
BACHELOR THESIS
Niklas Hoefflin

Effects of Image Resolution on
Skin Lesions Classification
with Residual Neural
Networks

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences



Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Kai von Luck
Supervisor: Dr. Jan Schwarzer

Submitted on: July 2, 2024

Niklas Hoefflin

Effects of Image Resolution on Skin Lesions
Classification with Residual Neural Networks



Niklas Hoefflin

Title of Thesis

Effects of Image Resolution on Skin Lesions Classification with Residual Neural Net-
works

Keywords

Medical Imaging, Dermatology, Skin Lesions, Image Resolution, Computer Vision, Resid-
ual Neural Network

Abstract

Accurate detection of tumorous skin lesions is crucial for the early diagnosis and treat-
ment of skin cancer, significantly impacting patient health outcomes. High-resolution im-
ages of skin lesions are vital for enhancing the classification performance of deep learning
models. These detailed images provide critical visual information, enabling more precise
identification and differentiation of malignant and benign lesions, ultimately improving
patient care. However, the effect of image resolution, especially for images with aspect
ratios above 450 × 450 pixels, remains unclear. This thesis investigated the influence
of image resolution on the classification performance of skin lesion images using the
well-established Residual Neural Network (ResNet) architecture. Specifically, the study
examined three different resolutions: 300 × 225, 450 × 338, and 600 × 450 pixels. Ex-
tensive experiments were conducted and evaluated using the Area Under The Receiver
Operating Characteristic Curve (AUROC) metric. The results showed a positive correla-
tion between increasing image resolution and increasing AUROC scores across all classes.
Although the degree of performance improvement seemed to be class-dependent, the one
standard deviation variability in terms of the AUROC score decreased with increasing
resolutions, with the most notable reduction observed at 600× 450 pixels.
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Kurzzusammenfassung

Die genaue Erkennung tumoröser Hautläsionen stellt einen entscheidenden Faktor bei
der frühzeitigen Diagnose und Behandlung von Hautkrebs dar und hat signifikante
Auswirkungen auf die gesundheitliche Verfassung der Patienten. Hochauflösende Bilder
von Hautläsionen sind von entscheidender Bedeutung für die Verbesserung der Klassi-
fizierungsleistung von Deep-Learning-Modellen. Die Bereitstellung detaillierter Bilder
ermöglicht eine präzisere Identifizierung und Unterscheidung von bösartigen und gutar-
tigen Läsionen, was letztlich zu einer Verbesserung der Patientenversorgung führt. Die
Auswirkungen der Bildauflösung, insbesondere bei Bildern mit einem Seitenverhältnis
von mehr als 450 × 450 Pixeln, sind jedoch noch unklar. In dieser Arbeit wurde der
Einfluss der Bildauflösung auf die Klassifizierungsleistung von Hautläsionsbildern unter
Verwendung der bewährten Residual Neural Network (ResNet)-Architektur untersucht.
Konkret wurden drei verschiedene Auflösungen untersucht: 300 × 225, 450 × 338 und
600 × 450 Pixel. Es wurden umfangreiche Experimente durchgeführt, die anhand der
Area Under The Receiver Operating Characteristic Curve (AUROC)-Metrik ausgew-
ertet wurden. Die Ergebnisse zeigten eine positive Korrelation zwischen steigender Bil-
dauflösung und steigenden AUROC-Werten in allen Klassen. Obwohl der Grad der Leis-
tungsverbesserung klassenabhängig zu sein schien, nahm die Streuung von einer Stan-
dardabweichung in Bezug auf den AUROC-Score mit zunehmender Auflösung ab, wobei
die bemerkenswerteste Verringerung bei 600× 450 Pixeln beobachtet wurde.
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1 Introduction

Skin cancer is one of the most commonly diagnosed types of cancer worldwide [75], posing
a significant health concern across populations. In 2020, an estimated 1.5 million new
cases of skin cancer occurred, while malignant melanoma accounts for approximately
20% of all skin cancer diagnoses, with an estimated 325,000 cases and 57,000 deaths
worldwide [7]. Generally, skin cancer is commonly categorized into two types: Melanoma
Skin Cancer (MSC) and Non-Melanoma Skin Cancer (NMSC) [31, 56]. NMSC is more
common and less aggressive, while MSC poses a greater threat and is more lethal due to
its propensity for metastasis [18]. Early diagnosis significantly improves survival rates
[59, 64]. However, in advanced stages with metastasis, the 5-year survival rate drops to
only between 15–20% [50].

Given the significance of early detection, dermatologists employ a range of techniques
to identify skin cancer at an early stage. Dermoscopy is a non-invasive procedure that
employs a dermatoscope to identify skin abnormalities and reveal structures and patterns
below the surface. Algorithmic methods, including the Asymmetry, Border, Color, Di-
ameter rule, the Menzies method, the three-point checklist, the seven-point checklist, and
the Color, Architecture, Symmetry, Homogeneity algorithm, are employed to distinguish
between NMSC and MSC based on visual characteristics [42, 69]. Another diagnostic
procedure is biopsy, an invasive technique in which a small sample or the entire suspicious
skin lesion is removed using methods such as punch, shave, saucerization, or excisional
biopsy. The sample is then subjected to histopathological analysis under a microscope
for an accurate diagnosis of the disease type [49].

Although these methods are well-established, manual interpretations prove to be time-
consuming and costly [30, 79]. Moreover, distinguishing between MSC and NMSC re-
quires considerable expertise and is difficult even for experienced dermatologists due to
the high level of inter-class similarity and intra-class variations [35, 54, 79]. Computer-
aided Diagnosis (CAD) systems, based on Convolutional Neural Networks (CNNs), have
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1 Introduction

shown promising results in both enhancing the efficiency and accuracy of skin cancer
diagnosis, closely aligning with dermatologists in experimental settings [20].

1.1 Research Aim

While significant advancements have been made in CAD, the quality of training images
remains a critical factor influencing the performance of CNNs. Among the various aspects
of image quality, resolution plays a pivotal role, particularly in the classification of medical
images such as chest radiographs, endoscopic images, breast ultrasounds, and skin lesion
images [38, 39, 55, 66, 67]. In two studies [38, 39], Mahbod et al. investigated the impact
of varying image resolutions on the performance of pre-trained CNNs in the classification
of skin lesions. In one study [38], the influence of image resolutions up to 450×450 pixels
was examined while maintaining the aspect ratio. However, in another study [39], the
authors used resolutions up to 768×768 pixels, although without maintaining the aspect
ratio.

This study aims to address the existing knowledge gap regarding the effect of image
resolution on the performance of CNNs for resolutions above 450 × 450 pixels while
maintaining aspect ratio. Utilizing the International Skin Imaging Collaboration (ISIC)
2019 challenge dataset [14, 16, 68], the objective of this study is to provide a more
profound understanding of the optimal image resolution for enhancing the performance
of CNNs in the classification of skin lesions.

1.2 Outline

This thesis is structured into five chapters. Following the introduction, Chapter 2 pro-
vides a theoretical foundation and reviews related work, followed by the research question.
Chapter 3 outlines the methodologies employed to address the research question, includ-
ing dataset preparation and their subsets, pre-processing, data augmentation techniques,
and the design of model architectures, as well as the training procedures for the experi-
ments. Chapter 4 evaluates the results and discusses their effects and limitations. Finally,
Chapter 5 offers a conclusion that summarizes the findings and suggests directions for
future research.
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2 Related Work

This chapter provides a theoretical foundation, reviews related work, introduces the prob-
lem of image resolution in medical imaging, and presents the research question that this
study aims to answer. In Section 2.1, the ISIC 2019 dataset utilized in this study is in-
troduced. Section 2.2 discusses the challenges associated with metrics in imbalanced
datasets, highlighting the Area Under The Receiver Operating Characteristic Curve
(AUROC) metric used in this study. Furthermore, Section 2.3 provides an introduc-
tion to data augmentation methods along with relevant studies, while Section 2.4 intro-
duces various pre-processing techniques. Section 2.5 introduces residual neural networks
and strategies to enhance model performance through transfer learning and fine-tuning.
Lastly, Section 2.6 presents the issue of image resolution in medical imaging with relevant
studies before formulating the research question in Section 2.7.

2.1 ISIC 2019 Dataset

The ISIC 2019 challenge dataset comprises 33,569 dermoscopic images of skin lesions,
ranging in resolutions from 600 × 450 to 1024 × 1024 pixels. These images originate
from three different datasets: HAM10000 [68], BCN20000 [16], and MSK [14]. Partici-
pants in the ISIC 2019 challenge employed this dataset to develop algorithms capable of
distinguishing between different types of skin lesions. The images are taken from mul-
tiple body sites and are each associated with clinical metadata reviewed by recognized
melanoma experts. However, this metadata is not utilized in this study. The dataset has
been divided into two subsets: 25,331 training images and 8,238 test images. Despite
the large number of images, the dataset exhibits a highly imbalanced class distribution,
which can negatively impact the accuracy of deep learning models [24]. The exact class
distribution is further discussed in Section 3.1. The images are categorized into nine dis-
tinct diagnostic classes, with the ninth class representing an unknown category present
only in the test images.

3



2 Related Work

The eight known classes shown in Figure 2.1 include: Melanocytic Nevus (NV), Melanoma
(MEL), Basal Cell Carcinoma (BCC), Benign Keratosis (Solar Lentigo/ Seborrheic Ker-
atosis/ Lichen planus-like Keratosis) (BKL), Actinic Keratosis (AK), Squamous Cell
Carcinoma (SCC), Vascular Lesion (VASC), and Dermatofibroma (DF).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.1: Skin lesions present in the ISIC 2019 challenge dataset: (a) NV skin lesion,
(b) MEL skin lesion, (c) BCC skin lesion, (d) BKL skin lesion, (e) AK skin
lesion, (f) SCC skin lesion, (g) VASC skin lesion, and (h) DF skin lesion.

The HAM10000 dataset consists of 10,015 dermoscopic images collected over a period of
20 years from the Department of Dermatology at the Medical University of Vienna, Aus-
tria, and from the skin cancer practice of Cliff Rosendahl in Queensland, Australia. More
than 50% of these images were confirmed pathologically, with the remaining images veri-
fied through follow-up, expert consensus, or in vivo confocal microscopy. The BCN20000
dataset includes 19,424 images, many of which pose significant classification challenges
due to factors such as lighting conditions, anatomical location, and other confounding
variables. These images were collected over more than 16 years by the Department of
Dermatology at the Hospital Clínic de Barcelona. Lastly, the MSK dataset comprises
2,000 images gathered from the Memorial Sloan Kettering Cancer Center.

2.2 Performance Evaluation

Performance evaluation is crucial for assessing the effectiveness of a model trained on
data for classification tasks. Various metrics can be employed to assess the correctness
of classification. One of the most frequently employed metrics in the domains of machine
learning and statistics is accuracy [28, 44]. Accuracy measures the ratio of correctly
classified instances out of the total instances in the dataset and is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.1)

4



2 Related Work

where True Positive (TP) represents instances correctly predicted as positive, True Neg-
ative (TN) represents instances correctly predicted as negative, False Positive (FP) rep-
resents instances incorrectly predicted as positive, and False Negative (FN) represents
instances incorrectly predicted as negative. In medical diagnostics, where data is often
imbalanced [21], the metric can be misleading due to its characteristic of only capturing
the overall ratio of correctly classified instances without considering the class distribu-
tion. Consequently, a model might achieve high accuracy by predicting the majority class
for every instance while performing poorly on the minority classes [28]. The application
of the accuracy metric to imbalanced datasets is therefore not an effective approach [33],
as the metric is unable to accurately reflect the true capabilities of the model in classi-
fying samples in terms of class imbalance. This is of particular importance in the field
of medical diagnostics, as it may result in the overlooking of conditions that can have a
significant impact on patient health [33].

The Receiver Operating Characteristic (ROC) curve analysis is another method used in
medical diagnostics to visually assess the performance of diagnostic tests or predictive
models in distinguishing the presence or absence of a certain health condition [10, 46].
It visually represents the trade-off between the True Positive Rate (TPR) on the y-axis
and the False Positive Rate (FPR) on the x-axis across each classification threshold [44].
TPR represents the ratio of actual positives correctly identified by the model and is
defined as

TPR =
TP

TP + FN
. (2.2)

Concurrently, FPR, which denotes the ratio of false positives within the negative class,
is defined as

FPR =
FP

FP + TN
. (2.3)

While the ROC curve provides a graphical representation of the performance across
various classification thresholds, the AUROC metric quantifies the overall performance
of a model across all thresholds in a single score. Unlike accuracy, it is not affected by
imbalanced datasets [57]. AUROC represents the integral of the ROC curve over the
range [0, 1] and is defined as

AUROC =

∫ 1

0
TPR(FPR) dFPR. (2.4)

The integral is approximated using the trapezoidal rule, which involves dividing the area
under the curve into small trapezoids and summing their areas. According to Nahm [46],
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different interpretation thresholds, as shown in Figure 2.2, determine when a diagnostic
technique is considered meaningful.
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Figure 2.2: Interpretation of AUROC scores across various thresholds (based on Nahm
[46], p. 6). A score closer to 1.0 indicates better model performance in
distinguishing between classes. Scores around and up to 0.8 are generally
still considered acceptable [45, 46]. Scores closer to 0.5 indicate performance
similar to that of a random classifier. Scores below 0.5 are not meaningful.
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2.3 Data Augmentation

The limited size and imbalanced class distribution within datasets are common challenges
in deep learning, especially in medical imaging, often leading to overfitting [21, 22, 24, 32].
Larger datasets typically yield better results and improved generalization [61]. However,
acquiring and annotating high-quality medical images for skin cancer detection is costly
and time-consuming [30]. Creating these images requires expensive equipment, and accu-
rate annotating depends on the expertise of dermatologists, who must discern inter-class
similarities and intra-class variations in skin lesions [35].

To address these challenges, data augmentation techniques are employed to enhance the
quantity and diversity of training data for deep learning models while reducing over-
fitting and improving generalization performance [21, 61]. These techniques encompass
a variety of methods designed to create more robust and varied datasets. Geometric
transformations [21, 32], such as flipping, cropping, rotation, and shifting, alter the spa-
tial properties of images, while color transformations [21, 32], including adjustments in
brightness, saturation, contrast, and hue, modify the visual characteristics.

In skin cancer detection, both offline and online augmentation methods are commonly
used to expand the dataset. Minimizing false positive and false negative predictions is
crucial, as misclassifications can have serious consequences for patient care [33]. There-
fore, it is essential to evaluate whether offline or online augmentation is more suitable
for a given problem.

In offline augmentation, images are augmented and stored prior to the training of deep
learning models, reducing computational demand during training and thereby shorten-
ing training time compared to online augmentation [61]. This approach is particularly
beneficial for imbalanced datasets, as it allows for more balanced class distributions
through over- and undersampling techniques. Oversampling increases the instances of
underrepresented classes to mitigate model bias toward the majority class, while under-
sampling removes instances from the majority class to achieve class balance [11, 24, 61].
For instance, Bozkurt [9] expanded the HAM10000 skin lesion dataset from 10,015 to
39,787 images using random rotations. This augmented dataset enabled an Inception-
Residual Neural Network (ResNet)-v2 model to achieve an accuracy of 95.09%, compared
to 83.59% on the original dataset, surpassing other architectures such as VGG16, VGG19,
SqueezeNet, LeNet-5, AlexNet, and Deep Convolutional Neural Network (DCNN). Sim-
ilarly, Ahmad et al. [3] used offline augmentation for the HAM10000 and ISIC 2018
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[15] datasets, increasing each from 10,000 to 36,000 images through 90-degree rotations
and flips. They applied transfer learning by fine-tuning pre-trained Xception and Shuf-
fleNet models on the augmented data, extracting features from global average pooling
layers, and using an Improved Bat Optimization Algorithm for feature selection and
classification. This method, supported by Gradient-weighted Class Activation Mapping
(Grad-CAM) for interpretability, achieved high accuracy on both datasets. Furthermore,
Ali et al. [4] developed a DCNN for the classification of benign and malignant skin lesions
in the HAM10000 dataset. By applying mean filtering, normalization, and augmentation
techniques such as rotation, cropping, flipping, and color-shifting, the model demon-
strated superior performance compared to pre-trained architectures, including AlexNet,
ResNet, VGG-16, DenseNet, and MobileNet, achieving accuracies of 90.16% and 91.43%
for different training set splits.

In contrast to offline augmentation, where data is pre-augmented and stored before train-
ing, online augmentation dynamically and randomly augments data during training [61].
Before each epoch begins, various transformations are applied to the images, ensuring
that the model consistently trains on unique data variations. This method, though more
resource-intensive due to on-the-fly augmentation, enhances the model’s generalization
capabilities by exposing it to new data variations constantly. Nie et al. [48] leveraged on-
line augmentation for skin lesion classification by introducing a hybrid CNN-Transformer
model that combines ResNet-50 and Vision Transformer architectures. They trained this
model on the ISIC 2018 dataset using online augmentation techniques such as flipping,
rotating, scaling, cropping, affine transformations, and brightness and contrast adjust-
ments. Their experiments demonstrated that the hybrid model, when compared to the
baseline ResNet-50, consistently achieved higher accuracy, particularly with the focal loss
function, reaching an overall accuracy of 89.48%. He et al. [27] proposed the Deep Met-
ric Attention Learning CNN for skin lesion classification, utilizing online augmentation
techniques like random rotations and flips to mitigate overfitting on the ISIC 2016 [23]
and ISIC 2017 [14] datasets. This model outperformed other methods and showed strong
generalization capabilities on the PH2 dataset [41].

In addition to conventional augmentation techniques, advanced techniques such as Gen-
erative Adversarial Networks (GANs), Neural Style Transfer (NST), diffusion models,
and meta-learning methods are employed to generate synthetic data, enhancing dataset
diversity and potentially improving model performance. Abhishek and Hamarneh [1]
introduced Mask2Lesion, a GAN-based approach that generates synthetic skin lesion im-
ages from segmentation masks. This method improved segmentation accuracy on the
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ISIC 2017 dataset, outperforming classical augmentation methods, particularly when
used in conjunction with them. Rezk et al. [53] addressed the issue of diversity in skin
lesion datasets by generating synthetic images of darker skin tones using NST and deep
blending. They trained ResNet-50 models on these synthetic images from the DermNet
NZ1 and ISIC 2018 JID Editorial Images2 datasets and evaluated them on the Derma-
tology Atlas dataset. A visual Turing test and disease identification test validated the
realism of NST-generated images, which significantly improved diagnostic accuracy and
model performance. Eggert [19] developed a software solution utilizing a Deep Convo-
lutional Generative Adversarial Network (DCGAN) and a Denoising Diffusion Implicit
Model (DDIM) to generate synthetic photorealistic images from user-provided datasets.
His experiments showed that the DDIM, particularly when combined with data aug-
mentation techniques, outperformed the DCGAN in generating synthetic images. These
synthetic images notably enhanced the performance of an object detector when used
for training, highlighting the practical utility of synthetic data generation methods in
computer vision tasks.

2.4 Pre-processing

Pre-processing is a crucial step in preparing images of skin lesions for training CNNs.
Effective pre-processing can significantly improve the quality of input data, leading to
better model performance [36]. Skin lesion images often contain artifacts such as hair and
Dark Corner Artifacts (DCAs), which can adversely affect performance if not addressed
[43, 63, 72].

Alphonse et al. [5] addressed hair artifacts using the DullRazor algorithm, which en-
hances image clarity and model performance. They combined the Sobel Directional Pat-
tern feature extraction method with a stacked Restricted Boltzmann Machine classifier,
achieving high accuracy in melanoma prediction across multiple datasets, including PH2,
ISIC 2016, ISIC 2017, DermNet NZ, and DermIS3. Pewton and Yap [51] introduced an
automated DCA detection and removal method evaluated on the Dermofit image library4.

1https://www.dermnetnz.org/ (Accessed 05/23/24)
2https://api.isic-archive.com/collections/62/ (Accessed 05/23/24)
3https://www.dermis.net/dermisroot/en/home/index.htm (Accessed 05/23/24)
4https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-lib
rary (Accessed 05/23/24)
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Although the deep learning performance showed marginal differences, Grad-CAM visual-
izations indicated that removing DCAs shifted network activations more accurately onto
the skin lesions.

Non-uniform lighting conditions in skin lesion images can alter crucial regions, leading
to over- or under-lighting that negatively affects the performance of the model. Venu-
gopal et al. [70] proposed an automated illumination equalization method based on
a counter exponential transform (IECET) to address uneven lighting. Their findings
indicate that applying IECET improved segmentation accuracy across models such as
DTP-Net, DeepLabV3+, FCN, and U-Net. In another study, Afza et al. [2] developed
a hybrid contrast stretching technique to enhance contrast in skin lesion images from
the HAM10000 and ISIC 2018 datasets. They utilized NasNet for feature extraction,
followed by feature selection using whale optimization and entropy-mutual information.
The optimal features were fused using modified canonical correlation analysis and classi-
fied using an extreme learning machine. This automated deep learning-based framework
demonstrated high accuracy, outperforming other methods on the datasets used. Al-
shahrani et al. [6] applied several pre-processing techniques to the ISIC 2019 dataset,
including average filtering to reduce noise and smooth images. They also used contrast-
limited adaptive histogram equalization to enhance the edges of skin lesions, revealing
low-contrast areas. Their proposed Hybrid-CNN models achieved high accuracy in dis-
tinguishing skin cancers from other lesions.

Artifacts such as blood vessels, clinical markings, air bubbles, ruler marks, or size refer-
ence stickers are more challenging to remove due to their unpredictability and irregular
and discontinuous nature [77]. Segmentation can significantly enhance pre-processing
by isolating these artifacts from skin lesions, thereby improving classification accuracy
[74]. Nida et al. [47] used morphological operations to remove hairs, blood vessels, and
clinical marks from skin lesion images, further enhancing them with an unsharp filter.
They trained a region-based CNN to localize melanoma-affected regions, which were
then segmented using fuzzy C-means. This method demonstrated superior segmentation
results compared to other techniques. Furthermore, Zafar et al. [78] proposed an au-
tomated skin lesion segmentation method combining U-Net and ResNet architectures,
called Res-Unet. They addressed poor contrast issues through resizing and normaliza-
tion and removed hairs using morphological operations, subsequently inpainting them
with neighboring pixel values. The model, trained on the ISIC 2017 dataset and evalu-
ated on the ISIC 2017 and PH2 test sets, achieved results comparable to state-of-the-art
techniques at the time.
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2.5 Residual Neural Network

ResNets, introduced by He et al. [26] in 2015, are CNN architectures designed to address
the vanishing gradient problem by incorporating residual blocks. The vanishing gradient
problem occurs during the training of deep neural networks when the gradients used to
update the weights during backpropagation become very small. This makes it difficult for
the network to learn new features from the training data, leading to poor performance. A
residual block shown in Figure 2.3 is a combination of convolutional layers and a shortcut
connection that performs identity mapping by directly adding the input of the block to
its output. This shortcut connection allows the gradients to skip one or more layers,
which helps to maintain stronger gradient signals as they propagate backward through
the network [26].

identity

weight layer

weight layer

relu

relu

x

x

F + x

F x))

x))
Figure 2.3: Residual Block with a shortcut connection (from He et al. [26] p. 2).

The ability of ResNet to train very deep networks effectively has made it a popular choice
for a variety of applications, including image classification tasks such as autism detection
in magnetic resonance imaging brain images [29], pneumonia detection in chest X-ray
images [62], and colorectal cancer detection in colon gland images [58].

However, one common challenge in such tasks, particularly in specialized domains such
as medical imaging, is the limited availability of labeled images. This lack of labeled
data poses a significant hurdle for training robust skin lesion classification models [21].
One effective solution to this problem is the use of transfer learning. Transfer learning
addresses this issue by leveraging models pre-trained on tasks within a related domain as
a starting point for training models on similar tasks within the target domain, thereby
improving learning performance, preventing overfitting, and reducing the amount of re-
quired labeled data in the target domain [12, 61, 79]. In transfer learning [12, 40], the
head (fully connected layers) of a pre-trained model is often replaced with new layers.
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Initially, the body (feature extractor) of the model is typically frozen, meaning that its
weights are not updated during the training of the new head to better capture lower-level
features in the new dataset learned from training on large datasets, such as ImageNet
[17]. Another method related to transfer learning is fine-tuning [12, 40], where some or
all layers of the body are unfrozen and trained further on the new dataset using lower
learning rates. This step allows the pre-trained layers to adapt more closely to the new
data to enhance the performance of the model without disrupting the previously learned
features [12].

2.6 Effect of Image Resolutions in Medical Imaging

Training deep learning models with high-resolution images is more time-consuming and
computationally demanding compared to using lower-resolution images [38, 39, 55]. How-
ever, reducing the resolution can lead to the loss of crucial medically relevant information,
which can adversely affect the classification accuracy of deep learning models [38, 39, 55]
and potentially have serious health implications for patients [67]. Thus, it is essential
to find a balance between the optimal resolution for training deep learning models and
achieving the best possible classification performance.

Sabottke and Spieler [55] studied the performance differences at various resolutions of
chest X-ray images from the NIH ChestX-ray14 dataset [73], ranging from 32×32 to 600×
600 pixels. They utilized pre-trained ResNet-34 and DenseNet-121 architectures from
ImageNet. The highest AUROC scores for binary classification of different classes were
observed at resolutions between 256×256 and 448×448 pixels. It was also found that some
classes benefited more from higher image resolution than others, especially for classes that
appeared more scattered in the images, as important information was lost by downscaling.
Similarly, Thambawita et al. [67] analyzed the performance of pre-trained ResNet and
DenseNet architectures on endoscopy images with different resolutions, ranging from 32×
32 to 512×512 pixels, using the HyperKvasir dataset [8]. Results showed that increasing
image resolution correlates with an increase in the Matthews Correlation Coefficient for
all resolutions, with the highest score achieved at 512×512 pixels. The authors concluded
that image resolution has a clear influence on the performance of deep learning models
in the classification of endoscopy images. Tang et al. [66] investigated the effects of
different image resolutions on ultrasound breast images collected from two hospitals,
using MobileNet and DenseNet-121 architectures with resolutions ranging from 64 × 64
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to 512 × 512 pixels. MobileNet achieved the highest AUROC score with a confidence
interval of 95% at a resolution of 320 × 320 pixels, while DenseNet-121 achieved the
highest AUROC at 448 × 448 pixels. Their results showed a high correlation between
changes in image resolution and breast cancer diagnosis accuracy in ultrasound breast
images.

According to Mahbod et al. [38, 39], there is an open question in the field of skin le-
sion classification regarding the optimal resizing factor for fine-tuning pre-trained CNNs,
as downsampling may lead to a loss of useful medical information. In their study [38],
they examined the effect of different image resolutions in skin lesion classification using
pre-trained and fine-tuned EfficientNet and SeResNeXt architectures, with resolutions
ranging from 224× 224 to 450× 450 pixels on the ISIC 2016–2018 datasets. They used
cropping and resizing strategies to resize the images to the corresponding sizes. For
non-square images, the remaining image space was zero-padded for the resizing strategy,
and for the cropping strategy, the images were randomly cropped. The results showed
that the cropping strategy performed better at all resolutions. Additionally, Efficient-
NetB0 achieved the highest Balanced Multi-Class Accuracy (BMCA) at 240×240 pixels,
while EfficientNetB1 achieved the highest BMCA at 224×224 pixels, and SeResNeXt-50
achieved the highest BMCA at 380×380 pixels. Furthermore, they proposed a Multiscale
Multi-CNN (MSM-CNN) fusion approach based on a three-level model ensemble strat-
egy, which combined EfficientNetB0, EfficientNetB1, and SeResNeXt-50 architectures
trained on cropped images at resolutions from 224× 224 to 450× 450 pixels. Their pro-
posed MSM-CNN fusion approach outperformed all single models at all resolutions. The
authors confirmed that image resolution affects skin lesion classification performance. Al-
though outside the scope of their study, they conducted additional experiments on smaller
resolutions of 32×32, 64×64, and 128×128 pixels, with results showing that decreasing
resolution correlates with worse performance in terms of BMCA, indicating information
loss at those smaller scales. In another study, Mahbod et al. [39] investigated the clas-
sification performance of fine-tuned and pre-trained ResNet and DenseNet architectures
on different image resolutions of skin lesions, including malignant melanomas and sebor-
rheic keratosis, ranging from 64× 64 to 768× 768 pixels on the ISIC 2016–2017 datasets.
The results showed that models trained on images with resolutions of 64 × 64 pixels
performed significantly worse than those trained on resolutions of 128 × 128 pixels and
above. Furthermore, larger images correlated with better AUROC scores, although the
performance increase was only slight. Consequently, the researchers concluded that an
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increase in image resolution is correlated with enhanced classification outcomes, whereas
downscaling results in the loss of information, as demonstrated in another study [38].

2.7 Research Question

Building on the findings of Mahbod et al. [38, 39], it is evident that image resolution and
aspect ratio are critical factors in medical image classification. However, in their study
[39], Mahbod et al. did not maintain the aspect ratio of non-square images, which could
theoretically result in a loss of medically relevant details due to distortions by downscal-
ing, potentially influencing the classification rate of the deep learning models. In another
study, Mahbod et al. [38] applied zero padding to non-square images before downscaling
them, thereby avoiding distortions. In addition to the zero padding resizing strategy,
they also used a random cropping strategy. However, after observing that the cropping
strategy yielded better results in early experiments, they opted to use it for further model
training. This approach, while initially promising, can lead to an unintended emphasis
on non-lesion details or the cropping of relevant skin lesion information, ultimately affect-
ing classification performance and potentially leading to incorrect classification of skin
lesions.

While in their study [38], Mahbod et al. investigated the effects of resolutions from
224× 224 to 450× 450 pixels, taking the aspect ratio into account, they suggested that
further research on the effect of image sizes on larger scales can be conducted. Similarly,
in another study [39], Mahbod et al. examined resolutions ranging from 64 × 64 to
768 × 768 pixels, however without maintaining the aspect ratio. This leaves a gap in
understanding the effects of maintaining the aspect ratio for resolutions above 450× 450

pixels.

Therefore, this study seeks to address this gap by investigating the following research
question:

How does maintaining the aspect ratio in high-resolution images (above 450× 450

pixels) affect the classification performance of deep learning models in the detection
of skin lesions?

To examine the research question, experiments are conducted by fine-tuning pre-trained
ImageNet deep learning models based on the ResNet architecture [26] on three different
image resolutions: 300× 225, 450× 338, and 600× 450 pixels. These models are trained
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on a derived version of the ISIC 2019 dataset. Prior to investigating the effects of
different image resolutions, experiments are conducted to determine the most effective
augmentation method for training residual neural networks on the dataset, providing a
more robust foundation for understanding the effect of image resolution.
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This chapter outlines the methodologies employed in preparing the dataset, pre-processing
the images, creating the subsets for the experiments, data augmentation methods and
techniques, and designing the model architecture. Furthermore, the chapter outlines the
methodology employed in conducting the experiments, which are designed to determine
the most effective augmentation method and address the research question regarding
the effect of different image resolutions on the classification rate of skin lesion models.
The ISIC 2019 challenge dataset is utilized and revised for this purpose. Throughout this
study, these experiments will be referred to as E1 for the data augmentation experiments
and E2 for the image resolution experiments.

Section 3.1 presents the derived dataset utilized in this study, its class distribution, and
the division into training, validation, and test sets. Furthermore, Section 3.2 outlines
the various pre-processing steps necessary to reduce the existing artifacts in the dataset
to improve the performance of the models in the experiments. The data augmentation
pipeline applied to the training sets is presented in Section 3.3. Section 3.4 presents the
model architecture, which is trained in all experiments using transfer learning and fine-
tuning techniques. Finally, Section 3.5 provides a detailed description of the experimental
procedures and the specific training procedures and hyperparameters for the experiments
E1 and E2.

3.1 Dataset Summary

In Section 3.1.1, the revised dataset used in this study, along with the class distribution,
is discussed. Section 3.1.2 provides further details on the splitting of the dataset into
training, validation, and test sets for the experiments.
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3.1.1 Derived Dataset

As previously stated in Section 2.1, the ISIC 2019 dataset exhibits a high imbalance in
the number of instances per class. To eliminate any potential bias towards the majority
class and to ensure a more balanced experimental setup, the dataset is revised to ensure
a more balanced distribution of classes. Specifically, the classes AK, SCC, VASC, and
DF are being removed due to their significantly lower representation compared to the
classes MEL, NV, BCC, and BKL (see Table 3.1). Additionally, the class NV is randomly
downsampled to half its original size, reducing it from 12,875 to 6,437 samples, to achieve
a more balanced representation among the classes, while no resampling is applied to the
remaining classes. The derived dataset used in this study comprises a total of 16,906
images, as shown in Table 3.1.

Class NV MEL BCC BKL AK SCC VASC DF Total

ISIC Dataset 12,875 4,522 3,323 2,624 867 628 253 239 25,331
Ratio % 50.83 17.85 13.12 10.36 3.42 2.48 1.00 0.94 100%

Derived Dataset 6,437 4,522 3,323 2,624 - - - - 16,906
Ratio % 38.08 26.75 19.66 15.52 - - - - 100%

Table 3.1: Class distribution and ratio of the ISIC 2019 dataset and the subset used in
this study.

3.1.2 Dataset Splitting

At the time of writing, the ISIC has only released the test set for the 2019 challenge,
lacking corresponding ground truth data. Additionally, no validation set is currently
available. Consequently, the derived dataset (see Table 3.1) is split into training, vali-
dation, and test sets using a stratified train–validation–test split (70%/15%/15%) (see
Table 3.2). Stratified splitting ensures that each target class is represented in proportions
similar to those of the complete dataset. Both experiments E1 and E2 will utilize the
stratified sets shown in Table 3.2 as a baseline for training.
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Class NV MEL BCC BKL Total

Training Set 4,506 3,165 2,326 1,837 11,834
Ratio % 38.08 26.74 19.66 15.52 100%

Validation Set 966 678 498 394 2,536
Ratio % 38.09 26.74 19.64 15.54 100%

Test Set 965 679 499 393 2,536
Ratio % 38.05 26.77 19.68 15.50 100%

Table 3.2: Class distribution and ratio of the stratified training, validation, and test sets
of the derived dataset.

3.2 Image Pre-processing

Images with various artifacts, including DCAs (see Figure 3.1a), clinical markings (see
Figure 3.1b), circular size reference stickers (see Figure 3.1c), and physical rulers (see
Figure 3.1d), are present in the ISIC 2019 dataset. These artifacts do not provide relevant
information for skin lesion classification, especially DCAs, which can negatively impact
the performance of CNNs [63]. Therefore, it is necessary to pre-process these images
to minimize the effects of these artifacts during the training, validation, and testing of
CNNs. The pre-processing of the DCAs in this study follows a similar approach to that
described by Gessert et al. [22].

(a) (b) (c) (d)

Figure 3.1: Various image artifacts present in the ISIC 2019 dataset: (a) Presence of
a DCA, (b) presence of a clinical marking, (c) presence of a circular size
reference sticker, and (d) presence of a ruler.

The phenomenon of DCAs is a consequence of vignetting, a characteristic that occurs
when using tubular lenses in dermatoscopes [51]. This results in images exhibiting a
relatively large proportion of black pixels, which must be removed to retain only the skin
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lesion. Accordingly, any images with a proportion of black pixels in the decimal RGB
value range of 0 to 30, exceeding 15% of the total image area, will be automatically
identified and marked for further pre-processing. In total, 2,323 images were identified
as having DCAs. Following a manual review, 12 images were incorrectly identified,
and 48 additional images were found that could not be identified by the black portion
approach because they had only a small DCA or the intensity of the DCA was outside
the threshold.

To remove most of the DCA area, it is necessary to identify the minimum enclosing
rectangle around the circular skin lesions. For this purpose, a binary mask (see Figure
3.4c) is calculated for each image to obtain the circular skin lesion area. The images are
first converted to grayscale, and a global threshold of 25 is applied to each pixel. If the
pixel intensity falls below the threshold, it is set to 0 (representing black); otherwise, it
is set to 1 (representing white). Subsequently, the resulting binary images (see Figure
3.4b) are morphologically modified. Morphological transformations modify the structure
of an input image through the application of a structuring element (SE), which is defined
as an n×m matrix, where n and m are integers. The SE superimposes the pixels over the
input image, moving from left to right and top to bottom. The value of the central pixel
superimposed by the SE is updated to either 0 or 1 based on the SE and the neighboring
pixel values.

Following the application of the thresholding technique, the region enclosed by the circle
may exhibit the presence of black pixel clusters or noise (see Figure 3.4b). These elements
must be eliminated in order to facilitate the subsequent identification of the minimum
enclosing rectangle surrounding the white circle. To remove these areas, a dilation op-
eration (see Figure 3.2) is performed using a 27 × 27 SE to expand the white regions.
Dilation [71] is a morphological operation defined as

A⊕B =
⋃
b∈B

Ab, (3.1)

that expands the boundaries of the foreground object in an image by setting the central
pixel to 1 if at least one pixel under the SE is 1. However, small black noises may remain
after dilation. To address this, a closing operation, which is dilation followed by erosion
with a 9 × 9 SE, is applied to remove black noise within the circular area. Closing [71]
is defined as

A •B = (A⊕B)⊖B. (3.2)
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Figure 3.2: Effect of dilation using a 3× 3 square structuring element.
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Figure 3.3: Effect of erosion using a 3× 3 square structuring element.

Erosion [71] (see Figure 3.3) shrinks the boundaries of the foreground object and sets the
central pixel to 0 if at least one pixel under the SE is 0. Erosion is defined as

A⊖B =
⋂
b∈B

A−b. (3.3)

Subsequently, an opening operation, which is erosion followed by dilation using a 12×12

SE, is performed to remove white noise outside the circular area. Opening [71] is defined
as

A ◦B = (A⊖B)⊕B. (3.4)

The binary mask (see Figure 3.4c) is then used to determine the minimum enclosing
rectangle around the boundaries of the circular shape. The circular shape can be lo-
cated by applying the Ramer–Douglas–Peucker contour approximation algorithm from
the Open Source Computer Vision Library (OpenCV) library1. The outermost contours

1https://opencv.org/ (Accessed 05/18/24)
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obtained from this contour approximation are then used to calculate the minimum en-
closing rectangle encompassing the circular shape (see Figure 3.4d). The coordinates of
this rectangle are subsequently applied to the DCA to extract the skin lesion, as shown
in Figure 3.4e.

(a) (b) (c) (d) (e)

Figure 3.4: Pre-processing steps to remove DCAs from images in the derived dataset.
(a) Original image, (b) binary mask after thresholding, (c) resulting binary
mask after thresholding and morphological operations, (d) minimum enclos-
ing rectangle around the circular shape, and (e) extraction of the skin lesion
based on the minimum enclosing rectangle coordinates of (d) applied to (a).

The identification and automatic removal of artifacts from Figures 3.1b to 3.1d presents
a more significant challenge due to the unpredictable locations of these artifacts. An
interesting feature of the ISIC 2019 dataset is that skin lesions are consistently located
at the center of the images, whereas artifacts tend to appear more frequently at the
boundaries. To minimize the potential interference of boundary artifacts, all images in
the training set were automatically center-cropped to 600× 450 pixels, which represents
the highest common resolution among the classes used in the derived dataset, as stated
in Section 2.1. Upon manual review, 382 images were found to contain skin lesions
extending beyond the cropped area. These images were subsequently manually cropped
and corrected to ensure the lesions were properly centered. After removing the artifacts
and cropping, three training subsets were created for the experiments E1 and E2, each
with different resolutions. The original 600× 450 pixel training images were downscaled
to 450 × 338 and 300 × 225 pixels, respectively, while preserving the original aspect
ratio. The downscaling process was performed using the implementation of the Lánczos
algorithm from the Pillow library2.

2https://python-pillow.org/ (Accessed 05/18/24)
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3.3 Data Augmentation

Data augmentation is used to increase the size and diversity of the data while reducing
overfitting and improving generalization performance [61]. In the experiments, both of-
fline and online data augmentation methods are employed. Offline augmentation involves
augmenting the images and adding them to the dataset prior to training. Conversely,
online augmentation is applied in real-time before each epoch during training.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Data augmentation techniques applied to the training sets. (a) Without
augmentation, (b) rotation transformation (+60◦), (c) flipping transforma-
tion (horizontal), (d) shearing transformation (+10◦), (e) shifting transfor-
mations (+10% width and height), (f) zooming transformation (+20%), and
(g) brightness and contrast adjustments (−20% brightness, +20% contrast).

The augmentation pipeline incorporates several techniques to enhance the dataset. Ini-
tially, images are without any augmentation (see Figure 3.5a). These images then un-
dergo random rotations within a range of ±180◦ (see Figure 3.5b). Additionally, they are
flipped horizontally and vertically with a probability of 50% (see Figure 3.5c). Shearing
along the x-axis is applied with an intensity of up to 0.2◦ (see Figure 3.5d). Images are
also shifted in width and height within a range of ±10% (see Figure 3.5e), and zooming
in is performed up to 20% (see Figure 3.5f). Furthermore, brightness and contrast are
adjusted within a range of ±20% (see Figure 3.5g).

Throughout these affine transformations, nearest-neighbor interpolation is used to fill any
empty areas with the nearest pixel values. All input images from the training, validation,
and test sets are rescaled to a range of [0, 1]. Since the models used in the experiments
are pre-trained on the ImageNet dataset, channel-wise normalization is performed using
the ImageNet mean and standard deviation values: mean µ = [0.485, 0.456, 0.406] and
standard deviation σ = [0.229, 0.224, 0.225]. This normalization helps improve training
convergence and facilitates more effective learning by aligning the features of the input
images with those used in the ImageNet dataset.
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3.4 Model Architecture

The models utilized in the experiments comprise two main components: the body and
the head (see Figure 3.6). The body is responsible for the extraction of features from
the input images and comprises convolutional and pooling layers. Convolutional layers
apply filters to the images to detect features such as edges, textures or shapes. Pooling
layers then reduce spatial dimensions while preserving important features. In conclusion,
the head is responsible for generating the final result based on the extracted features of
the body. This is achieved through the use of fully connected layers, which are followed
by an output layer corresponding to the number of classes.

Output

HeadBody

Input Convolution Pooling

Dense Layer

Figure 3.6: The standard CNN architecture comprises two main components: the body,
which comprises convolutional layers for feature extraction and pooling layers
for spatial reduction, and the head, which consists of dense layers for classifi-
cation and the output layer for generating predictions (adapted from Phung
and Rhee [52] p. 2).

The ResNet-50 architecture [26], which had been pre-trained on ImageNet, was chosen
as the base architecture for all experiments. Since the model weights were trained on
images with a resolution of 224× 224 pixels and do not accommodate other input sizes,
only the ResNet-50 body is used as a feature extractor, while the ResNet-50 head is
replaced by a modified variant to allow transfer learning on different image sizes.
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The modified head comprises a Global Average Pooling layer, which computes the aver-
age value of each feature map across its spatial dimensions. Followed by a Dense layer
comprising 1,024 neurons, which are activated by Rectified Linear Unit (ReLU). Addi-
tionally, L2 regularization with a regularization factor of 1.0 × 10−2 is used to prevent
overfitting [76] by penalizing large weights. The Batch Normalization layer then normal-
izes the activations of the previous layer. Furthermore, a Dropout layer with a probability
of p = 0.5 is then applied to prevent overfitting [65]. The final layer is a Dense layer
comprising four neurons and activated by the Softmax activation function. This function
transforms the output values into a probability distribution across four classes, ensuring
that the sum of the probabilities within the interval of [0, 1] is equal to 1. A detailed
overview of the complete modified head variant and body architecture is presented in
Table 3.3.

3.5 Training Procedure

The training procedures are divided into three subsections. The first subsection 3.5.1
outlines the general training procedure, including the hyperparameters used, which are
applied to both experiments. The second subsection 3.5.2 describes the specific procedure
for E1, which aims to determine the most effective augmentation method on the dataset
employed. The final subsection 3.5.3 presents the procedure for E2, which addresses the
central research question.

3.5.1 General Training Parameters

The model architecture outlined in Section 3.4 employs a batch size of 32. Initially,
transfer learning is utilized by freezing the body layers while the head is initialized with
He–Initialization [25] and trained for five epochs. Subsequently, the body layers are
unfrozen and fine-tuned for up to 60 additional epochs. If the AUROC score and loss
do not improve for more than 15 consecutive epochs, early stopping is triggered. The
model with the highest AUROC score and the lowest loss achieved throughout the entire
training period is then saved. The selection of hyperparameters and their respective
values follows established standards and is influenced by prior studies [13, 37, 38, 60].
As a result, the Adam Optimizer was chosen with an initial learning rate of 1.0× 10−4,
a Beta 1 value of β1 = 0.90, and a Beta 2 value of β2 = 0.99. Furthermore, the learning
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Part Type Kernel
Size

Filter
Number

Output Size
Model A

Output Size
Model B

Output Size
Model C Times

B
O
D
Y

Conv 1 7× 7 64 300× 225× 64 225× 169× 64 150× 113× 64 1

Max
Pooling

3× 3 - 150× 113× 64 113× 85× 64 75× 57× 64 1

Conv 2 1× 1 64 150× 113× 64 113× 85× 64 75× 57× 64 3
3× 3 64 150× 113× 64 113× 85× 64 75× 57× 64
1× 1 256 150× 113× 256 113× 85× 256 75× 57× 256

Conv 3 1× 1 128 75× 57× 128 57× 43× 128 38× 29× 128 4
3× 3 128 75× 57× 128 57× 43× 128 38× 29× 128
1× 1 512 75× 57× 512 57× 43× 512 38× 29× 512

Conv 4 1× 1 256 38× 29× 256 29× 22× 256 19× 15× 256 6
3× 3 256 38× 29× 256 29× 22× 256 19× 15× 256
1× 1 1024 38× 29× 1024 29× 22× 1024 19× 15× 1024

Conv 5 1× 1 512 19× 15× 512 15× 11× 512 10× 8× 512 3
3× 3 512 19× 15× 512 15× 11× 512 10× 8× 512
1× 1 2048 19× 15× 2048 15× 11× 2048 10× 8× 2048

H
E
A
D

Global
Average
Pooling

- - 2048 2048 2048 1

Dense 1
ReLU, L2

- 1 1024 1024 1024 1

Batch
Norm

- 1 1024 1024 1024 1

Dropout - 1 1024 1024 1024 1

Dense 2
Softmax

- 1 4 4 4 1

Table 3.3: The ResNet-50 architectures used in the experiments, including the corre-
sponding output sizes after each layer (height × width × channels). Model
A with an input shape of (600 × 450 × 3), Model B with an input shape of
(450× 338× 3), and Model C with an input shape of (300× 225× 3).
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rate is reduced dynamically when no improvement is observed in either the AUROC score
or loss for a period of over five epochs by a reduction factor of 2.0× 10−1 until reaching
a minimum learning rate of 1.0× 10−6.

Depending on the augmentation method applied, distinct loss functions are employed.
For offline augmentation, the categorical cross-entropy loss function is utilized, while for
online augmentation, the categorical focal loss function proposed by Lin et al. [34] is
employed. Categorical cross-entropy calculates the loss based on the difference between
the predicted probability distribution and the true distribution for each sample, but it
does not consider the imbalance in the class distribution. The categorical cross-entropy
loss is defined as

CEL(y, ŷ) = −
N∑
i=1

yi log(ŷi), (3.5)

where yi is the true label of the class i, ŷi is the predicted probability of the class i, and
N is the number of classes.

Categorical focal loss addresses the imbalance in the training set by down-weighting the
loss contribution from the samples that are easy to classify and increasing the weight for
the hard samples. This focuses more on samples that are difficult to classify, which helps
in learning from minority classes and improving overall model performance. Categorical
focal loss is defined as

FL(y, ŷ) = −
N∑
i=1

αi(1− ŷi)
γyi log(ŷi), (3.6)

where αi is the weighting factor, which is defined as the inverse of the frequency of
class i, and (1− ŷi)

γ the modulating factor with the focusing parameter gamma γ = 2.
The focusing parameter was selected based on the results obtained in the experiments
reported by Lin et al. [34], which yielded the best results.

Across all experiments, to maintain consistency, the same architectures shown in Table 3.3
are employed, with consistent hyperparameters, augmentation pipeline, and seeds used
for all sub-experiments to introduce controlled randomness and variability. This approach
ensures that changes in the AUROC scores in E1 are dependent on the augmentation
method, while for E2 the changes are attributable to the variation in image resolutions,
with all evaluations performed on the test set.
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The experiments are all conducted using NVIDIA Quadro P6000 24GB GPUs, provided
by the Creative Space for Technical Innovations (CSTI)3 as part of this study. Addition-
ally, the models are implemented using the deep learning API Keras4 3.0 on top of the
TensorFlow5 framework version 2.15 and CUDA6 12.2.

3.5.2 Data Augmentation Experiment

E1 is comprised of two sub-experiments, with a total of 20 trained models. Each sub-
experiment employs the training subset with an image resolution of 600× 450 pixels and
the pre-trained Model A (see Table 3.3). In the first sub-experiment, ten models are
trained on ten distinct offline augmented training sets. Each training set is balanced to
maintain a class distribution of 4,506 images per class, which corresponds to the number
of images in the majority class NV. The second sub-experiment utilizes online augmented
training sets with the same distinct seeds during the training of the ten models.

3.5.3 Image Resolution Experiment

E2 is comprised of three sub-experiments, with a total of 75 trained models. The method
of augmentation to be employed for training the models will depend on the outcome of
E1. This will either be offline augmentation or online augmentation. In both scenarios,
the pre-trained models Model A, Model B, and Model C (see Table 3.3) will be employed.
Each training subset, corresponding to the input shape of models with resolutions of 600×
450, 450× 338, and 300× 225 pixels, will be augmented with the same 25 distinct seeds,
resulting in 25 trained models in total for each resolution. For the offline augmentation,
the sets will be balanced to the same distribution of 4,506 images per class as in E1.

3https://csti.haw-hamburg.de/ (Accessed 05/18/24)
4https://keras.io/ (Accessed 05/19/24)
5https://tensorflow.org/ (Accessed 05/22/24)
6https://developer.nvidia.com/cuda-toolkit (Accessed 05/22/24)
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4 Evaluation

This chapter presents an evaluation of the two experiments carried out. The performance
of the individual models is evaluated using the AUROC score, which is calculated using
the ISIC challenge scoring repository1.

In both experiments, models achieving the lowest training loss and highest AUROC score
are selected. For empirical evaluation, all models are evaluated on the test dataset from
Section 3.1.2. The mean and one standard deviation of AUROC scores are calculated for
each model group, and results are visualized in graphs.

Initially, in Section 4.1, the results of the experiments E1 and E2 are presented. Finally,
Section 4.2 discusses the results obtained from the experiments. First, the relationship
between the AUROC score and the augmentation methods employed in E1 is analyzed
to determine the most suitable method for the selected dataset. Furthermore, the effects
of image resolution on the classification rate of the AUROC score are examined. Here,
the models are augmented using the method that proved more effective in the preceding
experiment.

4.1 Results

The following Section 4.1.1 presents the results of the experiment E1 regarding data
augmentation. The results of the image resolution experiment E2 are presented in Section
4.1.2.

1https://github.com/ImageMarkup/isic-challenge-scoring/tree/master (Accessed
06/01/24)
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4 Evaluation

4.1.1 Data Augmentation Experiments

This section presents the results of E1. In both sub-experiments, a total of 20 distinct
models were trained on the same 10 seeds, each based on the model architecture of Model
C. The graphs in Figures 4.1a to 4.1d show that at a resolution of 600×450 pixels, online
augmentation achieved higher AUROC scores compared to offline augmentation across
all classes. In the NV and BCC classes, the mean difference ∆ between offline and
online augmentation was ∆NV = 0.0167 and ∆BCC = 0.0144, respectively, while in
the BKL and MEL classes, the difference was notably larger at ∆BKL = 0.0281 and
∆MEL = 0.0409. Furthermore, the variability of AUROC scores, as indicated by the
standard deviation, was smaller for all classes using online augmentation compared to
offline augmentation. Notably, in the NV, BCC, and BKL classes, the variability of
the AUROC scores was clearly reduced when employing online augmentation. In the
MEL class, despite the largest mean difference, the variability also decreased compared
to offline augmentation.

4.1.2 Image Resolution Experiments

This section presents the results of E2, where a total of 75 models were trained using
online augmentation at resolutions of 600× 450, 450× 338, and 300× 225 pixels across
three sub-experiments. These models were based on the architectures of Models A to C
(see Table 3.3) and utilized the same 25 seeds for consistency. Graphs in Figures 4.2a
to 4.2d illustrate a positive correlation between resolution and AUROC scores. Across
all classes, the highest resolution 600 × 450 pixels yielded the highest mean AUROC
scores, while the lowest resolution 300 × 225 pixels resulted in the lowest mean scores.
The intermediate resolution of 450× 338 pixels produced mean scores that fell between
these two extremes. The smallest differences in mean AUROC scores between the lowest
resolution of 300× 225 pixels and the highest resolution of 600× 450 pixels in one class
were observed in the BCC and NV classes, with ∆BCC = 0.0091 and ∆NV = 0.0124.
Conversely, the MEL and BKL classes exhibited larger differences, with ∆MEL = 0.0202

and ∆BKL = 0.0285. Additionally, the variability in AUROC scores, as measured by
one standard deviation, was small and decreased with higher resolution in the BCC and
NV classes. In contrast, the classes MEL and BKL, showed a more pronounced initial
spread that also decreased with increasing resolution.
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Figure 4.1: Mean AUROC scores and their standard deviations (±1 SD) at 600 × 450
pixels, obtained using both offline and online augmentation methods across
10 models each. (a) Class NV, (b) class MEL, (c) class BCC, and (d) class
BKL.
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Figure 4.2: Mean AUROC scores and their standard deviations (±1 SD) at 300 × 225,
450 × 338, and 600 × 450 pixels, across 25 models per resolution. (a) Class
NV, (b) class MEL, (c) class BCC, and (d) class BKL.
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4.2 Discussion

E1 evaluated the effects of online versus offline data augmentation on the performance of
models trained on the Model C (see Table 3.3) architecture at a resolution of 600× 450

pixels. A total of 20 distinct models were trained across two sub-experiments, with 10
models in each sub-experiment. In both sub-experiments, the same set of 10 different
seeds was used, ensuring the robustness of the results through repeated trials. The
performance metric utilized was the AUROC metric, evaluated across four classes of skin
lesions: NV, BCC, BKL, and MEL.

The results of E1, presented in Figures 4.1a to 4.1d, clearly demonstrate the superior per-
formance of online data augmentation compared to offline augmentation. Online augmen-
tation consistently yielded higher mean AUROC scores across all classes. For instance,
the mean differences between offline and online augmentation were ∆NV = 0.0167 and
∆BCC = 0.0144 for the NV and BCC classes, respectively. The BKL and MEL classes
exhibited even more substantial improvements, with mean differences of ∆BKL = 0.0281

and ∆MEL = 0.0409, respectively. This indicates a particularly strong effect of online
augmentation on enhancing performance in these classes. Furthermore, the analysis of
the variability provided significant insights. The variability was significantly lower for all
classes with online augmentation compared to offline augmentation. The NV, BCC, and
BKL classes all demonstrated reduced variability with online augmentation. Notably,
even the MEL class, despite exhibiting a larger mean improvement, experienced less
variability with online augmentation compared to offline augmentation. These findings
demonstrate the effectiveness of online augmentation in enhancing the performance and
robustness of classification models by reducing variability across different classes. The
greater variations in the augmented data provided by online augmentation likely facil-
itate model generalization, enabling the capture of nuanced inter-class similarities and
intra-class variation features of skin lesions, thereby improving classification accuracy
and consistency.

E2 investigated the effect of image resolution at 600 × 450, 450 × 338, and 300 × 225

pixels on model performance in the classification of skin lesions. Based on the results of
E1, where online augmentation achieved better results than offline augmentation, online
augmentation was used in this experiment. A total of 75 models, based on the architec-
tures of Models A to C (see Table 3.3), were trained at these three different resolutions.
The same 25 seeds were used for each resolution experiment to ensure consistency.
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The results, presented in Figures 4.2a to 4.2d, reveal a clear and strong positive corre-
lation between image resolution and AUROC scores. The highest resolution (600× 450

pixels) consistently produced the highest mean AUROC scores across all classes of skin
lesions. In contrast, the lowest resolution (300× 225 pixels) resulted in the lowest mean
scores, with the intermediate resolution (450× 338 pixels) yielding mean scores between
these two extremes. The magnitude of the difference in mean AUROC scores between
the highest and lowest resolutions varied by class. The smallest differences were ob-
served in the BCC and NV classes, with ∆BCC = 0.0091 and ∆NV = 0.0124. Con-
versely, the MEL and BKL classes exhibited larger differences, with ∆MEL = 0.0202

and ∆BKL = 0.0285, further emphasizing the resolution-dependence of model perfor-
mance. Moreover, the variability in AUROC scores decreased with increasing resolution
for all classes. The BCC and NV classes showed relatively small initial variability, which
further diminished at higher resolutions. In contrast, the MEL and BKL classes had
larger initial spreads in AUROC scores, but these also reduced as resolution increased.

From a medical perspective, these results highlight the significance of using high-resolution
images in achieving both higher performance and reduced variability in the automated
diagnosis of skin lesions. This is particularly important for MEL and BKL, where higher-
resolution images significantly improve diagnostic performance, potentially leading to
better patient outcomes through early and accurate detection. The observed decline in
performance in relation to image resolution is likely to be a consequence of information
loss resulting from downscaling. This process makes it more challenging for the models
to distinguish between various skin lesions as the inter-class similarity and intra-class
variation similarity features become more pronounced. Another factor that can influence
the results is the model architecture and depth, as well as the choice of hyperparameters
and the loss function used. These factors can affect the ability of deep learning models
to differentiate between classes and handle variations in image quality and resolution.

One limitation of this study is that the effects of image resolution were only examined
for images with a maximum resolution of 600 × 450 pixels. This was due to the fact
that the dataset comprised images of varying resolutions, with a resolution of 600× 450

pixels being the highest common resolution among the classes used. Additionally, the
dataset exhibited a significant class imbalance. As a result, classes with fewer than 1,000
images were excluded to achieve a more balanced dataset and to prevent the models from
being biased towards the majority classes. Another limitation is the use of pre-trained
models based on ImageNet. As these models were trained on natural images and did not
include domain-specific medical features, this may have affected their performance and
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generalizability. Furthermore, the exploration of additional advanced data augmentation
techniques, such as GANs or alternative pre-processing techniques, could potentially en-
hance the performance and robustness of the models. Moreover, this study employed
hyperparameters that adhered to established standards. However, optimizing hyperpa-
rameters could potentially result in a significant performance improvement. Techniques
such as grid search, random search, and Bayesian optimization offer effective methods
for fine-tuning parameters, including learning rate, batch size, and layer configurations.
A systematic exploration of these parameters may identify optimal settings, potentially
resulting in substantial performance improvements.
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This thesis investigated the effects of image resolution and data augmentation on the clas-
sification performance of skin lesions using deep learning models. The primary objective
was to address the research gap identified by Mahbod et al. [38] regarding the optimal
cropping or scaling factor for images at resolutions of 450× 450 pixels and above, while
maintaining the aspect ratio. Extensive experiments were conducted on a revised version
of the ISIC 2019 dataset to identify the most effective data augmentation method, aiming
to enhance the performance in subsequent experiments focused on image resolution. The
ResNet-50 architecture, pre-trained on ImageNet, was utilized for all experiments.

The results indicated that online augmentation significantly outperforms offline augmen-
tation in enhancing model performance across all classes at a resolution of 600 × 450

pixels. This method not only improved the generalization of the deep learning mod-
els but also enhanced their robustness by reducing the variability across all classes of
skin lesions. Maintaining aspect ratios in skin lesion images at resolutions of 300× 225,
450×338, and 600×450 pixels demonstrated a strong positive correlation with improved
classification performance and reduced variability, as reflected in consistently higher and
more closely clustered AUROC scores across all classes. This underscores the critical
importance of detailed image information for accurate classification. Notably, the classes
MEL and BKL exhibited the most significant improvements with higher resolutions, sug-
gesting that these classes benefit the most from detailed image information. Conversely,
lower resolutions exhibited decreased performance in all classes, aligning with previous
findings by Mahbod et al. [38] on resolutions such as 32 × 32, 64 × 64, and 128 × 128

pixels, where diminished BMCA scores were observed due to information loss.

Future research could explore several avenues to enhance the classification accuracy of
skin lesion images. First, investigating higher image resolutions exceeding 600×450 pixels
while carefully maintaining the aspect ratio could provide more detailed information
for the models. Additionally, addressing the limitations mentioned in this study, future
experiments should include classes that were previously excluded due to a limited number
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of images. This can be achieved through upsampling techniques, which may significantly
affect performance by providing a more balanced dataset. Another promising area is the
generation of synthetic images using GANs or diffusion models. It would be beneficial to
assess how these synthetic images impact classification accuracy when mixed with existing
data or used as replacements, both at the current and higher resolutions. Moreover,
using models pre-trained on datasets specifically tailored to skin lesions instead of relying
solely on ImageNet weights could enhance transfer learning outcomes. Models trained
on skin lesion datasets are likely to learn more relevant and beneficial representations for
dermatology-related tasks, potentially leading to better performance. Finally, it is crucial
to examine the relationship between image resolution and classification accuracy relative
to the computational cost of training these models. This consideration is particularly
important for the future integration of these technologies into medical workflows, where
both efficiency and ethical considerations related to patient health must be taken into
account.
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