

BACHELORTHESIS

Laura Westfalen

Procedural Generation of Buildings
with Wave Function Collapse and
Marching Cubes

FAKULTÄT TECHNIK UND INFORMATIK

Department Informatik

Faculty of Engineering and Computer Science

Department of Computer Science

Laura Westfalen

Procedural Generation of Buildings with Wave
Function Collapse and Marching Cubes

Bachelor Thesis handed in as part of the final examination

Course of studies: Applied Computer Science
Department: Computer Science
Faculty: Engineering and Computer Science
Hamburg University of Applied Science

Supervisor: Prof. Dr. Philipp Jenke
Second supervisor: Prof. Dr. Stefan Sarstedt

Handed in on: November 27, 2020

Bachelorarbeit eingereicht im Rahmen Bachelorprüfung

im Studiengang Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Philipp Jenke
Zweitgutachter: Prof. Dr. Stefan Sarstedt

Abgegeben am: 27. November 2020

Laura Westfalen

Thema der Arbeit
Procedural Generation of Buildings with Wave Function Collapse and Marching Cubes

Stichworte
Wave Function Collapse, Marching Cubes, Prozedurale Content Generierung, Prozedurale
Gebäude Generierung, Textur Synthese, Computergrafik, Unity, C#

Kurzzusammenfassung
In dieser Arbeit wird eine Möglichkeit erarbeitet, mit den Algorithmen Wave Function
Collapse und Marching Cubes prozedural Gebäude zu generieren. Dafür werden 3D-
Modelle als Grundlage verwendet, welche mithilfe der Algorithmen angeordnet werden.
Die Generierung wird von Nutzer*innen gesteuert, die bestimmen, auf welche Weise die
Gebäude positioniert werden und welche Formen sie annehmen sollen.

Laura Westfalen

Title of the paper
Procedural Generation of Buildings with Wave Function Collapse and Marching Cubes

Keywords
Wave Function Collapse, Marching Cubes, Procedural Content Generation, Procedural
Building Generation, Texture Synthesis, Computer Graphics, Unity, C#

Abstract
In the scope of this thesis, a solution for procedurally generating buildings with the
algorithms Wave Function Collapse and Marching Cubes is developed. For this, 3D models
are used as a basis, which are arranged with the help of the algorithms. The generation is
controlled by users, who determine the positions and shapes of the buildings.

iv

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Goals .. 2

1.3 Structure of the work ... 3

2 Basics and Related Work.. 4

2.1 Procedural Content Generation .. 4

2.1.1 Definition .. 4

2.1.2 Taxonomy of PCG .. 5

2.1.3 General PCG Techniques ... 6

2.1.4 Procedural Generation of Buildings ... 10

2.2 Texture Synthesis ... 15

2.2.1 Basics .. 15

2.2.2 Examples of Further Developments in Texture Synthesis 17

2.3 Wave Function Collapse ... 18

2.3.1 The WFC Algorithm ... 19

2.3.2 Examples of Further Developments of Wave Function Collapse................... 22

2.4 Marching Cubes ... 23

2.4.1 The Marching Cubes Algorithm ... 23

2.5 Combining Wave Function Collapse and Marching Cubes 27

3 Concept ... 29

3.1 Overview .. 29

v

3.2 Modifications to the Marching Cubes Algorithm 29

3.2.1 Basic Process... 30

3.2.2 Cube Creation at Runtime ... 30

3.2.3 The Internal Grid ... 30

3.2.4 Node States Represent Adjacent Cells ... 31

3.2.5 Equivalence Classes... 32

3.2.6 Note on the Utility Program .. 33

3.3 Modifications to the Wave Function Collapse Algorithm 35

3.3.1 The Wave Stores Decision Variables .. 35

3.3.2 Observe .. 36

3.3.3 Propagate ... 38

3.3.4 Optimization of WFC ... 42

3.4 Combining Wave Function Collapse and Marching Cubes 43

3.4.1 Basic Process... 43

3.4.2 Integration of MC and WFC ... 44

3.4.3 Placing the Tiles .. 44

4 Implementation... 45

4.1 Analysis .. 45

4.1.1 Stakeholders ... 45

4.1.2 User Stories and User Story Map ... 46

4.1.3 Use Cases .. 46

4.1.4 Overview of User Interactions ... 48

4.1.5 Quality Assurance ... 48

4.2 Software Design ... 50

4.2.1 Component Diagram ... 50

4.2.2 Class Diagram ... 51

4.2.3 Patterns .. 52

4.2.4 Sequence Diagrams ... 54

4.3 Tools .. 56

4.3.1 Agile Software Development ... 56

4.3.2 Technical Means ... 57

5 Evaluation ... 59

vi

5.1 Goals .. 59

5.2 Requirements ... 60

5.2.1 Maintainability and Extensibility ... 60

5.2.2 Usability .. 62

5.2.3 Properties of Generated Buildings ... 64

5.3 Possible Improvements .. 65

6 Conclusion and Perspective ... 67

6.1 Conclusion.. 67

6.2 Perspective .. 67

7 Bibliography .. 69

8 Appendix ... 73

8.1 A1: Code Churn .. 73

8.1.1 List of All Commits .. 73

8.1.2 List of First Commits.. 81

8.1.3 List of Latest Commits ... 85

8.2 A2: Basic Equivalence Classes ... 88

vii

Table of Figures

Figure 1: Official screenshot of the city building game Townscaper [2]. 2
Figure 2: A plant generated with an L-System using re-writing rules with a growing number

of iterations [7]. ... 7
Figure 3: The diamond-square subdivision as described by [12]. .. 8
Figure 4: The hybrid model for modelling a complex terrain with overhangs [14]. 9
Figure 5: Example of using a simple 2D shape rule in multiple iterations, based on: [23]. ... 11
Figure 6: A simple 2D example for a split grammar. The white boxes represent non-terminal

shapes, and the colored boxes represent terminal shapes. The start shape gets split
into 4 façades, which are further split in different elements [24]. 12

Figure 7: The final model resulting from the derivation of the split grammar shown in Figure
6 [24]. .. 12

Figure 8: A procedural model of Pompeii, generated with CGA Shape [25]. 13
Figure 9: View of a 3D model generated by the method of Merrell et al. [29]. 14
Figure 10: Example for a more stochastic texture on the left side and a more regular texture

on the right side [33]. ... 16
Figure 11: The large building complex on the right side was generated with model synthesis

using the smaller model on the left [30]. .. 17
Figure 12: A model consisting of four model pieces can be seen in (a), (b) shows an

inconsistent model that was generated without rules, and (c) shows a consistent
model [30]. .. 18

Figure 13: Simple example for an input image [4]. .. 19
Figure 14: All 2x2 patterns derived from the input image above, including rotation and

reflection [4]. ... 19
Figure 15: 9 options how 2x2 patterns can be positioned together [4]. 20
Figure 16: One part of the index data structure, describing how other patterns can be

positioned together with the pattern in the middle panel (0,0) [4]. 20
Figure 17: All 14 possibilities how a cube can be intersected by a surface [3]. 25
Figure 18: Different 8-bit node states determine the appropriate building tiles [41]. 28

viii

Figure 19: A node and the corners of its 8 adjacent cells. The numbers represent the
positions of the corresponding cell states within the 8-bit index of the node state. E.g.
if the cells at position 2 and 8 are “inside”, the node state would be: 00001010. 31

Figure 20: The node state 01000000 corresponds to a 3D tile that fills one eights of a cell.
Together with other tiles of neighboring nodes a complete building is created. 32

Figure 21: These node states (01000000 and 10000000) are equivalent and belong to the
same equivalence class. Thus, the same 3D tile can be used for them with different
rotations. ... 34

Figure 22: To give an example: The basic equivalence classes 3 and 7 comprise four
respectively six sub-equivalence classes that are shown here as 3D tiles. Each sub-class
comprises four different node states – the possible rotations around the Y-axis. 34

Figure 23: The red and green nodes are neighbors and do not correspond to the
equivalence class 0. However, the green node is not a direct neighbor of the red node
as they do not share a common cube. .. 39

Figure 24: The lower left front corner of a cube belongs to this node. Since the lower left
front corner of a cube defines the cube’s position, the position of the cube matches
the position of the node. .. 40

Figure 25: A simple user story map of the application. ... 46
Figure 26: The component diagram shows the two layers of the project, UI and Logic. 50
Figure 27: The colors in this class diagram mark the different components. 51
Figure 28: This sequence diagram gives an overview of the entire process of the application

after one mouse click into the visual grid.. 54
Figure 29: The sequence diagram shows the basic process of the Wave Function Collapse

function. The process is triggered by the public method ApplyWFC. 55
Figure 30: The final building models and refurbished surroundings in the game. 57
Figure 31: The two buildings would look the same if MC was used on its own. Through WFC

they differ. ... 59
Figure 32: For a better usability, interactions with the UI are kept simple: Buildings can be

generated on the island, colors can be selected, and the application can be ended.
Users can also move and zoom the camera. ... 63

Figure 33: Buildings are set at the outer edges of the designated area in the game. 64

Introduction

1

1 Introduction

During the evolution of computer games, they have become increasingly complex. Game
worlds are becoming larger, environments more detailed, and the graphics more and more
realistic. This not only leads to increasing demands on storage and performance capacities,
but also to a higher demand for working hours that are required for the development. [1]

A possible solution, which can reduce the memory requirements for the clients as well as
the working hours required for production, is Procedural Content Generation (PCG).
Reducing memory requirements is less important these days. At the beginning, however,
this was the decisive argument for PCG. Furthermore, PCG is also used for artistic purposes.

For the above-mentioned reasons, PCG has played an increasingly important role in
computer games and other graphical applications. Not only textures, vegetation, and other
game elements can be generated automatically but also entire levels, dungeons, street
maps, and cities.
Another related field of research is Texture Synthesis. While PCG generates new content
with the help of algorithms, Texture Synthesis uses existing textures to produce similar
results.

1.1 Motivation

One field of research in Procedural Content Generation is the automatic generation of
buildings. This area of PCG is also often used outside of gaming applications, e.g. in
architecture software.

Introduction

2

Figure 1: Official screenshot of the city building game Townscaper [2].

A recent game that uses building generation as its main element is Townscaper by Oskar
Stålberg [2]. Stålberg combines methods from PCG with Texture Synthesis to let the users
create versatile buildings by simply clicking on a 3-dimensional grid. More precisely, he
combines the Wave Function Collapse (WFC) algorithm from the area of Texture Synthesis
with the Marching Cubes (MC) algorithm that belongs to PCG.
The procedural building generation in Townscaper was an inspiration for this thesis. The
application directly involves users in the generation process and has hardly any hurdles for
users of all ages thanks to an intuitive usability.
Stålberg only made hints about his actual implementation, e.g. that he uses WFC and MC.
Therefore, this thesis examines how the algorithms WFC and MC can be combined to allow
users to generate buildings in a 3-dimensional grid in a similarly simple way.

1.2 Goals

As part of this bachelor thesis, an application for procedural building generation is created,
which is based on Wave Function Collapse and Marching Cubes. For this purpose, the two
algorithms are modified and combined. Thus, an alternative use of the algorithms is
presented. The buildings are generated in 3D on tile level, i.e. previously created 3D models
are assembled to create coherent buildings.

The MC algorithm is extended in such a way that it can be used for user-initiated content
generation. The original MC algorithm uses existing 3D data, interprets its values at
different positions and generates a 3-dimensional surface based on these values (see
chapter 2.4, and the original paper [3]). In my modification of MC, users determine the
course of the surface by selecting and deselecting cells in a 3D grid. The generated surface
encloses the selected cells.

Introduction

3

Wave Function Collapse originally generates textures that are based on an input texture.
The patterns that occur in the input image are used and reorganized for the new output
textures. However, especially the constraint solving of WFC allows the algorithm to be used
for various purposes, including the generation of 3D content. [4]
My adapted WFC expands the possibilities of Marching Cubes. While MC finds exactly one
solution for certain “enclosed” cells, my adapted WFC enables different possible solutions
for the same combination of cells. More precisely, MC would always generate the same
building for the same cell combination; together with WFC, different building façades
appear. WFC examines the different possibilities for a particular cell combination and
consequently decides on how exactly the cells are enclosed, using constraint solving.

Hence, instead of reassembling individual patterns from a texture, my modified WFC
assembles individual building sections in such a way that they form the surface that MC has
recognized.

1.3 Structure of the work

This thesis consists of the following 6 sections:

1. Introduction
2. Basics and Related Work

- Basic methods of PCG and Texture Synthesis are presented as well as a
selection of current papers on this, Marching Cubes, and Wave Function
Collapse. In addition, the procedural generation of buildings is discussed in
more detail. Eventually, the combination of WFC and MC is discussed.

3. Concept
- The logical concept of the application that is implemented in the context of

this thesis is presented.
4. Implementation

- Software engineering aspects in terms of analysis, software design, and
quality are discussed as well as tools and libraries.

5. Evaluation
- The development of the application will be evaluated and examined

regarding the goals, the requirements, and software quality.
6. Conclusion and Perspective

- A conclusion will be drawn and possible perspectives for further
developments are shown.

Basics and Related Work

4

2 Basics and Related Work

2.1 Procedural Content Generation

This chapter overviews the topic Procedural Content Generation (PCG) and is intended to
provide an understanding of the topic by comparing definitions and boundaries set up by
different authors. A taxonomy of PCG will be discussed and this work will be classified
according to it. Subsequently, related work and developments of different techniques in
PCG are first presented in general and then focused on the generation of buildings.

2.1.1 Definition

Togelius et al. define PCG as follows: “[PCG is] the algorithmical creation of game content
with limited or indirect user input” [5]. Shaker et al. add that “PCG refers to computer
software that can create game content on its own, or together with one or many human
players or designers” [1]. It should be noted that the above-mentioned authors focus on
PCG in games, although many other areas of application are conceivable. While some
authors assume PCG is exclusively used in games, Hendrikx et al. distinguish PCG and PCG-G
(Procedural Content Generation for Games) [6]. Freiknecht et al. name a few examples for a
broader use of PCG like simulations, urban planning and animation movies [7]. Compton et
al. also point out that the understanding of PCG is often reduced to the field of games,
although other fields like generative art, music, and design, are equally interesting research
areas. Therefore, they use the term “generative methods” to clarify that they refer to all
possible areas of application [8]. Nevertheless PCG-G and PCG are often used
interchangeably and, in the following, PCG will be used as a generic term, including both
PCG-G and PCG for other applications.

In this context, it is also important to define content. Shaker et al. summarize it as follows:
“[C]ontent is most of what is contained in a game: levels, maps, game rules, textures,
stories, items, quests, music, weapons, vehicles, characters, etc” [1]. Again, they focus on
PCG-G, Freiknecht et al. give a broader definition and describe content as “digital assets for
games, simulations or movies” [7]. In this thesis a broad understanding of content will be
used, namely as digital assets for any kind of applications.

Authors draw different distinctions when it comes to the question of what can and cannot
be counted among PCG.

Basics and Related Work

5

On the one hand, according to Shaker et al. “a map editor for a strategy game that simply
lets the user place and remove items, without taking any initiative or doing any generation
on its own” cannot be PCG [1]. Togelius et al. also write that “if the human input to the
content generator is part of a game, and the player directly intends to create content in the
game, it is not procedural content generation”. Therefore, according to Togelius et al., the
purpose of the application also determines whether something is PCG or not. Furthermore,
they distinguish content creation which is completely led by users (not PCG) from content
generation that may be initiated by users but cannot be controlled by them completely
(PCG) [5].
Hence, the generation of buildings by only using the Marching Cubes algorithm would not
be considered PCG by neither of the above-mentioned authors. The combination of
Marching Cubes (MC) and Wave Function Collapse (WFC) for building generation, however,
might still be seen as PCG since the WFC algorithm introduces a non-deterministic element.
Still, Togelius et al. might disagree if the main purpose of the application was the
generation of buildings.
On the other hand, Freiknecht et al. take a completely different view of the limits of the
subject. They see this topic much more comprehensively and call all kinds of modeling and
designing mechanisms PCG that go beyond “[moving] single vertices”, e.g. the character
editor in the game “The Sims” that “offer[s] a set of parameters to edit single
characteristics of a human to e.g., adapt the waist, size or the interocular distance.” The
authors call this “procedural content generation with a strong user interaction” [7].
According to this definition, even building generation with only Marching Cubes would
count as PCG. This thesis will follow the latter understanding of the limits of PCG.

2.1.2 Taxonomy of PCG

Shaker et al. [1] depict a taxonomy of PCG based on the work of Togelius et al. [9]. They
distinguish the following approaches:

- Online vs. offline
Online PCG is the generation of content during runtime, e.g. the generation of endless
landscapes in a game, whereas offline PCG refers to content generation during the
development of an application or game.

- Necessary vs. optional
Necessary generated content is required for the usage of an application or game and
should always be correct. Optional content can be discarded or exchanged by users.

- Degree and dimensions of control
The generation of content can be controllable to different extents. On the one side, Shaker
et al. and Togelius et al. name the usage of a random seed and, on the other side, they

Basics and Related Work

6

mention multiple parameters that can be used to create and control the generation of
content.

- Generic vs. adaptive
Generic PCG does not take the users’ behavior into account. Adaptive PCG, however, is
personalized and adapts to the user.

- Stochastic vs. deterministic
Deterministic PCG always creates the same content with the same input parameters and
thus allows the recreation of content. Stochastic PCG is not predictable to this extent.

- Constructive vs. generate-and-test
Constructive PCG generates content entirely, whereas the generate-and-test version
generates and tests individual parts repeatedly.

- Automatic generation vs. mixed authorship
Mixed authorship PCG includes the aid of users and/or designers within the generation
process. Automatic generation allows only limited input respectively mainly the adjustment
of parameters by the developers.

The software project presented with this work can therefore be classified as follows:

The application uses online PCG as the generation happens during runtime. The generation
is necessary as the generated content is required for the use of the application. However,
this category may not be applicable in our case since the actual purpose of the application
is to generate content and for this reason the question of the necessity does not arise. The
degree and dimensions of control are relatively low but of course the users have some
control. They decide where content (in our case buildings) should be generated.
Furthermore, users can decide about the colors, the program is using for its generation
process. All other decisions are made by the program. Furthermore, the application uses
generic PCG – the users’ behavior does not influence how the program works, i.e. the
program is not adaptive. Using the WFC algorithm gives the application stochastic behavior.
The results of the generation are not fully predictable and are random to some extent.
Besides, the program uses constructive PCG as every input results in a complete building
(that can of course be expanded). Also, this program uses mixed authorship. The users’
influence is limited but the generation does not happen automatically either.

2.1.3 General PCG Techniques

In the following, important PCG techniques are presented that are meant to generate
different kinds of content like landscapes, terrain, or plants.

Basics and Related Work

7

Plant Generation with L-Systems

One way to generate content is the use of grammars. An early approach to grammars and
string rewriting was published by Noam Chomsky in the 1950s. And in 1968 Aristid
Lindenmayer formulated a grammar called Lindenmayer-Systems (or L-Systems) to describe
the structure of plants. In the field of content generation, L-Systems became particularly
important. Chomsky’s formal grammars differ from L-Systems in that his grammars
productions are applied sequentially, while the replacement of symbols in the L-Systems
takes place simultaneously. The mapping of L-systems to graphics is called “Turtle Model”
[7] [10].
A simple version of the L-Systems defines a certain number of symbols that describe how a
line on a 2-dimensional grid shall be drawn, e.g. the symbol “F” means to move one step in
the current direction on the grid and draw a line, the symbol “+” means to turn right by a
certain degree and so on. In addition, L-Systems define re-writing rules that determine how
simple elements are replaced by more complex ones (E.g. “F” can be replaced by “F+F”). It
is possible to apply the replacement rules as often as desired and therefore create pictures
with different levels of detail. Furthermore, it is possible to use a stack and go back to a
certain point in the drawing [7] [10].

Figure 2: A plant generated with an L-System using re-writing rules with a growing number of iterations [7].

Extensions of the Lindenmayer-Systems include methods for the creation of 3-dimensional
plants like the “cellwork L-Systems” [10]. Other methods for visualizing natural structures
are the Mandelbrot set, the Koch snowflake, or the Pythagoras tree [7].

Terrain Generation

A terrain or landscape can be formed by height maps that define the current height for
every field on a 2-dimensional grid [7]. Among the first algorithms for height map creation
are subdivision-based methods, where a map is iteratively subdivided with a certain degree
of randomness [11]. One approach, described by Gavin Miller in different variations, is mid-
point displacement [12]. Mid-point displacement iteratively uses points of corners of a

Basics and Related Work

8

triangle or in a diamond shape and assigns a (more or less) random height to these points
based on the average of its neighbors. A simple mid-point displacement method can be
used in 2D where points on a line are iteratively selected and elevated. The extended
diamond-square algorithm can be used for 3D terrains: With each step a 2-dimensional
square field is divided by a point that is set in its center. The height of this point is made up
of the mean height of the 4 surrounding points plus a random value.

Figure 3: The diamond-square subdivision as described by [12].

Techniques to procedurally generate height maps often include the use of fractal noise (like
Perlin Noise) to make the height shifts look more realistic. Ken Perlin introduced an
approach for “an interactive synthesizer for designing highly realistic Computer Generated
Imagery” [13]. His algorithm allows the creation of controlled stochastic effects and was
e.g. used for generating clouds, wood, or water. In comparison to earlier techniques Perlin’s
method proved to be faster and easier [13]. Applied on height maps, the generated results
became more realistic and mountainous [11].

However, height maps do not allow the creation of caves or overhangs. This can be
achieved by voxel terrains or layered terrains [7]. Peytavie et al. present an approach to
modelling complex terrains using layers from different materials to create arches,
overhangs, and caves [14]. Their “hybrid model” uses a discrete volumetric data structure
for the different materials as well as an implicit surface model for the sculpting of the
surface of the terrain. The discrete data structure bases on a 2-dimensional grid of material
layers and the surface model is defined as a convolution surface.

Basics and Related Work

9

Figure 4: The hybrid model for modelling a complex terrain with overhangs [14].

Dungeon Generation

One approach to procedural dungeon creation is binary space partitioning. This algorithm
divides a 2D or 3D space into cells by applying the same algorithm recursively on any new
cell. One cell is divided into two sub-cells, respectively. In this way, a hierarchical tree
structure is created [1].
Another common approach to dungeon creation is cellular automata. This method uses a
grid of cells (in any dimension) where each cell holds a reference to a set of neighbors and
to an initial state. Rules determine how the state of a cell and its neighbors is transformed
into another state. After several transitions different patterns can be formed. Possible
allowed states could be “wall” and “path” so that a dungeon can be created [15].
Grammars can also play a role in the creation of dungeons, e.g. graph grammars and shape
grammars (the latter topic will be examined in chapter 2.1.4). Graph grammars generate
topological descriptions as a graph where nodes represent rooms and edges adjacencies
[15].
Further methods that can be used for dungeon creation are genetic algorithms and
constraint-based approaches [15].

PCG with Constraints

Another way to procedurally generate content is to use constraints. (The Wave Function
Collapse algorithm partly also belongs to this category and will be discussed chapter 2.3)

Horswill and Foged present an approach where they use constraint propagation for
creating enemies and objects in games. They use “path constraints” that regard the
possible paths a player can take and that can place objects effectively. E.g. they allow the
system to balance the number of enemies according to the player’s level or to ensure that
“keys are not hidden behind the doors they are intended to unlock, and so on” [16].

Basics and Related Work

10

Another possible constraint-based method for PCG is Answer Set Programming (ASP), “a
form of logic programming targeted at modeling combinatorial search and optimization
problems” [4].

Smith and Mateas used ASP in the field of PCG for an explicit description of the design
space. Thus, the space of content is declared, and a domain-independent solver uses this
space to generate the desired content. Their approach also allows new generators for
different game content domains to be quickly defined [17].
Neufeld et al. used ASP for procedural level generation. They developed an automatic way
of evolving level generators for 2D games. A game gets transformed in a set of rules that
are described in ASP. In this way, multiple levels can be generated that will be evaluated
afterwards [18].

The use of ASP in PCG already shows similarities to the WFC algorithm (see 2.3). ASP in PCG
aims to model the space of content beforehand to subsequently let a constraint solver use
these models to create new content [4]. This means, the solver arranges the existing
models to generate new content by using constraints to check how the models can be
connected to one another. This is also the basis of what WFC does.

Further PCG Methods

There are many other methods for automatically generating content and of course only a
few can be mentioned here.
One important aspect that is often mentioned in this subject area (and that should also be
mentioned briefly here) is the customization of procedurally generated content to the
player. Yannakakis and Togelius introduce a framework for experience driven PCG that take
the user’s experiences into account to generate optimized content. E.g. they created
personalized levels for the game Super Mario. While players were playing, the game
recorded different metrics, e.g. the frequency of jumping and running but also the time
users were moving as opposed to the time they spent standing still as a measurement of
the “fun” the users had. This data is fed to a neural network and used to create
personalized levels with variable degrees of difficulty [19].

2.1.4 Procedural Generation of Buildings

The following chapter focuses on various approaches to procedural generation of buildings
and is intended to put this work into context.

According to Smelik et al., procedural building generation is one of the best developed
areas in PCG [20]. Some of the previously mentioned methods (such as the L-Systems) are
also used in building generation. However, especially split and shape grammars play an

Basics and Related Work

11

important role in this area. Like the L-Systems, they also represent formal rewriting
systems. Many building generation tools use these grammars as a basis.

Split and Shape Grammars

The concept of shape grammars was introduced by Stiny in the 1970s. These grammars
operate on shapes and are useful in the construction of architectural designs. [21] [22]
Shape grammars consist of shape rules (or spatial relations) that define how an existing
shape can be transformed into another shape (or shapes). The rules also determine when a
transformation can be applied [20]. The final models are created by applying these rules
recursively.

Figure 5: Example of using a simple 2D shape rule in multiple iterations, based on: [23].

Wonka et al. introduce a type of parametric set grammar, split grammar, that is used for
the automatic modeling of architecture. Their approach is based on the concept of shape
and draws from Stiny’s work on shape grammars [24]. Split grammar restricts the types of
allowed rules so that it is still able to model buildings but also simple enough to allow an
automatic derivation of the grammar. It is a 3-dimensional design grammar and determines
the spatial layout of a building. So-called basic shapes (like e.g. cuboids or cylinders) are
manipulated by the grammar by means of a set of certain functions that define the
allowable affine transformations for the shapes [24]. According to Smelik et al. split
grammars focus on generating façades for simple shaped buildings [20].

Basics and Related Work

12

Figure 6: A simple 2D example for a split grammar. The white boxes represent non-terminal shapes, and the
colored boxes represent terminal shapes. The start shape gets split into 4 façades, which are further split in
different elements [24].

Figure 7: The final model resulting from the derivation of the split grammar shown in Figure 6 [24].

Extensions of Split and Shape Grammars

Computer Generated Architecture (CGA) by Müller et al. is an extension of the split
grammar by Wonka et al. and belongs to the shape grammars [25]. The CGA shape
grammar (CGA Shape) is used for 3D modeling of buildings and it also allows to create roofs
and rotated shapes with arbitrary orientation. CGA Shape usually starts with extruding a
polygon into a 3-dimensional shape and creating several floors. Afterwards, the resulting
façades are subdivided by shape rules. The possibility to split a shape (with a split rule) was
already presented in earlier works, but Müller et al. introduced the repeat split and the
component split, which allows to work jointly with 1-, 2-, and 3-dimensional shapes. The
notation of the grammar’s rules to add, scale, translate, and rotate shapes was inspired by
the L-Systems. However, the L-Systems represent parallel grammars (and can capture
growth over time), whereas CGA Shape works sequentially [25].

Basics and Related Work

13

Figure 8: A procedural model of Pompeii, generated with CGA Shape [25].

Finkenzeller and Bender propose a further extension of shape grammars by capturing
semantic information (regarding the role of shapes within a building) in a typed graph [26].
Their approach is designed for the creation of complex buildings and façades with high
details. Their model description includes geometry and semantics and allows a partial
automation of the modeling process.

Smelik et al. argue that the conventional methods that use split and shape grammars may
create convincing results in building generation but require much authoring effort [20].
Another method that solves this problem is an automatic reconstruction of building façades
by Müller et al. that uses image analysis to automatically derive 3D models from
photographs. However, they still use shape grammars for their procedural modeling
pipeline [27].

Further Building Generation Methods

Birch et al. introduce an approach for procedural-modeling of large-scale urban virtual-
environments using constraints [28]. For the creation of large scenes, Birch et al. combine
different tools and libraries for different modeling tasks (e.g. for basic building structures,
windows, etc.). Each modeling tool uses a scene graph as a basis and a set of constraints to
define the different building structures. The basis for their building generation process is a
simple cube – the shell that can be modified by permitted actions and constraints. The
permitted actions include the moving of single vertices, the expansion or contraction of
opposing faces and moving the shell. Constraints that can be imposed on the shall allow to
configure how the shell behaves in relation to other shells and to set editing options. Roofs
and other external objects can be added to the buildings in the same way.

Basics and Related Work

14

Merrell et al. present an approach for the procedural generation of building layouts [29].
Their architectural program is generated by a Bayesian network that was trained on real-
world data. The program is realized in a set of floor plans, that are obtained through
stochastic optimization. The floor plans can then be used to construct a 3-dimensional
model of a building. Their approach goes beyond that of shape grammars, as they regard
more than just pure shapes and their arrangements. They also take aspects into account
like functional relationships between spaces or the “privacy gradient”, considering that
common areas should be closer to the door and private rooms should be farther away. As
all those architectural rules can hardly be implemented by hand, they used machine
learning techniques to derive them from data.
The input to their application is a list of requirements, e.g. the number of bedrooms,
bathrooms etc. These requirements are then expanded into an architectural program,
containing a list of rooms, their adjacencies, and their target sizes. This architectural
program is generated by a Bayesian network, that was trained on a corpus of real-world
architectural programs, i.e. on a catalogue of residential layouts. The generated
architectural programs can then be turned into building layouts, i.e. detailed floor plans for
every floor. Finally, a given building layout can be used to generate a 3D model, decorated
in many different styles. The possible styles are specified in style templates, listing the
properties of every building element like windows, doors etc.

Figure 9: View of a 3D model generated by the method of Merrell et al. [29].

In his paper “Example-Based Model Synthesis” Paul Merrell also extended texture synthesis
methods to an application that allows the generation of large 3D building models from
smaller models [30]. His approach is further discussed in chapter 2.2.2 on texture synthesis.

Examples for the Use of Procedural Building Generation

Saldana and Johanson used procedural building generation to recreate historical cityscapes
of Rome [31]. Beside procedural generation techniques, they used geographic information
systems (GIS) for archaeological data and the game engine Unity to combine the

Basics and Related Work

15

procedurally generated buildings and terrain. The architectural data contains time
references so that the development of the cityscape over several centuries could be
reconstructed.
For the building generation they used ArcGIS CityEngine, a design software for 3D cities that
uses GIS data to procedurally generate e.g. buildings and terrain. Using this software, they
defined architectural attributes and attached them to specific locations, but also assigned
randomized functions to certain attributes so that they were distributed over the urban
model. Various building types were described by different procedural rules, so that e.g.
houses, temples, and basilicas could be distinguished and spread across the city model.
Also, semantic descriptions for architectural elements were used so that different
architectural styles could be created.

Greuter et al. presented an approach to procedurally generate “pseudo infinite” cities in
real-time [32]. The cities consist of various procedurally generated buildings, which
generation parameters are created by a pseudo random number generator. The building
geometries were extruded from a set of floor plans. The floor plans are generated by an
iterative process, from the top level of a building to the ground floor, combining randomly
generated polygons. The first iteration generates a random polygon and subsequent
iteration steps create floor plans for the lower floors by generating a random polygon and
combining it with the previously created polygon. The shape of a building (i.e. the pseudo
random numbers for its parameters) is determined by its location, so that the same building
will always appear at the same location. Buildings that surround the viewpoint are
generated and stored in memory and buildings that drop out of the viewing range will be
deleted. Furthermore, they used view frustum filling to enhance performance. In contrast
to view frustum culling, a method that detects non-visible but existing shapes before they
are rendered, their approach detects potentially visible cells around the viewpoint of the
camera before the content is generated.

A possible application for procedural building generation are computer games. As
mentioned in the Introduction, Oskar Stålberg combined methods from procedural
generation with texture synthesis and created the game Townscaper (see chapter 2.5).

2.2 Texture Synthesis

As the Wave Function Collapse algorithm was originally invented in the field of texture
synthesis, this chapter will give an overview of this topic.

2.2.1 Basics

According to Karth and Smith, texture synthesis is the process of generating an output
image with texture that resembles a smaller input image [4]. Some authors distinguish

Basics and Related Work

16

exemplar-based texture synthesis from a purely algorithmic generation of textures without
input data (see [33], [30]). In the following, the term “texture synthesis” will be used
synonymously for “exemplar-based texture synthesis”.

A fundamental question in this context is what texture means. According to Tuceryan and
Jain there are many different definitions and it is difficult to find one that is universal [34].
Definitions they propose describe texture as a structure with a repetitive pattern or as a
region in an image with a constant, slowly variant, or periodic set of local properties.

Furthermore, Efros and Leung point out that two types (respectively two extremes) of
textures can be distinguished, between which all textures can be classified: regular and
stochastic textures [35]. Regular textures consist of repeated texels (texture elements),
whereas stochastic textures have no explicit texels.

Figure 10: Example for a more stochastic texture on the left side and a more regular texture on the right side
[33].

Oftentimes, the input and output images in texture synthesis are characterized by their
local patterns, sub-images of just a few pixels. Many algorithms produce output in which
every local pattern resembles a local pattern in the input and this resemblance need not be
an exact matching. In contrast, Wave Function Collapse uses exact pattern matching. [4]

Different methods for texture synthesis have been developed that can be divided into
parametric and non-parametric methods. Parametric methods estimate a set of statistics
from an input image that define an underlying stochastic process. The output images will
then be generated by this stochastic process and have the same statistics as the original
texture. These methods may fail when the input image has certain structures that are
important for a correct reproduction, i.e. they are more useful for stochastic textures.
Non-parametric methods reorganize neighboring local patterns to create output textures.
These methods are especially useful for more regular textures but can possibly just recreate
large parts of the input image or create useless output images that only reproduce one part
of the input image and ignoring the rest of it. [33]

As will become clearer in chapter 2.3, the WFC algorithm belongs to the non-parametric
methods, recreating and reorganizing existing patterns from the input.

Basics and Related Work

17

2.2.2 Examples of Further Developments in Texture Synthesis

Paul Merrell proposes an extension of texture synthesis from the original 2-dimensional to
a 3-dimensional application; he calls this approach model synthesis [30]. His method
generates large 3-dimensional models that resemble a smaller 3D model that was given as
input. Merrell mentions two main differences between texture synthesis and model
synthesis: first, model synthesis uses a global search to find potential conflicts and, second,
his method divides the task of generating a large model into several smaller tasks to make
the generation easier to solve. His approach breaks the example model into small building
blocks that are rearranged on a 3-dimensional grid. This method accepts many different
example models, and he refers to it as a “general-purpose modeling tool”.

Figure 11: The large building complex on the right side was generated with model synthesis using the smaller
model on the left [30].

Merrell uses predefined model pieces (building blocks of a model) to describe the input
models. To achieve consistent results, model pieces must be put together using a set of
rules. These rules must ensure that the pieces fit together correctly. E.g., one rule stipulates
that a model piece may only be beneath (or behind) another model piece, if it was beneath
(or behind) that piece in the example model. “More precisely, a model M is consistent with
an example model E if all the model pieces that are adjacent to one another in M are found
adjacent to one another in E along the same direction” [30].
To apply the rules correctly, Merrell uses labels for the different pieces of a model. If a
model in the resulting 3D grid is missing labels, it is still incomplete.

Basics and Related Work

18

Figure 12: A model consisting of four model pieces can be seen in (a), (b) shows an inconsistent model that
was generated without rules, and (c) shows a consistent model [30].

As you can see in Figure 12, this model is only complete if it contains the pieces 1, 2 and 3.
It is possible that a model becomes inconsistent when more labeled model pieces are
added to it. To prevent this, Merrell uses a global search to remove model pieces that may
lead to inconsistencies.

Model Synthesis shows some similarities to the Wave Function Collapse algorithm (see
chapter 2.3), another development in the field of texture synthesis. In fact, Karth and Smith
write that the WFC algorithm was inspired by Merrell’s approach [4]. It will be seen that the
rules Merrell uses to prevent inconsistencies in his results resemble the constraints of WFC.
The requirement that adjacent model pieces from the input model should be equally
adjacent in the result is present in both algorithms.
Further developments that are based on WFC are described in Chapter 2.3.2.

2.3 Wave Function Collapse

One of the two algorithms that forms the basis of this work is the Wave Function Collapse
(WFC) algorithm1 that was developed by Maxim Gumin. Karth and Smith describe Gumins
approach in detail [4] and I will refer to their paper in the following.

WFC was originally invented to create new images based on given examples. It therefore
belongs to texture synthesis as well as procedural generation. The images generated by
WFC only contain local patterns that are also present in the original image. Gumin’s original
algorithm does not use backtracking and implements a greedy search. Karth and Smith
classify WFC as a constraint solving method. WFC uses a minimal entropy heuristic and
generates its output image incrementally by expanding the known regions of the output
and completing them with local patterns from the input image.

1 The name "Wave Function Collapse" is a reference to the wave function of quantum mechanics,
which was a loose inspiration for the algorithm. It was mainly an inspiration for the superposition of
the possible solutions for an image position during the expansion of the output image. [3]

Basics and Related Work

19

2.3.1 The WFC Algorithm

Gumin's original algorithm as described from Karth and Smith is presented below.

In general, the algorithm executes 4 tasks:

1. Extracting local patterns from an input image
2. Processing these patterns in an index, so that constraint checking can be

accelerated
3. Incrementally creating an output image by expanding a partial assignment
4. Rendering the total assignment into an image

In the following, the tasks will be described in more detail.

Regarding step 1: Extracting local patterns from an input image

A pattern is a unique combination of input tiles, it is composed of NxN tiles (e.g. 2x2 or
3x3). All patterns are extracted from the input image and can be described as sub-images of
the original image. At this point two variations of the algorithm can be distinguished: the
simple “tiled version” and the “overlapping version”. The two variations differ in the way in
which the constraints are derived from the patterns.
The “tiled version” derives its constraints directly from the patterns so that one pattern
defines exactly one allowed combination of tiles.
The “overlapping version” derives its constraints from the input image by creating a set of
unique patterns. In short, the algorithm examines all patterns it got from the input image
and identifies the ways these patterns can overlap (with different offsets). Patterns can
overlap where they have identical tiles. A complete overlay is only possible with the same
pattern, all other patterns can only overlap partially. Symmetry and reflection of the
patterns can also be considered.

Figure 13: Simple example for an input image [4].

Figure 14: All 2x2 patterns derived from the input image above, including rotation and reflection [4].

Basics and Related Work

20

Figure 13 shows an example for a simple input image. Figure 14 shows all 2x2 patterns that
can be extracted from this image. It can be noted that every pattern is unique even if the
pattern appears more than once in the input image. Besides, some of the patterns do not
appear in the input image in exactly this way but are a rotation or reflection of a pattern.

Regarding step 2: Processing the patterns in an index, so that constraint checking can be
accelerated

Based on the set of patterns an index data structure is built that describes how the patterns
can be placed together.
Regarding the overlap version, the index data structure contains the information about if
and how two patterns can be placed together. With 2x2 patterns there are 9 ways in which
two patterns could be positioned together, see Figure 15.

Figure 15: 9 options how 2x2 patterns can be positioned together [4].

For each pattern, the index data structure contains information on how it can be positioned
together with other patterns. Gumin calls this index data structure a propagator.

Figure 16: One part of the index data structure, describing how other patterns can be positioned together
with the pattern in the middle panel (0,0) [4].

Basics and Related Work

21

Regarding the tiled version, the index can directly be derived from the specific tile-
relationships in the patterns.

Regarding step 3: Incrementally creating an output image by expanding a partial
assignment

After looking at how patterns are gained from the original picture and how rules or
constraints (describing the possible combinations of patterns) are derived from them, the
creation of the output image is regarded now.

During the incremental generation process, decision variables are repeatedly selected and
assigned. There is a decision variable for each grid location of the output image. A table,
that Gumin calls Wave (a reference to the quantum wave function), keeps track of the
assignments and the remaining possibilities for any location. The entries in this table (that
Gumin calls coefficients) are Boolean values. These coefficients record whether the
algorithm might still assign a certain pattern to a given location. In the beginning, all these
variables are initialized with “true”, thus all coefficients have an unlimited domain. This
means that there is one decision variable with a domain for each location on the grid. At
the beginning each domain contains all possible patterns from the input image. The further
the algorithm progresses, the smaller the domains of the variables become, until in the end
only one possible value is left for each variable, which will then be assigned. It should be
noted that Gumin’s original algorithm does not use backtracking, so if an error occurs a
global restart is executed.

This third step can be divided into the sub-steps observe and propagate.

The purpose of the observe phase is to find the location with the lowest entropy (greater
than 0). The cell with the lowest entropy is the one with the smallest domain, i.e. the
variable with the fewest possible patterns that can be assigned. After the location with the
lowest entropy was selected, it still got several valid patterns left, otherwise the location’s
entropy would already have been 0 in the previous step, so this variable would already
have been resolved.
Afterwards, one of the possible patterns of the chosen location must be selected. The
pattern is chosen randomly, however the frequency with which the patterns occur in the
original image are used as weights. This implements Gumin's goal that all patterns in the
output image should be as frequent as in the input image.
After a variable has been assigned in the observe step, it receives a flag as a location that
must be updated in the wave, i.e. the other variables (or their domains) must be updated
by constraint propagation.

Basics and Related Work

22

The propagate step uses “arc consistency”. This constraint solving method “ensures that a
value only appears in a domain of a variable if there exists a valid value in the domain of
related variables such that constraints over those variables could be satisfied” [4]. Updating
a variable domain can mean that all neighboring variables must also be updated.
The actual propagation works like the Flood Fill algorithm. The algorithm ends when there
is no cell left that must be updated. Starting from the first flagged location, every adjacent
cell will be checked, whether it must update its domain. If an adjacent cell needs to be
updated, it also receives a flag as needing to be updated in the next iteration.

To sum up, each observation step ends with a location receiving an assigned value. In
addition, some adjacent variables are likely to get less entropy in their domains during the
propagation.
If there is no more entropy in the system, i.e. all variables have a single value in their
domain, the final image is created and can be returned and rendered. Alternatively, it is
also possible that an image of the partial results can be output after each observation-
propagation cycle.

2.3.2 Examples of Further Developments of Wave Function Collapse

Karth and Smith write, that since its release, Wave Function Collapse was especially used in
the (indie) game development scene. Proc Skater 2016 by Joseph Parker was the first game
using WFC and generates levels with this method. Another game developer, Oskar Stålberg,
contributed a lot to the popularization of WFC. He generalized the algorithm to broaden
the possibilities for its application. Among other things, he started using WFC for 3-
dimensional applications, he used performance optimizations and added backtracking [4].
Stålberg’s combination of WFC and Marching Cubes (MC is described in chapter 2.4) as in
Townscaper [2] is described in chapter 2.5.

In the case of model synthesis, you can already see that the subject areas “texture
synthesis” and “procedural generation of buildings” (or of 3D models in general) overlap.
This is also the case when the WFC algorithm is extended into the 3-dimensional.

Khokhlov et al. present another method based on model synthesis and WFC that generates
3D models [36]. In contrast to model synthesis and Stålberg’s approach to applying WFC to
3D models, Khokhlov et al. apply WFC on voxels (volume elements; the 3D equivalent of
pixels). They write, the advantage of their method over others that only use surfaces (i.e.
polygonal meshes) for the generation is that the input model also provides information
about its volume and inner structure. Thus, they can infer adjacency rules directly from the
model without the need to manually define them. Instead of regarding the input’s pixels
and how they form patterns in 2D, they regard its voxels and their patterns in 3D. Based on
these patterns, they automatically derive the rules for the model generation, just like
(standard) WFC does in 2D.

Basics and Related Work

23

Kim et al. describe a graph-based WFC algorithm for procedurally creating 3D game content
[37]. They use a graph-based data-structure in 3-dimensional world and thereby extend the
WFC algorithm to work independently of a grid.

2.4 Marching Cubes

The other algorithm that forms the basis of this work besides Wave Function Collapse is the
Marching Cubes algorithm. Marching Cubes (MC) was first presented by Lorensen and Cline
in 1987 [3] and their paper will be referenced in the following.

The MC algorithm was originally developed for medical uses. 3D data from computed
tomography (CT), magnetic resonance (MR), and single-photon emission computed
tomography (SPECT) is processed to calculate surfaces that represent the boundaries
between different density values within the data. Thus, the algorithm “creates triangle
models of constant density surfaces”. The 3D data consists of many 2-dimensional slices
that are obtained through the above-mentioned medical methods and that form a 3D data
array. With a divide-and-conquer approach MC generates inter-slice connectivity. Gradient
information (regarding the density values) from the original data is used for shading the
models. In the end, the algorithm produces high-resolution images from the generated
surface models.

Medical algorithms that produce 3D images follow the same 4 steps:

1. Data acquisition – e.g. through CT, MR, SPECT
2. Image processing – to find structure within the data (needed by some algorithms)
3. Surface construction – to create a surface model from the data that usually consists

of either voxels or polygons
4. Display – to display the surface

MC is a possible implementation of the third step: it creates a surface model consisting of
triangles that corresponds to a density specified by the user.

2.4.1 The Marching Cubes Algorithm

The MC algorithm can be divided into two main steps:

1. Localizing the surface corresponding to a user-defined density value and creating
triangles

2. Calculating the normals to the surface at each vertex of each triangle for a high-
quality image of the surface

Basics and Related Work

24

Regarding step 1: Localizing the surface

Using a divide-and-conquer technique, MC divides all 3D data into logical cubes consisting
of 8 pixels, four pixels each from two adjacent slices.
For each cube, the algorithm determines the intersection with the surface and then moves
on (“marches”) to the next one.

To find the surface intersection for one cube, the cube’s vertices are either assigned the
number zero or one. “One” means that the corresponding vertex is inside the surface, i.e.
the data value of this vertex exceeds or equals the density value that determines the
surface. Vertices with lower density values are assigned a “zero” and are outside the
surface. The surface intersects those cubes where the vertices of one edge have been
assigned different values, so one vertex is inside and the other outside the surface. Put
simply, the surface intersects those cubes whose vertices have been assigned different
values.

As one cube consists of 8 vertices, each in one of two possible states, there are 28 (= 256)
ways how the surface can intersect a cube. I.e., every cube has certain vertex (or node)
states, and these vertex states constitute the cube state that can be represented as a
number between 0 and 255. For each possible case (i.e. cube state) an index is created that
bases on the states of the vertices. This leads to an 8-bit index representing the state of a
cube (one bit for every vertex).
Thus, a table with 256 possibilities can be created that displays how a cube (respectively its
edges) with a certain cube state is intersected by the surface. The table lists the intersected
edges for all possible cube states.
However, it is not necessary to triangulate all 256 possibilities individually. Due to
symmetries, the actual number of possible ways a cube can be intersected reduces to 14, as
can be seen in Figure 17. On the one hand, the topology of the surface is unchanged, if the
vertex states of a cube are reversed, because the same edges are intersected. On the other
hand, cube states that are rotated against each other are also equivalent.

Basics and Related Work

25

Figure 17: All 14 possibilities how a cube can be intersected by a surface [3].

Using the index of a cube as a pointer in the above-mentioned table to find the intersected
edges, it is possible to linearly interpolate the surface intersection along the edge, based on
the density values of the edge vertices.

Regarding step 2: Calculating the normals to the surface

Subsequently, the MC algorithm calculates a unit normal for every vertex of every triangle.
These normals are used by the rendering algorithms to produce Gouraud-shaded images.

A surface with a constant density has a zero gradient component along the surface
tangential direction. Hence, the direction of the gradient vector 𝑔⃗ is normal (orthogonal) to
the surface. This fact can be used to calculate the surface normal vector 𝑛⃗⃗ (if the gradient’s
magnitude is not zero, which is always the case, since the surface indicates the limit of
different density values).

The gradient vector 𝑔⃗ represents the derivative of the density function at position (x, y, z).

𝑔⃗(𝑥, 𝑦, 𝑧) = 𝛻𝑓(𝑥, 𝑦, 𝑧)
Equation 1 [3]

Basics and Related Work

26

To approximate the gradient vector of the surface, the gradient vectors at the cube vertices
are estimated and, afterwards, the gradient at the point of intersection is obtained through
linear interpolation.
To estimate the gradient at a cube vertex (i, j, k), central differences along the coordinate
axes is used (see Equation 2, Equation 3, and Equation 4). So, a vertex gradient consists of
(𝐺𝑥 , 𝐺𝑦, 𝐺𝑍).

𝐺𝑥(𝑖, 𝑗, 𝑘) =
𝐷 (𝑖 + 1, 𝑗, 𝑘) − 𝐷 (𝑖 − 1, 𝑗, 𝑘)

𝛥 𝑥

Equation 2 [3]

𝐺𝑦(𝑖, 𝑗, 𝑘) =
𝐷 (𝑖, 𝑗 + 1, 𝑘) − 𝐷 (𝑖, 𝑗 − 1, 𝑘)

𝛥 𝑦

Equation 3 [3]

𝐺𝑧(𝑖, 𝑗, 𝑘) =
𝐷 (𝑖, 𝑗, 𝑘 + 1) − 𝐷 (𝑖, 𝑗, 𝑘 − 1)

𝛥 𝑧

Equation 4 [3]

D (i, j, k) is the density at pixel (i, j) in slice k and Δx, Δy and Δz are the lengths of the cube
edges. The gradient is divided by its length to receive the unit normal at the vertex.
To calculate the gradient at all vertices of a cube, it is necessary to keep four data slices in
memory at once.

After obtaining the normal gradient vector for every cube vertex (using Equation 2,
Equation 3, and Equation 4), it is now possible to obtain the gradient vectors at the
intersection between the surface and the cube by linear interpolation. A gradient is
calculated for every triangle vertex of the surface within the respective cube.

To sum up, Marching Cubes generates a surface from 3D data as follows:
The algorithm divides the pixels of consecutive slices into cubes, consisting of four pixels
each from two slices. The cube receives an 8-bit index that indicates which of its vertices
are inside the surface and which are outside. A vertex is inside the surface when its density
value is equal or above a user-defined threshold (the surface constant). The cube’s index is
used as a pointer in a list to find the edges that are intersected by the surface. With the
densities at the edge vertices the exact surface-edge intersection can be obtained by linear
interpolation. A unit normal at each cube vertex is approximated using central differences.
These normals are subsequently used to interpolate the normal to every triangle vertex of
the surface within the cube. In the end, the triangle vertices and vertex normals are
output.

Basics and Related Work

27

2.5 Combining Wave Function Collapse and Marching
Cubes

The game developer Oskar Stålberg experimented a lot with different applications for Wave
Function Collapse [4], he held speeches about the algorithm [38] [39], created a browser
game to demonstrate how WFC works2, and published the strategy game Bad North [40]
using WFC for level generation.
His latest game Townscaper [2] applies WFC on 3-dimensional building models and thus he
created a simple city-building game where users can create single buildings or huge towns
by clicking on cells in a 3D grid. For this application he used both the WFC and the MC
algorithm that he applies on a modular tile set. His approach was an inspiration for this
thesis.

Stålberg wrote about the functionality of Townscaper: “Marching Cubes generates the
possibility space that WFC then collapse[s].”3 For a better understanding of this statement, I
will first look at how MC can be used for simple building generation purposes in 3D.
Afterwards, I will regard how WFC can be used as a constraint solver in order to use
concrete 3D tiles for the generation.

Stålberg did not publish specific information about his own implementation of Townscaper,
which is why the procedure described below is only an interpretation of his statements. The
details of my own approach are discussed in chapter 0.

A modification of MC for building generation purposes can work like this: A 3D grid consists
of cells that are either “inside” or “outside” (just like in the original MC, where pixels from a
slide can either be inside or outside a surface). When a cell is “inside”, a building (or part of
a building) is generated at the corresponding location. It is important to consider in which
way “inner” cells adjoin each other, since the aim is to create consistent buildings.
Depending on how the cells are adjacent, different building tiles are used. A browser game
for building generation that Stålberg developed4, uses “the corners between blocks” (i.e.
the nodes of the grid) to place the building tiles [41]. Apparently, he used the nodes of the
grid to keep track of the state of their 8 adjacent cells. Like in the original MC algorithm, an
8-bit index represents a state. But instead of a cube state that represents the state of its
nodes, Stålberg uses a node state that represents the state of the adjacent cells (see Figure
18).5 Depending on these node states, building tiles are set at the corresponding positions.

2 See http://oskarstalberg.com/game/wave/wave.html (accessed 2020/19/8).
3 See https://twitter.com/osksta/status/1176569884924416001 (accessed 2020/19/8).
4 See https://oskarstalberg.com/game/house/index.html (accessed 2020/19/8).
5 Depending on the concrete implementation, a grid can alternatively keep track of the states of its
cells, where a cell state represents the states of its 8 nodes, placing the tiles in the center of a cell.
But I will follow Stålberg’s approach and use node states.

http://oskarstalberg.com/game/wave/wave.html
https://twitter.com/osksta/status/1176569884924416001
https://oskarstalberg.com/game/house/index.html

Basics and Related Work

28

Figure 18: Different 8-bit node states determine the appropriate building tiles [41].

To determine which cells are “inside” (state: 1) and which are “outside” (state: 0), Stålberg
lets the users decide about the structure of the generated buildings, by clicking on cells in a
3D grid.
Hence, when users click on an empty cell in the grid, the cell’s state is changed from
“outside” to “inside”. Thereby the states of the 8 associated nodes also change and new
tiles will be placed at the corresponding positions in the grid for each of these nodes
forming a consistent building.

The approach discussed so far is a rigid way to procedurally generate buildings. By only
using Marching Cubes, each building that was generated on the same way will always look
the same. The combination of MC with WFC produces more varied results. To expand MC
with WFC, the previous process basically remains the same. But instead of a single building
tile that is always used for a certain node state, one node state corresponds to several
building tiles. This is how MC creates the “possibility space” for WFC.
After every click, MC determines the possible building tiles for each node state and WFC
then selects the concrete tiles. During the generation of the final buildings the steps
observe and propagate are carried out alternately, like in the original WFC algorithm (see
step 3 in chapter 2.3.1). At the beginning, WFC’s wave (the list with the remaining possible
patterns for every location) contains all patterns, i.e. all tiles that can be used for the node
states. Gradually, possibilities are sorted out with the help of self-defined constraints to
finally create the finished image, respectively the finished 3D buildings.

Concept

29

3 Concept

The following chapter presents the logical concept of my application. I will not discuss
technological issues or concrete implementations at this point, but rather the abstract idea
of a possible implementation.

In chapter 2.5, the possible combination of the WFC and the MC algorithm has been
discussed with regard to Stålberg’s implementation of Townscaper. These assumptions
form the basis of my own concept, which is presented below. I discuss how WFC and MC
were used in this thesis to develop an application for building generation.

3.1 Overview

As in Stålberg’s solution, my application is based on a 3D grid consisting of cells. Each cell
has a state and is adjacent to 8 nodes. The cells can be in one of two states, “inside” or
“outside” (respectively 1 or 0). In addition, the nodes have an 8-bit state that consists of the
states of their adjacent cells.

If a node adjoins one or more cells that are “inside”, a 3D building model is assigned to the
node. In the UI, this 3D tile is placed at the position of the corresponding node in the grid.

Which 3D tile is to be placed at the position of a node is decided with the help of WFC and
MC. Considering the node states, MC determines the course of the buildings’ surfaces.
Thus, the algorithm defines a certain “type” of tiles that can be used in a position. WFC
regards the “types” of tiles that must be used in the grid and decides which specific tiles are
used.

3.2 Modifications to the Marching Cubes Algorithm

As already described in chapter 2.4.1, the MC algorithm basically consists of two main
steps: finding the surface and calculating the normals to the surface. Only the first step is
required for this application.

Concept

30

3.2.1 Basic Process

The surface of the buildings is determined by assigning a possible equivalence class to each
node state. An equivalence class comprises at least one, usually several node states and
determines the “type” of tile that corresponds to the node states. I.e., node states are
equivalent and belong to the same equivalence class, when the same 3D model could be
used for them in the final step, see chapter 3.2.5. All node states are assigned to their
corresponding equivalence class by MC. Thus, the main task of my modified MC algorithm is
to find the equivalence classes for every node state.

The query to find an equivalence class for a specific node state is as follows:

Algorithm 1

- For all equivalence classes:
o Regard all comprised node states:

▪ If a comprised node state matches the received node state:

• Return the equivalence class.

3.2.2 Cube Creation at Runtime

The original MC algorithm divides existing data into 3D cubes. In my application, the data is
not given in advance, but is defined by the user at runtime.

A UI shows a 3D grid which corresponds to the internal 3D data. Initially, all cells in the grid
are empty. A click on a cell in the grid changes the state of the logical cell of the internal 3D
data. A previously empty cell is now filled or “inside”. The other way round, a previously
filled cell is now empty or “outside”. Eventually, a click into the grid either creates or
deletes a visible building (or part of a building) in the user interface.

For an easier differentiation, a filled cell will be called “cube” from now on, while “cells” can
be either filled or empty.

3.2.3 The Internal Grid

The internal 3D grid holds the cells and their positions. Boolean values can be stored in the
grid for each position that indicate whether the corresponding cell is “inside” or “outside”.

The internal grid maps the state of the UI grid. A click in the visible grid in the user interface
triggers the toggling of an entry in the internal grid. A click into the grid either creates or
deletes a part of a building and, simultaneously, either sets an internal entry from false to
true or vice versa.

Concept

31

Furthermore, the grid determines the positions and states of all nodes. The decision was
made, that the position of a cell is determined by its node on the lower left front side. Thus,
the cell and node state positions are mapped to one another and the node at the lower left
front side of a cell has the same position as the cell in the grid.

3.2.4 Node States Represent Adjacent Cells

A cell has 8 associated nodes each responsible for its 8 corners. The other way round, one
node stores the states of its 8 adjacent cells so that it can ensure a smooth transition
between neighboring cubes. This means that changing a cell’s state results in 8 adjacent
nodes changing their state.

The 8-bit index that represents a node state can be determined by coding the node’s cells
as powers of two. The coding can be seen in Figure 19. Each cell corresponds to an entry in
the index, depending on its position in relation to the node. The numbers represent the
positions of the corresponding cell states within the 8-bit index of the node state. (The
index positions are read from right to left.):
The state of the cell at position 1 corresponds to the index position 1 (21 = 1), the state of
the cell at position 16 corresponds to the index position 4 (24 = 16). The node state is
obtained by adding up the assigned numbers of all cells whose status is “inside”. If, e.g.,
only the cells at position 1 and 16 are “inside”, the node state was: 1 + 16 = 17,
respectively: 00010001.

Figure 19: A node and the corners of its 8 adjacent cells. The numbers represent the positions of the
corresponding cell states within the 8-bit index of the node state. E.g. if the cells at position 2 and 8 are
“inside”, the node state would be: 00001010.

The node state is determined as follows:

Algorithm 2

- Initialize the node state with 0.
- For every adjacent cell: Check whether the cell is “inside” (the entry in the grid is

set to true) or “outside” (the entry is set to false).
o If the cell is “inside”, add the coded cube position to the node state.

- Return the node state.

Concept

32

Each node state corresponds to a certain “tile”6, i.e. a 3D model that is placed at the
position of the node.7 If a node is only adjacent to one cube, the corresponding tile of the
node fills one corner, i.e. one eighth of the cell. Only if none or all cells that are adjacent to
a node are “inside”, no tile is used for this node. If all cells of a node are “inside”, it is
located within a building and does not represent a surface.

Figure 20: The node state 01000000 corresponds to a 3D tile that fills one eights of a cell. Together with other
tiles of neighboring nodes a complete building is created.

As in the original algorithm, there are 28 (= 256) possible states. Hence, a table with 256
possibilities can be created that displays which node state results in which 3D tile. But like
in original MC, it is not necessary to create 256 different tiles, because of possible rotations.
I.e. some node states result in the same tile but with another rotation (those node states
that belong to the same equivalence class). Still, there are more than 14 different tiles (as in
the original algorithm) to model beforehand, because in our case it is not possible to regard
reversed states as equivalent. In addition, a distinction must be made between roof and
floor pieces, therefore not all rotations can be regarded as equivalent.

3.2.5 Equivalence Classes

To find out which tiles can be used for the same node states, I grouped them into
equivalence classes. Node states are equivalent and belong to the same equivalence class,
when the same 3D tile can be used for them, eventually.

Originally, reversed states resulted in the same surface, only with reversed normals. Also,
all possible rotations of a node state had the same result. Thus, these node states were
seen as equivalent. In this application, however, not only a simple surface is created, but 3D
models with unique designs are used. Various aspects must be considered to classify node
states as equivalent here.

6 In this thesis, the term “tile” is used to describe 3-dimensional models. These models are previously
created and integrated into the program so that the application can use and arrange them at
runtime. The term “tile” is a reference to the Wave Function Collapse algorithm that uses tiles for
texture synthesis.
7 In fact, a node state in my application can be represented by different tiles and WFC eventually
selects one of them, but only MC is considered at this point.

Concept

33

Mostly, reversed node states cannot be regarded as equivalent. Only the two node states in
which all or none of the adjacent cells are “inside” are both reversed and equivalent, as
they do not correspond to any tile. They belong to equivalence class 0. Node states that are
rotations of each other can be equivalent but do not necessarily have to be.

A utility program8 (see chapter 3.2.6) that was additionally developed in the context of this
thesis has shown that there are 23 different equivalence classes if all possible rotations are
allowed and reversed states are not considered to be the same. If you combine the two
states that do not represent a surface in one class (equivalence class 0), you get 22 basic
equivalence classes. However, a lot more states must be distinguished. The basic
equivalence classes can be seen in the appendix, see 8.2.

3.2.6 Note on the Utility Program

The additional utility program is based on a tool that professor Jenke made available for
this thesis. With his tool one could select a node state and display all its possible reflections
and rotations.

Since node states that are in the same equivalence class can be mapped onto the same 3D
tile, only node states that are rotations of one another, but not those that are reflections of
one another, belong to the same class. That is because the tiles can be rotated and
positioned by the algorithm, but not mirrored.

I extended the program to find all the equivalence classes under the assumption that node
states are equivalent when they are rotations of one other. In this way 23 equivalence
classes were found. As already mentioned, the two reversed node states that do not
represent a surface are equivalent but were recognized by the algorithm as two different
equivalence classes. These can be combined so that 22 basic classes remain.
In addition, these 22 classes need to be further subdivided, since e.g. tiles that represent a
ceiling must look different than tiles that represent the floor. Due to the distinction
between roof tiles and floor tiles, node states can only be equivalent if one state can be
converted into the other state by rotating around the Y-axis (see Figure 21).

8 Project wfc_ba: https://git.haw-hamburg.de/ace506/wfc_ba

https://git.haw-hamburg.de/ace506/wfc_ba

Concept

34

Figure 21: These node states (01000000 and 10000000) are equivalent and belong to the same equivalence
class. Thus, the same 3D tile can be used for them with different rotations.

To find out the sub-equivalence classes, the 22 basic classes were subdivided by examining
which of the node states can be converted into one another by rotations around the Y-axis.
Therefore, I have further extended the program to find the node states within the 22
classes that are Y-rotations of one another.
The final (sub-)equivalence classes have a basic state and the other node states from the
same class are rotations of this basic state. In the actual application of this thesis, a 3D tile
that belongs to an equivalence class will be rotated by default in such a way that it
corresponds to this basic state. If the tile is used for another node state of the same
equivalence class, it must be further rotated. The utility program calculated these required
rotations and wrote them into a table, which gets imported once when the actual
application starts.

Figure 22: To give an example: The basic equivalence classes 3 and 7 comprise four respectively six sub-
equivalence classes that are shown here as 3D tiles. Each sub-class comprises four different node states – the
possible rotations around the Y-axis.

Concept

35

3.3 Modifications to the Wave Function Collapse Algorithm

As described in chapter 2.3.1, the WFC algorithm can be divided into 4 steps:

1. Extracting local patterns from an input image
2. Processing these patterns in an index, so that constraint checking can be

accelerated
3. Incrementally creating an output image by expanding a partial assignment
4. Rendering the total assignment into an image

The first and second steps are not relevant for the application described here since no input
image is used. However, they are replaced by the Marching Cubes algorithm. Instead of
extracting local patterns from an input image, the patterns are given in advance (in the
form of 3D tiles). Instead of an index, node states define the positions and rotations of the
tiles. Also, constraints are not extracted from a given example but self-defined.

My adapted WFC algorithm works on top of the results of MC. Only the equivalence classes
and their positions in the grid are relevant for the application of the algorithm since all
associated node states correspond to the same tiles. WFC examines all possible tiles for an
equivalence class and uses the defined constraints to decide how the respective location
must be collapsed, i.e. which pattern (concrete tile)9 should be used for a certain location.

For my application, the adaption of step 3, i.e. the incremental creation of an output image,
is most important and will be described in the following.

3.3.1 The Wave Stores Decision Variables

The generation process remains incremental as in Gumin’s original algorithm. After the
WFC algorithm is triggered, all relevant locations receive decision variables that are sorted
out step by step. However, in this application not the entire grid has to be collapsed, but
only those positions at which a node is adjacent to one to seven cubes (i.e. those positions
where the corresponding node states do not belong to equivalence class 0).

Thus, in the wave, the pattern options are saved for each node location of the output image
that adjoins a visible cube. These decision variables, i.e. lists of pattern options, are to be
collapsed. Although the lists of patterns have the same structure for all node locations, it is
possible to offer different options depending on the equivalence class. The entries in the
wave for some options can be set to false at the beginning. Pattern options in the wave
include different colors for the tiles as well as the possibility to set doors or balconies at
certain positions.

9 The options for the different tiles that WFC stores in the wave are called “patterns” in the following
to distinguish them from the concrete 3D tiles.

Concept

36

For each position, the wave saves a list of possibilities, which are Boolean values as in the
original algorithm and initialized as “true”. Those locations that shall be disregarded by the
algorithm (locations without cubes) are directly marked as collapsed from the beginning
and receive a 0 entropy by setting all but one dedicated pattern to “false”.
With each pass of the algorithm, possibilities in the wave are sorted out and one position is
collapsed, i.e. its value is finally determined and assigned. Eventually all locations will have
been collapsed so that exactly one possibility is assigned to each location.

As in Gumin's original algorithm, my implementation will not use backtracking. If a
contradiction occurs, WFC is executed from the beginning. This decision makes sense for
my implementation because contradictions almost never occur since the constraints are
not affected by each other.

The third step of Gumin’s WFC can be divided into the sub-phases observe and propagate,
this also applies to my implementation. These two steps are executed sequentially over and
over again until WFC finds a total assignment (or a contradiction occurs).

3.3.2 Observe

The purpose of the observe phase remains to find the location with the lowest entropy
(that is greater than 0). So, the location with the fewest possible patterns is selected.
However, the condition remains the same that only a location with more than one option
can be selected. If a location has only one possibility left, it would have already been
collapsed and the entropy was 0. If no more options were left, there was a contradiction
and the algorithm had to restart.

Basic Process

The observe phase starts with finding the lowest entropy position in the wave. Based on
this, the further process is decided.

Algorithm 3

- Find the position with the lowest entropy in the wave.
- If the lowest entropy could not be found and all node locations are at entropy 0:

o The processing is completed, and all locations have already been
collapsed. WFC is finished and the collapsed observations are returned.

- If at least one location has no more valid options and its entropy is below 0:
o The algorithm ran into a contradiction and must restart.

- Otherwise:
o The location with the lowest entropy was found. A pattern is selected and

the entropy for this position is set to 0.

Concept

37

Finding the Lowest Entropy

The entropy of every node in the grid is checked by regarding its entries in the wave. The
entropy value is determined by the remaining patterns that are stored in the wave. If one
option is left, the entropy is 0; if two options are left, the entropy is 1; etc.

Algorithm 4

- A 3-dimensional vector is initialized with (-1, -1, -1).
- For every node in the wave:

o If a node’s entropy is greater than 0 and less than previously found
entropies: Its position is stored in the vector.

o If a location’s entropy is below 0: The algorithm found a contradiction. The
vector receives the value (-2, -2, -2) and is returned.

- If all entropies are 0: The entire grid has been collapsed and the unchanged vector
is returned.

- Otherwise: The vector with the found position is returned.

When all positions are run through and a valid node with the lowest entropy is found, this
location is used for the further steps of the algorithm.

Select a Pattern and Set Entropy to Zero

After the location with the lowest greater-than-zero entropy is selected, this location is
collapsed. This means, one of the remaining patterns (i.e. options for the concrete 3D tiles)
is selected and the entropy is set to 0.

Either all possibilities are still open for this location or some possibilities have already been
ruled out. In either case, one of the remaining patterns is selected randomly with
predetermined weights. The original WFC uses the frequency with which the patterns occur
in the input image as weights. Since this is not possible in my case, the weights are set
manually. The weights for the colors can be changed by the users.

The selection of a pattern works as follows:

Algorithm 5

- The weights of all remaining patterns of the chosen location are added.
- A random number between 0 and the sum of weights is created.
- For all patterns of the chosen location:

o If the random number is less than the weight of the current pattern plus
the summed weights of previously checked patterns:

▪ This pattern is selected, and the query is ended.
- After a pattern was selected, all other possibilities are ruled out.

Concept

38

This process ensures that only available patterns are selected and, in addition, that the
selection is based on the pattern’s weights. This can be seen from some examples:

- If the first pattern cannot be selected, its weight was 0. Therefore, the random
number cannot be less than this weight and the first pattern will not be chosen.

- If the first pattern can be selected, but the second cannot and the random number
is greater than the first pattern, than the random number will also be greater than
the added weights of the first and the second pattern, so the second pattern will
not be chosen.

- If the first and second pattern can be selected and the random number is bigger
than the weight of the first pattern, but smaller than the added weights of the first
and second patterns, the second pattern is chosen.

By adding the weights and choosing a random number between 0 and this sum, the weights
determine the probability with which the associated patterns are selected. Because the
larger a weight, the larger the range of numbers in which the random number can be, and
the larger the probability for this case.

After a pattern was chosen and the location is collapsed, it and other variables in the wave
must be updated by constraint propagation in the next step. The collapsed location is
transferred to the subsequent propagate step as starting point for the constraint
propagation. Whenever a location is collapsed, propagation is carried out afterwards. If a
contradiction has occurred or the entire grid is already collapsed, this is not necessary,
because either the algorithm must restart, or it is finished.

3.3.3 Propagate

My propagation phase works very similar to the original algorithm. “Arc consistency”
ensures that a value only appears in the domain of a variable if there is a valid value in the
domain of neighboring variables so that all constraints can be fulfilled. The propagation
works iteratively and only stops when no more locations need to be updated.

Starting from the location that was chosen during the previous observe phase, every
adjacent node location will be checked whether it must update its domain. If an adjacent
node needs to be updated, it receives a flag that it needs to check its own neighbors for
necessary updates in the next iteration step, etc.

There is a list of all nodes that need to update their neighbors. At the beginning the list
contains exactly one node - the previously chosen node of the observe step.
The list functions as a queue: new nodes that need to update their neighbors are appended
at the end, and the node used for the next update is always taken from the front.

Concept

39

Whenever a queue is mentioned in the following within this chapter, it is a reference to
that list.

Basic Process

Algorithm 6

- While the queue is not empty, the next steps will be repeated in a loop:
o One node (the updating node) is taken from the queue.
o A list with the node’s relevant direct neighbors is created (nodes that

correspond to equivalence class 0 are irrelevant).
o Subsequently, every neighbor is checked whether its domain must be

adapted to the domain of the updating node based on the chosen
constraints.

▪ If the updating node has already excluded certain possibilities that
the neighbor still includes:

• The neighbor is adapted to the node and added to the
queue with nodes that need to update their neighbors.

During the propagation process, the possibilities of the neighbors are adjusted to the
respective updating node. The updating node cannot be changed. Furthermore, pattern
options can only be excluded and not added.

Finding the Direct Neighbors of the Updating Node

The algorithm to find the direct neighbors of an updating node is the only time when WFC
also needs the node state of a location. All other parts of the algorithm work exclusively on
top of the equivalence classes. But only the node state holds the information about where a
node adjoins a cube and therefore in what direction neighboring nodes can be found.

It must be pointed out that a node that is directly next to the updating node and does not
belong to equivalence class 0 is not necessarily a direct neighbor. It is only a direct neighbor
if it and the updating node also share a common cube. Otherwise these two nodes are not
connected, see Figure 23.

Figure 23: The red and green nodes are neighbors and do not correspond to the equivalence class 0. However,
the green node is not a direct neighbor of the red node as they do not share a common cube.

Concept

40

For this reason, first, a list is created with the positions of the cubes that belong to the
updating node. The positions of the cubes are determined from the node position and the
node state.

To be able to compare the cubes of different nodes with one another, it is necessary to find
a uniform conversion which determines the locations of the associated cubes. I decided to
define the position of a cube by its lower left front corner, see Figure 24.

Figure 24: The lower left front corner of a cube belongs to this node. Since the lower left front corner of a
cube defines the cube’s position, the position of the cube matches the position of the node.

After the list with cubes adjoining the updating node was created, all neighboring nodes are
checked whether they are direct neighbors of the updating node.

Algorithm 7

- For all three axes in all possible combinations, regard the updating node’s
neighboring nodes (for each axis, the search starts at: updating node’s position - 1
and ends at: updating node’s position + 1).

o If the equivalence class of the node at the corresponding position is not 0:
▪ A list is created with the positions of the cubes belonging to the

possible neighboring node.
▪ If this list contains a cube that is also contained in the list of cubes

belonging to the updating node:

• A direct neighbor is found and added to the list of direct
neighbors.

Apply Constraints to the Neighbors of the Updating Node

The method that is responsible for the application of the constraints is also the place where
the constraints are implemented. The original WFC algorithm derives the constraints from
the input image and stores them in an index, but this is not possible in my case, since there
is no input image.

The entries in the wave are structured in the same way for all grid locations. Regardless of
the node state or the specific location, the structure and length of the list with the different

Concept

41

pattern options remain the same. This makes it possible to apply the same constraints
uniformly to all nodes. Apart from that, it is possible to exclude options for nodes of certain
equivalence classes from the beginning, by setting their entries in the wave to false.

To apply the constraints, the open pattern options of the updating node are successively
compared to the options of its direct neighbors. This means, the entries in the wave are
compared with each other for each constraint. The updating node specifies the desired
state, and the neighbors are adapted to it if necessary.

The first constraint is applied to a neighbor as follows:

Algorithm 8

- Iterate over the updating node’s list of patterns:
o If the updating node has already ruled out the options for one color and

the neighbor still allows it:
▪ Adapt the entries of the neighbor to the entries of the updating

node.
▪ Add the neighbor to the queue of nodes that need to update their

neighbors.
o Otherwise do nothing.

The second constraint says that a building can only have doors on the ground and that
doors cannot be directly next to each other. Only some equivalence classes allow a door to
be used. For all other nodes, the option of a door is set to false when the wave is initialized.
Besides, the position of the node can be used to determine whether it is on the ground.

The process for the application of the second constraint is as follows:

Algorithm 9

- If the neighbor’s pattern options in the wave still include doors:
o If the neighbor’s position is not on the ground or the updating node still

allows doors (or both):
▪ Set the door options of the neighbor to false.

On the one hand, this request ensures that nodes are only allowed to have the option for a
door if they are on the floor. On the other hand, it ensures that a node can only have the
option for a door if its neighbors do not.

After several rounds of the observe and propagate phases, the algorithm assigned a final
pattern to every node location and they are returned.

Concept

42

3.3.4 Optimization of WFC

The application of WFC normally requires that parts of the grid or even the entire grid is
scanned several times in the observe and the propagate phase. To improve the
performance of my WFC, the grid area that is relevant for the algorithm has been limited,
so that it is often not necessary to scan the whole grid.

Every time, WFC is called, it checks whether the grid has already been collapsed in a
previous step. If so, then only the associated parts of the grid to which a new part was
added are recalculated (i.e. the building to which a new part was added). Existing buildings
that are not changed remain unchanged and the same result is returned for them as in the
previous calculation.

The optimization only affects the initialization phase. During the initialization of the wave,
the node locations that were not affected by the change receive the pattern that was
selected for them in the previous WFC run. Only the affected nodes receive different
pattern options.

Two possible paths are distinguished during the initialization of WFC:

Algorithm 10

- If WFC has already been executed before:
o The affected nodes are determined.

- If WFC is executed for the first time:
o All nodes that do not correspond to the equivalence class 0 are affected

nodes.
- The wave is initialized with the affected nodes.

If WFC has been executed before, the affected nodes are determined as follows:

Algorithm 11

- An empty list for the affected nodes is created.
- For every location of the grid: The equivalence class from the last run of WFC is

compared to the new equivalence class.
o If the equivalence classes do not match at a certain location: The

corresponding node is added to the list of affected nodes.
- Until all neighbors of all affected nodes are found:

o Find the direct neighbors (see Algorithm 7) of every node in the list of
affected nodes.

o If a direct neighbor is not yet included, add it to the list.

The wave is initialized as follows:

Concept

43

Algorithm 12

- If WFC is executed for the first time:
o Create an empty list for the wave.

- For every node in the grid:
o Create an entry in the wave.
o If the node is contained in the list of affected nodes:

▪ Set all possible patterns in the wave to true.
o Else:

▪ Set the entropy for this node in the wave to 0. (I.e. set one
dedicated pattern in the wave to true, all others to false.)

3.4 Combining Wave Function Collapse and Marching
Cubes

To create buildings with a single click and make them also appear in different variations, it
is necessary to combine the two algorithms WFC and MC.

3.4.1 Basic Process

When a user clicks into the grid, a cube is either created or deleted, i.e. building parts are
either inserted or removed at the corresponding position. An internal 3D grid stores the
states of the cells and can thus also calculate the node states.

A click into the visible grid changes the state of the internal grid and triggers the building
generation. With every click:

Algorithm 13

- All visible 3D tiles are removed from the user interface.
- For every cell in the internal 3D grid:

o Obtain the node state from the cube’s lower left front side.
o Obtain the equivalence class for the node state.

- After all node states and associated equivalence classes were obtained and saved
in their own 3-dimensional list, WFC is applied to them.

- Finally, the node states and the patterns that were assigned by WFC are used to
place the 3D tiles in the visible grid of the user interface.

Concept

44

3.4.2 Integration of MC and WFC

As can be seen in the basic process, chapter 3.4.1, the MC algorithm is carried out during
the same loop as querying the node states, while WFC is executed afterwards.

MC can be executed before all node states are known because it only needs one node state
at a time for the determination of its equivalence class.
To apply WFC, all equivalence classes must already be known. Not only the states of
individual locations are of interest, but also the state of (almost) the entire grid. Both the
observation and the propagation phase must be able to scan neighboring nodes. Thanks to
the built-in optimization, however, the entire grid does not always have to be considered.

3.4.3 Placing the Tiles

After MC has selected the equivalence classes and WFC the final patterns for every node
location, the 3D tiles need to be placed in the visible grid in the user interface.

Algorithm 14

- For every node:
o If the node state does not correspond to the equivalence class 0:

▪ A game object is created with the 3D tile that corresponds to the
pattern chosen by WFC.

▪ The game object is rotated depending on its node state.
▪ The game object is positioned in the grid in the game.

Rotation of the Game Object

With the utility program that also defined the equivalence classes, the necessary rotations
were determined for all node states, starting from a basic position. The utility program
generated a list with entries for every node state, defining how each node state is to be
rotated. Node states that hold the basic position for their equivalence class do not need to
be rotated. Thus, a game object is rotated depending on its node state.

Positioning of the Game Object

The node state is also important for the positioning of a game object. The internal grid
already stores the positions of all its nodes. But for the correct positioning, it is also
important to consider in which directions the 3D tile must extend. If, e.g., a node state only
has cubes in the upper half, the 3D tile must be moved a quarter step upwards (one step
corresponds to the length of a whole cube). If a node state has cubes both in the upper and
lower half, the object’s center on the Y-axis would be exactly where the node position is
and would not have to be adjusted. The same principle applies to the other axes.

Implementation

45

4 Implementation

This chapter gives an overview about the implementation of my application. First,
important software engineering aspects of the project are discussed. Subsequently, the use
of concrete development environments, libraries, and assets are examined.

4.1 Analysis

For the analysis of the software project, user stories and a user story map were created,
stakeholders and use cases were set up.

This chapter includes the requirements analysis as well as the specification. The
specification is mainly intended to be used for an agreement with the customer, but also to
create a basis for a later review of the system’s correctness [42]. Hence, quality features
and metrics are established for quality assurance, which will then be evaluated in chapter 0.

4.1.1 Stakeholders

Stakeholders can be divided into internal and external customers and users. The
information about stakeholder is based on [43].
Usually the external stakeholders are the actual customers who give the order for the
project. They provide the requirements and technical specifications. External customers
only exist when the product is externally sold (i.e. outside of a company or organization),
therefore, they do not have to be considered in my case.
Internal customers are usually product owners, product managers or team leads, i.e.
contact persons for technical specifications, which are in your own company. In my case,
the supervisors of this thesis can be seen as internal customers with whom I discuss the
approach and implementation of the project.
Users are the ones that finally use the product and whose skills and needs must be
considered during development. In truth, my application is used almost exclusively by me
and the supervisors of the thesis (tech-experienced people). Nonetheless, since my project
is inspired by Stålberg’s Townscaper, I wanted to assume a similar target group as for his
game. Townscaper should appeal to a wide audience, presumably people of almost all ages
that are interested in computer games. The application must therefore have as few hurdles
as possible so that children and the elderly can also use it intuitively.

Implementation

46

4.1.2 User Stories and User Story Map

User stories depict the benefits and the interaction of the stakeholders with the system.
Since, the different interactions with the system were kept little, the number of user stories
is also limited and can be summarized in a user story map, see Figure 25.

Figure 25: A simple user story map of the application.

The user stories in a map are in an abbreviated form. The first line shows the user activities,
the second line the user tasks. The associated user stories are located under the user tasks
[44] [45].

This map shows how the system looks from the user’s perspective and distinguishes
whether a single building is generated (or removed), or only a part of an already existing
building. However, this makes no difference internally. Either way, only the state of one cell
and its adjacent nodes change and the generation process of MC and WFC is restarted for
all neighboring cubes (see chapter 0).

4.1.3 Use Cases

Use cases describe the behavior of a system in response to actions by a user from the
outside perspective. They are derived from the system requirements, e.g. from the user
stories. Only the crucial user stories are worked out as use cases to clarify certain processes
and workflows. [44] [46]
To clearly differentiate between the creation of a single building and a part of the building, I
created a use case for these two cases. As already mentioned, this makes no difference

Implementation

47

internally, but it appears different when you look at the system from the outside – which is
what you do with use cases. The template for the use cases can be found here: [47].

Use Case 01: User creates a new building

Use case name: UC01: User creates a new building
Use case overview: A user left-clicks on an empty cell in the 3D grid whose adjacent

cells are all empty. A new building is generated.
Actors: User(U); System(S)
Preconditions: The application must have been started.
Termination outcome: A new building on the grid is created.
Input summary: Left-click by the user
Output summary: New grid state, new building in the UI
Standard flow:
U: left-clicks on an empty cell in the grid with empty adjacent cells.
S: shows a new building (that can – e.g. – differ in color from other buildings).
Use case notes:
The new building is not affected by constraints from other buildings.

Use Case 02: User creates a new part of an existing building

Use case name: UC02: User creates a new part of an existing building
Use case overview: A user left-clicks on an empty cell in the 3D grid whose adjacent

cells are not all empty. An already existing building is being
expanded or already existing buildings are being connected.

Actors: User(U); System(S)
Preconditions: The application must have been started, at least one building must

have been generated.
Termination outcome: A new part of an existing building is created, or two or more

buildings are connected.
Input summary: Left-click by the user
Output summary: New grid state, expanded building(s) in the UI
Standard flow:
U: left-clicks on an empty cell in the grid that adjoins a building.
S: shows a new part of a building, its appearance is influenced by the exterior of the
building to which it belongs.
Alternative flow:
U: clicks on an empty cell on the grid that adjoins two or more buildings
S: shows a new building part that now connects two or more buildings. The appearance of
the buildings (that are now one building) adapts to each other.
Use case notes:
Constraints are applied to all parts of the building.

Implementation

48

4.1.4 Overview of User Interactions

Since the interactions of the user with the system are limited and not complicated, it is not
necessary to write a separate use case for each. Instead, I decided to create a brief
overview of the possible interactions.

User Action System Reaction

- Left-click in the grid - Create a (part of a) building

- Right-click in the grid - Delete a (part of a) building

- Scroll with the middle mouse
button

- Zoom in the game scene vertically

- Drag the middle mouse button - Drag the game view horizontally

- Press ESC button - End the game

- Press “X” button in UI - End the game

- Deselect a color button in UI - Corresponding color is no longer
used for generation

- Select a color button in UI - Corresponding color is once again
used for generation

4.1.5 Quality Assurance

So far, the functional requirements for the project have been posed. The following section
on quality assurance describes the non-functional requirements.

First, generally applicable quality factors are briefly regarded. Afterwards, my own
requirements are placed on the quality of the software.

General Quality Factors

Different generally applicable quality factors are defined in different sources. For example,
the IEEE defines the following quality factors: correctness, reliability, integrity, usability,
maintainability, efficiency, flexibility, testability, portability, reusability, and interoperability
[44]. Within a project, it must be decided individually which quality features should receive
special attention.

In my project, particular attention has been paid to the following general quality factors:

- maintainability
- extensibility
- usability

Methods to achieve the chosen quality factors are (see [46]):

Implementation

49

- the use of the principles:
o modular design, low coupling, high cohesion, separation of concerns (SoC),

single-responsibility, interface segregation
- unit testing
- usability testing

Even if the focus is only on three quality factors, the others can still be achieved, as the
used methods also address other factors like reusability, correctness, and reliability.

The implementation of these methods can be seen in chapter 4.2 on software design on the
basis of component-, class-, and further diagrams. The evaluation of these methods with
regard to the achievement of the quality features can be found in chapter 0.

The following metrics can be used to check the quality requirements [48]:

- Velocity
- Failure and repair time
- Code churn (necessary code modifications)

Further Quality Requirements

In addition, I set up own requirements for the quality of the software.

The following 6 properties should apply to the generated buildings:

- Buildings can be placed on a designated area in the game that is easy to identify.
- Connected buildings should have a consistent appearance.

o A consistent exterior means that all parts of the building connect to one
another and there are, e.g., no open house walls.

- Connected buildings should have the same color.
- Buildings can only have doors on the floor.
- Two or more doors cannot be directly next to each other.
- Building parts should be able to be connected to each other over all possible

corners, edges, and surfaces.

Since I wanted to assume a similar target group as for Townscaper, a quality requirement
for my project is that it should be playable for people of all ages. The game cannot present
high hurdles so that even children and the elderly can use it. To check this requirement,
usability tests can be carried out.

Another requirement that is partly related to the previous requirement is the intuitive
usability of the software. However, intuitive usability is not only interesting for younger and
elderly users, but it is also a benefit for all other users. This requirement can also be
examined using usability testing.

Implementation

50

To implement the two requirements for usability, I decided to limit the possibilities for
users to interact with the system. In Townscaper, Stålberg seems to use a similar strategy.
Basically, users can only set and delete buildings, and choose the colors for the generation.

Compliance with the quality requirements is checked in chapter 0.

4.2 Software Design

4.2.1 Component Diagram

To give an initial overview of the software design, Figure 26 shows the component diagram
for my project. In this case, the components correspond exactly to the two layers of my
layered architecture: UI and logic. Smaller component boundaries did not appear
reasonable in the context of this project, since the contained classes already represent
meaningful boundaries to one another and cannot be grouped any further.

Figure 26: The component diagram shows the two layers of the project, UI and Logic.10

The interaction between the two components is clearly limited to the two interfaces. The
logic component uses the interface IUpdateScene to trigger the redrawing of a scene in the

UI component, nevertheless, the logic component must know, when there was a user input
and gets informed via its interface IHandleUserInput.

The division into components enables compliance with SoC because each component is
responsible for a clearly defined area of responsibility. The narrow interfaces, which are
precisely tailored to the components, implement the interface segregation principle.

10 The diagrams were created using a free license of Lucidchart: https://www.lucidchart.com/.

https://www.lucidchart.com/

Implementation

51

4.2.2 Class Diagram

Figure 27: The colors in this class diagram mark the different components.

The classes were created according to the single responsibility principle. A class is
responsible for a clearly defined task or a clearly defined area. As a result, a modular design
with high cohesion is implemented.
In addition, an attempt was made to implement low coupling of the classes by using a
component class in the logic component. The LogicComponent class is responsible for the

Implementation

52

coordination of the different classes within the component; it knows all the other classes
and therefore the other classes do not have to know each other (see: 4.2.3 MVC Pattern).
The class diagram also shows that the two components only communicate with each other
via their interfaces, another means for low coupling.

Scripts outside the class diagram

Apart from the classes from the diagram, there are three additional scripts. There is one
utility class and two scripts which control the behavior of game objects and which do not
really act in the concept of a class diagram.

Within the utility class, the equivalence classes and the cube states were coded uniformly
(with Enums) so that this uniform coding could be used throughout the project.

The two other scripts were necessary because of the way in which Unity (the game engine I
used, see 4.3.2) works. In Unity, game objects in a scene can receive associated scripts that
control the behavior of these objects.
One script was used for controlling the camera movement. It listens to input from the
middle mouse button and lets the user drag and zoom into the view.
Another script was necessary to control the buttons that are responsible for the color
selection of the buildings. This script monitors the buttons and reacts when they are
clicked. It must also access the WFC class because the buttons define the colors that WFC
can select. In doing so, the button script violates the component limits. This “unclean”
implementation is caused by the way implementation works in Unity. Nevertheless, it
would have been possible to maintain the component limits through a few detours. The
button script could be linked with the UI component class. In this case, however, the
interfaces and the component classes would also have had to be adapted. Another
possibility would have been to use the observer pattern. The WFC class would observe the
button script. However, in this case, the observer must be registered with the subject,
which would have required changes in several places. For this reason, the decision was
made in favor of the lighter and less clean solution at this point. In return, the code has
remained clearer and less cumbersome.

4.2.3 Patterns

Model View Controller Pattern

A classic for the implementation of games and other software is the MVC pattern that was
also used in my application.

This pattern says that an application is divided into three parts: Model, View and Controller.
The model contains the data (for example classic objects of object-oriented programming),

Implementation

53

the view is responsible for the visual representation and the controller controls the
communication between the two other parts and also the access of the user to the
program [49].

In my application, the model-part is in the logic component, these are namely the classes:
MarchingCubes, WaveFunctionCollapse and Grid.
The controller is responsible for the data flow, it updates the models and the view.
Therefore, the LogicComponent clearly implements this function.
The view is responsible for the visualization and is implemented with the UIHandler class.

Utility Abstraction Pattern

To avoid redundant implementations in different parts of an application that do not
necessarily belong together the Utility Abstraction pattern creates an additional utility layer
that can be globally accessed [50].

In my application this pattern was implemented with the utility class Util that contains the
global coding of the node states and the equivalence classes.

Implementation

54

4.2.4 Sequence Diagrams

Overview of the Application

Figure 28: This sequence diagram gives an overview of the entire process of the application after one mouse
click into the visual grid.

This sequence diagram gives an overview of how the different classes interact with each
other. A valid click into the 3D grid starts the process. The LogicComponent receives the
user input (it knows which key was clicked in which field of the grid) and manages the
entire process. The click can be done with either the right or left mouse button, i.e. either a
building (part) can be added or removed. The same process is started in both cases.

The Implementation of Wave Function Collapse

The WFC algorithm represents a fundamental function in my application. After all, this
thesis was intended to examine the possible connection between the MC and WFC

Implementation

55

algorithms. After considering the adapted concept of MC for my application and working
out the equivalence classes (see chapter 3.2), the actual implementation of MC is relatively
simple. Basically, the associated equivalence class only needs to be found for a specific
node state. The implementation of WFC, on the other hand, is a lot more complex.

Figure 29: The sequence diagram shows the basic process of the Wave Function Collapse function. The
process is triggered by the public method ApplyWFC.

Implementation

56

The overview of the process of WFC is still rough here. The actual process is divided into
many small sub-functions, but that coarseness in the diagram makes it easier to understand
what WFC is doing.

4.3 Tools

Various tools were used for the concrete implementation of the project.

4.3.1 Agile Software Development

One tool for the implementation of my project was agile software development (at least as
far as you can implement it in a one-person-team).

Iterative Software Development

One big aspect of agile software development is the iterative approach to development. In
contrast to the waterfall model, where every step (analysis, design, implementation,
testing, deployment) is executed sequentially and only once, the iterative approach goes
through these phases repeatedly and always adds new functionality to the software [46].

The phases of my software development include the following sprints (a sprint is one pass
through several steps of the development process and takes approximately three weeks):

1. In the first sprint, the structure of the project was roughly established. The

LogicComponent was identified as the controller, MarchingCubes and

WaveFunctionCollapse were initially integrated as empty classes.

2. Subsequently, the MC algorithm was roughly implemented. Initially, dummies

(white cubes) were used instead of real building models and the basic functionality

of MC was built in.

3. The first building models (3D tiles) were integrated and first basic functions of WFC

could be implemented.

4. All basic functions of WFC were implemented. At this point, the algorithm only

contained a single constraint, which states that only building parts of the same

color may be next to each other.

5. All 3D tiles were modelled and integrated into the project. The MC algorithm was

fully implemented, the equivalence classes were fully developed and assigned to a

3D tile.

6. The WFC algorithm was completely installed and a second constraint was added.

Implementation

57

7. Finally, an additional function was built in, with which the user can choose which

colors can be used for building generation. In addition, the building models and the

surroundings in the game scene were refurbished.

Figure 30: The final building models and refurbished surroundings in the game.

4.3.2 Technical Means

Game Engine and Development Environment

As already briefly mentioned, the application was developed with the game engine Unity.
During the project, the Unity version was renewed several times. The latest version I used
was: Unity Version 2019.4.9f1 Personal.

Furthermore, the code was developed in C# with the .NET Framework version 4.8 and the
C# version 8.0. The code was developed in the Microsoft Visual Studio Community 2017
edition, version 15.7.3.

The utility program was developed in Eclipse 2020-03 with Java 11.

Assets, Libraries, and Additional Programs

I used solely the standard Unity Library UnityEngine and the standard C# System library.

The assets I used are mostly either self-created or standard objects offered by the Unity
Engine. The only exception are the textures that I used for the 3D models of the buildings
and for the underground in the game.11

11 The different textures I used can be found here: https://cc0textures.com/ (accessed 2020/10/24).
All textures are licensed under the Creative Commons CC0 License.

https://cc0textures.com/

Implementation

58

The following sources were used for the camera script that controls its movement in the
game: [51], [52]. Furthermore, the gitignore I used bases on a template (licensed under the
Creative Commons CC0 License) for Unity projects: [53].

The 3D models for the buildings parts where created in Blender v 2.8.2a.

Version Control

Git version 2.17.1.windows.2 was used for version control. My project was stored in the
HAW GitLab.

I used branching for this project. As a result, there was always a well-functioning version of
the project in the main branch12 and I could work in the develop branch.

12 In my git version, the main branch is still called “master”, but git renamed it for reasons of
sensitivity towards minorities, see: https://www.zdnet.com/article/github-to-replace-master-with-
main-starting-next-month/ (accessed 2020/10/24).

https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/
https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/

Evaluation

59

5 Evaluation

The following chapter is intended to evaluate the results of this thesis. The achievements of
this thesis are shown as well as the extent to which the set goals were implemented and
the requirements met.

5.1 Goals

An application for procedural building generation in 3D that is based on the algorithms MC
and WFC was created. The two algorithms were successfully modified and combined.
The MC algorithm was extended in such a way that it can be used for user-initiated content
generation. In my application, MC is used together with WFC, but my implementation of
MC could also generate content on its own (with the well-known limitation that it has one
clearly defined solution for one node state).

Figure 31: The two buildings would look the same if MC was used on its own. Through WFC they differ.

My modification of WFC is set on top of MC. Every cell combination that would result in one
solution with MC gets several possible solutions with WFC. The different possible 3D tiles
for one node state are weighted and subject to constraints. Constraint solving decides
about the concrete 3D tiles.

Thus, the goals stated in chapter 1.2 have been achieved and an alternative use of the
algorithms WFC and MC could be shown.

Evaluation

60

5.2 Requirements

The following explains the extent to which the requirements specified in the analysis have
been implemented. The user stories and use cases defined the functional requirements for
this work. The required functions were all implemented, as can be seen in the application.
The implementation of the non-functional requirements should be checked in detail below.

The general quality requirements which I wanted to pay particular attention to are:

- maintainability
- extensibility
- usability

Further quality requirements that I set up are:

- six properties that should apply to the generated buildings
- playability for people of all ages
- intuitive usability

5.2.1 Maintainability and Extensibility

Methods

I implemented the requirements maintainability and extensibility by using the principles:
modular design, low coupling, high cohesion, separation of concerns (SoC), single-
responsibility, and interface segregation (for an overview of principles of object-oriented
design see [54]). Another method that I have used is testing the software.

The principles were implemented through a meaningful division into components and
classes. The modules are decoupled and interchangeable insofar that components (almost)
exclusively communicate with one another via interfaces. Most classes contain one public
method that is used to communicate with the coordinator (the component class
LogicComponent). Almost all communication within the component takes place via the
component class (see the class diagram in chapter 4.2.2).

Wherever possible, classes have been implemented in such a way that they have a clearly
defined area of responsibility. Attempts were also made to give them a single responsibility
(e.g. MarchingCubes is exclusively responsible for the implementation of the MC
algorithm). This could be implemented quite well in the logic component; however, this is
only partly implemented in the UI component. The UIHandler's area of responsibility is the
mapping of the patterns that were assigned in the logic component to concrete 3D tiles. In
addition, this class handles the user input. In the Update() method, the input of the user is
checked and, if necessary, passed on to the logic component. During the implementation, I

Evaluation

61

regarded I/O as one area of responsibility, but actually there are two different
responsibilities here.

As already mentioned in Chapter 4.2.2, some principles (of e.g. modularity, low coupling,
SoC) were not followed in one case. The script that controls the buttons for the color
selection belongs to the UI component but accesses the WaveFunctionCollapse class
directly. This was done due to technological necessities and to avoid a large overhead.

During the software engineering process, individual functionalities were constantly tested
and, if necessary, improved. Ideally, systematic unit and component tests would have been
carried out as part of Continuous Integration with regular automatic builds and tests. In the
context of this project, this approach might not be in proportion to the additional quality
gained and was omitted. However, this step would be essential in a bigger project.

Metrics

The established metrics should check the success in achieving the quality requirements.

The velocity estimates the time a programmer needs to develop a product [48]. It is a good
metric for the maintainability as well as the extensibility of a software product. If a software
project can be easily expanded and maintained, the velocity is high because programming is
much faster. It is difficult to put the velocity of my project into proportions. Nevertheless,
the iterative work during the project went well. This is due to the fact that basic
functionalities were built in, first, and the extensions later. During this process, adjustments
sometimes had to be made to the modules, but since the extensions were planned from
the beginning, it did not require much additional time.

The failure and repair time is a good indicator for software maintainability. The shorter the
time between the occurrence of an error and its repair, the easier it is to maintain the
software.
Of course, failures did occur during development, but due to the modular structure and the
use of the other principles, it was easy to narrow down the area in which these errors
occurred. For example, there was a problem with the correct rotation of the 3D tiles.
Although the algorithm selected and positioned the tiles correctly, the rotations were
wrong, so that, for example, parts of the roof pointed downwards. However, since there
was only one module that was responsible for the rotation, the source of the error could
soon be identified. The failure and repair time was, thus, relatively low.

Low code churn is another indicator for good software quality in terms of maintainability
and extensibility. Code churn displays how often the code had to be changed. At best, the
code churn should get smaller towards the end of the project [55].

Evaluation

62

To determine the code churn in a simple way, I regarded the added lines in comparison to
the deleted lines:

𝐶𝑜𝑑𝑒 𝑐ℎ𝑢𝑟𝑛 = 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 𝑙𝑖𝑛𝑒𝑠 − 𝑎𝑑𝑑𝑒𝑑 𝑙𝑖𝑛𝑒𝑠

The lower the value that is calculated in this way, the fewer lines were deleted compared to
added. This is a very simple approach that could be implemented using Git. All added and
deleted lines could be determined for each commit in chronological order. However, it is
difficult to determine which result would represent low code churn. For this reason, I
compare the code churn of the first commits with that of the last commits. The code churn
should be lower for the later commits. All added and deleted lines of the commits can be
seen in Appendix A1: Code Churn.13
For the first 37 commits, I had 1335 added and 1119 deleted lines, resulting in a code churn
of: –216. For the latest 37 commits, I had 2146 added and 964 deleted lines, what results in
a code churn of: –1182.
As you can see, the code churn decreased towards the end of the project. This is an
indication of good software quality in terms of how easily it can be maintained and
extended.

Overall, the requirements maintainability and extensibility were mostly met. In some cases,
the implementation of these requirements was waived to avoid unnecessary overhead.
This middle ground allowed to implement extensions and corrections quickly during
software development and appeared like the best way.

5.2.2 Usability

The requirements intuitive usability and playability for people of all ages can be
summarized in the generic term usability. The following information on software usability
can be found in [44].

Methods

Usability is a quality attribute that defines how easy it is to interact with a user interface.
Jakob Nielsen stated five quality components of good usability:

- Learnability (using a system should be easy to learn)
- Efficiency (the system should be efficient to use)
- Memorability (the usage should be easy to remember)
- Errors (users should make as few mistakes as possible)
- Satisfaction (users should be satisfied while working with the system)

13 The commits were compared at a time when the project was finished. Afterwards only further
comments and three more 3D tiles were added.

Evaluation

63

The ideal program would have no learning curve but would be easy to use right from the
start. This is also the aim when talking about intuitive usability. Of course, this goal can
never be fully implemented. I attempted to approach this aim by keeping the possible
interactions of the user with the system to a minimum which should also contribute to
memorability. Nevertheless, a short README was also created as instructions for the user.

Figure 32: For a better usability, interactions with the UI are kept simple: Buildings can be generated on the
island, colors can be selected, and the application can be ended. Users can also move and zoom the camera.

The actions of the users have a direct influence on the system, which can be seen in the UI.
The only time the system will not respond is if the user input is invalid (e.g. when users try
to delete a house at a point where there is none). The users therefore receive direct
feedback on their actions. This contributes to good learnability and efficiency. It still allows
users to make mistakes (as invalid entries), but it should be easy to see which entries are
valid and which are not. Furthermore, the ground in the scene is designed in such a way
that users can see where houses can and cannot be built. The area in which the houses can
be generated looks like an island, while the rest looks like water.
The user’s satisfaction is a subjective feeling. However, the points mentioned above should
also contribute to a greater satisfaction.

Verification

To check the extent to which good usability has been achieved, usability tests would have
to be carried out. Unfortunately, no usability tests could be carried out for this thesis due to
lack of time. It would be advisable to let test persons from different age groups try the
game. Moreover, different tasks would have to be assigned to people from the same age
groups. Possible tasks are creating houses in certain shapes, using certain colors, etc.
Subsequently, a questionnaire could be filled out or an oral survey could be carried out. It
would also be interesting to let the test persons try the game without specific instructions
and see whether they recognize the functionalities on their own.

Evaluation

64

Based on my own reviews of the software, it is difficult to see how well I have achieved the
set goals for good usability. Nonetheless, I could still make out some problems.
The camera can be moved parallel to the ground and zoomed in with the middle mouse
button, but it would be nice if it were also possible to select a point in the game and rotate
the camera around it.
In addition, the selection of a position in the grid at which a building should be created or
deleted sometimes does not work perfectly. A possible reason for this could be that the
colliders of the 3D tiles are not attached perfectly. The colliders are used to register clicks in
the game. Based on the position that is clicked on, a “ray” is thrown into the scene, which
then collides with the collider of the 3D tile. If a 3D tile is missing a collider, it is possible
that a click is not registered or that the ray even hits a collider of another tile.

5.2.3 Properties of Generated Buildings

I stated six properties that should apply to the generated buildings. The achievement of
these goals is checked below.

Achievements

It is possible to place buildings on a designated area in the game that is easy to identify. The
ground in the game is designed in a way that the area in which buildings can be generated
looks like an island while the rest (outside the grid) looks like water. The distinction
between land and water can be seen in Figure 33. The buildings in this game scenario are
placed at the outer edges on which buildings can still be built.

Figure 33: Buildings are set at the outer edges of the designated area in the game.

A constraint stipulated that building tiles may only be placed next to each other if they
correspond to the same color. This can be seen in Figure 33. You can also see the
implementation of the constraint, which states that doors may only be on the floor and not
directly next to each other.

Evaluation

65

It can also be seen that the buildings have a consistent appearance. The walls and roofs fit
exactly together. All parts of the buildings connect to one another and there are no open
house walls.

Building parts can furthermore be connected to each other over all possible corners, edges,
and surfaces. This was achieved by mapping all 256 possible node states to equivalence
classes and by assigning a corresponding 3D tile to every equivalence class. Thereby, all
possible cube combinations are covered.

Difficulties and Possible Extensions

As planned, doors only appear on the floor and they occur in different positions of the
buildings. However, it could happen that a building has no door at all. That is because the
possibilities in the wave for a door occur with a certain probability.
If it had been determined that a building must always have a door, then a door would
always appear in the same place, namely where the algorithm begins to assemble the
building. This is due to the way WFC works, i.e. because WFC builds images iteratively.
To avoid that a building does not have a door, the probability for doors was set very high.
As a result, the doors still often appear in the same place, but not always as can be seen in
Figure 33.

In fact, the generated buildings have a consistent appearance, but the 3D tiles could be
more versatile. The focus of this thesis was to show how the WFC and MC algorithms can
be combined to create buildings using predesigned tiles. Nevertheless, the design of the
buildings is quite uniform. Different types of roofs or planting on the façades could be
added. With the help of WFC, these additional 3D tiles could be used depending on
constraints and a certain probability which would lead to more variety.

5.3 Possible Improvements

In chapter 5.2.3, suggestions were already made on how the generation of the buildings
could be improved. The following ideas apply to the entire project and could not be
implemented due to time constraints.

The size of the grid could be adjustable. This could either have been implemented in such a
way that the island automatically enlarges when buildings are set on its edge. Or in a way
that the user can enlarge the island by clicking on its edges.

The possible expansion of a building could be displayed in the UI when you hover the
mouse over a part of the building. The area to which a new part of the building would be
attached could be highlighted.

Evaluation

66

At the moment, buildings can only have one color (this is regulated by a constraint).
However, it would also be possible to incorporate “intermediate pieces”, which allow two
colors to be combined. For example, these intermediate pieces would be red on one side
and blue on the other with a color transition in between.

The color selection is implemented in a way that all colors are selected at the beginning and
the color of the generated buildings is decided by WFC. This was done to demonstrate the
functionality of WFC with help of the color constraint. This implementation seems tedious
when only one color is selected, and you want to choose another color. In this case the new
color must be selected and the previous color deselected, i.e. two clicks are necessary.
Alternatively, only one color can be selected at a time, but this would make the use of WFC
less obvious.

Conclusion and Perspective

67

6 Conclusion and Perspective

This chapter summarizes the thesis and addresses some opportunities for further

development.

6.1 Conclusion

In this thesis it was shown how the algorithms Wave Function Collapse (WFC) and Marching
Cubes (MC) can be used to generate buildings in 3D. The generation works on the “tile
level”, i.e. previously created 3D models are assembled to create consistent buildings.
Furthermore, the generation is user-initiated: By selecting and deselecting certain cells in a
grid, the user determines the surface of the buildings. While MC identifies the course of the
building surfaces, WFC decides on the concrete appearance of the façades.

The way in which the various parts of the buildings must be assembled is determined by
equivalence classes. The equivalence classes contain the node states and each node in the
grid is assigned to an equivalence class. Overall, they depict all possible ways in which cubes
can be connected.

My modification of the MC algorithm basically determines the surface on which the
building façades are created by assigning the individual node states to their equivalence
classes. Thus, the basic shape of the 3D tiles is determined. WFC then decides which
specific 3D tile is used.

My WFC adaptation works on top of the results of MC. For each equivalence class assigned
to a particular node WFC chooses from at least three different options. Depending on
constraints and weights, the algorithm determines which specific pattern should be
selected for every node in the grid. The chosen patterns correspond to concrete 3D tiles
that are placed in the position of the node in the visible grid.

6.2 Perspective

Possible extensions to my application have already been discussed in 5.2.3 and 5.3. At this
point, possibilities are discussed how WFC and MC could be used for further generation
tasks.

Conclusion and Perspective

68

As with the original WFC, an input image can also be used in 3D. Based on a 3D input image,
3D tiles can be derived, which can then be used to automatically create larger 3D images.
On the one hand, this would be possible at voxel level, so that WFC uses voxels instead of
pixels. On the other hand, this is also conceivable at tile level, so that tiles (as separate 3D
models) in a certain size are taken from the image and assembled to form a result image.
This would probably lead to similar results as Merrell's approach to model synthesis (see
2.2.2). Instead of rules and the assignment of labels to the individual 3D tiles (as in model
synthesis), constraints would be automatically derived from the input image which
determine how the tiles may be assembled.

Another possibility to expand my approach would be to use WFC and MC to automatically
generate levels instead of using user input. If, e.g., Perlin noise is used to randomly
distribute the buildings in a scene. In this case, however, some restrictions must be
established so that the buildings look authentic. For example, some rules had to stipulate
the maximum height buildings can have. Furthermore, weights could be used to determine
the average height or the density of buildings.

After all, it would be interesting not only to assemble buildings with WFC using 3D tiles, but
also to assemble the tiles with WFC. This allows the building parts to be composed of
individual walls, windows, doors, and decorative elements. Thereby, WFC would be used on
two levels: firstly, to generate the parts of the buildings and, secondly, to generate the
buildings. This would probably lead to even more diverse results.

Bibliography

69

7 Bibliography

[1] N. Shaker, J. Togelius and M. J. Nelson, Procedural Content Generation in Games: A
Textbook and an Overview of Current Research, Cham, Switzerland: Springer, 2016.

[2] O. Stålberg, "Townscaper," 2020. [Online]. Available:
https://store.steampowered.com/app/1291340/Townscaper/. [Accessed 04 11
2020].

[3] W. Lorensen and H. Cline, "Marching cubes: A high resolution 3D surface
construction algorithm," ACM SIGGRAPH Computer Graphics, Volume 21, Number 4,
pp. 163-169, July 1987.

[4] I. Karth and A. M. Smith, "WaveFunctionCollapse is Constraint Solving in the Wild,"
Proceedings of the 12th International Conference on the Foundations of Digital
Games, August 2017.

[5] J. K. E. S. D. Y. G. Togelius, "What is procedural content generation? Mario on the
borderline.," Proceedings of the 2nd Workshop on Procedural Content Generation in
Games, 28 June 2011.

[6] M. M. S. v. d. V. J. a. I. A. Hendrikx, "Procedural Content Generation for Games: A
Survey," ACM Transactions on Multimedia Computing, Commununications, and
Applications, February 2011.

[7] J. Freiknecht and W. Effelsberg, "A Survey on the Procedural Generation of Virtual
Worlds," Multimodal Technologies and Interaction, 30 October 2017.

[8] K. Compton, J. C. Osborn and M. Mateas, "Generative methods," The Fourth
Procedural Content Generation in Games workshop, PCG, May 2013.

[9] J. Togelius, G. Yannakakis, K. Stanley and C. Browne, "Search-based procedural
content generation," Applications of Evolutionary Computation, 2010.

[10] A. Lindenmayer and P. Prusinkiewicz, The Algorithmic Beauty of Plants, Berlin,
Germany: Springer Science & Business Media, 2004.

[11] R. M. Smelik, K. J. De Kraker, S. A. Groenewegen, T. Tutenel and R. Bidarra, "A survey
of procedural methods for terrain modelling," in Proceedings of the CASA workshop
in 3D advanced media in gaming and simulation, A. Egges, W. Hürst and R. C.
Veltkamp, Eds., 2009, pp. 25-34.

[12] G. S. P. Miller, "The Definition and Rendering of Terrain Maps," SIGGRAPH

Bibliography

70

’86:Proceedings of the13thAnnual Conference on Computer Graphics and Interactive
Techniques,volume 20, p. 39–48, 18-22 August 1986.

[13] K. Perlin, "An Image Synthesizer," SIGGRAPH ’85: Proceedings of the12s tAnnual
Conference on Computer Graphics and Interactive Techniques, volume 19, p. 287–
296, 22-26 July 1985.

[14] A. G. E. M. S. a. G. J. Peytavie, "Arches: a Framework for Modeling Complex Terrains,"
Eurographics 2009 Proceedings, vol. II, no. 28, 2009.

[15] R. Linden, R. Lopes and R. Bidarra, "Procedural Generation of Dungeons," IEEE
Transactions on Computational Intelligence and AI in Games, March 2014.

[16] I. D. Horswill and L. Foged, "Fast Procedural Level Population with Playability
Constraints," The Eighth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, January 2012.

[17] A. M. Smith and M. Mateas, "Answer Set Programming for Procedural Content
Generation: A Design Space Approach," IEEE Transactions on Computational
Intelligence and AI in Games, 7 June 2011.

[18] X. Neufeld, S. Mostaghim and D. Perez-Liebana, "Procedural Level Generation with
Answer Set Programming for General Video Game Playing," 7th Computer Science
and Electronic Engineering Conference, CEEC 2015 - Conference Proceedings., 2015.

[19] G. N. Yannakakis and J. Togelius, "Experience-driven procedural content generation,"
IEEE Transactions on Affective Computing 2, 5 April 2011.

[20] R. M. Smelik, T. Tutenel, R. Bidarra and B. Benes, "A Survey on Procedural Modelling
for Virtual Worlds," Computer Graphics Forum 33(6), p. 31–50, January 2014.

[21] G. Stiny and J. Gips, "Shape Grammars and the Generative Specification of Painting
and Sculpture," IFIP Congress, 1971.

[22] G. Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars, Basel:
Birkhauser Verlag, 1975.

[23] S. Y. Shing, "Shape Grammar," 2012. [Online]. Available:
http://sohyoushingbscarc2013.blogspot.com/2014/12/shape-grammar.html.
[Accessed 30 7 2020].

[24] P. Wonka, M. Wimmer, F. Sillion and W. Ribarsky, "Instant Architecture," ACM
Transaction on Graphics, 22(3), pp. 669-677, July 2003.

[25] P. Müller, P. Wonka, S. Haegler, A. Ulmer and L. V. Gool, "Procedural modeling of
buildings," ACM SIGGRAPH, pp. 614-623, December 2006.

[26] D. Finkenzeller and J. Bender, "Semantic representation of complex building
structures," Computer Graphics and Visualization, p. 259–264, July 2008.

[27] P. Müller, Z. Gang, W. Peter and G. L. Van, "Image-based procedural modeling of
facades," ACM Transactions on Graphics, pp. 85:1-85:10, July 2007.

[28] P. Birch, S. Browne, V. Jennings, A. Day and D. Arnold, "Rapid Procedural-modelling
of Architectural Structures," Proceedings of the 2001 conference on Virtual reality,

Bibliography

71

archeology, and cultural heritage, p. 187–196, November 2001.

[29] P. Merrell, E. Schkufza and V. Koltun, "Computer-generated residential building
layouts," ACM Transactions on Graphics 29(6), p. 181, December 2010.

[30] P. Merrell, "Model synthesis," Ph.D. Dissertation, University of North Carolina at
Chapel, 2009.

[31] M. Saldana and C. Johanson, "Procedural Modeling for Rapid-Prototyping of Multiple
Building Phases," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W1, pp.
205-210, 2013.

[32] S. Greuter, J. Parker, N. Stewart and G. Leach, "Real-time procedural generation of
‘pseudo infinite’ cities," GRAPHITE ’03: Proceedings of the 1st International
Conference on Computer Graphics and Interactive Techniques in Australasia and
Southeast Asia, pp. 87-94, 2003.

[33] L. Raad, A. Davy, A. Desolneux and J.-M. Morel, "A survey of exemplar-based texture
synthesis," Annals of Mathematical Sciences and Applications, 17 October 2018.

[34] M. Tuceryan and A. K. Jain, "Texture Analysis," in The Handbook of Pattern
Recognition and Computer Vision (2nd Edition), NJ, United States, 1998, p. 207–248.

[35] A. A. Efros and T. K. Leung, "Texture Synthesis by Non-parametric Sampling,"
Proceedings of IEEE International Conference on Computer Vision, September 1999.

[36] M. Khokhlov, I. Koh and J. Huang, "Voxel Synthesis for Generative Design," in Design
Computing and Cognition '18, Springer, Ed., Cham, Switzerland, 2019, pp. 227-244.

[37] H. Kim, S. Lee, H. Lee, T. Hahn and S. Kang, "Automatic Generation of Game Content
using a Graph-based Wave Function Collapse Algorithm," 2019. [Online]. Available:
https://ieee-cog.org/2019/papers/paper_187.pdf. [Accessed 14 08 2020].

[38] O. Stålberg, "EPC2018 - Oskar Stalberg - Wave Function Collapse in Bad North," 11 07
2018. [Online]. Available: https://www.youtube.com/watch?v=0bcZb-SsnrA.
[Accessed 19 08 2020].

[39] O. Stålberg, "ORGANIC TOWNS FROM SQUARE TILES - a talk by OSKAR STÅLBERG at
INDIECADE EUROPE 2019," 17 03 2020. [Online]. Available:
https://www.youtube.com/watch?time_continue=29&v=1hqt8JkYRdI&feature=emb
_logo. [Accessed 20 08 2020].

[40] O. Stålberg, Bad North, Malmö, Sweden: Raw Fury, 2018.

[41] O. Stålberg, "Voxel House," R. Hawkins, Ed., pp. 170-175.

[42] W. Zuser, S. Biffl, T. Grechenig and M. Köhle, Software Engineering mit UML und dem
Unified Process, 1 ed., München, Deutschland: Pearson Studium, 2001.

[43] C. Bradley, "Scrum: Who are the Key Stakeholders that Should be Attending Every
Sprint Review?," 2015. [Online]. Available:
https://www.scrum.org/resources/blog/scrum-who-are-key-stakeholders-should-be-
attending-every-sprint-review. [Accessed 14 10 2020].

[44] T. Grechenig, M. Bernhart, R. Breitender and K. Kappel, Softwaretechnik. Mit

Bibliography

72

Fallbeispielen aus realen Entwicklungsprojekten, München: Pearson Studium, 2010.

[45] A. Naumann, "Gute User-Storys schreiben – alles rund um User-Storys," 2012.
[Online]. Available: https://blog.ibo.de/agile-business-analyse-alles-rund-um-user-
stories/. [Accessed 17 10 2020].

[46] J. Ludewig and H. Lichter, Software Engineering. Grundlagen, Menschen, Prozesse,
Techniken, 3. ed., Heidelberg: dpunkt.verlag GmbH, 2013.

[47] K. C. IBM, "Use-case template," 2020. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SSWSR9_11.6.0/com.ibm.pim.
dev.doc/pim_ref_usecasetemp.html. [Accessed 17 10 2020].

[48] D. Writer, "Top 10 Software Quality Metrics That Matter," 2020. [Online]. Available:
https://diceus.com/top-7-software-quality-metrics-matter/. [Accessed 29 10 2020].

[49] R. Friesen, M. Stollenwerk and D. Valentin, "MVC Pattern," 2007. [Online]. Available:
https://public.hochschule-trier.de/~rudolph/gdv/cg/node46.html. [Accessed 22 10
2020].

[50] T. Erl, "Utility Abstraction," 2008. [Online]. Available:
https://patterns.arcitura.com/soa-patterns/design_patterns/utility_abstraction.
[Accessed 22 10 2020].

[51] Learn Everything Fast, "Move Camera with Mouse in Unity 3D," 2017. [Online].
Available: https://www.youtube.com/watch?v=lmmf-6xmUk4. [Accessed 24 10
2020].

[52] Design and Deploy, "Unity 5 - How to Zoom Camera with Mouse Scroll Wheel," 2016.
[Online]. Available: https://www.youtube.com/watch?v=4yK4PoZQ4qI. [Accessed 24
10 2020].

[53] GitHub, "Unity.gitignore," 2020. [Online]. Available:
https://github.com/github/gitignore/blob/master/Unity.gitignore. [Accessed 24 10
2020].

[54] M. Umair, "SOLID, GRASP, and Other Basic Principles of Object-Oriented Design,"
2018. [Online]. Available: https://dzone.com/articles/solid-grasp-and-other-basic-
principles-of-object-o. [Accessed 31 10 2020].

[55] T. Osbourn, "What is Code Churn and How to Reduce it," 2019. [Online]. Available:
https://textexpander.com/blog/what-is-code-churn-and-how-to-reduce-it/.
[Accessed 6 11 2020].

Appendix

73

8 Appendix

8.1 A1: Code Churn

8.1.1 List of All Commits

The left column contains the added lines, the middle column the deleted lines, and the right
column contains the file names. Only .cs files were considered. At the end the added and
deleted lines are summed up.

git log --numstat --pretty="%H" *.cs

507be55d73b247acbafbb93afa97b4f03ba1c031

6 6 Assets/Scripts/ButtonLogic.cs

3 3 Assets/Scripts/CameraScript.cs

2 0 Assets/Scripts/IHandleUserInput.cs

2 0 Assets/Scripts/IUpdateScene.cs

6 1 Assets/Scripts/LogicComponent.cs

1 5 Assets/Scripts/MarchingCubes.cs

9 4 Assets/Scripts/UIHandler.cs

18 13 Assets/Scripts/WaveFunctionCollapse.cs

c19177463bb55823acf4113e2806f630c27809fb

1 2 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/LogicComponent.cs

bc92558258cc0d20afacd8a8b2b108914f5f198e

16 11 Assets/Scripts/CameraScript.cs

086e642c661797b7d16f0b97f09157d1c986dcae

0 40 Assets/Scripts/Grid.cs

0 1 Assets/Scripts/UIHandler.cs

Appendix

74

1 1 Assets/Scripts/WaveFunctionCollapse.cs

34fae2d57e231b0adbcba54a3dc30c44cc4f4e1b

128 0 Assets/Scripts/ButtonLogic.cs

6f578cefad24aac89e99df23195f3aba757e6f58

5 5 Assets/Scripts/WaveFunctionCollapse.cs

b80c62a1e17951cd203fd75f09996e08cc657faa

19 14 Assets/Scripts/LogicComponent.cs

1 2 Assets/Scripts/UIHandler.cs

950d6caefdf0d395cb8de9b96cd729827cfba939

2 5 Assets/Scripts/UIHandler.cs

6 6 Assets/Scripts/WaveFunctionCollapse.cs

fb9a6ed3fb0f90e858fdc9f196c74ff842960f95

98 158 Assets/Scripts/UIHandler.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

87d88f0eecf58803aa456555bc36a26fa9c011d4

3 0 Assets/Scripts/UIHandler.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

53b909125d3b0bda549810dfcea6cc885621e215

1 1 Assets/Scripts/UIHandler.cs

4 4 Assets/Scripts/Util.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

3de4d6fa3329160b3a4deb1560f793d759895bd4

0 1 Assets/Scripts/MarchingCubes.cs

1 1 Assets/Scripts/UIHandler.cs

3 3 Assets/Scripts/Util.cs

34 54 Assets/Scripts/WaveFunctionCollapse.cs

2b11ecfecebfe1cc1d2a5c4f8f9c679592b2ebc4

39 14 Assets/Scripts/WaveFunctionCollapse.cs

f08b92637c0ae120544847e18875febde9d56925

Appendix

75

1 0 Assets/Scripts/MarchingCubes.cs

1 1 Assets/Scripts/UIHandler.cs

3 3 Assets/Scripts/Util.cs

15 20 Assets/Scripts/WaveFunctionCollapse.cs

f82e77c505eda9e320592c862c6763251a600e36

14 39 Assets/Scripts/WaveFunctionCollapse.cs

95804d0a75c5a8518846cd8999379c6162343cdc

2 2 Assets/Scripts/UIHandler.cs

2 2 Assets/Scripts/Util.cs

67 26 Assets/Scripts/WaveFunctionCollapse.cs

19677fc6ba4d0ce24ff1a66a8a5c7d964ea891b6

14 18 Assets/Scripts/UIHandler.cs

68 31 Assets/Scripts/WaveFunctionCollapse.cs

c7fc5cb54f04d434d0c08039e4be029334fe3981

1 1 Assets/Scripts/Util.cs

14 25 Assets/Scripts/WaveFunctionCollapse.cs

121331465b41dd786dd89c8327033661f6d190a0

0 15 Assets/Scripts/MarchingCubes.cs

8 50 Assets/Scripts/UIHandler.cs

82 77 Assets/Scripts/Util.cs

cebee0f399b32ed212b5d7126d64efbbcf6edded

5 0 Assets/Scripts/UIHandler.cs

7 1 Assets/Scripts/Util.cs

ef1bb188a7f0c63a364f946c5d0258417a5fc448

3 0 Assets/Scripts/UIHandler.cs

10 4 Assets/Scripts/Util.cs

b3411025f1c6bf6c0b9863ac32fd9f5388f1673b

9 0 Assets/Scripts/UIHandler.cs

13 2 Assets/Scripts/Util.cs

Appendix

76

f38df9f0ad6ac344b2e44dc948a2c3b2af7946c1

15 0 Assets/Scripts/UIHandler.cs

21 0 Assets/Scripts/Util.cs

f1e82c8aa44e0fcbca80a22aa0de67b7ff629b25

13 0 Assets/Scripts/UIHandler.cs

15 0 Assets/Scripts/Util.cs

a244c64eeb9b3da02c0931159dd6971beb3e71ac

5 0 Assets/Scripts/UIHandler.cs

8 2 Assets/Scripts/Util.cs

9150018a1e00b0eff6180f536a6abc1d5501a7a4

13 0 Assets/Scripts/UIHandler.cs

16 0 Assets/Scripts/Util.cs

cdfd945cbb1afbf93666b7197fd7abea9d31dc80

13 0 Assets/Scripts/UIHandler.cs

18 3 Assets/Scripts/Util.cs

aa8a4bf5c7e9eaea191237a9bae4aa39f3745395

13 6 Assets/Scripts/UIHandler.cs

15 6 Assets/Scripts/Util.cs

b89ab889adf12bd14aed4b23b058e0cb753e86d0

4 4 Assets/Scripts/WaveFunctionCollapse.cs

cbf4012a54b924cb1cdea26874232d997ef107a2

5 0 Assets/Scripts/UIHandler.cs

7 0 Assets/Scripts/Util.cs

d0170f4718b3d8e61a29947cb6d498f03100480d

5 0 Assets/Scripts/UIHandler.cs

8 0 Assets/Scripts/Util.cs

9a2211832aec28114b9db9fabd84d68c12de60bc

10 2 Assets/Scripts/LogicComponent.cs

Appendix

77

19 0 Assets/Scripts/UIHandler.cs

22 14 Assets/Scripts/Util.cs

f44d899fe6cccfa6209096633fef4274910d4b55

1 1 Assets/Scripts/LogicComponent.cs

3 0 Assets/Scripts/UIHandler.cs

32 11 Assets/Scripts/Util.cs

10f870e5a102a65ec9443e11aa7dac56971f897c

5 0 Assets/Scripts/LogicComponent.cs

8 4 Assets/Scripts/UIHandler.cs

44 197 Assets/Scripts/Util.cs

9d066a3c6be021ea14bdc400d729dea9f203a79a

38 10 Assets/Scripts/UIHandler.cs

157 57 Assets/Scripts/Util.cs

ce54ed8df87917c795d43b396e2ee311cd4232a8

2 1 Assets/Scripts/UIHandler.cs

0b7266f595883f9e0849f53c50133dba3a9bfb41

45 112 Assets/Scripts/UIHandler.cs

0 10 Assets/Scripts/Util.cs

d106720aac1b54828e0a8825834be016baa6ce58

1 1 Assets/Scripts/MarchingCubes.cs

11 0 Assets/Scripts/Util.cs

1f7dabb93b43e7064f193000fc1b95ad9c06c944

34 0 Assets/Scripts/UIHandler.cs

77 34 Assets/Scripts/Util.cs

f962d107ffc078ff450db4f7b9928efc381ddf66

29 4 Assets/Scripts/UIHandler.cs

4f037c2da882665d303ab355df118dd3419c6312

0 68 Assets/Scripts/CubePositions.cs

17 24 Assets/Scripts/MarchingCubes.cs

Appendix

78

12 11 Assets/Scripts/UIHandler.cs

129 9 Assets/Scripts/Util.cs

1 1 Assets/Scripts/WaveFunctionCollapse.cs

3546ac1310a380a67e4612a0c3738f2c44f74ebe

1 1 Assets/Scripts/LogicComponent.cs

17 26 Assets/Scripts/UIHandler.cs

6 1 Assets/Scripts/{SharedItems.cs =>
Util.cs}

80 24 Assets/Scripts/WaveFunctionCollapse.cs

6204ef4d44968c275323e2c72d75f322bb0e269d

140 55 Assets/Scripts/WaveFunctionCollapse.cs

99a5b7703e86395c245e63c4be448d8ed0a7a777

40 0 Assets/Scripts/CameraScript.cs

81 29 Assets/Scripts/WaveFunctionCollapse.cs

0aa7c2696b5dca9863432b7a40f52d51531b987f

1 23 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/IHandleUserInput.cs

8 16 Assets/Scripts/LogicComponent.cs

15 4 Assets/Scripts/UIHandler.cs

b9752af4e55c53d45eb58432fa415d922c758709

18 0 Assets/Scripts/SharedItems.cs

8 6 Assets/Scripts/UIHandler.cs

1 4 Assets/Scripts/WaveFunctionCollapse.cs

eee72197d031bee4a97d6b4afb33dd3b6131a800

24 62 Assets/Scripts/WaveFunctionCollapse.cs

89cbb9177d87df901f3b25ce4e326ca0721ac1fa

9 7 Assets/Scripts/UIHandler.cs

66 11 Assets/Scripts/WaveFunctionCollapse.cs

ab426c1dc4096d2daed64b3686f211fb0bf1fd24

24 30 Assets/Scripts/WaveFunctionCollapse.cs

Appendix

79

710d45398bc2bd671495dd7fd918c8ee573fe683

12 7 Assets/Scripts/UIHandler.cs

70 52 Assets/Scripts/WaveFunctionCollapse.cs

6b0fa6df7810f0338b99715b1bcd4a85dca40f07

73 10 Assets/Scripts/WaveFunctionCollapse.cs

d1577f50291cb9964436e9c00d7756e80c64dff3

4 1 Assets/Scripts/CubePositions.cs

2 0 Assets/Scripts/MarchingCubes.cs

35 12 Assets/Scripts/UIHandler.cs

140 2 Assets/Scripts/WaveFunctionCollapse.cs

3dd4697749a0c663de8968340fa94360c3284b25

11 3 Assets/Scripts/CubePositions.cs

4 1 Assets/Scripts/MarchingCubes.cs

17 0 Assets/Scripts/UIHandler.cs

190310ca81c6814a1253de03ae4aaa7a379ab945

0 2 Assets/Scripts/UIHandler.cs

2538728f0fab2244c6006a4bb9f8a79169741645

41 26 Assets/Scripts/UIHandler.cs

1f7921e1a004f0e007b7c28700c4f2aa3637e0bd

41 97 Assets/Scripts/UIHandler.cs

0b33e05fad7b1c08dff6ad166818da04a742443a

10 15 Assets/Scripts/UIHandler.cs

f6ebfc3253322b1ec259439ccd4061a42c8285e3

2 0 Assets/Scripts/CubePositions.cs

86 93 Assets/Scripts/UIHandler.cs

ba0da5f833bb86c3261d9e733d853681de6c460b

2 1 Assets/Scripts/CubePositions.cs

9 1 Assets/Scripts/MarchingCubes.cs

Appendix

80

39 5 Assets/Scripts/UIHandler.cs

9233a1925badffeac59aff8285f0620217e6121a

1 1 Assets/Scripts/CubePositions.cs

1 1 Assets/Scripts/IUpdateScene.cs

20 13 Assets/Scripts/LogicComponent.cs

136 125 Assets/Scripts/UIHandler.cs

5 0 Assets/Scripts/WaveFunctionCollapse.cs

982f7c12757a243c254954df2eb70084851aa648

19 2 Assets/Scripts/CubePositions.cs

1 2 Assets/Scripts/MarchingCubes.cs

ad42845f579b59fd1d7b6d445162756cba9eeb17

37 0 Assets/Scripts/CubePositions.cs

8 8 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/IUpdateScene.cs

3 3 Assets/Scripts/LogicComponent.cs

14 7 Assets/Scripts/MarchingCubes.cs

39 10 Assets/Scripts/UIHandler.cs

6cc10d6025360297d74685a1611430b6ef484e16

9 1 Assets/Scripts/MarchingCubes.cs

12 10 Assets/Scripts/UIHandler.cs

0ad6a1c81c0e7492500c00b6284ac5b261ded645

108 0 Assets/Scripts/Grid.cs

8 0 Assets/Scripts/IHandleUserInput.cs

9 0 Assets/Scripts/IUpdateScene.cs

62 0 Assets/Scripts/LogicComponent.cs

23 0 Assets/Scripts/MarchingCubes.cs

170 0 Assets/Scripts/UIHandler.cs

11 0 Assets/Scripts/WaveFunctionCollapse.cs

3481 2083

Appendix

81

8.1.2 List of First Commits

The left column contains the added lines, the middle column the deleted lines, and the right
column contains the file names. Only .cs files were considered. At the end the added and
deleted lines are summed up.

git log -37 --numstat --pretty="%H" *.cs

507be55d73b247acbafbb93afa97b4f03ba1c031

6 6 Assets/Scripts/ButtonLogic.cs

3 3 Assets/Scripts/CameraScript.cs

2 0 Assets/Scripts/IHandleUserInput.cs

2 0 Assets/Scripts/IUpdateScene.cs

6 1 Assets/Scripts/LogicComponent.cs

1 5 Assets/Scripts/MarchingCubes.cs

9 4 Assets/Scripts/UIHandler.cs

18 13 Assets/Scripts/WaveFunctionCollapse.cs

c19177463bb55823acf4113e2806f630c27809fb

1 2 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/LogicComponent.cs

bc92558258cc0d20afacd8a8b2b108914f5f198e

16 11 Assets/Scripts/CameraScript.cs

086e642c661797b7d16f0b97f09157d1c986dcae

0 40 Assets/Scripts/Grid.cs

0 1 Assets/Scripts/UIHandler.cs

1 1 Assets/Scripts/WaveFunctionCollapse.cs

34fae2d57e231b0adbcba54a3dc30c44cc4f4e1b

128 0 Assets/Scripts/ButtonLogic.cs

6f578cefad24aac89e99df23195f3aba757e6f58

5 5 Assets/Scripts/WaveFunctionCollapse.cs

b80c62a1e17951cd203fd75f09996e08cc657faa

19 14 Assets/Scripts/LogicComponent.cs

1 2 Assets/Scripts/UIHandler.cs

Appendix

82

950d6caefdf0d395cb8de9b96cd729827cfba939

2 5 Assets/Scripts/UIHandler.cs

6 6 Assets/Scripts/WaveFunctionCollapse.cs

fb9a6ed3fb0f90e858fdc9f196c74ff842960f95

98 158 Assets/Scripts/UIHandler.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

87d88f0eecf58803aa456555bc36a26fa9c011d4

3 0 Assets/Scripts/UIHandler.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

53b909125d3b0bda549810dfcea6cc885621e215

1 1 Assets/Scripts/UIHandler.cs

4 4 Assets/Scripts/Util.cs

2 2 Assets/Scripts/WaveFunctionCollapse.cs

3de4d6fa3329160b3a4deb1560f793d759895bd4

0 1 Assets/Scripts/MarchingCubes.cs

1 1 Assets/Scripts/UIHandler.cs

3 3 Assets/Scripts/Util.cs

34 54 Assets/Scripts/WaveFunctionCollapse.cs

2b11ecfecebfe1cc1d2a5c4f8f9c679592b2ebc4

39 14 Assets/Scripts/WaveFunctionCollapse.cs

f08b92637c0ae120544847e18875febde9d56925

1 0 Assets/Scripts/MarchingCubes.cs

1 1 Assets/Scripts/UIHandler.cs

3 3 Assets/Scripts/Util.cs

15 20 Assets/Scripts/WaveFunctionCollapse.cs

f82e77c505eda9e320592c862c6763251a600e36

14 39 Assets/Scripts/WaveFunctionCollapse.cs

95804d0a75c5a8518846cd8999379c6162343cdc

2 2 Assets/Scripts/UIHandler.cs

Appendix

83

2 2 Assets/Scripts/Util.cs

67 26 Assets/Scripts/WaveFunctionCollapse.cs

19677fc6ba4d0ce24ff1a66a8a5c7d964ea891b6

14 18 Assets/Scripts/UIHandler.cs

68 31 Assets/Scripts/WaveFunctionCollapse.cs

c7fc5cb54f04d434d0c08039e4be029334fe3981

1 1 Assets/Scripts/Util.cs

14 25 Assets/Scripts/WaveFunctionCollapse.cs

121331465b41dd786dd89c8327033661f6d190a0

0 15 Assets/Scripts/MarchingCubes.cs

8 50 Assets/Scripts/UIHandler.cs

82 77 Assets/Scripts/Util.cs

cebee0f399b32ed212b5d7126d64efbbcf6edded

5 0 Assets/Scripts/UIHandler.cs

7 1 Assets/Scripts/Util.cs

ef1bb188a7f0c63a364f946c5d0258417a5fc448

3 0 Assets/Scripts/UIHandler.cs

10 4 Assets/Scripts/Util.cs

b3411025f1c6bf6c0b9863ac32fd9f5388f1673b

9 0 Assets/Scripts/UIHandler.cs

13 2 Assets/Scripts/Util.cs

f38df9f0ad6ac344b2e44dc948a2c3b2af7946c1

15 0 Assets/Scripts/UIHandler.cs

21 0 Assets/Scripts/Util.cs

f1e82c8aa44e0fcbca80a22aa0de67b7ff629b25

13 0 Assets/Scripts/UIHandler.cs

15 0 Assets/Scripts/Util.cs

a244c64eeb9b3da02c0931159dd6971beb3e71ac

5 0 Assets/Scripts/UIHandler.cs

Appendix

84

8 2 Assets/Scripts/Util.cs

9150018a1e00b0eff6180f536a6abc1d5501a7a4

13 0 Assets/Scripts/UIHandler.cs

16 0 Assets/Scripts/Util.cs

cdfd945cbb1afbf93666b7197fd7abea9d31dc80

13 0 Assets/Scripts/UIHandler.cs

18 3 Assets/Scripts/Util.cs

aa8a4bf5c7e9eaea191237a9bae4aa39f3745395

13 6 Assets/Scripts/UIHandler.cs

15 6 Assets/Scripts/Util.cs

b89ab889adf12bd14aed4b23b058e0cb753e86d0

4 4 Assets/Scripts/WaveFunctionCollapse.cs

cbf4012a54b924cb1cdea26874232d997ef107a2

5 0 Assets/Scripts/UIHandler.cs

7 0 Assets/Scripts/Util.cs

d0170f4718b3d8e61a29947cb6d498f03100480d

5 0 Assets/Scripts/UIHandler.cs

8 0 Assets/Scripts/Util.cs

9a2211832aec28114b9db9fabd84d68c12de60bc

10 2 Assets/Scripts/LogicComponent.cs

19 0 Assets/Scripts/UIHandler.cs

22 14 Assets/Scripts/Util.cs

f44d899fe6cccfa6209096633fef4274910d4b55

1 1 Assets/Scripts/LogicComponent.cs

3 0 Assets/Scripts/UIHandler.cs

32 11 Assets/Scripts/Util.cs

10f870e5a102a65ec9443e11aa7dac56971f897c

5 0 Assets/Scripts/LogicComponent.cs

8 4 Assets/Scripts/UIHandler.cs

Appendix

85

44 197 Assets/Scripts/Util.cs

9d066a3c6be021ea14bdc400d729dea9f203a79a

38 10 Assets/Scripts/UIHandler.cs

157 57 Assets/Scripts/Util.cs

ce54ed8df87917c795d43b396e2ee311cd4232a8

2 1 Assets/Scripts/UIHandler.cs

0b7266f595883f9e0849f53c50133dba3a9bfb41

45 112 Assets/Scripts/UIHandler.cs

0 10 Assets/Scripts/Util.cs

1335 1119

8.1.3 List of Latest Commits

The left column contains the added lines, the middle column the deleted lines, and the right
column contains the file names. Only .cs files were considered. At the end, the added and
deleted lines are summed up.

Other 37 commits (first list minus second list):

1 1 Assets/Scripts/MarchingCubes.cs

11 0 Assets/Scripts/Util.cs

1f7dabb93b43e7064f193000fc1b95ad9c06c944

34 0 Assets/Scripts/UIHandler.cs

77 34 Assets/Scripts/Util.cs

f962d107ffc078ff450db4f7b9928efc381ddf66

29 4 Assets/Scripts/UIHandler.cs

4f037c2da882665d303ab355df118dd3419c6312

0 68 Assets/Scripts/CubePositions.cs

17 24 Assets/Scripts/MarchingCubes.cs

12 11 Assets/Scripts/UIHandler.cs

129 9 Assets/Scripts/Util.cs

Appendix

86

1 1 Assets/Scripts/WaveFunctionCollapse.cs

3546ac1310a380a67e4612a0c3738f2c44f74ebe

1 1 Assets/Scripts/LogicComponent.cs

17 26 Assets/Scripts/UIHandler.cs

6 1 Assets/Scripts/{SharedItems.cs => Util.cs}

80 24 Assets/Scripts/WaveFunctionCollapse.cs

6204ef4d44968c275323e2c72d75f322bb0e269d

140 55 Assets/Scripts/WaveFunctionCollapse.cs

99a5b7703e86395c245e63c4be448d8ed0a7a777

40 0 Assets/Scripts/CameraScript.cs

81 29 Assets/Scripts/WaveFunctionCollapse.cs

0aa7c2696b5dca9863432b7a40f52d51531b987f

1 23 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/IHandleUserInput.cs

8 16 Assets/Scripts/LogicComponent.cs

15 4 Assets/Scripts/UIHandler.cs

b9752af4e55c53d45eb58432fa415d922c758709

18 0 Assets/Scripts/SharedItems.cs

8 6 Assets/Scripts/UIHandler.cs

1 4 Assets/Scripts/WaveFunctionCollapse.cs

eee72197d031bee4a97d6b4afb33dd3b6131a800

24 62 Assets/Scripts/WaveFunctionCollapse.cs

89cbb9177d87df901f3b25ce4e326ca0721ac1fa

9 7 Assets/Scripts/UIHandler.cs

66 11 Assets/Scripts/WaveFunctionCollapse.cs

ab426c1dc4096d2daed64b3686f211fb0bf1fd24

24 30 Assets/Scripts/WaveFunctionCollapse.cs

710d45398bc2bd671495dd7fd918c8ee573fe683

12 7 Assets/Scripts/UIHandler.cs

Appendix

87

70 52 Assets/Scripts/WaveFunctionCollapse.cs

6b0fa6df7810f0338b99715b1bcd4a85dca40f07

73 10 Assets/Scripts/WaveFunctionCollapse.cs

d1577f50291cb9964436e9c00d7756e80c64dff3

4 1 Assets/Scripts/CubePositions.cs

2 0 Assets/Scripts/MarchingCubes.cs

35 12 Assets/Scripts/UIHandler.cs

140 2 Assets/Scripts/WaveFunctionCollapse.cs

3dd4697749a0c663de8968340fa94360c3284b25

11 3 Assets/Scripts/CubePositions.cs

4 1 Assets/Scripts/MarchingCubes.cs

17 0 Assets/Scripts/UIHandler.cs

190310ca81c6814a1253de03ae4aaa7a379ab945

0 2 Assets/Scripts/UIHandler.cs

2538728f0fab2244c6006a4bb9f8a79169741645

41 26 Assets/Scripts/UIHandler.cs

1f7921e1a004f0e007b7c28700c4f2aa3637e0bd

41 97 Assets/Scripts/UIHandler.cs

0b33e05fad7b1c08dff6ad166818da04a742443a

10 15 Assets/Scripts/UIHandler.cs

f6ebfc3253322b1ec259439ccd4061a42c8285e3

2 0 Assets/Scripts/CubePositions.cs

86 93 Assets/Scripts/UIHandler.cs

ba0da5f833bb86c3261d9e733d853681de6c460b

2 1 Assets/Scripts/CubePositions.cs

9 1 Assets/Scripts/MarchingCubes.cs

39 5 Assets/Scripts/UIHandler.cs

9233a1925badffeac59aff8285f0620217e6121a

Appendix

88

1 1 Assets/Scripts/CubePositions.cs

1 1 Assets/Scripts/IUpdateScene.cs

20 13 Assets/Scripts/LogicComponent.cs

136 125 Assets/Scripts/UIHandler.cs

5 0 Assets/Scripts/WaveFunctionCollapse.cs

982f7c12757a243c254954df2eb70084851aa648

19 2 Assets/Scripts/CubePositions.cs

1 2 Assets/Scripts/MarchingCubes.cs

ad42845f579b59fd1d7b6d445162756cba9eeb17

37 0 Assets/Scripts/CubePositions.cs

8 8 Assets/Scripts/Grid.cs

1 1 Assets/Scripts/IUpdateScene.cs

3 3 Assets/Scripts/LogicComponent.cs

14 7 Assets/Scripts/MarchingCubes.cs

39 10 Assets/Scripts/UIHandler.cs

6cc10d6025360297d74685a1611430b6ef484e16

9 1 Assets/Scripts/MarchingCubes.cs

12 10 Assets/Scripts/UIHandler.cs

0ad6a1c81c0e7492500c00b6284ac5b261ded645

108 0 Assets/Scripts/Grid.cs

8 0 Assets/Scripts/IHandleUserInput.cs

9 0 Assets/Scripts/IUpdateScene.cs

62 0 Assets/Scripts/LogicComponent.cs

23 0 Assets/Scripts/MarchingCubes.cs

170 0 Assets/Scripts/UIHandler.cs

11 0 Assets/Scripts/WaveFunctionCollapse.cs

2146 964

8.2 A2: Basic Equivalence Classes

Equivalence
Class

Basic Node State 3D Tiles (examples from different sub-
classes)

Appendix

89

0

/

1

2

3

4

5

6

7

8

9

10

Appendix

90

11

12

13

14

15

16

17

18

19

20

21

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche
Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „— bei einer Gruppenarbeit
die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)]
— ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden.
Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen
kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name: __________________________________

Vorname: __________________________________

dass ich die vorliegende Bachelorarbeit mit dem Thema:

Procedural Generation of Buildings with Wave Function Collapse and Marching Cubes

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind
unter Angabe der Quellen kenntlich gemacht.

_______________ _______________ _______________________________

Ort Datum Unterschrift im Original

