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Abstract 
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1 Introduction 

During the evolution of computer games, they have become increasingly complex. Game 
worlds are becoming larger, environments more detailed, and the graphics more and more 
realistic. This not only leads to increasing demands on storage and performance capacities, 
but also to a higher demand for working hours that are required for the development. [1] 
 
A possible solution, which can reduce the memory requirements for the clients as well as 
the working hours required for production, is Procedural Content Generation (PCG). 
Reducing memory requirements is less important these days. At the beginning, however, 
this was the decisive argument for PCG. Furthermore, PCG is also used for artistic purposes.  
 
For the above-mentioned reasons, PCG has played an increasingly important role in 
computer games and other graphical applications. Not only textures, vegetation, and other 
game elements can be generated automatically but also entire levels, dungeons, street 
maps, and cities.  
Another related field of research is Texture Synthesis. While PCG generates new content 
with the help of algorithms, Texture Synthesis uses existing textures to produce similar 
results.  

1.1 Motivation 
 
One field of research in Procedural Content Generation is the automatic generation of 
buildings. This area of PCG is also often used outside of gaming applications, e.g. in 
architecture software.  
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Figure 1: Official screenshot of the city building game Townscaper [2]. 

 
A recent game that uses building generation as its main element is Townscaper by Oskar 
Stålberg [2]. Stålberg combines methods from PCG with Texture Synthesis to let the users 
create versatile buildings by simply clicking on a 3-dimensional grid. More precisely, he 
combines the Wave Function Collapse (WFC) algorithm from the area of Texture Synthesis 
with the Marching Cubes (MC) algorithm that belongs to PCG. 
The procedural building generation in Townscaper was an inspiration for this thesis. The 
application directly involves users in the generation process and has hardly any hurdles for 
users of all ages thanks to an intuitive usability.  
Stålberg only made hints about his actual implementation, e.g. that he uses WFC and MC.  
Therefore, this thesis examines how the algorithms WFC and MC can be combined to allow 
users to generate buildings in a 3-dimensional grid in a similarly simple way. 

1.2 Goals 
 
As part of this bachelor thesis, an application for procedural building generation is created, 
which is based on Wave Function Collapse and Marching Cubes. For this purpose, the two 
algorithms are modified and combined. Thus, an alternative use of the algorithms is 
presented. The buildings are generated in 3D on tile level, i.e. previously created 3D models 
are assembled to create coherent buildings. 
 
The MC algorithm is extended in such a way that it can be used for user-initiated content 
generation. The original MC algorithm uses existing 3D data, interprets its values at 
different positions and generates a 3-dimensional surface based on these values (see 
chapter 2.4, and the original paper [3]). In my modification of MC, users determine the 
course of the surface by selecting and deselecting cells in a 3D grid. The generated surface 
encloses the selected cells. 
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Wave Function Collapse originally generates textures that are based on an input texture. 
The patterns that occur in the input image are used and reorganized for the new output 
textures. However, especially the constraint solving of WFC allows the algorithm to be used 
for various purposes, including the generation of 3D content. [4] 
My adapted WFC expands the possibilities of Marching Cubes. While MC finds exactly one 
solution for certain “enclosed” cells, my adapted WFC enables different possible solutions 
for the same combination of cells. More precisely, MC would always generate the same 
building for the same cell combination; together with WFC, different building façades 
appear. WFC examines the different possibilities for a particular cell combination and 
consequently decides on how exactly the cells are enclosed, using constraint solving.  
 
Hence, instead of reassembling individual patterns from a texture, my modified WFC 
assembles individual building sections in such a way that they form the surface that MC has 
recognized. 

1.3 Structure of the work 
 
This thesis consists of the following 6 sections: 

1. Introduction 
2. Basics and Related Work 

- Basic methods of PCG and Texture Synthesis are presented as well as a 
selection of current papers on this, Marching Cubes, and Wave Function 
Collapse. In addition, the procedural generation of buildings is discussed in 
more detail. Eventually, the combination of WFC and MC is discussed. 

3. Concept 
- The logical concept of the application that is implemented in the context of 

this thesis is presented. 
4. Implementation 

- Software engineering aspects in terms of analysis, software design, and 
quality are discussed as well as tools and libraries. 

5. Evaluation 
- The development of the application will be evaluated and examined 

regarding the goals, the requirements, and software quality. 
6. Conclusion and Perspective 

- A conclusion will be drawn and possible perspectives for further 
developments are shown. 
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2 Basics and Related Work 

2.1 Procedural Content Generation 
 
This chapter overviews the topic Procedural Content Generation (PCG) and is intended to 
provide an understanding of the topic by comparing definitions and boundaries set up by 
different authors. A taxonomy of PCG will be discussed and this work will be classified 
according to it. Subsequently, related work and developments of different techniques in 
PCG are first presented in general and then focused on the generation of buildings. 

2.1.1 Definition 
 
Togelius et al. define PCG as follows: “[PCG is] the algorithmical creation of game content 
with limited or indirect user input” [5]. Shaker et al. add that “PCG refers to computer 
software that can create game content on its own, or together with one or many human 
players or designers” [1]. It should be noted that the above-mentioned authors focus on 
PCG in games, although many other areas of application are conceivable. While some 
authors assume PCG is exclusively used in games, Hendrikx et al. distinguish PCG and PCG-G 
(Procedural Content Generation for Games) [6]. Freiknecht et al. name a few examples for a 
broader use of PCG like simulations, urban planning and animation movies [7]. Compton et 
al. also point out that the understanding of PCG is often reduced to the field of games, 
although other fields like generative art, music, and design, are equally interesting research 
areas. Therefore, they use the term “generative methods” to clarify that they refer to all 
possible areas of application [8]. Nevertheless PCG-G and PCG are often used 
interchangeably and, in the following, PCG will be used as a generic term, including both 
PCG-G and PCG for other applications. 
 
In this context, it is also important to define content. Shaker et al. summarize it as follows: 
“[C]ontent is most of what is contained in a game: levels, maps, game rules, textures, 
stories, items, quests, music, weapons, vehicles, characters, etc” [1]. Again, they focus on 
PCG-G, Freiknecht et al. give a broader definition and describe content as “digital assets for 
games, simulations or movies” [7]. In this thesis a broad understanding of content will be 
used, namely as digital assets for any kind of applications. 
 
Authors draw different distinctions when it comes to the question of what can and cannot 
be counted among PCG.  
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On the one hand, according to Shaker et al. “a map editor for a strategy game that simply 
lets the user place and remove items, without taking any initiative or doing any generation 
on its own” cannot be PCG [1]. Togelius et al. also write that “if the human input to the 
content generator is part of a game, and the player directly intends to create content in the 
game, it is not procedural content generation”. Therefore, according to Togelius et al., the 
purpose of the application also determines whether something is PCG or not. Furthermore, 
they distinguish content creation which is completely led by users (not PCG) from content 
generation that may be initiated by users but cannot be controlled by them completely 
(PCG) [5]. 
Hence, the generation of buildings by only using the Marching Cubes algorithm would not 
be considered PCG by neither of the above-mentioned authors. The combination of 
Marching Cubes (MC) and Wave Function Collapse (WFC) for building generation, however, 
might still be seen as PCG since the WFC algorithm introduces a non-deterministic element. 
Still, Togelius et al. might disagree if the main purpose of the application was the 
generation of buildings. 
On the other hand, Freiknecht et al. take a completely different view of the limits of the 
subject. They see this topic much more comprehensively and call all kinds of modeling and 
designing mechanisms PCG that go beyond “[moving] single vertices”, e.g. the character 
editor in the game “The Sims” that “offer[s] a set of parameters to edit single 
characteristics of a human to e.g., adapt the waist, size or the interocular distance.” The 
authors call this “procedural content generation with a strong user interaction” [7]. 
According to this definition, even building generation with only Marching Cubes would 
count as PCG. This thesis will follow the latter understanding of the limits of PCG. 

2.1.2 Taxonomy of PCG 
 
Shaker et al. [1] depict a taxonomy of PCG based on the work of Togelius et al. [9].  They 
distinguish the following approaches: 
 

- Online vs. offline 
Online PCG is the generation of content during runtime, e.g. the generation of endless 
landscapes in a game, whereas offline PCG refers to content generation during the 
development of an application or game. 
 

- Necessary vs. optional 
Necessary generated content is required for the usage of an application or game and 
should always be correct. Optional content can be discarded or exchanged by users. 
 

- Degree and dimensions of control 
The generation of content can be controllable to different extents. On the one side, Shaker 
et al. and Togelius et al. name the usage of a random seed and, on the other side, they 
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mention multiple parameters that can be used to create and control the generation of 
content. 
 

- Generic vs. adaptive 
Generic PCG does not take the users’ behavior into account. Adaptive PCG, however, is 
personalized and adapts to the user. 
 

- Stochastic vs. deterministic 
Deterministic PCG always creates the same content with the same input parameters and 
thus allows the recreation of content. Stochastic PCG is not predictable to this extent.  
 

- Constructive vs. generate-and-test 
Constructive PCG generates content entirely, whereas the generate-and-test version 
generates and tests individual parts repeatedly. 
 

- Automatic generation vs. mixed authorship 
Mixed authorship PCG includes the aid of users and/or designers within the generation 
process. Automatic generation allows only limited input respectively mainly the adjustment 
of parameters by the developers.  
 
The software project presented with this work can therefore be classified as follows: 
 
The application uses online PCG as the generation happens during runtime. The generation 
is necessary as the generated content is required for the use of the application. However, 
this category may not be applicable in our case since the actual purpose of the application 
is to generate content and for this reason the question of the necessity does not arise. The 
degree and dimensions of control are relatively low but of course the users have some 
control. They decide where content (in our case buildings) should be generated. 
Furthermore, users can decide about the colors, the program is using for its generation 
process. All other decisions are made by the program. Furthermore, the application uses 
generic PCG – the users’ behavior does not influence how the program works, i.e. the 
program is not adaptive. Using the WFC algorithm gives the application stochastic behavior. 
The results of the generation are not fully predictable and are random to some extent. 
Besides, the program uses constructive PCG as every input results in a complete building 
(that can of course be expanded). Also, this program uses mixed authorship. The users’ 
influence is limited but the generation does not happen automatically either.  

2.1.3 General PCG Techniques 
 
In the following, important PCG techniques are presented that are meant to generate 
different kinds of content like landscapes, terrain, or plants. 
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Plant Generation with L-Systems 
 
One way to generate content is the use of grammars. An early approach to grammars and 
string rewriting was published by Noam Chomsky in the 1950s. And in 1968 Aristid 
Lindenmayer formulated a grammar called Lindenmayer-Systems (or L-Systems) to describe 
the structure of plants. In the field of content generation, L-Systems became particularly 
important. Chomsky’s formal grammars differ from L-Systems in that his grammars 
productions are applied sequentially, while the replacement of symbols in the L-Systems 
takes place simultaneously. The mapping of L-systems to graphics is called “Turtle Model” 
[7] [10].  
A simple version of the L-Systems defines a certain number of symbols that describe how a 
line on a 2-dimensional grid shall be drawn, e.g. the symbol “F” means to move one step in 
the current direction on the grid and draw a line, the symbol “+” means to turn right by a 
certain degree and so on. In addition, L-Systems define re-writing rules that determine how 
simple elements are replaced by more complex ones (E.g. “F” can be replaced by “F+F”). It 
is possible to apply the replacement rules as often as desired and therefore create pictures 
with different levels of detail. Furthermore, it is possible to use a stack and go back to a 
certain point in the drawing [7] [10]. 
 

 
Figure 2: A plant generated with an L-System using re-writing rules with a growing number of iterations [7]. 

 
Extensions of the Lindenmayer-Systems include methods for the creation of 3-dimensional 
plants like the “cellwork L-Systems” [10]. Other methods for visualizing natural structures 
are the Mandelbrot set, the Koch snowflake, or the Pythagoras tree [7].  
 
Terrain Generation 
 
A terrain or landscape can be formed by height maps that define the current height for 
every field on a 2-dimensional grid [7]. Among the first algorithms for height map creation 
are subdivision-based methods, where a  map is iteratively subdivided with a certain degree 
of randomness [11]. One approach, described by Gavin Miller in different variations, is mid-
point displacement [12]. Mid-point displacement iteratively uses points of corners of a 
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triangle or in a diamond shape and assigns a (more or less) random height to these points 
based on the average of its neighbors. A simple mid-point displacement method can be 
used in 2D where points on a line are iteratively selected and elevated. The extended 
diamond-square algorithm can be used for 3D terrains: With each step a 2-dimensional 
square field is divided by a point that is set in its center. The height of this point is made up 
of the mean height of the 4 surrounding points plus a random value. 
 

 
Figure 3: The diamond-square subdivision as described by [12]. 

 
Techniques to procedurally generate height maps often include the use of fractal noise (like 
Perlin Noise) to make the height shifts look more realistic. Ken Perlin introduced an 
approach for “an interactive synthesizer for designing highly realistic Computer Generated 
Imagery” [13]. His algorithm allows the creation of controlled stochastic effects and was 
e.g. used for generating clouds, wood, or water. In comparison to earlier techniques Perlin’s 
method proved to be faster and easier [13]. Applied on height maps, the generated results 
became more realistic and mountainous [11]. 
 
However, height maps do not allow the creation of caves or overhangs. This can be 
achieved by voxel terrains or layered terrains [7]. Peytavie et al. present an approach to 
modelling complex terrains using layers from different materials to create arches, 
overhangs, and caves [14]. Their “hybrid model” uses a discrete volumetric data structure 
for the different materials as well as an implicit surface model for the sculpting of the 
surface of the terrain. The discrete data structure bases on a 2-dimensional grid of material 
layers and the surface model is defined as a convolution surface. 
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Figure 4: The hybrid model for modelling a complex terrain with overhangs [14]. 

 
Dungeon Generation 
 
One approach to procedural dungeon creation is binary space partitioning. This algorithm 
divides a 2D or 3D space into cells by applying the same algorithm recursively on any new 
cell. One cell is divided into two sub-cells, respectively. In this way, a hierarchical tree 
structure is created [1].  
Another common approach to dungeon creation is cellular automata. This method uses a 
grid of cells (in any dimension) where each cell holds a reference to a set of neighbors and 
to an initial state. Rules determine how the state of a cell and its neighbors is transformed 
into another state. After several transitions different patterns can be formed. Possible 
allowed states could be “wall” and “path” so that a dungeon can be created [15]. 
Grammars can also play a role in the creation of dungeons, e.g. graph grammars and shape 
grammars (the latter topic will be examined in chapter 2.1.4). Graph grammars generate 
topological descriptions as a graph where nodes represent rooms and edges adjacencies 
[15]. 
Further methods that can be used for dungeon creation are genetic algorithms and 
constraint-based approaches [15].  
 
PCG with Constraints 
 
Another way to procedurally generate content is to use constraints. (The Wave Function 
Collapse algorithm partly also belongs to this category and will be discussed chapter 2.3) 
 
Horswill and Foged present an approach where they use constraint propagation for 
creating enemies and objects in games. They use “path constraints” that regard the 
possible paths a player can take and that can place objects effectively. E.g. they allow the 
system to balance the number of enemies according to the player’s level or to ensure that 
“keys are not hidden behind the doors they are intended to unlock, and so on” [16]. 
 



Basics and Related Work  

 

10 
 

Another possible constraint-based method for PCG is Answer Set Programming (ASP), “a 
form of logic programming targeted at modeling combinatorial search and optimization 
problems” [4].  
 
Smith and Mateas used ASP in the field of PCG for an explicit description of the design 
space. Thus, the space of content is declared, and a domain-independent solver uses this 
space to generate the desired content. Their approach also allows new generators for 
different game content domains to be quickly defined [17].  
Neufeld et al. used ASP for procedural level generation. They developed an automatic way 
of evolving level generators for 2D games. A game gets transformed in a set of rules that 
are described in ASP. In this way, multiple levels can be generated that will be evaluated 
afterwards [18]. 
 
The use of ASP in PCG already shows similarities to the WFC algorithm (see 2.3). ASP in PCG 
aims to model the space of content beforehand to subsequently let a constraint solver use 
these models to create new content [4]. This means, the solver arranges the existing 
models to generate new content by using constraints to check how the models can be 
connected to one another. This is also the basis of what WFC does.  
 
Further PCG Methods 
 
There are many other methods for automatically generating content and of course only a 
few can be mentioned here.  
One important aspect that is often mentioned in this subject area (and that should also be 
mentioned briefly here) is the customization of procedurally generated content to the 
player. Yannakakis and Togelius introduce a framework for experience driven PCG that take 
the user’s experiences into account to generate optimized content. E.g. they created 
personalized levels for the game Super Mario. While players were playing, the game 
recorded different metrics, e.g. the frequency of jumping and running but also the time 
users were moving as opposed to the time they spent standing still as a measurement of 
the “fun” the users had. This data is fed to a neural network and used to create 
personalized levels with variable degrees of difficulty [19].  

2.1.4 Procedural Generation of Buildings 
 
The following chapter focuses on various approaches to procedural generation of buildings 
and is intended to put this work into context. 
 
According to Smelik et al., procedural building generation is one of the best developed 
areas in PCG [20]. Some of the previously mentioned methods (such as the L-Systems) are 
also used in building generation. However, especially split and shape grammars play an 
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important role in this area. Like the L-Systems, they also represent formal rewriting 
systems. Many building generation tools use these grammars as a basis. 
 
Split and Shape Grammars 
 
The concept of shape grammars was introduced by Stiny in the 1970s. These grammars 
operate on shapes and are useful in the construction of architectural designs. [21] [22] 
Shape grammars consist of shape rules (or spatial relations) that define how an existing 
shape can be transformed into another shape (or shapes). The rules also determine when a 
transformation can be applied [20]. The final models are created by applying these rules 
recursively. 
 

 
Figure 5: Example of using a simple 2D shape rule in multiple iterations, based on: [23]. 

 
Wonka et al. introduce a type of parametric set grammar, split grammar, that is used for 
the automatic modeling of architecture. Their approach is based on the concept of shape 
and draws from Stiny’s work on shape grammars [24]. Split grammar restricts the types of 
allowed rules so that it is still able to model buildings but also simple enough to allow an 
automatic derivation of the grammar. It is a 3-dimensional design grammar and determines 
the spatial layout of a building. So-called basic shapes (like e.g. cuboids or cylinders) are 
manipulated by the grammar by means of a set of certain functions that define the 
allowable affine transformations for the shapes [24]. According to Smelik et al. split 
grammars focus on generating façades for simple shaped buildings [20]. 
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Figure 6: A simple 2D example for a split grammar. The white boxes represent non-terminal shapes, and the 
colored boxes represent terminal shapes. The start shape gets split into 4 façades, which are further split in 
different elements [24]. 

 

 
Figure 7: The final model resulting from the derivation of the split grammar shown in Figure 6 [24]. 

 
Extensions of Split and Shape Grammars 
 
Computer Generated Architecture (CGA) by Müller et al. is an extension of the split 
grammar by Wonka et al. and belongs to the shape grammars [25]. The CGA shape 
grammar (CGA Shape) is used for 3D modeling of buildings and it also allows to create roofs 
and rotated shapes with arbitrary orientation. CGA Shape usually starts with extruding a 
polygon into a 3-dimensional shape and creating several floors. Afterwards, the resulting 
façades are subdivided by shape rules. The possibility to split a shape (with a split rule) was 
already presented in earlier works, but Müller et al. introduced the repeat split and the 
component split, which allows to work jointly with 1-, 2-, and 3-dimensional shapes. The 
notation of the grammar’s rules to add, scale, translate, and rotate shapes was inspired by 
the L-Systems. However, the L-Systems represent parallel grammars (and can capture 
growth over time), whereas CGA Shape works sequentially [25]. 
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Figure 8: A procedural model of Pompeii, generated with CGA Shape [25]. 

 
Finkenzeller and Bender propose a further extension of shape grammars by capturing 
semantic information (regarding the role of shapes within a building) in a typed graph [26]. 
Their approach is designed for the creation of complex buildings and façades with high 
details. Their model description includes geometry and semantics and allows a partial 
automation of the modeling process. 
 
Smelik et al. argue that the conventional methods that use split and shape grammars may 
create convincing results in building generation but require much authoring effort [20]. 
Another method that solves this problem is an automatic reconstruction of building façades 
by Müller et al. that uses image analysis to automatically derive 3D models from 
photographs. However, they still use shape grammars for their procedural modeling 
pipeline [27]. 
 
Further Building Generation Methods 
 
Birch et al. introduce an approach for procedural-modeling of large-scale urban virtual-
environments using constraints [28]. For the creation of large scenes, Birch et al. combine 
different tools and libraries for different modeling tasks (e.g. for basic building structures, 
windows, etc.).  Each modeling tool uses a scene graph as a basis and a set of constraints to 
define the different building structures. The basis for their building generation process is a 
simple cube – the shell that can be modified by permitted actions and constraints. The 
permitted actions include the moving of single vertices, the expansion or contraction of 
opposing faces and moving the shell. Constraints that can be imposed on the shall allow to 
configure how the shell behaves in relation to other shells and to set editing options. Roofs 
and other external objects can be added to the buildings in the same way. 
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Merrell et al. present an approach for the procedural generation of building layouts [29]. 
Their architectural program is generated by a Bayesian network that was trained on real-
world data. The program is realized in a set of floor plans, that are obtained through 
stochastic optimization. The floor plans can then be used to construct a 3-dimensional 
model of a building. Their approach goes beyond that of shape grammars, as they regard 
more than just pure shapes and their arrangements. They also take aspects into account 
like functional relationships between spaces or the “privacy gradient”, considering that 
common areas should be closer to the door and private rooms should be farther away. As 
all those architectural rules can hardly be implemented by hand, they used machine 
learning techniques to derive them from data.  
The input to their application is a list of requirements, e.g. the number of bedrooms, 
bathrooms etc. These requirements are then expanded into an architectural program, 
containing a list of rooms, their adjacencies, and their target sizes. This architectural 
program is generated by a Bayesian network, that was trained on a corpus of real-world 
architectural programs, i.e. on a catalogue of residential layouts. The generated 
architectural programs can then be turned into building layouts, i.e. detailed floor plans for 
every floor. Finally, a given building layout can be used to generate a 3D model, decorated 
in many different styles. The possible styles are specified in style templates, listing the 
properties of every building element like windows, doors etc.  

 

 
Figure 9: View of a 3D model generated by the method of Merrell et al. [29]. 

 
In his paper “Example-Based Model Synthesis” Paul Merrell also extended texture synthesis 
methods to an application that allows the generation of large 3D building models from 
smaller models [30]. His approach is further discussed in chapter 2.2.2 on texture synthesis. 
 
Examples for the Use of Procedural Building Generation 
 
Saldana and Johanson used procedural building generation to recreate historical cityscapes 
of Rome [31]. Beside procedural generation techniques, they used geographic information 
systems (GIS) for archaeological data and the game engine Unity to combine the 
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procedurally generated buildings and terrain. The architectural data contains time 
references so that the development of the cityscape over several centuries could be 
reconstructed. 
For the building generation they used ArcGIS CityEngine, a design software for 3D cities that 
uses GIS data to procedurally generate e.g. buildings and terrain. Using this software, they 
defined architectural attributes and attached them to specific locations, but also assigned 
randomized functions to certain attributes so that they were distributed over the urban 
model. Various building types were described by different procedural rules, so that e.g. 
houses, temples, and basilicas could be distinguished and spread across the city model. 
Also, semantic descriptions for architectural elements were used so that different 
architectural styles could be created. 
 
Greuter et al. presented an approach to procedurally generate “pseudo infinite” cities in 
real-time [32]. The cities consist of various procedurally generated buildings, which 
generation parameters are created by a pseudo random number generator. The building 
geometries were extruded from a set of floor plans. The floor plans are generated by an 
iterative process, from the top level of a building to the ground floor, combining randomly 
generated polygons. The first iteration generates a random polygon and subsequent 
iteration steps create floor plans for the lower floors by generating a random polygon and 
combining it with the previously created polygon. The shape of a building (i.e. the pseudo 
random numbers for its parameters) is determined by its location, so that the same building 
will always appear at the same location. Buildings that surround the viewpoint are 
generated and stored in memory and buildings that drop out of the viewing range will be 
deleted. Furthermore, they used view frustum filling to enhance performance. In contrast 
to view frustum culling, a method that detects non-visible but existing shapes before they 
are rendered, their approach detects potentially visible cells around the viewpoint of the 
camera before the content is generated. 
 
A possible application for procedural building generation are computer games. As 
mentioned in the Introduction, Oskar Stålberg combined methods from procedural 
generation with texture synthesis and created the game Townscaper (see chapter 2.5). 

2.2 Texture Synthesis 
 
As the Wave Function Collapse algorithm was originally invented in the field of texture 
synthesis, this chapter will give an overview of this topic.  

2.2.1 Basics 
 
According to Karth and Smith, texture synthesis is the process of generating an output 
image with texture that resembles a smaller input image [4]. Some authors distinguish 
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exemplar-based texture synthesis from a purely algorithmic generation of textures without 
input data (see [33], [30]). In the following, the term “texture synthesis” will be used 
synonymously for “exemplar-based texture synthesis”. 
 
A fundamental question in this context is what texture means. According to Tuceryan and 
Jain there are many different definitions and it is difficult to find one that is universal [34]. 
Definitions they propose describe texture as a structure with a repetitive pattern or as a 
region in an image with a constant, slowly variant, or periodic set of local properties. 
 
Furthermore, Efros and Leung point out that two types (respectively two extremes) of 
textures can be distinguished, between which all textures can be classified: regular and 
stochastic textures [35]. Regular textures consist of repeated texels (texture elements), 
whereas stochastic textures have no explicit texels.  
 

 
Figure 10: Example for a more stochastic texture on the left side and a more regular texture on the right side 
[33]. 

 
Oftentimes, the input and output images in texture synthesis are characterized by their 
local patterns, sub-images of just a few pixels. Many algorithms produce output in which 
every local pattern resembles a local pattern in the input and this resemblance need not be 
an exact matching. In contrast, Wave Function Collapse uses exact pattern matching. [4] 
 
Different methods for texture synthesis have been developed that can be divided into 
parametric and non-parametric methods. Parametric methods estimate a set of statistics 
from an input image that define an underlying stochastic process. The output images will 
then be generated by this stochastic process and have the same statistics as the original 
texture. These methods may fail when the input image has certain structures that are 
important for a correct reproduction, i.e. they are more useful for stochastic textures. 
Non-parametric methods reorganize neighboring local patterns to create output textures. 
These methods are especially useful for more regular textures but can possibly just recreate 
large parts of the input image or create useless output images that only reproduce one part 
of the input image and ignoring the rest of it. [33] 
 
As will become clearer in chapter 2.3, the WFC algorithm belongs to the non-parametric 
methods, recreating and reorganizing existing patterns from the input. 
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2.2.2 Examples of Further Developments in Texture Synthesis 
 
Paul Merrell proposes an extension of texture synthesis from the original 2-dimensional to 
a 3-dimensional application; he calls this approach model synthesis [30]. His method 
generates large 3-dimensional models that resemble a smaller 3D model that was given as 
input. Merrell mentions two main differences between texture synthesis and model 
synthesis: first, model synthesis uses a global search to find potential conflicts and, second, 
his method divides the task of generating a large model into several smaller tasks to make 
the generation easier to solve. His approach breaks the example model into small building 
blocks that are rearranged on a 3-dimensional grid. This method accepts many different 
example models, and he refers to it as a “general-purpose modeling tool”. 
 

 
Figure 11: The large building complex on the right side was generated with model synthesis using the smaller 
model on the left [30]. 

 
Merrell uses predefined model pieces (building blocks of a model) to describe the input 
models. To achieve consistent results, model pieces must be put together using a set of 
rules. These rules must ensure that the pieces fit together correctly. E.g., one rule stipulates 
that a model piece may only be beneath (or behind) another model piece, if it was beneath 
(or behind) that piece in the example model. “More precisely, a model M is consistent with 
an example model E if all the model pieces that are adjacent to one another in M are found 
adjacent to one another in E along the same direction” [30]. 
To apply the rules correctly, Merrell uses labels for the different pieces of a model. If a 
model in the resulting 3D grid is missing labels, it is still incomplete.   
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Figure 12: A model consisting of four model pieces can be seen in (a), (b) shows an inconsistent model that 
was generated without rules, and (c) shows a consistent model [30]. 

 
As you can see in Figure 12, this model is only complete if it contains the pieces 1, 2 and 3. 
It is possible that a model becomes inconsistent when more labeled model pieces are 
added to it. To prevent this, Merrell uses a global search to remove model pieces that may 
lead to inconsistencies.  
 
Model Synthesis shows some similarities to the Wave Function Collapse algorithm (see 
chapter 2.3), another development in the field of texture synthesis. In fact, Karth and Smith 
write that the WFC algorithm was inspired by Merrell’s approach [4]. It will be seen that the 
rules Merrell uses to prevent inconsistencies in his results resemble the constraints of WFC. 
The requirement that adjacent model pieces from the input model should be equally 
adjacent in the result is present in both algorithms.  
Further developments that are based on WFC are described in Chapter 2.3.2.  

2.3 Wave Function Collapse 
 
One of the two algorithms that forms the basis of this work is the Wave Function Collapse 
(WFC) algorithm1 that was developed by Maxim Gumin. Karth and Smith describe Gumins 
approach in detail [4] and I will refer to their paper in the following. 
 
WFC was originally invented to create new images based on given examples. It therefore 
belongs to texture synthesis as well as procedural generation. The images generated by 
WFC only contain local patterns that are also present in the original image. Gumin’s original 
algorithm does not use backtracking and implements a greedy search. Karth and Smith 
classify WFC as a constraint solving method. WFC uses a minimal entropy heuristic and 
generates its output image incrementally by expanding the known regions of the output 
and completing them with local patterns from the input image. 

 
1 The name "Wave Function Collapse" is a reference to the wave function of quantum mechanics, 
which was a loose inspiration for the algorithm. It was mainly an inspiration for the superposition of 
the possible solutions for an image position during the expansion of the output image. [3] 
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2.3.1 The WFC Algorithm 
 
Gumin's original algorithm as described from Karth and Smith is presented below. 
 
In general, the algorithm executes 4 tasks: 

1. Extracting local patterns from an input image 
2. Processing these patterns in an index, so that constraint checking can be 

accelerated 
3. Incrementally creating an output image by expanding a partial assignment 
4. Rendering the total assignment into an image 

 
In the following, the tasks will be described in more detail. 
 
Regarding step 1: Extracting local patterns from an input image 
 
A pattern is a unique combination of input tiles, it is composed of NxN tiles (e.g. 2x2 or 
3x3). All patterns are extracted from the input image and can be described as sub-images of 
the original image. At this point two variations of the algorithm can be distinguished: the 
simple “tiled version” and the “overlapping version”. The two variations differ in the way in 
which the constraints are derived from the patterns.  
The “tiled version” derives its constraints directly from the patterns so that one pattern 
defines exactly one allowed combination of tiles. 
The “overlapping version” derives its constraints from the input image by creating a set of 
unique patterns. In short, the algorithm examines all patterns it got from the input image 
and identifies the ways these patterns can overlap (with different offsets). Patterns can 
overlap where they have identical tiles. A complete overlay is only possible with the same 
pattern, all other patterns can only overlap partially. Symmetry and reflection of the 
patterns can also be considered.  

 
Figure 13: Simple example for an input image [4]. 

 

 
Figure 14: All 2x2 patterns derived from the input image above, including rotation and reflection [4]. 
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Figure 13 shows an example for a simple input image. Figure 14 shows all 2x2 patterns that 
can be extracted from this image. It can be noted that every pattern is unique even if the 
pattern appears more than once in the input image. Besides, some of the patterns do not 
appear in the input image in exactly this way but are a rotation or reflection of a pattern.  
 
Regarding step 2: Processing the patterns in an index, so that constraint checking can be 
accelerated 
 
Based on the set of patterns an index data structure is built that describes how the patterns 
can be placed together. 
Regarding the overlap version, the index data structure contains the information about if 
and how two patterns can be placed together. With 2x2 patterns there are 9 ways in which 
two patterns could be positioned together, see Figure 15. 

 
Figure 15: 9 options how 2x2 patterns can be positioned together [4]. 

 
For each pattern, the index data structure contains information on how it can be positioned 
together with other patterns. Gumin calls this index data structure a propagator.  
 

 
Figure 16: One part of the index data structure, describing how other patterns can be positioned together 
with the pattern  in the middle panel (0,0) [4]. 
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Regarding the tiled version, the index can directly be derived from the specific tile-
relationships in the patterns. 
 
Regarding step 3: Incrementally creating an output image by expanding a partial 
assignment 
 
After looking at how patterns are gained from the original picture and how rules or 
constraints (describing the possible combinations of patterns) are derived from them, the 
creation of the output image is regarded now.  
 
During the incremental generation process, decision variables are repeatedly selected and 
assigned. There is a decision variable for each grid location of the output image.  A table, 
that Gumin calls Wave (a reference to the quantum wave function), keeps track of the 
assignments and the remaining possibilities for any location. The entries in this table (that 
Gumin calls coefficients) are Boolean values. These coefficients record whether the 
algorithm might still assign a certain pattern to a given location. In the beginning, all these 
variables are initialized with “true”, thus all coefficients have an unlimited domain. This 
means that there is one decision variable with a domain for each location on the grid. At 
the beginning each domain contains all possible patterns from the input image. The further 
the algorithm progresses, the smaller the domains of the variables become, until in the end 
only one possible value is left for each variable, which will then be assigned. It should be 
noted that Gumin’s original algorithm does not use backtracking, so if an error occurs a 
global restart is executed. 
 
This third step can be divided into the sub-steps observe and propagate.  
 
The purpose of the observe phase is to find the location with the lowest entropy (greater 
than 0). The cell with the lowest entropy is the one with the smallest domain, i.e. the 
variable with the fewest possible patterns that can be assigned. After the location with the 
lowest entropy was selected, it still got several valid patterns left, otherwise the location’s 
entropy would already have been 0 in the previous step, so this variable would already 
have been resolved. 
Afterwards, one of the possible patterns of the chosen location must be selected. The 
pattern is chosen randomly, however the frequency with which the patterns occur in the 
original image are used as weights. This implements Gumin's goal that all patterns in the 
output image should be as frequent as in the input image. 
After a variable has been assigned in the observe step, it receives a flag as a location that 
must be updated in the wave, i.e. the other variables (or their domains) must be updated 
by constraint propagation. 
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The propagate step uses “arc consistency”. This constraint solving method “ensures that a 
value only appears in a domain of a variable if there exists a valid value in the domain of 
related variables such that constraints over those variables could be satisfied” [4]. Updating 
a variable domain can mean that all neighboring variables must also be updated. 
The actual propagation works like the Flood Fill algorithm. The algorithm ends when there 
is no cell left that must be updated. Starting from the first flagged location, every adjacent 
cell will be checked, whether it must update its domain. If an adjacent cell needs to be 
updated, it also receives a flag as needing to be updated in the next iteration. 
 
To sum up, each observation step ends with a location receiving an assigned value. In 
addition, some adjacent variables are likely to get less entropy in their domains during the 
propagation. 
If there is no more entropy in the system, i.e. all variables have a single value in their 
domain, the final image is created and can be returned and rendered. Alternatively, it is 
also possible that an image of the partial results can be output after each observation-
propagation cycle. 

2.3.2 Examples of Further Developments of Wave Function Collapse 
 
Karth and Smith write, that since its release, Wave Function Collapse was especially used in 
the (indie) game development scene. Proc Skater 2016 by Joseph Parker was the first game 
using WFC and generates levels with this method. Another game developer, Oskar Stålberg, 
contributed a lot to the popularization of WFC. He generalized the algorithm to broaden 
the possibilities for its application.  Among other things, he started using WFC for 3-
dimensional applications, he used performance optimizations and added backtracking [4]. 
Stålberg’s combination of WFC and Marching Cubes (MC is described in chapter 2.4) as in 
Townscaper [2] is described in chapter 2.5. 
 
In the case of model synthesis, you can already see that the subject areas “texture 
synthesis” and “procedural generation of buildings” (or of 3D models in general) overlap. 
This is also the case when the WFC algorithm is extended into the 3-dimensional.  
 
Khokhlov et al. present another method based on model synthesis and WFC that generates 
3D models [36]. In contrast to model synthesis and Stålberg’s approach to applying WFC to 
3D models, Khokhlov et al. apply WFC on voxels (volume elements; the 3D equivalent of 
pixels). They write, the advantage of their method over others that only use surfaces (i.e. 
polygonal meshes) for the generation is that the input model also provides information 
about its volume and inner structure. Thus, they can infer adjacency rules directly from the 
model without the need to manually define them. Instead of regarding the input’s pixels 
and how they form patterns in 2D, they regard its voxels and their patterns in 3D. Based on 
these patterns, they automatically derive the rules for the model generation, just like 
(standard) WFC does in 2D. 
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Kim et al. describe a graph-based WFC algorithm for procedurally creating 3D game content 
[37]. They use a graph-based data-structure in 3-dimensional world and thereby extend the 
WFC algorithm to work independently of a grid.   

2.4 Marching Cubes 
 
The other algorithm that forms the basis of this work besides Wave Function Collapse is the 
Marching Cubes algorithm. Marching Cubes (MC) was first presented by Lorensen and Cline 
in 1987 [3] and their paper will be referenced in the following.  
 
The MC algorithm was originally developed for medical uses. 3D data from computed 
tomography (CT), magnetic resonance (MR), and single-photon emission computed 
tomography (SPECT) is processed to calculate surfaces that represent the boundaries 
between different density values within the data. Thus, the algorithm “creates triangle 
models of constant density surfaces”. The 3D data consists of many 2-dimensional slices 
that are obtained through the above-mentioned medical methods and that form a 3D data 
array. With a divide-and-conquer approach MC generates inter-slice connectivity. Gradient 
information (regarding the density values) from the original data is used for shading the 
models. In the end, the algorithm produces high-resolution images from the generated 
surface models. 
 
Medical algorithms that produce 3D images follow the same 4 steps: 
 

1. Data acquisition – e.g. through CT, MR, SPECT 
2. Image processing – to find structure within the data (needed by some algorithms) 
3. Surface construction – to create a surface model from the data that usually consists 

of either voxels or polygons 
4. Display – to display the surface 

 
MC is a possible implementation of the third step: it creates a surface model consisting of 
triangles that corresponds to a density specified by the user.  

2.4.1 The Marching Cubes Algorithm 
 
The MC algorithm can be divided into two main steps: 
 

1. Localizing the surface corresponding to a user-defined density value and creating 
triangles 

2. Calculating the normals to the surface at each vertex of each triangle for a high-
quality image of the surface 



Basics and Related Work  

 

24 
 

 
Regarding step 1: Localizing the surface 
 
Using a divide-and-conquer technique, MC divides all 3D data into logical cubes consisting 
of 8 pixels, four pixels each from two adjacent slices.  
For each cube, the algorithm determines the intersection with the surface and then moves 
on (“marches”) to the next one. 
 
To find the surface intersection for one cube, the cube’s vertices are either assigned the 
number zero or one. “One” means that the corresponding vertex is inside the surface, i.e. 
the data value of this vertex exceeds or equals the density value that determines the 
surface. Vertices with lower density values are assigned a “zero” and are outside the 
surface. The surface intersects those cubes where the vertices of one edge have been 
assigned different values, so one vertex is inside and the other outside the surface. Put 
simply, the surface intersects those cubes whose vertices have been assigned different 
values. 
 
As one cube consists of 8 vertices, each in one of two possible states, there are 28 (= 256) 
ways how the surface can intersect a cube. I.e., every cube has certain vertex (or node) 
states, and these vertex states constitute the cube state that can be represented as a 
number between 0 and 255. For each possible case (i.e. cube state) an index is created that 
bases on the states of the vertices. This leads to an 8-bit index representing the state of a 
cube (one bit for every vertex). 
Thus, a table with 256 possibilities can be created that displays how a cube (respectively its 
edges) with a certain cube state is intersected by the surface. The table lists the intersected 
edges for all possible cube states.  
However, it is not necessary to triangulate all 256 possibilities individually. Due to 
symmetries, the actual number of possible ways a cube can be intersected reduces to 14, as 
can be seen in Figure 17. On the one hand, the topology of the surface is unchanged, if the 
vertex states of a cube are reversed, because the same edges are intersected. On the other 
hand, cube states that are rotated against each other are also equivalent.  
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Figure 17: All 14 possibilities how a cube can be intersected by a surface [3]. 

 
Using the index of a cube as a pointer in the above-mentioned table to find the intersected 
edges, it is possible to linearly interpolate the surface intersection along the edge, based on 
the density values of the edge vertices. 
 
Regarding step 2: Calculating the normals to the surface 
 
Subsequently, the MC algorithm calculates a unit normal for every vertex of every triangle. 
These normals are used by the rendering algorithms to produce Gouraud-shaded images. 
 
A surface with a constant density has a zero gradient component along the surface 
tangential direction. Hence, the direction of the gradient vector 𝑔⃗ is normal (orthogonal) to 
the surface. This fact can be used to calculate the surface normal vector 𝑛⃗⃗ (if the gradient’s 
magnitude is not zero, which is always the case, since the surface indicates the limit of 
different density values). 
 
The gradient vector 𝑔⃗ represents the derivative of the density function at position (x, y, z). 
 

𝑔⃗(𝑥, 𝑦, 𝑧) =  𝛻𝑓(𝑥, 𝑦, 𝑧) 
Equation 1 [3] 
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To approximate the gradient vector of the surface, the gradient vectors at the cube vertices 
are estimated and, afterwards, the gradient at the point of intersection is obtained through 
linear interpolation. 
To estimate the gradient at a cube vertex (i, j, k), central differences along the coordinate 
axes is used (see Equation 2, Equation 3, and Equation 4). So, a vertex gradient consists of 
(𝐺𝑥 , 𝐺𝑦, 𝐺𝑍). 

 

𝐺𝑥(𝑖, 𝑗, 𝑘) =  
𝐷 (𝑖 + 1, 𝑗, 𝑘) − 𝐷 (𝑖 − 1, 𝑗, 𝑘)

𝛥 𝑥
 

Equation 2 [3] 

 

𝐺𝑦(𝑖, 𝑗, 𝑘) =  
𝐷 (𝑖, 𝑗 + 1, 𝑘) − 𝐷 (𝑖, 𝑗 − 1, 𝑘)

𝛥 𝑦
 

Equation 3 [3] 

 

𝐺𝑧(𝑖, 𝑗, 𝑘) =  
𝐷 (𝑖, 𝑗, 𝑘 + 1) − 𝐷 (𝑖, 𝑗, 𝑘 − 1)

𝛥 𝑧
 

Equation 4 [3] 

 
D (i, j, k) is the density at pixel (i, j) in slice k and Δx, Δy and Δz are the lengths of the cube 
edges. The gradient is divided by its length to receive the unit normal at the vertex. 
To calculate the gradient at all vertices of a cube, it is necessary to keep four data slices in 
memory at once. 
 
After obtaining the normal gradient vector for every cube vertex (using Equation 2, 
Equation 3, and Equation 4), it is now possible to obtain the gradient vectors at the 
intersection between the surface and the cube by linear interpolation. A gradient is 
calculated for every triangle vertex of the surface within the respective cube. 
 
To sum up, Marching Cubes generates a surface from 3D data as follows: 
The algorithm divides the pixels of consecutive slices into cubes, consisting of four pixels 
each from two slices. The cube receives an 8-bit index that indicates which of its vertices 
are inside the surface and which are outside. A vertex is inside the surface when its density 
value is equal or above a user-defined threshold (the surface constant). The cube’s index is 
used as a pointer in a list to find the edges that are intersected by the surface. With the 
densities at the edge vertices the exact surface-edge intersection can be obtained by linear 
interpolation. A unit normal at each cube vertex is approximated using central differences. 
These normals are subsequently used to interpolate the normal to every triangle vertex of 
the surface within the cube.  In the end, the triangle vertices and vertex normals are 
output. 
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2.5 Combining Wave Function Collapse and Marching 
Cubes 

 
The game developer Oskar Stålberg experimented a lot with different applications for Wave 
Function Collapse [4], he held speeches about the algorithm [38] [39], created a browser 
game to demonstrate how WFC works2, and published the strategy game Bad North [40] 
using WFC for level generation. 
His latest game Townscaper [2] applies WFC on 3-dimensional building models and thus he 
created a simple city-building game where users can create single buildings or huge towns 
by clicking on cells in a 3D grid. For this application he used both the WFC and the MC 
algorithm that he applies on a modular tile set. His approach was an inspiration for this 
thesis.  
 
Stålberg wrote about the functionality of Townscaper: “Marching Cubes generates the 
possibility space that WFC then collapse[s].”3 For a better understanding of this statement, I 
will first look at how MC can be used for simple building generation purposes in 3D. 
Afterwards, I will regard how WFC can be used as a constraint solver in order to use 
concrete 3D tiles for the generation.  
 
Stålberg did not publish specific information about his own implementation of Townscaper, 
which is why the procedure described below is only an interpretation of his statements. The 
details of my own approach are discussed in chapter 0. 
 
A modification of MC for building generation purposes can work like this: A 3D grid consists 
of cells that are either “inside” or “outside” (just like in the original MC, where pixels from a 
slide can either be inside or outside a surface). When a cell is “inside”, a building (or part of 
a building) is generated at the corresponding location. It is important to consider in which 
way “inner” cells adjoin each other, since the aim is to create consistent buildings. 
Depending on how the cells are adjacent, different building tiles are used. A browser game 
for building generation that Stålberg developed4, uses “the corners between blocks” (i.e. 
the nodes of the grid) to place the building tiles [41]. Apparently, he used the nodes of the 
grid to keep track of the state of their 8 adjacent cells. Like in the original MC algorithm, an 
8-bit index represents a state. But instead of a cube state that represents the state of its 
nodes, Stålberg uses a node state that represents the state of the adjacent cells (see Figure 
18).5 Depending on these node states, building tiles are set at the corresponding positions. 

 
2 See http://oskarstalberg.com/game/wave/wave.html (accessed 2020/19/8). 
3 See https://twitter.com/osksta/status/1176569884924416001 (accessed 2020/19/8). 
4 See https://oskarstalberg.com/game/house/index.html (accessed 2020/19/8). 
5 Depending on the concrete implementation, a grid can alternatively keep track of the states of its 
cells, where a cell state represents the states of its 8 nodes, placing the tiles in the center of a cell. 
But I will follow Stålberg’s approach and use node states. 

http://oskarstalberg.com/game/wave/wave.html
https://twitter.com/osksta/status/1176569884924416001
https://oskarstalberg.com/game/house/index.html


Basics and Related Work  

 

28 
 

 

 
Figure 18: Different 8-bit node states determine the appropriate building tiles [41]. 

 
To determine which cells are “inside” (state: 1) and which are “outside” (state: 0), Stålberg 
lets the users decide about the structure of the generated buildings, by clicking on cells in a 
3D grid.  
Hence, when users click on an empty cell in the grid, the cell’s state is changed from 
“outside” to “inside”. Thereby the states of the 8 associated nodes also change and new 
tiles will be placed at the corresponding positions in the grid for each of these nodes 
forming a consistent building. 
 
The approach discussed so far is a rigid way to procedurally generate buildings. By only 
using Marching Cubes, each building that was generated on the same way will always look 
the same. The combination of MC with WFC produces more varied results. To expand MC 
with WFC, the previous process basically remains the same. But instead of a single building 
tile that is always used for a certain node state, one node state corresponds to several 
building tiles. This is how MC creates the “possibility space” for WFC.  
After every click, MC determines the possible building tiles for each node state and WFC 
then selects the concrete tiles. During the generation of the final buildings the steps 
observe and propagate are carried out alternately, like in the original WFC algorithm (see 
step 3 in chapter 2.3.1). At the beginning, WFC’s wave (the list with the remaining possible 
patterns for every location) contains all patterns, i.e. all tiles that can be used for the node 
states. Gradually, possibilities are sorted out with the help of self-defined constraints to 
finally create the finished image, respectively the finished 3D buildings. 
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3 Concept 

The following chapter presents the logical concept of my application. I will not discuss 
technological issues or concrete implementations at this point, but rather the abstract idea 
of a possible implementation. 
 
In chapter 2.5, the possible combination of the WFC and the MC algorithm has been 
discussed with regard to Stålberg’s implementation of Townscaper. These assumptions 
form the basis of my own concept, which is presented below. I discuss how WFC and MC 
were used in this thesis to develop an application for building generation. 

3.1 Overview 
 
As in Stålberg’s solution, my application is based on a 3D grid consisting of cells. Each cell 
has a state and is adjacent to 8 nodes. The cells can be in one of two states, “inside” or 
“outside” (respectively 1 or 0). In addition, the nodes have an 8-bit state that consists of the 
states of their adjacent cells. 
 
If a node adjoins one or more cells that are “inside”, a 3D building model is assigned to the 
node. In the UI, this 3D tile is placed at the position of the corresponding node in the grid. 
 
Which 3D tile is to be placed at the position of a node is decided with the help of WFC and 
MC. Considering the node states, MC determines the course of the buildings’ surfaces. 
Thus, the algorithm defines a certain “type” of tiles that can be used in a position. WFC 
regards the “types” of tiles that must be used in the grid and decides which specific tiles are 
used. 

3.2 Modifications to the Marching Cubes Algorithm 
 
As already described in chapter 2.4.1, the MC algorithm basically consists of two main 
steps: finding the surface and calculating the normals to the surface. Only the first step is 
required for this application. 
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3.2.1 Basic Process 
 
The surface of the buildings is determined by assigning a possible equivalence class to each 
node state. An equivalence class comprises at least one, usually several node states and 
determines the “type” of tile that corresponds to the node states. I.e., node states are 
equivalent and belong to the same equivalence class, when the same 3D model could be 
used for them in the final step, see chapter 3.2.5. All node states are assigned to their 
corresponding equivalence class by MC. Thus, the main task of my modified MC algorithm is 
to find the equivalence classes for every node state. 
 
The query to find an equivalence class for a specific node state is as follows: 
 

Algorithm 1 

- For all equivalence classes: 
o Regard all comprised node states: 

▪ If a comprised node state matches the received node state: 

• Return the equivalence class. 

3.2.2 Cube Creation at Runtime 
 
The original MC algorithm divides existing data into 3D cubes. In my application, the data is 
not given in advance, but is defined by the user at runtime.  
 
A UI shows a 3D grid which corresponds to the internal 3D data. Initially, all cells in the grid 
are empty. A click on a cell in the grid changes the state of the logical cell of the internal 3D 
data. A previously empty cell is now filled or “inside”. The other way round, a previously 
filled cell is now empty or “outside”. Eventually, a click into the grid either creates or 
deletes a visible building (or part of a building) in the user interface.  
 
For an easier differentiation, a filled cell will be called “cube” from now on, while “cells” can 
be either filled or empty.  

3.2.3 The Internal Grid 
 
The internal 3D grid holds the cells and their positions. Boolean values can be stored in the 
grid for each position that indicate whether the corresponding cell is “inside” or “outside”. 
 
The internal grid maps the state of the UI grid. A click in the visible grid in the user interface 
triggers the toggling of an entry in the internal grid. A click into the grid either creates or 
deletes a part of a building and, simultaneously, either sets an internal entry from false to 
true or vice versa.  
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Furthermore, the grid determines the positions and states of all nodes. The decision was 
made, that the position of a cell is determined by its node on the lower left front side. Thus, 
the cell and node state positions are mapped to one another and the node at the lower left 
front side of a cell has the same position as the cell in the grid. 

3.2.4 Node States Represent Adjacent Cells 
 
A cell has 8 associated nodes each responsible for its 8 corners. The other way round, one 
node stores the states of its 8 adjacent cells so that it can ensure a smooth transition 
between neighboring cubes. This means that changing a cell’s state results in 8 adjacent 
nodes changing their state. 
 
The 8-bit index that represents a node state can be determined by coding the node’s cells 
as powers of two. The coding can be seen in Figure 19. Each cell corresponds to an entry in 
the index, depending on its position in relation to the node. The numbers represent the 
positions of the corresponding cell states within the 8-bit index of the node state. (The 
index positions are read from right to left.): 
The state of the cell at position 1 corresponds to the index position 1 (21 = 1), the state of 
the cell at position 16 corresponds to the index position 4 (24 = 16). The node state is 
obtained by adding up the assigned numbers of all cells whose status is “inside”. If, e.g., 
only the cells at position 1 and 16 are “inside”, the node state was: 1 + 16 = 17, 
respectively: 00010001. 

  
Figure 19: A node and the corners of its 8 adjacent cells. The numbers represent the positions of the 
corresponding cell states within the 8-bit index of the node state. E.g. if the cells at position 2 and 8 are 
“inside”, the node state would be: 00001010. 

 
The node state is determined as follows: 
 

Algorithm 2 

- Initialize the node state with 0. 
- For every adjacent cell: Check whether the cell is “inside” (the entry in the grid is 

set to true) or “outside” (the entry is set to false). 
o If the cell is “inside”, add the coded cube position to the node state. 

- Return the node state. 
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Each node state corresponds to a certain “tile”6, i.e. a 3D model that is placed at the 
position of the node.7 If a node is only adjacent to one cube, the corresponding tile of the 
node fills one corner, i.e. one eighth of the cell. Only if none or all cells that are adjacent to 
a node are “inside”, no tile is used for this node. If all cells of a node are “inside”, it is 
located within a building and does not represent a surface. 

 
Figure 20: The node state 01000000 corresponds to a 3D tile that fills one eights of a cell. Together with other 
tiles of neighboring nodes a complete building is created. 

 
As in the original algorithm, there are 28 (= 256) possible states. Hence, a table with 256 
possibilities can be created that displays which node state results in which 3D tile. But like 
in original MC, it is not necessary to create 256 different tiles, because of possible rotations. 
I.e. some node states result in the same tile but with another rotation (those node states 
that belong to the same equivalence class). Still, there are more than 14 different tiles (as in 
the original algorithm) to model beforehand, because in our case it is not possible to regard 
reversed states as equivalent. In addition, a distinction must be made between roof and 
floor pieces, therefore not all rotations can be regarded as equivalent. 

3.2.5 Equivalence Classes 
 
To find out which tiles can be used for the same node states, I grouped them into 
equivalence classes. Node states are equivalent and belong to the same equivalence class, 
when the same 3D tile can be used for them, eventually. 
 
Originally, reversed states resulted in the same surface, only with reversed normals. Also, 
all possible rotations of a node state had the same result. Thus, these node states were 
seen as equivalent. In this application, however, not only a simple surface is created, but 3D 
models with unique designs are used. Various aspects must be considered to classify node 
states as equivalent here.  

 
6 In this thesis, the term “tile” is used to describe 3-dimensional models. These models are previously 
created and integrated into the program so that the application can use and arrange them at 
runtime. The term “tile” is a reference to the Wave Function Collapse algorithm that uses tiles for 
texture synthesis. 
7 In fact, a node state in my application can be represented by different tiles and WFC eventually 
selects one of them, but only MC is considered at this point. 
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Mostly, reversed node states cannot be regarded as equivalent. Only the two node states in 
which all or none of the adjacent cells are “inside” are both reversed and equivalent, as 
they do not correspond to any tile. They belong to equivalence class 0. Node states that are 
rotations of each other can be equivalent but do not necessarily have to be.  
 
A utility program8 (see chapter 3.2.6) that was additionally developed in the context of this 
thesis has shown that there are 23 different equivalence classes if all possible rotations are 
allowed and reversed states are not considered to be the same. If you combine the two 
states that do not represent a surface in one class (equivalence class 0), you get 22 basic 
equivalence classes. However, a lot more states must be distinguished. The basic 
equivalence classes can be seen in the appendix, see 8.2. 

3.2.6 Note on the Utility Program 
 
The additional utility program is based on a tool that professor Jenke made available for 
this thesis. With his tool one could select a node state and display all its possible reflections 
and rotations. 
 
Since node states that are in the same equivalence class can be mapped onto the same 3D 
tile, only node states that are rotations of one another, but not those that are reflections of 
one another, belong to the same class. That is because the tiles can be rotated and 
positioned by the algorithm, but not mirrored. 
 
I extended the program to find all the equivalence classes under the assumption that node 
states are equivalent when they are rotations of one other. In this way 23 equivalence 
classes were found. As already mentioned, the two reversed node states that do not 
represent a surface are equivalent but were recognized by the algorithm as two different 
equivalence classes. These can be combined so that 22 basic classes remain.  
In addition, these 22 classes need to be further subdivided, since e.g. tiles that represent a 
ceiling must look different than tiles that represent the floor. Due to the distinction 
between roof tiles and floor tiles, node states can only be equivalent if one state can be 
converted into the other state by rotating around the Y-axis (see Figure 21).  
 

 
8 Project wfc_ba: https://git.haw-hamburg.de/ace506/wfc_ba  

https://git.haw-hamburg.de/ace506/wfc_ba
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Figure 21: These node states (01000000 and 10000000) are equivalent and belong to the same equivalence 
class. Thus, the same 3D tile can be used for them with different rotations. 

 
To find out the sub-equivalence classes, the 22 basic classes were subdivided by examining 
which of the node states can be converted into one another by rotations around the Y-axis. 
Therefore, I have further extended the program to find the node states within the 22 
classes that are Y-rotations of one another.  
The final (sub-)equivalence classes have a basic state and the other node states from the 
same class are rotations of this basic state. In the actual application of this thesis, a 3D tile 
that belongs to an equivalence class will be rotated by default in such a way that it 
corresponds to this basic state. If the tile is used for another node state of the same 
equivalence class, it must be further rotated. The utility program calculated these required 
rotations and wrote them into a table, which gets imported once when the actual 
application starts. 
 

 
Figure 22: To give an example: The basic equivalence classes 3 and 7 comprise four respectively six sub-
equivalence classes that are shown here as 3D tiles. Each sub-class comprises four different node states – the 
possible rotations around the Y-axis. 
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3.3 Modifications to the Wave Function Collapse Algorithm 
 
As described in chapter 2.3.1, the WFC algorithm can be divided into 4 steps: 

1. Extracting local patterns from an input image 
2. Processing these patterns in an index, so that constraint checking can be 

accelerated 
3. Incrementally creating an output image by expanding a partial assignment 
4. Rendering the total assignment into an image 

 
The first and second steps are not relevant for the application described here since no input 
image is used. However, they are replaced by the Marching Cubes algorithm. Instead of 
extracting local patterns from an input image, the patterns are given in advance (in the 
form of 3D tiles). Instead of an index, node states define the positions and rotations of the 
tiles. Also, constraints are not extracted from a given example but self-defined. 
 
My adapted WFC algorithm works on top of the results of MC. Only the equivalence classes 
and their positions in the grid are relevant for the application of the algorithm since all 
associated node states correspond to the same tiles. WFC examines all possible tiles for an 
equivalence class and uses the defined constraints to decide how the respective location 
must be collapsed, i.e. which pattern (concrete tile)9 should be used for a certain location. 
 
For my application, the adaption of step 3, i.e. the incremental creation of an output image, 
is most important and will be described in the following. 

3.3.1 The Wave Stores Decision Variables 
 
The generation process remains incremental as in Gumin’s original algorithm. After the 
WFC algorithm is triggered, all relevant locations receive decision variables that are sorted 
out step by step. However, in this application not the entire grid has to be collapsed, but 
only those positions at which a node is adjacent to one to seven cubes (i.e. those positions 
where the corresponding node states do not belong to equivalence class 0). 
 
Thus, in the wave, the pattern options are saved for each node location of the output image 
that adjoins a visible cube. These decision variables, i.e. lists of pattern options, are to be 
collapsed. Although the lists of patterns have the same structure for all node locations, it is 
possible to offer different options depending on the equivalence class. The entries in the 
wave for some options can be set to false at the beginning. Pattern options in the wave 
include different colors for the tiles as well as the possibility to set doors or balconies at 
certain positions.  

 
9 The options for the different tiles that WFC stores in the wave are called “patterns” in the following 
to distinguish them from the concrete 3D tiles. 
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For each position, the wave saves a list of possibilities, which are Boolean values as in the 
original algorithm and initialized as “true”. Those locations that shall be disregarded by the 
algorithm (locations without cubes) are directly marked as collapsed from the beginning 
and receive a 0 entropy by setting all but one dedicated pattern to “false”. 
With each pass of the algorithm, possibilities in the wave are sorted out and one position is 
collapsed, i.e. its value is finally determined and assigned. Eventually all locations will have 
been collapsed so that exactly one possibility is assigned to each location. 
 
As in Gumin's original algorithm, my implementation will not use backtracking. If a 
contradiction occurs, WFC is executed from the beginning. This decision makes sense for 
my implementation because contradictions almost never occur since the constraints are 
not affected by each other. 
 
The third step of Gumin’s WFC can be divided into the sub-phases observe and propagate, 
this also applies to my implementation. These two steps are executed sequentially over and 
over again until WFC finds a total assignment (or a contradiction occurs). 

3.3.2 Observe 
 
The purpose of the observe phase remains to find the location with the lowest entropy 
(that is greater than 0). So, the location with the fewest possible patterns is selected. 
However, the condition remains the same that only a location with more than one option 
can be selected. If a location has only one possibility left, it would have already been 
collapsed and the entropy was 0. If no more options were left, there was a contradiction 
and the algorithm had to restart. 
 
Basic Process 
 
The observe phase starts with finding the lowest entropy position in the wave. Based on 
this, the further process is decided. 
 

Algorithm 3 

- Find the position with the lowest entropy in the wave. 
- If the lowest entropy could not be found and all node locations are at entropy 0:  

o The processing is completed, and all locations have already been 
collapsed. WFC is finished and the collapsed observations are returned. 

- If at least one location has no more valid options and its entropy is below 0:  
o The algorithm ran into a contradiction and must restart. 

- Otherwise:  
o The location with the lowest entropy was found. A pattern is selected and 

the entropy for this position is set to 0. 
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Finding the Lowest Entropy 
 
The entropy of every node in the grid is checked by regarding its entries in the wave. The 
entropy value is determined by the remaining patterns that are stored in the wave. If one 
option is left, the entropy is 0; if two options are left, the entropy is 1; etc.  
 

Algorithm 4 

- A 3-dimensional vector is initialized with (-1, -1, -1). 
- For every node in the wave: 

o If a node’s entropy is greater than 0 and less than previously found 
entropies: Its position is stored in the vector.  

o If a location’s entropy is below 0: The algorithm found a contradiction. The 
vector receives the value (-2, -2, -2) and is returned. 

- If all entropies are 0: The entire grid has been collapsed and the unchanged vector 
is returned. 

- Otherwise: The vector with the found position is returned. 

 
When all positions are run through and a valid node with the lowest entropy is found, this 
location is used for the further steps of the algorithm. 
 
Select a Pattern and Set Entropy to Zero 
 
After the location with the lowest greater-than-zero entropy is selected, this location is 
collapsed. This means, one of the remaining patterns (i.e. options for the concrete 3D tiles) 
is selected and the entropy is set to 0.  
 
Either all possibilities are still open for this location or some possibilities have already been 
ruled out. In either case, one of the remaining patterns is selected randomly with 
predetermined weights. The original WFC uses the frequency with which the patterns occur 
in the input image as weights. Since this is not possible in my case, the weights are set 
manually. The weights for the colors can be changed by the users.  
 
The selection of a pattern works as follows: 
 

Algorithm 5 

- The weights of all remaining patterns of the chosen location are added. 
- A random number between 0 and the sum of weights is created. 
- For all patterns of the chosen location: 

o If the random number is less than the weight of the current pattern plus 
the summed weights of previously checked patterns:  

▪ This pattern is selected, and the query is ended. 
- After a pattern was selected, all other possibilities are ruled out. 
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This process ensures that only available patterns are selected and, in addition, that the 
selection is based on the pattern’s weights. This can be seen from some examples:  
 

- If the first pattern cannot be selected, its weight was 0. Therefore, the random 
number cannot be less than this weight and the first pattern will not be chosen.  

- If the first pattern can be selected, but the second cannot and the random number 
is greater than the first pattern, than the random number will also be greater than 
the added weights of the first and the second pattern, so the second pattern will 
not be chosen.  

- If the first and second pattern can be selected and the random number is bigger 
than the weight of the first pattern, but smaller than the added weights of the first 
and second patterns, the second pattern is chosen. 

 
By adding the weights and choosing a random number between 0 and this sum, the weights 
determine the probability with which the associated patterns are selected. Because the 
larger a weight, the larger the range of numbers in which the random number can be, and 
the larger the probability for this case. 
 
After a pattern was chosen and the location is collapsed, it and other variables in the wave 
must be updated by constraint propagation in the next step. The collapsed location is 
transferred to the subsequent propagate step as starting point for the constraint 
propagation. Whenever a location is collapsed, propagation is carried out afterwards. If a 
contradiction has occurred or the entire grid is already collapsed, this is not necessary, 
because either the algorithm must restart, or it is finished. 

3.3.3 Propagate 
 
My propagation phase works very similar to the original algorithm. “Arc consistency” 
ensures that a value only appears in the domain of a variable if there is a valid value in the 
domain of neighboring variables so that all constraints can be fulfilled. The propagation 
works iteratively and only stops when no more locations need to be updated.  
 
Starting from the location that was chosen during the previous observe phase, every 
adjacent node location will be checked whether it must update its domain. If an adjacent 
node needs to be updated, it receives a flag that it needs to check its own neighbors for 
necessary updates in the next iteration step, etc. 
 
There is a list of all nodes that need to update their neighbors. At the beginning the list 
contains exactly one node - the previously chosen node of the observe step.  
The list functions as a queue: new nodes that need to update their neighbors are appended 
at the end, and the node used for the next update is always taken from the front. 
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Whenever a queue is mentioned in the following within this chapter, it is a reference to 
that list. 
 
Basic Process 
 

Algorithm 6 

- While the queue is not empty, the next steps will be repeated in a loop:  
o One node (the updating node) is taken from the queue. 
o A list with the node’s relevant direct neighbors is created (nodes that 

correspond to equivalence class 0 are irrelevant).  
o Subsequently, every neighbor is checked whether its domain must be 

adapted to the domain of the updating node based on the chosen 
constraints.  

▪ If the updating node has already excluded certain possibilities that 
the neighbor still includes:  

• The neighbor is adapted to the node and added to the 
queue with nodes that need to update their neighbors.  

 
During the propagation process, the possibilities of the neighbors are adjusted to the 
respective updating node. The updating node cannot be changed. Furthermore, pattern 
options can only be excluded and not added. 
 
Finding the Direct Neighbors of the Updating Node 
 
The algorithm to find the direct neighbors of an updating node is the only time when WFC 
also needs the node state of a location. All other parts of the algorithm work exclusively on 
top of the equivalence classes. But only the node state holds the information about where a 
node adjoins a cube and therefore in what direction neighboring nodes can be found. 
 
It must be pointed out that a node that is directly next to the updating node and does not 
belong to equivalence class 0 is not necessarily a direct neighbor. It is only a direct neighbor 
if it and the updating node also share a common cube. Otherwise these two nodes are not 
connected, see Figure 23. 

 
Figure 23: The red and green nodes are neighbors and do not correspond to the equivalence class 0. However, 
the green node is not a direct neighbor of the red node as they do not share a common cube. 
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For this reason, first, a list is created with the positions of the cubes that belong to the 
updating node. The positions of the cubes are determined from the node position and the 
node state. 
 
To be able to compare the cubes of different nodes with one another, it is necessary to find 
a uniform conversion which determines the locations of the associated cubes. I decided to 
define the position of a cube by its lower left front corner, see Figure 24. 

 
Figure 24: The lower left front corner of a cube belongs to this node. Since the lower left front corner of a 
cube defines the cube’s position, the position of the cube matches the position of the node. 

 
After the list with cubes adjoining the updating node was created, all neighboring nodes are 
checked whether they are direct neighbors of the updating node.  
 

Algorithm 7 

- For all three axes in all possible combinations, regard the updating node’s 
neighboring nodes (for each axis, the search starts at: updating node’s position - 1 
and ends at: updating node’s position + 1). 

o If the equivalence class of the node at the corresponding position is not 0: 
▪ A list is created with the positions of the cubes belonging to the 

possible neighboring node. 
▪ If this list contains a cube that is also contained in the list of cubes 

belonging to the updating node:  

• A direct neighbor is found and added to the list of direct 
neighbors. 

 
Apply Constraints to the Neighbors of the Updating Node 
 
The method that is responsible for the application of the constraints is also the place where 
the constraints are implemented. The original WFC algorithm derives the constraints from 
the input image and stores them in an index, but this is not possible in my case, since there 
is no input image.  
 
The entries in the wave are structured in the same way for all grid locations. Regardless of 
the node state or the specific location, the structure and length of the list with the different 
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pattern options remain the same. This makes it possible to apply the same constraints 
uniformly to all nodes. Apart from that, it is possible to exclude options for nodes of certain 
equivalence classes from the beginning, by setting their entries in the wave to false. 
 
To apply the constraints, the open pattern options of the updating node are successively 
compared to the options of its direct neighbors. This means, the entries in the wave are 
compared with each other for each constraint. The updating node specifies the desired 
state, and the neighbors are adapted to it if necessary. 
 
The first constraint is applied to a neighbor as follows: 
 

Algorithm 8 

- Iterate over the updating node’s list of patterns: 
o If the updating node has already ruled out the options for one color and 

the neighbor still allows it: 
▪ Adapt the entries of the neighbor to the entries of the updating 

node. 
▪ Add the neighbor to the queue of nodes that need to update their 

neighbors. 
o Otherwise do nothing. 

 
The second constraint says that a building can only have doors on the ground and that 
doors cannot be directly next to each other. Only some equivalence classes allow a door to 
be used. For all other nodes, the option of a door is set to false when the wave is initialized. 
Besides, the position of the node can be used to determine whether it is on the ground.  
 
The process for the application of the second constraint is as follows: 
 

Algorithm 9 

- If the neighbor’s pattern options in the wave still include doors: 
o If the neighbor’s position is not on the ground or the updating node still 

allows doors (or both): 
▪ Set the door options of the neighbor to false. 

 
On the one hand, this request ensures that nodes are only allowed to have the option for a 
door if they are on the floor. On the other hand, it ensures that a node can only have the 
option for a door if its neighbors do not. 
 
After several rounds of the observe and propagate phases, the algorithm assigned a final 
pattern to every node location and they are returned.  
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3.3.4 Optimization of WFC 
 
The application of WFC normally requires that parts of the grid or even the entire grid is 
scanned several times in the observe and the propagate phase. To improve the 
performance of my WFC, the grid area that is relevant for the algorithm has been limited, 
so that it is often not necessary to scan the whole grid.  
 
Every time, WFC is called, it checks whether the grid has already been collapsed in a 
previous step. If so, then only the associated parts of the grid to which a new part was 
added are recalculated (i.e. the building to which a new part was added). Existing buildings 
that are not changed remain unchanged and the same result is returned for them as in the 
previous calculation.  
 
The optimization only affects the initialization phase. During the initialization of the wave, 
the node locations that were not affected by the change receive the pattern that was 
selected for them in the previous WFC run. Only the affected nodes receive different 
pattern options. 
 
Two possible paths are distinguished during the initialization of WFC: 
 

Algorithm 10 

- If WFC has already been executed before: 
o The affected nodes are determined. 

- If WFC is executed for the first time: 
o All nodes that do not correspond to the equivalence class 0 are affected 

nodes. 
- The wave is initialized with the affected nodes. 

 
If WFC has been executed before, the affected nodes are determined as follows: 
 

Algorithm 11 

- An empty list for the affected nodes is created. 
- For every location of the grid: The equivalence class from the last run of WFC is 

compared to the new equivalence class. 
o If the equivalence classes do not match at a certain location: The 

corresponding node is added to the list of affected nodes. 
- Until all neighbors of all affected nodes are found: 

o Find the direct neighbors (see Algorithm 7) of every node in the list of 
affected nodes. 

o If a direct neighbor is not yet included, add it to the list. 

 
The wave is initialized as follows: 
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Algorithm 12 

- If WFC is executed for the first time: 
o Create an empty list for the wave. 

- For every node in the grid: 
o Create an entry in the wave. 
o If the node is contained in the list of affected nodes: 

▪ Set all possible patterns in the wave to true. 
o Else: 

▪ Set the entropy for this node in the wave to 0. (I.e. set one 
dedicated pattern in the wave to true, all others to false.) 

 

3.4 Combining Wave Function Collapse and Marching 
Cubes 

 
To create buildings with a single click and make them also appear in different variations, it 
is necessary to combine the two algorithms WFC and MC. 

3.4.1 Basic Process 
 
When a user clicks into the grid, a cube is either created or deleted, i.e. building parts are 
either inserted or removed at the corresponding position. An internal 3D grid stores the 
states of the cells and can thus also calculate the node states. 
 
A click into the visible grid changes the state of the internal grid and triggers the building 
generation. With every click: 
 

Algorithm 13 

- All visible 3D tiles are removed from the user interface. 
- For every cell in the internal 3D grid: 

o Obtain the node state from the cube’s lower left front side. 
o Obtain the equivalence class for the node state. 

- After all node states and associated equivalence classes were obtained and saved 
in their own 3-dimensional list, WFC is applied to them. 

- Finally, the node states and the patterns that were assigned by WFC are used to 
place the 3D tiles in the visible grid of the user interface. 
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3.4.2 Integration of MC and WFC 
 
As can be seen in the basic process, chapter 3.4.1, the MC algorithm is carried out during 
the same loop as querying the node states, while WFC is executed afterwards. 
 
MC can be executed before all node states are known because it only needs one node state 
at a time for the determination of its equivalence class. 
To apply WFC, all equivalence classes must already be known. Not only the states of 
individual locations are of interest, but also the state of (almost) the entire grid. Both the 
observation and the propagation phase must be able to scan neighboring nodes. Thanks to 
the built-in optimization, however, the entire grid does not always have to be considered. 

3.4.3 Placing the Tiles 
 
After MC has selected the equivalence classes and WFC the final patterns for every node 
location, the 3D tiles need to be placed in the visible grid in the user interface. 
 

Algorithm 14 

- For every node: 
o If the node state does not correspond to the equivalence class 0: 

▪ A game object is created with the 3D tile that corresponds to the 
pattern chosen by WFC. 

▪ The game object is rotated depending on its node state. 
▪ The game object is positioned in the grid in the game. 

 
Rotation of the Game Object 
  
With the utility program that also defined the equivalence classes, the necessary rotations 
were determined for all node states, starting from a basic position. The utility program 
generated a list with entries for every node state, defining how each node state is to be 
rotated. Node states that hold the basic position for their equivalence class do not need to 
be rotated. Thus, a game object is rotated depending on its node state. 
 
Positioning of the Game Object 
 
The node state is also important for the positioning of a game object. The internal grid 
already stores the positions of all its nodes. But for the correct positioning, it is also 
important to consider in which directions the 3D tile must extend. If, e.g., a node state only 
has cubes in the upper half, the 3D tile must be moved a quarter step upwards (one step 
corresponds to the length of a whole cube).  If a node state has cubes both in the upper and 
lower half, the object’s center on the Y-axis would be exactly where the node position is 
and would not have to be adjusted. The same principle applies to the other axes. 
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4 Implementation 

This chapter gives an overview about the implementation of my application. First, 
important software engineering aspects of the project are discussed. Subsequently, the use 
of concrete development environments, libraries, and assets are examined. 

4.1 Analysis 
 
For the analysis of the software project, user stories and a user story map were created, 
stakeholders and use cases were set up. 
 
This chapter includes the requirements analysis as well as the specification. The 
specification is mainly intended to be used for an agreement with the customer, but also to 
create a basis for a later review of the system’s correctness [42]. Hence, quality features 
and metrics are established for quality assurance, which will then be evaluated in chapter 0. 

4.1.1 Stakeholders 
 
Stakeholders can be divided into internal and external customers and users. The 
information about stakeholder is based on [43]. 
Usually the external stakeholders are the actual customers who give the order for the 
project. They provide the requirements and technical specifications. External customers 
only exist when the product is externally sold (i.e. outside of a company or organization), 
therefore, they do not have to be considered in my case.  
Internal customers are usually product owners, product managers or team leads, i.e. 
contact persons for technical specifications, which are in your own company. In my case, 
the supervisors of this thesis can be seen as internal customers with whom I discuss the 
approach and implementation of the project. 
Users are the ones that finally use the product and whose skills and needs must be 
considered during development. In truth, my application is used almost exclusively by me 
and the supervisors of the thesis (tech-experienced people). Nonetheless, since my project 
is inspired by Stålberg’s Townscaper, I wanted to assume a similar target group as for his 
game. Townscaper should appeal to a wide audience, presumably people of almost all ages 
that are interested in computer games. The application must therefore have as few hurdles 
as possible so that children and the elderly can also use it intuitively. 
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4.1.2 User Stories and User Story Map 
 
User stories depict the benefits and the interaction of the stakeholders with the system. 
Since, the different interactions with the system were kept little, the number of user stories 
is also limited and can be summarized in a user story map, see Figure 25. 
 

 
Figure 25: A simple user story map of the application. 

 
The user stories in a map are in an abbreviated form. The first line shows the user activities, 
the second line the user tasks. The associated user stories are located under the user tasks 
[44] [45]. 
 
This map shows how the system looks from the user’s perspective and distinguishes 
whether a single building is generated (or removed), or only a part of an already existing 
building. However, this makes no difference internally. Either way, only the state of one cell 
and its adjacent nodes change and the generation process of MC and WFC is restarted for 
all neighboring cubes (see chapter 0). 

4.1.3 Use Cases 
 
Use cases describe the behavior of a system in response to actions by a user from the 
outside perspective. They are derived from the system requirements, e.g. from the user 
stories. Only the crucial user stories are worked out as use cases to clarify certain processes 
and workflows. [44] [46] 
To clearly differentiate between the creation of a single building and a part of the building, I 
created a use case for these two cases. As already mentioned, this makes no difference 
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internally, but it appears different when you look at the system from the outside – which is 
what you do with use cases. The template for the use cases can be found here: [47]. 
 

Use Case 01: User creates a new building 
 
Use case name:  UC01: User creates a new building 
Use case overview:  A user left-clicks on an empty cell in the 3D grid whose adjacent 

cells are all empty. A new building is generated. 
Actors:    User(U); System(S) 
Preconditions:  The application must have been started. 
Termination outcome:  A new building on the grid is created. 
Input summary:  Left-click by the user 
Output summary:  New grid state, new building in the UI 
Standard flow: 
U: left-clicks on an empty cell in the grid with empty adjacent cells. 
S: shows a new building (that can – e.g. – differ in color from other buildings). 
Use case notes:  
The new building is not affected by constraints from other buildings. 
 
Use Case 02: User creates a new part of an existing building 
 
Use case name:  UC02: User creates a new part of an existing building 
Use case overview:  A user left-clicks on an empty cell in the 3D grid whose adjacent 

cells are not all empty. An already existing building is being 
expanded or already existing buildings are being connected. 

Actors:    User(U); System(S) 
Preconditions: The application must have been started, at least one building must 

have been generated. 
Termination outcome:  A new part of an existing building is created, or two or more 

buildings are connected. 
Input summary:  Left-click by the user 
Output summary:  New grid state, expanded building(s) in the UI 
Standard flow: 
U: left-clicks on an empty cell in the grid that adjoins a building. 
S: shows a new part of a building, its appearance is influenced by the exterior of the 
building to which it belongs. 
Alternative flow: 
U: clicks on an empty cell on the grid that adjoins two or more buildings 
S: shows a new building part that now connects two or more buildings. The appearance of 
the buildings (that are now one building) adapts to each other.  
Use case notes:  
Constraints are applied to all parts of the building. 
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4.1.4 Overview of User Interactions 
 
Since the interactions of the user with the system are limited and not complicated, it is not 
necessary to write a separate use case for each. Instead, I decided to create a brief 
overview of the possible interactions.  
 

User Action System Reaction 

- Left-click in the grid - Create a (part of a) building 

- Right-click in the grid - Delete a (part of a) building 

- Scroll with the middle mouse 
button 

- Zoom in the game scene vertically 

- Drag the middle mouse button - Drag the game view horizontally 

- Press ESC button - End the game 

- Press “X” button in UI - End the game 

- Deselect a color button in UI - Corresponding color is no longer 
used for generation 

- Select a color button in UI - Corresponding color is once again 
used for generation 

4.1.5 Quality Assurance 
 
So far, the functional requirements for the project have been posed. The following section 
on quality assurance describes the non-functional requirements.  
 
First, generally applicable quality factors are briefly regarded. Afterwards, my own 
requirements are placed on the quality of the software. 
 
General Quality Factors 
 
Different generally applicable quality factors are defined in different sources. For example, 
the IEEE defines the following quality factors: correctness, reliability, integrity, usability, 
maintainability, efficiency, flexibility, testability, portability, reusability, and interoperability 
[44]. Within a project, it must be decided individually which quality features should receive 
special attention. 
 
In my project, particular attention has been paid to the following general quality factors: 

- maintainability 
- extensibility 
- usability 

 
Methods to achieve the chosen quality factors are (see [46]): 
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- the use of the principles:  
o modular design, low coupling, high cohesion, separation of concerns (SoC), 

single-responsibility, interface segregation 
- unit testing 
- usability testing 

 
Even if the focus is only on three quality factors, the others can still be achieved, as the 
used methods also address other factors like reusability, correctness, and reliability. 
 
The implementation of these methods can be seen in chapter 4.2 on software design on the 
basis of component-, class-, and further diagrams. The evaluation of these methods with 
regard to the achievement of the quality features can be found in chapter 0. 
 
The following metrics can be used to check the quality requirements [48]: 

- Velocity 
- Failure and repair time 
- Code churn (necessary code modifications) 

 
Further Quality Requirements 
 
In addition, I set up own requirements for the quality of the software. 
 
The following 6 properties should apply to the generated buildings:  

- Buildings can be placed on a designated area in the game that is easy to identify. 
- Connected buildings should have a consistent appearance. 

o A consistent exterior means that all parts of the building connect to one 
another and there are, e.g., no open house walls. 

- Connected buildings should have the same color. 
- Buildings can only have doors on the floor. 
- Two or more doors cannot be directly next to each other. 
- Building parts should be able to be connected to each other over all possible 

corners, edges, and surfaces. 
 
Since I wanted to assume a similar target group as for Townscaper, a quality requirement 
for my project is that it should be playable for people of all ages. The game cannot present 
high hurdles so that even children and the elderly can use it. To check this requirement, 
usability tests can be carried out. 
 
Another requirement that is partly related to the previous requirement is the intuitive 
usability of the software. However, intuitive usability is not only interesting for younger and 
elderly users, but it is also a benefit for all other users. This requirement can also be 
examined using usability testing. 
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To implement the two requirements for usability, I decided to limit the possibilities for 
users to interact with the system. In Townscaper, Stålberg seems to use a similar strategy. 
Basically, users can only set and delete buildings, and choose the colors for the generation.  
 
Compliance with the quality requirements is checked in chapter 0. 

4.2 Software Design 

4.2.1 Component Diagram 
 
To give an initial overview of the software design, Figure 26 shows the component diagram 
for my project. In this case, the components correspond exactly to the two layers of my 
layered architecture: UI and logic. Smaller component boundaries did not appear 
reasonable in the context of this project, since the contained classes already represent 
meaningful boundaries to one another and cannot be grouped any further.  

 
Figure 26: The component diagram shows the two layers of the project, UI and Logic.10 

 
The interaction between the two components is clearly limited to the two interfaces. The 
logic component uses the interface IUpdateScene to trigger the redrawing of a scene in the 

UI component, nevertheless, the logic component must know, when there was a user input 
and gets informed via its interface IHandleUserInput. 
 
The division into components enables compliance with SoC because each component is 
responsible for a clearly defined area of responsibility. The narrow interfaces, which are 
precisely tailored to the components, implement the interface segregation principle. 
 
 
 

 
10 The diagrams were created using a free license of Lucidchart: https://www.lucidchart.com/. 

https://www.lucidchart.com/
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4.2.2 Class Diagram 

 
Figure 27: The colors in this class diagram mark the different components. 

 
The classes were created according to the single responsibility principle. A class is 
responsible for a clearly defined task or a clearly defined area. As a result, a modular design 
with high cohesion is implemented.  
In addition, an attempt was made to implement low coupling of the classes by using a 
component class in the logic component. The LogicComponent class is responsible for the 
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coordination of the different classes within the component; it knows all the other classes 
and therefore the other classes do not have to know each other (see: 4.2.3 MVC Pattern). 
The class diagram also shows that the two components only communicate with each other 
via their interfaces, another means for low coupling.  
 
Scripts outside the class diagram 
 
Apart from the classes from the diagram, there are three additional scripts. There is one 
utility class and two scripts which control the behavior of game objects and which do not 
really act in the concept of a class diagram.  
 
Within the utility class, the equivalence classes and the cube states were coded uniformly 
(with Enums) so that this uniform coding could be used throughout the project. 
 
The two other scripts were necessary because of the way in which Unity (the game engine I 
used, see 4.3.2) works. In Unity, game objects in a scene can receive associated scripts that 
control the behavior of these objects.  
One script was used for controlling the camera movement. It listens to input from the 
middle mouse button and lets the user drag and zoom into the view.  
Another script was necessary to control the buttons that are responsible for the color 
selection of the buildings. This script monitors the buttons and reacts when they are 
clicked. It must also access the WFC class because the buttons define the colors that WFC 
can select. In doing so, the button script violates the component limits. This “unclean” 
implementation is caused by the way implementation works in Unity. Nevertheless, it 
would have been possible to maintain the component limits through a few detours. The 
button script could be linked with the UI component class. In this case, however, the 
interfaces and the component classes would also have had to be adapted. Another 
possibility would have been to use the observer pattern. The WFC class would observe the 
button script. However, in this case, the observer must be registered with the subject, 
which would have required changes in several places. For this reason, the decision was 
made in favor of the lighter and less clean solution at this point. In return, the code has 
remained clearer and less cumbersome. 

4.2.3 Patterns 
 
Model View Controller Pattern 
 
A classic for the implementation of games and other software is the MVC pattern that was 
also used in my application. 
 
This pattern says that an application is divided into three parts: Model, View and Controller. 
The model contains the data (for example classic objects of object-oriented programming), 
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the view is responsible for the visual representation and the controller controls the 
communication between the two other parts and also the access of the user to the 
program [49]. 
 
In my application, the model-part is in the logic component, these are namely the classes: 
MarchingCubes, WaveFunctionCollapse and Grid. 
The controller is responsible for the data flow, it updates the models and the view. 
Therefore, the LogicComponent clearly implements this function.  
The view is responsible for the visualization and is implemented with the UIHandler class. 
 
Utility Abstraction Pattern 
 
To avoid redundant implementations in different parts of an application that do not 
necessarily belong together the Utility Abstraction pattern creates an additional utility layer 
that can be globally accessed [50]. 
 
In my application this pattern was implemented with the utility class Util that contains the 
global coding of the node states and the equivalence classes. 
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4.2.4 Sequence Diagrams 
 
Overview of the Application 
 

 
Figure 28: This sequence diagram gives an overview of the entire process of the application after one mouse 
click into the visual grid. 

 
This sequence diagram gives an overview of how the different classes interact with each 
other. A valid click into the 3D grid starts the process. The LogicComponent receives the 
user input (it knows which key was clicked in which field of the grid) and manages the 
entire process. The click can be done with either the right or left mouse button, i.e. either a 
building (part) can be added or removed. The same process is started in both cases. 
 
The Implementation of Wave Function Collapse 
 
The WFC algorithm represents a fundamental function in my application. After all, this 
thesis was intended to examine the possible connection between the MC and WFC 
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algorithms.  After considering the adapted concept of MC for my application and working 
out the equivalence classes (see chapter 3.2), the actual implementation of MC is relatively 
simple. Basically, the associated equivalence class only needs to be found for a specific 
node state. The implementation of WFC, on the other hand, is a lot more complex. 
 

 
Figure 29: The sequence diagram shows the basic process of the Wave Function Collapse function. The 
process is triggered by the public method ApplyWFC. 
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The overview of the process of WFC is still rough here. The actual process is divided into 
many small sub-functions, but that coarseness in the diagram makes it easier to understand 
what WFC is doing.  

4.3 Tools 
 
Various tools were used for the concrete implementation of the project. 

4.3.1 Agile Software Development 
 
One tool for the implementation of my project was agile software development (at least as 
far as you can implement it in a one-person-team). 
 
Iterative Software Development  
 
One big aspect of agile software development is the iterative approach to development. In 
contrast to the waterfall model, where every step (analysis, design, implementation, 
testing, deployment) is executed sequentially and only once, the iterative approach goes 
through these phases repeatedly and always adds new functionality to the software [46]. 
 
The phases of my software development include the following sprints (a sprint is one pass 
through several steps of the development process and takes approximately three weeks): 
 

1. In the first sprint, the structure of the project was roughly established. The 

LogicComponent was identified as the controller, MarchingCubes and 

WaveFunctionCollapse were initially integrated as empty classes. 

2. Subsequently, the MC algorithm was roughly implemented. Initially, dummies 

(white cubes) were used instead of real building models and the basic functionality 

of MC was built in. 

3. The first building models (3D tiles) were integrated and first basic functions of WFC 

could be implemented.  

4. All basic functions of WFC were implemented. At this point, the algorithm only 

contained a single constraint, which states that only building parts of the same 

color may be next to each other. 

5. All 3D tiles were modelled and integrated into the project. The MC algorithm was 

fully implemented, the equivalence classes were fully developed and assigned to a 

3D tile. 

6. The WFC algorithm was completely installed and a second constraint was added. 
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7. Finally, an additional function was built in, with which the user can choose which 

colors can be used for building generation. In addition, the building models and the 

surroundings in the game scene were refurbished. 

 
Figure 30: The final building models and refurbished surroundings in the game. 

4.3.2 Technical Means 
 
Game Engine and Development Environment 
 
As already briefly mentioned, the application was developed with the game engine Unity. 
During the project, the Unity version was renewed several times. The latest version I used 
was: Unity Version 2019.4.9f1 Personal. 
 
Furthermore, the code was developed in C# with the .NET Framework version 4.8 and the 
C# version 8.0. The code was developed in the Microsoft Visual Studio Community 2017 
edition, version 15.7.3. 
 
The utility program was developed in Eclipse 2020-03 with Java 11. 
 
Assets, Libraries, and Additional Programs 
 
I used solely the standard Unity Library UnityEngine and the standard C# System library.  
 
The assets I used are mostly either self-created or standard objects offered by the Unity 
Engine. The only exception are the textures that I used for the 3D models of the buildings 
and for the underground in the game.11 
 

 
11 The different textures I used can be found here: https://cc0textures.com/ (accessed 2020/10/24). 
All textures are licensed under the Creative Commons CC0 License. 

https://cc0textures.com/
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The following sources were used for the camera script that controls its movement in the 
game: [51], [52]. Furthermore, the gitignore I used bases on a template (licensed under the 
Creative Commons CC0 License) for Unity projects: [53]. 
 
The 3D models for the buildings parts where created in Blender v 2.8.2a. 
 
Version Control 
 
Git version 2.17.1.windows.2 was used for version control. My project was stored in the 
HAW GitLab. 
 
I used branching for this project. As a result, there was always a well-functioning version of 
the project in the main branch12 and I could work in the develop branch. 

  
 

12 In my git version, the main branch is still called “master”, but git renamed it for reasons of 
sensitivity towards minorities, see: https://www.zdnet.com/article/github-to-replace-master-with-
main-starting-next-month/ (accessed 2020/10/24). 

https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/
https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/
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5 Evaluation 

The following chapter is intended to evaluate the results of this thesis. The achievements of 
this thesis are shown as well as the extent to which the set goals were implemented and 
the requirements met.  

5.1 Goals 
 
An application for procedural building generation in 3D that is based on the algorithms MC 
and WFC was created. The two algorithms were successfully modified and combined.   
The MC algorithm was extended in such a way that it can be used for user-initiated content 
generation. In my application, MC is used together with WFC, but my implementation of 
MC could also generate content on its own (with the well-known limitation that it has one 
clearly defined solution for one node state). 
 

 
Figure 31: The two buildings would look the same if MC was used on its own. Through WFC they differ. 

 
My modification of WFC is set on top of MC. Every cell combination that would result in one 
solution with MC gets several possible solutions with WFC. The different possible 3D tiles 
for one node state are weighted and subject to constraints. Constraint solving decides 
about the concrete 3D tiles. 
 
Thus, the goals stated in chapter 1.2 have been achieved and an alternative use of the 
algorithms WFC and MC could be shown. 
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5.2 Requirements 
 
The following explains the extent to which the requirements specified in the analysis have 
been implemented. The user stories and use cases defined the functional requirements for 
this work. The required functions were all implemented, as can be seen in the application. 
The implementation of the non-functional requirements should be checked in detail below. 
 
The general quality requirements which I wanted to pay particular attention to are: 

- maintainability 
- extensibility 
- usability 

 
Further quality requirements that I set up are: 

- six properties that should apply to the generated buildings 
- playability for people of all ages 
- intuitive usability 

5.2.1 Maintainability and Extensibility 
 
Methods 
 
I implemented the requirements maintainability and extensibility by using the principles: 
modular design, low coupling, high cohesion, separation of concerns (SoC), single-
responsibility, and interface segregation (for an overview of principles of object-oriented 
design see [54]). Another method that I have used is testing the software. 
 
The principles were implemented through a meaningful division into components and 
classes. The modules are decoupled and interchangeable insofar that components (almost) 
exclusively communicate with one another via interfaces. Most classes contain one public 
method that is used to communicate with the coordinator (the component class 
LogicComponent). Almost all communication within the component takes place via the 
component class (see the class diagram in chapter 4.2.2). 
 
Wherever possible, classes have been implemented in such a way that they have a clearly 
defined area of responsibility. Attempts were also made to give them a single responsibility 
(e.g. MarchingCubes is exclusively responsible for the implementation of the MC 
algorithm). This could be implemented quite well in the logic component; however, this is 
only partly implemented in the UI component. The UIHandler's area of responsibility is the 
mapping of the patterns that were assigned in the logic component to concrete 3D tiles. In 
addition, this class handles the user input. In the Update() method, the input of the user is 
checked and, if necessary, passed on to the logic component. During the implementation, I 
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regarded I/O as one area of responsibility, but actually there are two different 
responsibilities here. 
 
As already mentioned in Chapter 4.2.2, some principles (of e.g. modularity, low coupling, 
SoC) were not followed in one case. The script that controls the buttons for the color 
selection belongs to the UI component but accesses the WaveFunctionCollapse class 
directly. This was done due to technological necessities and to avoid a large overhead. 
 
During the software engineering process, individual functionalities were constantly tested 
and, if necessary, improved. Ideally, systematic unit and component tests would have been 
carried out as part of Continuous Integration with regular automatic builds and tests. In the 
context of this project, this approach might not be in proportion to the additional quality 
gained and was omitted. However, this step would be essential in a bigger project. 
 
Metrics 
 
The established metrics should check the success in achieving the quality requirements. 
 
The velocity estimates the time a programmer needs to develop a product [48]. It is a good 
metric for the maintainability as well as the extensibility of a software product. If a software 
project can be easily expanded and maintained, the velocity is high because programming is 
much faster. It is difficult to put the velocity of my project into proportions. Nevertheless, 
the iterative work during the project went well. This is due to the fact that basic 
functionalities were built in, first, and the extensions later. During this process, adjustments 
sometimes had to be made to the modules, but since the extensions were planned from 
the beginning, it did not require much additional time. 
 
The failure and repair time is a good indicator for software maintainability. The shorter the 
time between the occurrence of an error and its repair, the easier it is to maintain the 
software. 
Of course, failures did occur during development, but due to the modular structure and the 
use of the other principles, it was easy to narrow down the area in which these errors 
occurred. For example, there was a problem with the correct rotation of the 3D tiles. 
Although the algorithm selected and positioned the tiles correctly, the rotations were 
wrong, so that, for example, parts of the roof pointed downwards. However, since there 
was only one module that was responsible for the rotation, the source of the error could 
soon be identified. The failure and repair time was, thus, relatively low. 
 
Low code churn is another indicator for good software quality in terms of maintainability 
and extensibility. Code churn displays how often the code had to be changed. At best, the 
code churn should get smaller towards the end of the project [55]. 
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To determine the code churn in a simple way, I regarded the added lines in comparison to 
the deleted lines: 
 

𝐶𝑜𝑑𝑒 𝑐ℎ𝑢𝑟𝑛 = 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 𝑙𝑖𝑛𝑒𝑠 −  𝑎𝑑𝑑𝑒𝑑 𝑙𝑖𝑛𝑒𝑠 
 
The lower the value that is calculated in this way, the fewer lines were deleted compared to 
added. This is a very simple approach that could be implemented using Git. All added and 
deleted lines could be determined for each commit in chronological order. However, it is 
difficult to determine which result would represent low code churn. For this reason, I 
compare the code churn of the first commits with that of the last commits. The code churn 
should be lower for the later commits. All added and deleted lines of the commits can be 
seen in Appendix A1: Code Churn.13 
For the first 37 commits, I had 1335 added and 1119 deleted lines, resulting in a code churn 
of: –216. For the latest 37 commits, I had 2146 added and 964 deleted lines, what results in 
a code churn of: –1182.  
As you can see, the code churn decreased towards the end of the project. This is an 
indication of good software quality in terms of how easily it can be maintained and 
extended. 
 
Overall, the requirements maintainability and extensibility were mostly met. In some cases, 
the implementation of these requirements was waived to avoid unnecessary overhead.  
This middle ground allowed to implement extensions and corrections quickly during 
software development and appeared like the best way.   

5.2.2 Usability 
 
The requirements intuitive usability and playability for people of all ages can be 
summarized in the generic term usability. The following information on software usability 
can be found in [44]. 
 
Methods 
 
Usability is a quality attribute that defines how easy it is to interact with a user interface. 
Jakob Nielsen stated five quality components of good usability: 

- Learnability (using a system should be easy to learn) 
- Efficiency (the system should be efficient to use) 
- Memorability (the usage should be easy to remember) 
- Errors (users should make as few mistakes as possible) 
- Satisfaction (users should be satisfied while working with the system) 

 
13 The commits were compared at a time when the project was finished. Afterwards only further 
comments and three more 3D tiles were added. 
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The ideal program would have no learning curve but would be easy to use right from the 
start. This is also the aim when talking about intuitive usability. Of course, this goal can 
never be fully implemented. I attempted to approach this aim by keeping the possible 
interactions of the user with the system to a minimum which should also contribute to 
memorability. Nevertheless, a short README was also created as instructions for the user. 
 

 
Figure 32: For a better usability, interactions with the UI are kept simple: Buildings can be generated on the 
island, colors can be selected, and the application can be ended. Users can also move and zoom the camera. 

 
The actions of the users have a direct influence on the system, which can be seen in the UI. 
The only time the system will not respond is if the user input is invalid (e.g. when users try 
to delete a house at a point where there is none). The users therefore receive direct 
feedback on their actions. This contributes to good learnability and efficiency. It still allows 
users to make mistakes (as invalid entries), but it should be easy to see which entries are 
valid and which are not. Furthermore, the ground in the scene is designed in such a way 
that users can see where houses can and cannot be built. The area in which the houses can 
be generated looks like an island, while the rest looks like water. 
The user’s satisfaction is a subjective feeling. However, the points mentioned above should 
also contribute to a greater satisfaction.  
 
Verification 
 
To check the extent to which good usability has been achieved, usability tests would have 
to be carried out. Unfortunately, no usability tests could be carried out for this thesis due to 
lack of time. It would be advisable to let test persons from different age groups try the 
game. Moreover, different tasks would have to be assigned to people from the same age 
groups. Possible tasks are creating houses in certain shapes, using certain colors, etc. 
Subsequently, a questionnaire could be filled out or an oral survey could be carried out. It 
would also be interesting to let the test persons try the game without specific instructions 
and see whether they recognize the functionalities on their own. 
 



Evaluation  

 

64 
 

Based on my own reviews of the software, it is difficult to see how well I have achieved the 
set goals for good usability. Nonetheless, I could still make out some problems. 
The camera can be moved parallel to the ground and zoomed in with the middle mouse 
button, but it would be nice if it were also possible to select a point in the game and rotate 
the camera around it. 
In addition, the selection of a position in the grid at which a building should be created or 
deleted sometimes does not work perfectly. A possible reason for this could be that the 
colliders of the 3D tiles are not attached perfectly. The colliders are used to register clicks in 
the game. Based on the position that is clicked on, a “ray” is thrown into the scene, which 
then collides with the collider of the 3D tile. If a 3D tile is missing a collider, it is possible 
that a click is not registered or that the ray even hits a collider of another tile. 

5.2.3 Properties of Generated Buildings 
 
I stated six properties that should apply to the generated buildings. The achievement of 
these goals is checked below. 
 
Achievements 
 
It is possible to place buildings on a designated area in the game that is easy to identify. The 
ground in the game is designed in a way that the area in which buildings can be generated 
looks like an island while the rest (outside the grid) looks like water. The distinction 
between land and water can be seen in Figure 33. The buildings in this game scenario are 
placed at the outer edges on which buildings can still be built.  
 

 
Figure 33: Buildings are set at the outer edges of the designated area in the game. 

 
A constraint stipulated that building tiles may only be placed next to each other if they 
correspond to the same color. This can be seen in Figure 33. You can also see the 
implementation of the constraint, which states that doors may only be on the floor and not 
directly next to each other. 
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It can also be seen that the buildings have a consistent appearance. The walls and roofs fit 
exactly together. All parts of the buildings connect to one another and there are no open 
house walls.  
 
Building parts can furthermore be connected to each other over all possible corners, edges, 
and surfaces. This was achieved by mapping all 256 possible node states to equivalence 
classes and by assigning a corresponding 3D tile to every equivalence class. Thereby, all 
possible cube combinations are covered. 
 
Difficulties and Possible Extensions 
 
As planned, doors only appear on the floor and they occur in different positions of the 
buildings. However, it could happen that a building has no door at all. That is because the 
possibilities in the wave for a door occur with a certain probability.  
If it had been determined that a building must always have a door, then a door would 
always appear in the same place, namely where the algorithm begins to assemble the 
building. This is due to the way WFC works, i.e. because WFC builds images iteratively.  
To avoid that a building does not have a door, the probability for doors was set very high. 
As a result, the doors still often appear in the same place, but not always as can be seen in 
Figure 33. 
  
In fact, the generated buildings have a consistent appearance, but the 3D tiles could be 
more versatile. The focus of this thesis was to show how the WFC and MC algorithms can 
be combined to create buildings using predesigned tiles. Nevertheless, the design of the 
buildings is quite uniform. Different types of roofs or planting on the façades could be 
added. With the help of WFC, these additional 3D tiles could be used depending on 
constraints and a certain probability which would lead to more variety.  

5.3 Possible Improvements 
 
In chapter 5.2.3, suggestions were already made on how the generation of the buildings 
could be improved. The following ideas apply to the entire project and could not be 
implemented due to time constraints. 
 
The size of the grid could be adjustable. This could either have been implemented in such a 
way that the island automatically enlarges when buildings are set on its edge. Or in a way 
that the user can enlarge the island by clicking on its edges. 
 
The possible expansion of a building could be displayed in the UI when you hover the 
mouse over a part of the building. The area to which a new part of the building would be 
attached could be highlighted. 
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At the moment, buildings can only have one color (this is regulated by a constraint). 
However, it would also be possible to incorporate “intermediate pieces”, which allow two 
colors to be combined. For example, these intermediate pieces would be red on one side 
and blue on the other with a color transition in between. 
 
The color selection is implemented in a way that all colors are selected at the beginning and 
the color of the generated buildings is decided by WFC. This was done to demonstrate the 
functionality of WFC with help of the color constraint. This implementation seems tedious 
when only one color is selected, and you want to choose another color. In this case the new 
color must be selected and the previous color deselected, i.e. two clicks are necessary. 
Alternatively, only one color can be selected at a time, but this would make the use of WFC 
less obvious. 
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6 Conclusion and Perspective 

This chapter summarizes the thesis and addresses some opportunities for further 

development. 

6.1 Conclusion 
 
In this thesis it was shown how the algorithms Wave Function Collapse (WFC) and Marching 
Cubes (MC) can be used to generate buildings in 3D. The generation works on the “tile 
level”, i.e. previously created 3D models are assembled to create consistent buildings. 
Furthermore, the generation is user-initiated: By selecting and deselecting certain cells in a 
grid, the user determines the surface of the buildings. While MC identifies the course of the 
building surfaces, WFC decides on the concrete appearance of the façades. 
 
The way in which the various parts of the buildings must be assembled is determined by 
equivalence classes. The equivalence classes contain the node states and each node in the 
grid is assigned to an equivalence class. Overall, they depict all possible ways in which cubes 
can be connected.  
 
My modification of the MC algorithm basically determines the surface on which the 
building façades are created by assigning the individual node states to their equivalence 
classes. Thus, the basic shape of the 3D tiles is determined. WFC then decides which 
specific 3D tile is used. 
 
My WFC adaptation works on top of the results of MC. For each equivalence class assigned 
to a particular node WFC chooses from at least three different options. Depending on 
constraints and weights, the algorithm determines which specific pattern should be 
selected for every node in the grid. The chosen patterns correspond to concrete 3D tiles 
that are placed in the position of the node in the visible grid. 

6.2 Perspective 
 
Possible extensions to my application have already been discussed in 5.2.3 and 5.3. At this 
point, possibilities are discussed how WFC and MC could be used for further generation 
tasks. 
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As with the original WFC, an input image can also be used in 3D. Based on a 3D input image, 
3D tiles can be derived, which can then be used to automatically create larger 3D images. 
On the one hand, this would be possible at voxel level, so that WFC uses voxels instead of 
pixels. On the other hand, this is also conceivable at tile level, so that tiles (as separate 3D 
models) in a certain size are taken from the image and assembled to form a result image. 
This would probably lead to similar results as Merrell's approach to model synthesis (see 
2.2.2). Instead of rules and the assignment of labels to the individual 3D tiles (as in model 
synthesis), constraints would be automatically derived from the input image which 
determine how the tiles may be assembled. 
 
Another possibility to expand my approach would be to use WFC and MC to automatically 
generate levels instead of using user input. If, e.g., Perlin noise is used to randomly 
distribute the buildings in a scene. In this case, however, some restrictions must be 
established so that the buildings look authentic. For example, some rules had to stipulate 
the maximum height buildings can have. Furthermore, weights could be used to determine 
the average height or the density of buildings.  
 
After all, it would be interesting not only to assemble buildings with WFC using 3D tiles, but 
also to assemble the tiles with WFC. This allows the building parts to be composed of 
individual walls, windows, doors, and decorative elements. Thereby, WFC would be used on 
two levels: firstly, to generate the parts of the buildings and, secondly, to generate the 
buildings. This would probably lead to even more diverse results. 
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8 Appendix 

8.1 A1: Code Churn 
 

8.1.1 List of All Commits 
 
The left column contains the added lines, the middle column the deleted lines, and the right 
column contains the file names. Only .cs files were considered. At the end the added and 
deleted lines are summed up. 
 

git log --numstat --pretty="%H" *.cs 

507be55d73b247acbafbb93afa97b4f03ba1c031    

6 6 Assets/Scripts/ButtonLogic.cs 

3 3 Assets/Scripts/CameraScript.cs 

2 0 Assets/Scripts/IHandleUserInput.cs 

2 0 Assets/Scripts/IUpdateScene.cs 

6 1 Assets/Scripts/LogicComponent.cs 

1 5 Assets/Scripts/MarchingCubes.cs 

9 4 Assets/Scripts/UIHandler.cs 

18 13 Assets/Scripts/WaveFunctionCollapse.cs 

c19177463bb55823acf4113e2806f630c27809fb    

1 2 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/LogicComponent.cs 

bc92558258cc0d20afacd8a8b2b108914f5f198e    

16 11 Assets/Scripts/CameraScript.cs 

086e642c661797b7d16f0b97f09157d1c986dcae    

0 40 Assets/Scripts/Grid.cs 

0 1 Assets/Scripts/UIHandler.cs 
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1 1 Assets/Scripts/WaveFunctionCollapse.cs 

34fae2d57e231b0adbcba54a3dc30c44cc4f4e1b    

128 0 Assets/Scripts/ButtonLogic.cs 

6f578cefad24aac89e99df23195f3aba757e6f58    

5 5 Assets/Scripts/WaveFunctionCollapse.cs 

b80c62a1e17951cd203fd75f09996e08cc657faa    

19 14 Assets/Scripts/LogicComponent.cs 

1 2 Assets/Scripts/UIHandler.cs 

950d6caefdf0d395cb8de9b96cd729827cfba939    

2 5 Assets/Scripts/UIHandler.cs 

6 6 Assets/Scripts/WaveFunctionCollapse.cs 

fb9a6ed3fb0f90e858fdc9f196c74ff842960f95    

98 158 Assets/Scripts/UIHandler.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

87d88f0eecf58803aa456555bc36a26fa9c011d4    

3 0 Assets/Scripts/UIHandler.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

53b909125d3b0bda549810dfcea6cc885621e215    

1 1 Assets/Scripts/UIHandler.cs 

4 4 Assets/Scripts/Util.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

3de4d6fa3329160b3a4deb1560f793d759895bd4    

0 1 Assets/Scripts/MarchingCubes.cs 

1 1 Assets/Scripts/UIHandler.cs 

3 3 Assets/Scripts/Util.cs 

34 54 Assets/Scripts/WaveFunctionCollapse.cs 

2b11ecfecebfe1cc1d2a5c4f8f9c679592b2ebc4    

39 14 Assets/Scripts/WaveFunctionCollapse.cs 

f08b92637c0ae120544847e18875febde9d56925 
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1 0 Assets/Scripts/MarchingCubes.cs 

1 1 Assets/Scripts/UIHandler.cs 

3 3 Assets/Scripts/Util.cs 

15 20 Assets/Scripts/WaveFunctionCollapse.cs 

f82e77c505eda9e320592c862c6763251a600e36    

14 39 Assets/Scripts/WaveFunctionCollapse.cs 

95804d0a75c5a8518846cd8999379c6162343cdc    

2 2 Assets/Scripts/UIHandler.cs 

2 2 Assets/Scripts/Util.cs 

67 26 Assets/Scripts/WaveFunctionCollapse.cs 

19677fc6ba4d0ce24ff1a66a8a5c7d964ea891b6    

14 18 Assets/Scripts/UIHandler.cs 

68 31 Assets/Scripts/WaveFunctionCollapse.cs 

c7fc5cb54f04d434d0c08039e4be029334fe3981    

1 1 Assets/Scripts/Util.cs 

14 25 Assets/Scripts/WaveFunctionCollapse.cs 

121331465b41dd786dd89c8327033661f6d190a0    

0 15 Assets/Scripts/MarchingCubes.cs 

8 50 Assets/Scripts/UIHandler.cs 

82 77 Assets/Scripts/Util.cs 

cebee0f399b32ed212b5d7126d64efbbcf6edded    

5 0 Assets/Scripts/UIHandler.cs 

7 1 Assets/Scripts/Util.cs 

ef1bb188a7f0c63a364f946c5d0258417a5fc448    

3 0 Assets/Scripts/UIHandler.cs 

10 4 Assets/Scripts/Util.cs 

b3411025f1c6bf6c0b9863ac32fd9f5388f1673b    

9 0 Assets/Scripts/UIHandler.cs 

13 2 Assets/Scripts/Util.cs 
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f38df9f0ad6ac344b2e44dc948a2c3b2af7946c1    

15 0 Assets/Scripts/UIHandler.cs 

21 0 Assets/Scripts/Util.cs 

f1e82c8aa44e0fcbca80a22aa0de67b7ff629b25    

13 0 Assets/Scripts/UIHandler.cs 

15 0 Assets/Scripts/Util.cs 

a244c64eeb9b3da02c0931159dd6971beb3e71ac    

5 0 Assets/Scripts/UIHandler.cs 

8 2 Assets/Scripts/Util.cs 

9150018a1e00b0eff6180f536a6abc1d5501a7a4    

13 0 Assets/Scripts/UIHandler.cs 

16 0 Assets/Scripts/Util.cs 

cdfd945cbb1afbf93666b7197fd7abea9d31dc80    

13 0 Assets/Scripts/UIHandler.cs 

18 3 Assets/Scripts/Util.cs 

aa8a4bf5c7e9eaea191237a9bae4aa39f3745395    

13 6 Assets/Scripts/UIHandler.cs 

15 6 Assets/Scripts/Util.cs 

b89ab889adf12bd14aed4b23b058e0cb753e86d0    

4 4 Assets/Scripts/WaveFunctionCollapse.cs 

cbf4012a54b924cb1cdea26874232d997ef107a2    

5 0 Assets/Scripts/UIHandler.cs 

7 0 Assets/Scripts/Util.cs 

d0170f4718b3d8e61a29947cb6d498f03100480d    

5 0 Assets/Scripts/UIHandler.cs 

8 0 Assets/Scripts/Util.cs 

9a2211832aec28114b9db9fabd84d68c12de60bc    

10 2 Assets/Scripts/LogicComponent.cs 
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19 0 Assets/Scripts/UIHandler.cs 

22 14 Assets/Scripts/Util.cs 

f44d899fe6cccfa6209096633fef4274910d4b55    

1 1 Assets/Scripts/LogicComponent.cs 

3 0 Assets/Scripts/UIHandler.cs 

32 11 Assets/Scripts/Util.cs 

10f870e5a102a65ec9443e11aa7dac56971f897c    

5 0 Assets/Scripts/LogicComponent.cs 

8 4 Assets/Scripts/UIHandler.cs 

44 197 Assets/Scripts/Util.cs 

9d066a3c6be021ea14bdc400d729dea9f203a79a    

38 10 Assets/Scripts/UIHandler.cs 

157 57 Assets/Scripts/Util.cs 

ce54ed8df87917c795d43b396e2ee311cd4232a8    

2 1 Assets/Scripts/UIHandler.cs 

0b7266f595883f9e0849f53c50133dba3a9bfb41    

45 112 Assets/Scripts/UIHandler.cs 

0 10 Assets/Scripts/Util.cs 

d106720aac1b54828e0a8825834be016baa6ce58    

1 1 Assets/Scripts/MarchingCubes.cs 

11 0 Assets/Scripts/Util.cs 

1f7dabb93b43e7064f193000fc1b95ad9c06c944    

34 0 Assets/Scripts/UIHandler.cs 

77 34 Assets/Scripts/Util.cs 

f962d107ffc078ff450db4f7b9928efc381ddf66    

29 4 Assets/Scripts/UIHandler.cs 

4f037c2da882665d303ab355df118dd3419c6312    

0 68 Assets/Scripts/CubePositions.cs 

17 24 Assets/Scripts/MarchingCubes.cs 
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12 11 Assets/Scripts/UIHandler.cs 

129 9 Assets/Scripts/Util.cs 

1 1 Assets/Scripts/WaveFunctionCollapse.cs 

3546ac1310a380a67e4612a0c3738f2c44f74ebe    

1 1 Assets/Scripts/LogicComponent.cs 

17 26 Assets/Scripts/UIHandler.cs 

6 1 Assets/Scripts/{SharedItems.cs => 
Util.cs} 

80 24 Assets/Scripts/WaveFunctionCollapse.cs 

6204ef4d44968c275323e2c72d75f322bb0e269d    

140 55 Assets/Scripts/WaveFunctionCollapse.cs 

99a5b7703e86395c245e63c4be448d8ed0a7a777    

40 0 Assets/Scripts/CameraScript.cs 

81 29 Assets/Scripts/WaveFunctionCollapse.cs 

0aa7c2696b5dca9863432b7a40f52d51531b987f    

1 23 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/IHandleUserInput.cs 

8 16 Assets/Scripts/LogicComponent.cs 

15 4 Assets/Scripts/UIHandler.cs 

b9752af4e55c53d45eb58432fa415d922c758709    

18 0 Assets/Scripts/SharedItems.cs 

8 6 Assets/Scripts/UIHandler.cs 

1 4 Assets/Scripts/WaveFunctionCollapse.cs 

eee72197d031bee4a97d6b4afb33dd3b6131a800    

24 62 Assets/Scripts/WaveFunctionCollapse.cs 

89cbb9177d87df901f3b25ce4e326ca0721ac1fa    

9 7 Assets/Scripts/UIHandler.cs 

66 11 Assets/Scripts/WaveFunctionCollapse.cs 

ab426c1dc4096d2daed64b3686f211fb0bf1fd24    

24 30 Assets/Scripts/WaveFunctionCollapse.cs 
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710d45398bc2bd671495dd7fd918c8ee573fe683    

12 7 Assets/Scripts/UIHandler.cs 

70 52 Assets/Scripts/WaveFunctionCollapse.cs 

6b0fa6df7810f0338b99715b1bcd4a85dca40f07    

73 10 Assets/Scripts/WaveFunctionCollapse.cs 

d1577f50291cb9964436e9c00d7756e80c64dff3    

4 1 Assets/Scripts/CubePositions.cs 

2 0 Assets/Scripts/MarchingCubes.cs 

35 12 Assets/Scripts/UIHandler.cs 

140 2 Assets/Scripts/WaveFunctionCollapse.cs 

3dd4697749a0c663de8968340fa94360c3284b25    

11 3 Assets/Scripts/CubePositions.cs 

4 1 Assets/Scripts/MarchingCubes.cs 

17 0 Assets/Scripts/UIHandler.cs 

190310ca81c6814a1253de03ae4aaa7a379ab945    

0 2 Assets/Scripts/UIHandler.cs 

2538728f0fab2244c6006a4bb9f8a79169741645    

41 26 Assets/Scripts/UIHandler.cs 

1f7921e1a004f0e007b7c28700c4f2aa3637e0bd    

41 97 Assets/Scripts/UIHandler.cs 

0b33e05fad7b1c08dff6ad166818da04a742443a    

10 15 Assets/Scripts/UIHandler.cs 

f6ebfc3253322b1ec259439ccd4061a42c8285e3    

2 0 Assets/Scripts/CubePositions.cs 

86 93 Assets/Scripts/UIHandler.cs 

ba0da5f833bb86c3261d9e733d853681de6c460b    

2 1 Assets/Scripts/CubePositions.cs 

9 1 Assets/Scripts/MarchingCubes.cs 



Appendix  

 

80 
 

39 5 Assets/Scripts/UIHandler.cs 

9233a1925badffeac59aff8285f0620217e6121a    

1 1 Assets/Scripts/CubePositions.cs 

1 1 Assets/Scripts/IUpdateScene.cs 

20 13 Assets/Scripts/LogicComponent.cs 

136 125 Assets/Scripts/UIHandler.cs 

5 0 Assets/Scripts/WaveFunctionCollapse.cs 

982f7c12757a243c254954df2eb70084851aa648    

19 2 Assets/Scripts/CubePositions.cs 

1 2 Assets/Scripts/MarchingCubes.cs 

ad42845f579b59fd1d7b6d445162756cba9eeb17    

37 0 Assets/Scripts/CubePositions.cs 

8 8 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/IUpdateScene.cs 

3 3 Assets/Scripts/LogicComponent.cs 

14 7 Assets/Scripts/MarchingCubes.cs 

39 10 Assets/Scripts/UIHandler.cs 

6cc10d6025360297d74685a1611430b6ef484e16    

9 1 Assets/Scripts/MarchingCubes.cs 

12 10 Assets/Scripts/UIHandler.cs 

0ad6a1c81c0e7492500c00b6284ac5b261ded645    

108 0 Assets/Scripts/Grid.cs 

8 0 Assets/Scripts/IHandleUserInput.cs 

9 0 Assets/Scripts/IUpdateScene.cs 

62 0 Assets/Scripts/LogicComponent.cs 

23 0 Assets/Scripts/MarchingCubes.cs 

170 0 Assets/Scripts/UIHandler.cs 

11 0 Assets/Scripts/WaveFunctionCollapse.cs 

3481 2083 
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8.1.2 List of First Commits 
 
The left column contains the added lines, the middle column the deleted lines, and the right 
column contains the file names. Only .cs files were considered. At the end the added and 
deleted lines are summed up. 
 

git log -37 --numstat --pretty="%H" *.cs 

507be55d73b247acbafbb93afa97b4f03ba1c031    

6 6 Assets/Scripts/ButtonLogic.cs 

3 3 Assets/Scripts/CameraScript.cs 

2 0 Assets/Scripts/IHandleUserInput.cs 

2 0 Assets/Scripts/IUpdateScene.cs 

6 1 Assets/Scripts/LogicComponent.cs 

1 5 Assets/Scripts/MarchingCubes.cs 

9 4 Assets/Scripts/UIHandler.cs 

18 13 Assets/Scripts/WaveFunctionCollapse.cs 

c19177463bb55823acf4113e2806f630c27809fb    

1 2 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/LogicComponent.cs 

bc92558258cc0d20afacd8a8b2b108914f5f198e    

16 11 Assets/Scripts/CameraScript.cs 

086e642c661797b7d16f0b97f09157d1c986dcae    

0 40 Assets/Scripts/Grid.cs 

0 1 Assets/Scripts/UIHandler.cs 

1 1 Assets/Scripts/WaveFunctionCollapse.cs 

34fae2d57e231b0adbcba54a3dc30c44cc4f4e1b    

128 0 Assets/Scripts/ButtonLogic.cs 

6f578cefad24aac89e99df23195f3aba757e6f58    

5 5 Assets/Scripts/WaveFunctionCollapse.cs 

b80c62a1e17951cd203fd75f09996e08cc657faa    

19 14 Assets/Scripts/LogicComponent.cs 

1 2 Assets/Scripts/UIHandler.cs 
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950d6caefdf0d395cb8de9b96cd729827cfba939    

2 5 Assets/Scripts/UIHandler.cs 

6 6 Assets/Scripts/WaveFunctionCollapse.cs 

fb9a6ed3fb0f90e858fdc9f196c74ff842960f95    

98 158 Assets/Scripts/UIHandler.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

87d88f0eecf58803aa456555bc36a26fa9c011d4    

3 0 Assets/Scripts/UIHandler.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

53b909125d3b0bda549810dfcea6cc885621e215    

1 1 Assets/Scripts/UIHandler.cs 

4 4 Assets/Scripts/Util.cs 

2 2 Assets/Scripts/WaveFunctionCollapse.cs 

3de4d6fa3329160b3a4deb1560f793d759895bd4    

0 1 Assets/Scripts/MarchingCubes.cs 

1 1 Assets/Scripts/UIHandler.cs 

3 3 Assets/Scripts/Util.cs 

34 54 Assets/Scripts/WaveFunctionCollapse.cs 

2b11ecfecebfe1cc1d2a5c4f8f9c679592b2ebc4    

39 14 Assets/Scripts/WaveFunctionCollapse.cs 

f08b92637c0ae120544847e18875febde9d56925    

1 0 Assets/Scripts/MarchingCubes.cs 

1 1 Assets/Scripts/UIHandler.cs 

3 3 Assets/Scripts/Util.cs 

15 20 Assets/Scripts/WaveFunctionCollapse.cs 

f82e77c505eda9e320592c862c6763251a600e36    

14 39 Assets/Scripts/WaveFunctionCollapse.cs 

95804d0a75c5a8518846cd8999379c6162343cdc    

2 2 Assets/Scripts/UIHandler.cs 
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2 2 Assets/Scripts/Util.cs 

67 26 Assets/Scripts/WaveFunctionCollapse.cs 

19677fc6ba4d0ce24ff1a66a8a5c7d964ea891b6    

14 18 Assets/Scripts/UIHandler.cs 

68 31 Assets/Scripts/WaveFunctionCollapse.cs 

c7fc5cb54f04d434d0c08039e4be029334fe3981    

1 1 Assets/Scripts/Util.cs 

14 25 Assets/Scripts/WaveFunctionCollapse.cs 

121331465b41dd786dd89c8327033661f6d190a0    

0 15 Assets/Scripts/MarchingCubes.cs 

8 50 Assets/Scripts/UIHandler.cs 

82 77 Assets/Scripts/Util.cs 

cebee0f399b32ed212b5d7126d64efbbcf6edded    

5 0 Assets/Scripts/UIHandler.cs 

7 1 Assets/Scripts/Util.cs 

ef1bb188a7f0c63a364f946c5d0258417a5fc448    

3 0 Assets/Scripts/UIHandler.cs 

10 4 Assets/Scripts/Util.cs 

b3411025f1c6bf6c0b9863ac32fd9f5388f1673b    

9 0 Assets/Scripts/UIHandler.cs 

13 2 Assets/Scripts/Util.cs 

f38df9f0ad6ac344b2e44dc948a2c3b2af7946c1    

15 0 Assets/Scripts/UIHandler.cs 

21 0 Assets/Scripts/Util.cs 

f1e82c8aa44e0fcbca80a22aa0de67b7ff629b25    

13 0 Assets/Scripts/UIHandler.cs 

15 0 Assets/Scripts/Util.cs 

a244c64eeb9b3da02c0931159dd6971beb3e71ac    

5 0 Assets/Scripts/UIHandler.cs 
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8 2 Assets/Scripts/Util.cs 

9150018a1e00b0eff6180f536a6abc1d5501a7a4    

13 0 Assets/Scripts/UIHandler.cs 

16 0 Assets/Scripts/Util.cs 

cdfd945cbb1afbf93666b7197fd7abea9d31dc80    

13 0 Assets/Scripts/UIHandler.cs 

18 3 Assets/Scripts/Util.cs 

aa8a4bf5c7e9eaea191237a9bae4aa39f3745395    

13 6 Assets/Scripts/UIHandler.cs 

15 6 Assets/Scripts/Util.cs 

b89ab889adf12bd14aed4b23b058e0cb753e86d0    

4 4 Assets/Scripts/WaveFunctionCollapse.cs 

cbf4012a54b924cb1cdea26874232d997ef107a2    

5 0 Assets/Scripts/UIHandler.cs 

7 0 Assets/Scripts/Util.cs 

d0170f4718b3d8e61a29947cb6d498f03100480d    

5 0 Assets/Scripts/UIHandler.cs 

8 0 Assets/Scripts/Util.cs 

9a2211832aec28114b9db9fabd84d68c12de60bc    

10 2 Assets/Scripts/LogicComponent.cs 

19 0 Assets/Scripts/UIHandler.cs 

22 14 Assets/Scripts/Util.cs 

f44d899fe6cccfa6209096633fef4274910d4b55    

1 1 Assets/Scripts/LogicComponent.cs 

3 0 Assets/Scripts/UIHandler.cs 

32 11 Assets/Scripts/Util.cs 

10f870e5a102a65ec9443e11aa7dac56971f897c    

5 0 Assets/Scripts/LogicComponent.cs 

8 4 Assets/Scripts/UIHandler.cs 
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44 197 Assets/Scripts/Util.cs 

9d066a3c6be021ea14bdc400d729dea9f203a79a    

38 10 Assets/Scripts/UIHandler.cs 

157 57 Assets/Scripts/Util.cs 

ce54ed8df87917c795d43b396e2ee311cd4232a8    

2 1 Assets/Scripts/UIHandler.cs 

0b7266f595883f9e0849f53c50133dba3a9bfb41    

45 112 Assets/Scripts/UIHandler.cs 

0 10 Assets/Scripts/Util.cs    

1335 1119 
 

 

8.1.3 List of Latest Commits 
 
The left column contains the added lines, the middle column the deleted lines, and the right 
column contains the file names. Only .cs files were considered. At the end, the added and 
deleted lines are summed up. 
 

Other 37 commits (first list minus second list): 

1 1 Assets/Scripts/MarchingCubes.cs 

11 0 Assets/Scripts/Util.cs 

1f7dabb93b43e7064f193000fc1b95ad9c06c944    

34 0 Assets/Scripts/UIHandler.cs 

77 34 Assets/Scripts/Util.cs 

f962d107ffc078ff450db4f7b9928efc381ddf66    

29 4 Assets/Scripts/UIHandler.cs 

4f037c2da882665d303ab355df118dd3419c6312    

0 68 Assets/Scripts/CubePositions.cs 

17 24 Assets/Scripts/MarchingCubes.cs 

12 11 Assets/Scripts/UIHandler.cs 

129 9 Assets/Scripts/Util.cs 



Appendix  

 

86 
 

1 1 Assets/Scripts/WaveFunctionCollapse.cs 

3546ac1310a380a67e4612a0c3738f2c44f74ebe    

1 1 Assets/Scripts/LogicComponent.cs 

17 26 Assets/Scripts/UIHandler.cs 

6 1 Assets/Scripts/{SharedItems.cs => Util.cs} 

80 24 Assets/Scripts/WaveFunctionCollapse.cs 

6204ef4d44968c275323e2c72d75f322bb0e269d    

140 55 Assets/Scripts/WaveFunctionCollapse.cs 

99a5b7703e86395c245e63c4be448d8ed0a7a777    

40 0 Assets/Scripts/CameraScript.cs 

81 29 Assets/Scripts/WaveFunctionCollapse.cs 

0aa7c2696b5dca9863432b7a40f52d51531b987f    

1 23 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/IHandleUserInput.cs 

8 16 Assets/Scripts/LogicComponent.cs 

15 4 Assets/Scripts/UIHandler.cs 

b9752af4e55c53d45eb58432fa415d922c758709    

18 0 Assets/Scripts/SharedItems.cs 

8 6 Assets/Scripts/UIHandler.cs 

1 4 Assets/Scripts/WaveFunctionCollapse.cs 

eee72197d031bee4a97d6b4afb33dd3b6131a800    

24 62 Assets/Scripts/WaveFunctionCollapse.cs 

89cbb9177d87df901f3b25ce4e326ca0721ac1fa    

9 7 Assets/Scripts/UIHandler.cs 

66 11 Assets/Scripts/WaveFunctionCollapse.cs 

ab426c1dc4096d2daed64b3686f211fb0bf1fd24    

24 30 Assets/Scripts/WaveFunctionCollapse.cs 

710d45398bc2bd671495dd7fd918c8ee573fe683    

12 7 Assets/Scripts/UIHandler.cs 
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70 52 Assets/Scripts/WaveFunctionCollapse.cs 

6b0fa6df7810f0338b99715b1bcd4a85dca40f07    

73 10 Assets/Scripts/WaveFunctionCollapse.cs 

d1577f50291cb9964436e9c00d7756e80c64dff3    

4 1 Assets/Scripts/CubePositions.cs 

2 0 Assets/Scripts/MarchingCubes.cs 

35 12 Assets/Scripts/UIHandler.cs 

140 2 Assets/Scripts/WaveFunctionCollapse.cs 

3dd4697749a0c663de8968340fa94360c3284b25    

11 3 Assets/Scripts/CubePositions.cs 

4 1 Assets/Scripts/MarchingCubes.cs 

17 0 Assets/Scripts/UIHandler.cs 

190310ca81c6814a1253de03ae4aaa7a379ab945    

0 2 Assets/Scripts/UIHandler.cs 

2538728f0fab2244c6006a4bb9f8a79169741645    

41 26 Assets/Scripts/UIHandler.cs 

1f7921e1a004f0e007b7c28700c4f2aa3637e0bd    

41 97 Assets/Scripts/UIHandler.cs 

0b33e05fad7b1c08dff6ad166818da04a742443a    

10 15 Assets/Scripts/UIHandler.cs 

f6ebfc3253322b1ec259439ccd4061a42c8285e3    

2 0 Assets/Scripts/CubePositions.cs 

86 93 Assets/Scripts/UIHandler.cs 

ba0da5f833bb86c3261d9e733d853681de6c460b    

2 1 Assets/Scripts/CubePositions.cs 

9 1 Assets/Scripts/MarchingCubes.cs 

39 5 Assets/Scripts/UIHandler.cs 

9233a1925badffeac59aff8285f0620217e6121a    
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1 1 Assets/Scripts/CubePositions.cs 

1 1 Assets/Scripts/IUpdateScene.cs 

20 13 Assets/Scripts/LogicComponent.cs 

136 125 Assets/Scripts/UIHandler.cs 

5 0 Assets/Scripts/WaveFunctionCollapse.cs 

982f7c12757a243c254954df2eb70084851aa648    

19 2 Assets/Scripts/CubePositions.cs 

1 2 Assets/Scripts/MarchingCubes.cs 

ad42845f579b59fd1d7b6d445162756cba9eeb17    

37 0 Assets/Scripts/CubePositions.cs 

8 8 Assets/Scripts/Grid.cs 

1 1 Assets/Scripts/IUpdateScene.cs 

3 3 Assets/Scripts/LogicComponent.cs 

14 7 Assets/Scripts/MarchingCubes.cs 

39 10 Assets/Scripts/UIHandler.cs 

6cc10d6025360297d74685a1611430b6ef484e16    

9 1 Assets/Scripts/MarchingCubes.cs 

12 10 Assets/Scripts/UIHandler.cs 

0ad6a1c81c0e7492500c00b6284ac5b261ded645    

108 0 Assets/Scripts/Grid.cs 

8 0 Assets/Scripts/IHandleUserInput.cs 

9 0 Assets/Scripts/IUpdateScene.cs 

62 0 Assets/Scripts/LogicComponent.cs 

23 0 Assets/Scripts/MarchingCubes.cs 

170 0 Assets/Scripts/UIHandler.cs 

11 0 Assets/Scripts/WaveFunctionCollapse.cs    

2146 964 
 

 

8.2 A2: Basic Equivalence Classes 
 

Equivalence 
Class 

Basic Node State 3D Tiles (examples from different sub-
classes) 
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