideal undistorted ones (u, v):

u′
v′

 =

a d

e 1


u
v

+

xc′
yc′

 (7.5)

1https://sites.google.com/site/scarabotix/ocamcalib-toolbox
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where a, d, e, xc′ and yc′ are parameters that are also determined by in the calib-

ration step. More details of the point to 3D mapping and the calibration step can

be found in [Scaramuzza et al., 2006].

Once the mapping function g(r) is estimated, the mapping between a point on

the fisheye image plane and the corresponding 3D vector can be calculated with

Equation 7.3. In order to create a perspective image from the fisheye image, a

virtual perspective camera plane is created with the negative z-axis of the sphere

as optical axis. The centre point of this camera is then:

C =


0

0

f

 (7.6)

where f is the the focus length. A point p = (up, vp) on the perspective image

plane can then be defined by a 3D vector on the virtual perspective camera plane:

Vp =


u− cx
v − cy
f

 (7.7)

where cx = w
2 and cy = h

2 and w, h are the width and the height of the image

plane. This vector can now be used to find the corresponding image point in the

fisheye image plane by using the inverse of Equation 7.3. The mapping function

can be used to map points between fisheye image plane and the perspective image

and vice versa.

The resulting image shows the view from a perspective camera at the centre of

the sphere looking down through the south pole. Other view can be created by

rotation of the virtual perspective camera plane in different directions:

P ∗p = RVp (7.8)

where R is a 3× 3 rotation matrix:
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Figure 7.7: Sample perspective projections from the fisheye image in Figure
7.1.
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R = Rx(γ)Ry(β)Rz(α) (7.9)

with

Rx(γ) :=


1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 (7.10)

Ry(β) :=


cos β 0 − sin β

0 1 0

sin β 0 cos β

 (7.11)

Rz(α) :=


cosα sinα 0

− sinα cosα 0

0 0 1

 (7.12)

A projected perspective image has the same limitation as an image taken with a

perspective camera, thus allowing only a small field of view. Therefore the fisheye

image model by 9 perspective images, 8 side view images and a top down image

is used in this thesis. Figure 7.7 shows some example; the examples were created

from left to right and top to bottom with the following angles: 1 : (γ = 0◦, β =

52◦, α = 0◦), 2 : (γ = 0◦, β = 52◦, α = −90◦), 3 : (γ = 0◦, β = 52◦, α = 45◦), 4 :

(γ = 0◦, β = 0◦, α = 0◦).

The mapping between the original image and the perspective image can be easily

stored in a Lookup Table (LUT). A projection takes then less than a 1 ms on our

test system (see Section 7.5 for experimental settings).

7.3 Detector

Due to the orientation of the ceiling mounted camera and the wider opening angle

for the lens, humans are visible under a wide range of views. For reliable human

detection, it is necessary to create detectors under different camera views. Recent
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work [Kim and Cipolla, 2008] has shown that dividing the classification problem

into sub-categories (views) allows better modelling and improves classification.

These sub-categories are often specified manually (e.g. frontal or profile faces

as in Chapter 6), but can also be determined automatically using unsupervised

clustering. In this section a combined head detector for perspective projection of

fisheye images is proposed, that automatically generates sets of head and upper-

body sub-categories detectors that are then combined with a body detector in

order to create a robust head detector for perspective projection of fisheye images.

Starting from a set of annotated heads D(F ) = {d(F )
1 , d

(F )
2 , ..., d(F )

n } in fisheye im-

ages (see first and third image in Figure 7.8), the aim is to project these heads

into perspective images and then align them and cluster them into sub-categories.

The creation of the perspective projections of the head detections is done as fol-

lows: Firstly each fisheye image is projected into a set of perspective images as

described in Section 7.2 and then for each head annotation the four corner points

are projected into the perspective images using the inverse of Equation 7.8. Fi-

nally the enclosing rectangles of the corner points are computed, resulting into a

set of perspective projected detections D(P ) = {d(P )
1 , d

(P )
2 , ..., d(P )

n }.

Figure 7.8 illustrates the process. The first and the third image are annotated

heads in a fisheye image. The second and the fourth are perspective projections of

this annotations. The black points are the projected corners. It can be seen that

the projection in the first pair is as expected whereas in the second pair a margin

appears around the head. In order to remove this undesired variability, a novel

algorithm is introduced that clusters the head images into sub-categorises while

simultaneously aligning them.

Suppose there exist N heads. Let xi be a feature vector describing the i head

under the transformation ti = {tix, tiy, tis}, where tx is the x-translation, ty the

y-translation and s the scaling (uniform in x and y). Given this set of head

examples and a set of negative examples, the alignment algorithm first trains a

SVM to discriminate heads form the negative examples. Once the SVM has been

trained, a probabilistic output can be computed using the sigmoid function:
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Figure 7.8: Rectangle projection.

P (y = 1|f(x)) = 1
1 + exp(Af(x) +B) (7.13)

where f(x) is the output of the SVM:

f(x) =
m∑
i=1

αiyiK(x, xi) + b

where α is the Lagrange multiplier, and K(xi, xj) is the kernel function (more

details about the optimisation process can be found in [Burges, 1998]). The para-

meters A and B are learned by the sigmoid fitting approach that was proposed in

[Platt, 1999].

In order to align the head images for each head image, the transformation that

maximizes the probability is computed. In this work, this maximization is done

by hill climbing over the transformations. At each iteration, the transformation

is selected that increases the probability until conversion. In order to align the

images further, the process is repeated with the aligned images for N iterations.

In order to not get stuck in a local minima, the algorithm is restarted on multiple

starting points. The complete algorithm is shown in Algorithm 4 and some sample

images can be found in Figure 7.9.

In order to simultaneously cluster the images into sub-categories, the alignment

algorithm is incorporated into the sub-categories clustering algorithm that was

proposed by Hoai and Zisserman [Hoai and Zisserman, 2013]. Given a set of posit-

ive and negative examples of a category, their approach simultaneously determines
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Figure 7.9: Sample pairs of original (left) and aligned head images (right).

the cluster label of each positive example, whilst learning a SVM for each cluster,

discriminating it from the negative examples. Both algorithms are combined as

follows: first an initial alignment is done on all images as it was described above.

Then sub-categories are computed on the aligned images using Hoai and Zisser-

man method. Afterwards the SVM that was trained while clustering is used to

align each sub-categories among themselves. Then the algorithm starts again with

sub-category clustering and runs until conversion.

The learned sub-categories are then used to train a detector that combines a

general classifier with a multi component classifier. This is done in the same

way as it was done for the ACFFace-5 detector described in Chapter 6. Ten

feature channels were used: normalised gradient magnitude, histogram of oriented

gradients (6 channels) and LUV colour channels; the block size was set to 4 × 4.

AdaBoost was used to train and combine 2048 depth-two trees over the candidate

features (channel pixel lookups) in each window. The trainings window size was

set to 28× 28 pixels with an addition padding of 8 pixels to each side.
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After evaluation the resulting detections are back projected in the fisheye image.

Input: I – Set of positive images

Ineg – Set of negative images

N – Number of images in I

NIterations – Number of iterations

Result: Set of aligned images I

for i← 1 to N do

tik ← [0, 0, 0]T ;

end

for n← 1 to NIterations do

SVMModel ← TrainSVM(PositiveImageSet, NegativeImageSet);

for i← 1 to N do

P ← compute Probability using Equation 7.13;

P ∗ ← 0;

for k ← 1 to 3 do /* For each transformation parameter */

while |P ∗ − P | > 0 do

P ∗ ← P ;

ti∗k ← tik + δ(k); /* Try new value for transform. */

I∗i ← Ii + ti∗k ; /* Compute I from new transform. */

Pnew ← compute Probability using Equation 7.13;

if Pnew > P then

P ← Pnew;

tik ← ti∗k ;

Ii ← I∗i ;

end

end

end

end

end
Algorithm 4: Unsupervised alignment algorithm.
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7.4 Tracking

In order to achieve reliable human tracking, the real-time multi-target tracking

system presented in Chapter 5 is extended for fisheye tracking. Therefore, the

combined head detector that was presented in the last section is used to generate

detections. These detections are then used to form a set of target hypotheses,

which are then used to infer the target trajectories in the same way as it was

presented in Chapter 5.

In order to estimate the location of pedestrians in the current frame and to ensure

that data associations can be made correctly, a tracker is initialised to track the

relative motion for a period. Due to the significant change between different

locations, the tracker used in Chapter 5 can not be used and the Lucas-Kanade

optical-flow based approach, that was proposed in Chapter 3, is used instead.

7.5 Experimental Setup and Evaluation

In this section the performance of the tracking framework is evaluated on two

benchmarks: A novel benchmark called the Living Place Fisheye Dataset (LPFD)

and another benchmark called Bomni-DB [Demiroz et al., 2012].

7.5.1 Living Place Fisheye Dataset (LPFD)

The dataset includes videos captured by three fisheye cameras. The cameras are

mounted on different locations on the ceiling of the LPH [Place, 2012]. Videos

have been acquired using Mobtix Q24 cameras, which are 360 degrees IP cameras.

Camera calibration parameters were computed with the Omnidirectional Camera

Calibration Toolbox2. The videos were captured using 2048×1536 pixels resolution

and a frame rate of 8 fps. The dataset is divided into two separate sets. The first

set is used to train the detector and contains 500 images from two videos with
2https://sites.google.com/site/scarabotix/ocamcalib-toolbox
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Figure 7.10: Fisheye head detector results with different number of compon-
ents.

3039 annotated heads from approximately 200 different subjects. The second

set contains 10 videos. The videos have ground truth consisting of 19000 hand

labelled head locations. The challenges of the dataset are low frame rate, frame

drops, occlusions and noise.

The number of components used to create the detector has impact on the accuracy

of the detector. In order to find the optimal number of components, detectors with

different number of components were compared. Figure 7.10 shows the results. It

can be seen that the MR does not drop any further past three components. It can

be assumed that the reason for this is that the cluster become to small (three com-

ponents cluster size: (562/817/1660), four components size: (259/569/856/1355)).

Finally, the quality of the proposed multi-target tracking algorithm is evaluated

using CLEAR MOT metrics as described in Chapter 5. Since there are no similar
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Table 7.1: Living Place Fisheye Dataset results.

Method MOTA MOTP Prec. Rec. FP Missed
Head detections 47.32% 52.74% 74.21% 73.02% 23.71% 26.83%
Proposed schema 69.53% 59.41% 82.57% 79.31% 12.89% 15.02%

Figure 7.11: Tracking results on the Living Place Fisheye Dataset

head tracking results to compare with, baseline results from raw head and detec-

tions are included for comparison. The results are shown in Table 7.1. In addition,

some tracking results are presented in Figure 7.11.

7.5.2 Bomni-DB Database

Bomni-DB [Demiroz et al., 2012] database consists of 23 videos recorded in a room

with two cameras. The first camera is mounted on the ceiling of the room and the

latter is fixed on a side wall. Since the proposed algorithm was developed for top

down views only the recordings of the first camera were used. The videos were
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Figure 7.12: Sample images from the Bomni-DB (taken from [Demiroz et al.,
2012]).

captured using a Oncam IPC fisheye camera with a resolution of 640× 480 pixels

and a frame rate of 8 fps. The dataset provides annotated full body locations

Figure 7.12 shows some samples.

The proposed algorithm has as output head locations while the dataset used body

locations. Due to the large view changes between different locations in an images

it is not possible to estimate the body location as was done in Chapter 4. In

order to still be able to evaluate the proposed algorithm on the dataset, the body

location for each head detection is estimated using background subtraction.

Therefore, the foreground is computed using the OpenCV background subtractor

cv::BackgroundSubtractorMOG , then for each head detection the possible area

in which the body could be is estimated. In this area are then the foreground

contours computed using the OpenCV function cv::findContours . Finally the

enclosing rectangle is computed for this contours using the OpenCV function

cv::boundingRect . Figure 7.13 illustrates this computation.

Table 7.2 summarizes the results on the Bomni-DB. The proposed system out-

perform the tracking algorithm of [Demiroz et al., 2012] by 5.03% (MOTA). The

missed detections are reduces by 6.05% whereas the false positives increase slightly

by 0.26%.



Human Tracking and Recognition in the Context of a Fisheye Camera 124

Figure 7.13: Body locations compuation: a) input image, b) foreground, c)
contours, d) rotated rectangle (green) and minimum bounding rectangle (white).

Table 7.2: Bomni-DB results.

Method MOTA MOTP False Pos. Missed
Top view [Demiroz et al., 2012] 73.52% 72.00% 7.78% 18.78%
Proposed schema 78.55% 76.74% 8.04% 12.73%

7.6 Conclusion

This chapter described and demonstrated a real-time system for multi-target track-

ing based on fisheye cameras. It has shown that the use of standard detection

algorithms is possible if the fisheye image is projected on a set of perspective

images.

In order to train a detector based on annotated heads in fisheye images, a novel

algorithm was proposed that automatically generates sets of aligned heads in per-

spective images that are then used to train a combined multi-view detector.



Human Tracking and Recognition in the Context of a Fisheye Camera 125

The proposed detector was then integrated in a real-time system for multi-target

tracking. In order to evaluate the algorithm, a new dataset for indoor multi-target

on fisheye cameras was created, on which a MOTA of 69.53% was achieved. In

addition, evolution was performed on the Bomni-DB, where a MOTA of 78.55%

was achieved, which is a 5.03% higher MOTA compared to [Demiroz et al., 2012].



Chapter 8

Conclusions and Future work

8.1 Introduction

This thesis has described a complete framework for detecting, tracking and identi-

fying people in smart homes. This chapter summarises the main findings and

results. In Section 8.2 it is investigated if the objectives specified in Chapter 1

have been achieved. Section 8.3 discusses a number of restrictions and limita-

tions that have been identified during this research, while suggestions for future

investigation are presented in Section 8.4.

8.2 Objectives Achieved

The objectives of this thesis are listed in Chapter 1. In this section, each of these

objectives is revisited in order to determine the level of achievement.

• To design new frameworks for more accurate identification of in-

dividuals in video face recognition.

This thesis has described a complete framework for face tracking and recog-

nition in Chapter 3. A novel algorithm for building face tracks in real-life

scenarios has been proposed that combines face detection and optical flow

126
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tracking to a face tracking algorithm. In order to recognise the identity of

each track, the LBPFHist algorithm has been proposed, which recognises

each face image in a track with Local Binary Patterns (LBP) face recogni-

tion and then calculates the maximum occurring identity over the track in

order to improve the recognition rate by exploiting temporal information.

The evaluation has been performed using the Honda/UCSD Video Database,

where 100% recognition rate has been achieved and a new Smart Home data-

set where a recognition rate of 91% was achieved. The LBPFHist algorithm

has outperformed a similar algorithm called LBPF, which does not use tem-

poral information by 23% on the Honda/UCSD Video Database and by 25%

on the Smart Home dataset. Results have shown that the proposed approach

operates in real-time and is able to handle illumination changes, occlusions

and out-of-plane rotations.

In addition, in Chapter 6 a second framework for video face recognition

were proposed, which includes face detection, face tracking, face alignment

and video face recognition. This second framework is based on multi-target

tracking, where a novel face detector is combined with a head detector in

order to create detections that are then used to build tracks. Two novel

set-to-set similarity measures have been proposed that determine whether

faces appearing in the two tracks are of the same subject.

The algorithms have been evaluated on the YouTube Face Database (83.44%

accuracy), YouTube Celebrities Dataset (84.07% accuracy) and the Choke-

Point Dataset (100% accuracy). The proposed algorithms have achieved

the best result on the YouTube Celebrities Dataset and the ChokePoint

Dataset and the best result on the YouTube Face Database compared to all

algorithms that have used the provided aligned images. Results showed that

the proposed algorithm can be used for identification and tracking of people

in smart homes.

• To investigate more reliable detection of individual people from

overhead surveillance cameras under different viewpoints.
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Two approaches have been presented for detecting people, focusing on head

detection. The first approach was presented in Chapter 4 and addresses

the problem of detecting heads in crowded real-world scenes by combining a

human head detector, an upper-body detector and a body detector to create

a robust head detector. The idea has been relied not only on a single detector

for decision making but to combine individual opinions of multiple detectors

to derive a consensus decision.

In order to validate the findings, the performance of the detection system has

been tested on the Town Centre Benchmark. The experiments performed

have shown that the proposed combined head detector reduces the MR by

18% compared to the single head detector.

The second approach was presented in Chapter 7 and extends the first ap-

proach for fisheye cameras. The main novelty of that approach is that it

uses sub-categories detectors in order to be robust to a wide range of views

in fisheye images. A novel unsupervised clustering algorithm has been in-

troduced that clusters head images in sub-categorises while simultaneously

aligning them. These sub-categorises have been then used to train classifiers

for different views. The detector has achieved a MR of 68.99 % on the Living

Place Fisheye Dataset.

• To devise more robust real-time systems for tracking multiple in-

dividuals through camera views, where inter-person and object

occlusion may be present.

In Chapter 5 a real-time multi-target tracking system for a single view was

presented. To achieve real-time performance, a multi-threaded approach

has been used in which one thread produces asynchronous head detections,

while a second thread applies a tracking algorithm to estimate the location

of pedestrians and a third thread performs data association. In order to

reduce the number of false positives and simultaneously reduce the number

of missed detections, a novel motion model has been presented that includes
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the identification of false positives in the data association and treats false

positives on foreground and background objects separately.

The results have shown that this approach is superior to typical existing

approaches. For the Town Centre Benchmark, the system outperforms the

head tracking algorithm of [Benfold and Reid, 2011] by 36% (MOTA), while

the number of false positives decreases from 18374 to 6500 and the number

of missed detections decreases from 20427 to 6127.

A second approach was proposed in Chapter 7, which extends the first ap-

proach for fisheye cameras. Firstly a camera model has been described that

allows fast projection between a fisheye image and a corresponding set of

perspective images. Then an algorithm has been proposed that automatic-

ally generates from annotated heads in fisheye images, sets of aligned heads

in perspective images that are then used to train a combined multi-view

detector. These detections are then used to form a set of target hypotheses,

which are then used to infer the target trajectories using the real-time multi-

target tracking system from Chapter 5.

The experimental results have shown that the proposed framework is able

to track humans in the context of a fisheye camera. The evaluation on

the Bomni-DB has shown the proposed system outperform the tracking al-

gorithm of [Demiroz et al., 2012] by 5.03% (MOTA).

• To implement and empirically evaluate the performance of the pro-

posed approaches using different datasets.

The performance of the proposed approaches has been evaluated on several

datasets. Face recognition and face tracking have been tested on Honda/UCSD

Video Database (100% accuracy), Smart Home Dataset (83.44% accuracy),

YouTube Face Database (83.44% accuracy), YouTube Celebrities Dataset

(84.07% accuracy) and the ChokePoint Dataset (100% accuracy). The pro-

posed algorithms have achieved the best results on all datasets, except for

the YouTube Face Database. The experiments performed in Chapter 3 have
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shown that temporal information provided by face tracks have improved the

recognition rate by 23% on the Honda/UCSD dataset and by 25% on the

Smart Home dataset compared to an algorithm that does not use temporal

information (LBPF).

Face detection has been evaluated on the FDDB dataset and the AFW data-

set (AP 95.32%) where state-of-art results have been achieved. In addition,

the computing speed has been evaluated. The proposed face detector that

combines a general classifier and view-specific classifier has been on average

twice as fast as a comparable detector that only uses view-specific classifiers.

Head detection has been evaluated on the Town Centre Benchmark where

the combined detector of a head, an upper-body and a body detector has

reached an MR of 58%. This is a decrease of the MR of 18% compared to

the head detector only.

Finally, multi-target tracking has been evaluated on the Town Centre Bench-

mark (MOTA 81.55%), Parking Lot Benchmark (MOTA 79.71%), Bomni-

DB (MOTA 78.55%) and LivingPlace Fisheye Benchmark (MOTA 69.53

%). Results have shown that the proposed approach improves the tracking

performance compared to similar systems, while simultaneously running in

real-time.

8.3 Limitations

The proposed framework has a number of restrictions and limitations that have

been identified during this research. Some of these are due to the shortcomings

of the used hardware; some are related to extensions that are worth investigating

in the near future whilst the others are open issues for longer term research. This

section presents the existing limitations and the next section discusses open issues

and offers suggestions for future work that can be built upon the ideas and concepts

presented in this thesis.



Conclusions and Future work 131

8.3.1 Setting

The LPH is a loft style apartment, which consists of one large room with dif-

ferent sections for dining, living, cooking, sleeping and working and a separated

bathroom. This setting is not representative for most households, where several

challenges maybe occur, such as tracking across multiple rooms or floors, which

have not been addressed in this work. In addition, the proposed approach assumes

entry and exit points which may not be present in every scenario.

8.3.2 Lighting Conditions

The research carried out in this thesis has largely assumed good lighting conditions.

However, for a system to be deployed in a real-world scenario, enhancements for

low-light conditions may be required. This would particularly be the case if the

system has to operate in the dark or in an outdoor environment. In such scenarios

night vision hardware is required.

8.4 Future Directions

Despite the advances introduced in this work, there remain some limitations and

topics unaddressed in this thesis. This section provides a discussion on future

research directions.

8.4.1 Generalized Similarity Metric Learning

In [Xu et al., 2012] metric learning for SVMs was investigated. An empirical

study on Mahalanobis metric learning showed that metric learning explicitly for

the SVM decision rule outperforms metric learning as a pre-processing step as

done in Chapter 6. In the future it would be interesting to investigate if the same

is true for Generalized Similarity Metric Learning and how the SVM classification

can be combined with Generalized Similarity Metric Learning.
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8.4.2 Position of a Person in the Ground Plane

The tracking algorithms presented in this thesis have focused on tracking on the

image plane. This approach allows the focus of experiments to remain on tracking

performance and simplifies the validation of techniques. However, for real-world

scenarios it is more likely that the position on the ground plane is needed. In

the future it would be interesting to examine capabilities to find the position of a

person in the ground plane using a single camera. If a person is fully visible, the

contact zone between a person and the ground plane can be used to compute a

plane-to-plane homography between the image plane and the ground plane.

However, in most scenarios the contact zone is not always visible. An interesting

approach to solve this problem was proposed by Rougier and Meunier [Rougier and

Meunier, 2010]. Their method extracts the 3D head track of a person in a room

using only a single calibrated camera by representing the head as a projection of a

3D ellipsoid model. However, their approach relies on background subtraction. It

would be interesting to examine how this approach can be extended to tracking-

by-detection approaches.

8.4.3 Tracking in More Complicated Scenarios

Multi-target tracking remains a significant challenge, especially in fisheye images.

The multi-target tracking algorithms introduced in this thesis have been limited

to humans. For more general situations, this could be extended to represent a

number of different object types such as animals, cars or bicycles. For instance,

in many households in addition to humans, pets could be tracked independently.

Face recognition and tracking have been treated as two separate tasks. However

in practice the recognition task depends on the tracked person. In the future, the

identification of humans could be combined with the data association.

Another interesting topic, which is related to identification, is to re-identify hu-

mans that leave from an area covered by one camera and enter to a different area,



Conclusions and Future work 133

or re-enter the same place after a period of time. This problem is often difficult

since an object could have a number of potential matches and it may not always

be possible to disambiguate all the matches [Gandhi and Trivedi, 2007]. To solve

this problem is of particular interest for smart environments in which the same

person is tracked frequently.

Another topic for future work is to investigate human behaviour in order to im-

prove tracking. For example Yang and Nevatia [Yang and Nevatia, 2012] estab-

lished a non-linear motion map from previous human paths in order to estimate

which path other humans are likely to take in the future. Other authors [Qin and

Shelton, 2012] investigated how humans move in small groups. Such behaviour

models can then be used to improve tracking in difficult situations.

8.4.4 Sensors-Assisted Identification

Several sensors beyond cameras are used in LPH in order to analyse the relations

between inhabitants and smart home. For example textile sensors have been in-

tegrated into the sofa in order to detect where a person sits, while other sensors

have been integrated into the floor for localizing humans. It would be interesting

to explore the fusion of localization and identification results from two or more

sensors and to investigate if this produces more reliable results.

8.4.5 Performance

In the further it would be interesting to explore performance improvements if the

proposed systems would be implemented on GPUs or FPGAs.

8.4.6 Real-Life Applications

The research carried out in this thesis has been evaluated on several test databases

that emulate real-life applications in smart environments. It is noted that the use
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of test databases is a common simplification in order to create reproducible results

and be able to compare different approaches. However, it would be desirable if the

performance of the proposed framework could be more thoroughly and extensively

investigated in future in real-life environments and over longer periods of time. In

addition, the interaction between the proposed frameworks and other research

projects in the LPH such as facial expression recognition, emotion recognition and

inhabitant and smart home interaction should be investigated.
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