Bachelorthesis
Lucas Jenf3

Automated meeting scheduling using
multi-agent technology

Fakultat Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Lucas Jenf3

Automated meeting scheduling using
multi-agent technology

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung

im Studiengang Angewandte Informatik

am Department Informatik

der Fakultat Technik und Informatik

der Hochschule fir Angewandte Wissenschaften Hamburg

Betreuender Prifer : Prof. Dr. rer. nat. Kai von Luck
Zweitgutachter : Prof. Dr. Gunter Klemke

Erstellt am 27.12.2012

Lucas JenB

Thema der Bachelorthesis

Automatisiertes Meeting-Scheduling unter Verwendung von Multi-
Agent Technologie

Stichworte

Multi-Agenten, Meeting Scheduling, Companion-Technologie,
Blroautomatisierung

Kurzzusammenfassung

Diese Arbeit beschaftigt sich mit dem Design eines verteilten Multi-Agenten-
Systems, welches in der Lage ist, eigenstandig Meetings mehrere Teilnehmer
zu planen. Zu diesem Zweck wird zuerst der aktuelle Stand der Forschung
untersucht. AnschlieBBend wird der Vorgang des Planens von Meetings ana-
lysiert um die Anforderungen zu extrahieren, auf welchen das System ba-
sieren soll. Nachfolgend wird eine Architektur fir ein solches System, sowie
ein Kommunikationsprotokoll fir die Agenten, erarbeitet, mit dem Fokus auf
Flexibilitdt der Modifikation des Agentenverhaltens. Schlussendlich wird eine
"proof-of-concept” Implementation vorgestellt, welche Anhand von Beispiel-
szenarien evaluiert wird.

Lucas JenB
Title of the thesis

Automated meeting scheduling using multi-agent technology

Keywords

multi-agent, meeting scheduling, companion technology, office automation

Abstract

This thesis deals with the complexities of designing a distributed multi-agent
system capable of autonomously scheduling meetings for multiple partici-
pants. To this end, the current state of research is first examined. Subse-
quently, the problem of meeting scheduling is analyzed in order to extract the
requirements on which the scheduling system shall be based. After that, an
architecture for such a system is devised, along with a communication proto-
col for the scheduling agents, focussing on the flexibility to easily modify the
agent’s behavior. Finally, a proof of concept implementation of the architec-
ture is presented and evaluated in example scheduling scenarios.

Contents

1

Introduction

2 Literature Review

3 Analysis

3.1 Meetingscheduling.
3.2 Communication centered meeting scheduling
3.3 Requirementsanalysis L.
3.3.1 Stakeholders
3.32 Terminology
3.3.3 Information necessary for scheduling.
3.3.4 Schedulingprocess,
3.3.5 Schedulingconflicts
3.3.6 Schedulingfairness,
3.4 Existingtechniques.
3.4.1 Centralized techniques
3.4.2 Distributedapproach
3.5 Conlusion e

Design

4.1 Agent Communication Layer
4.1.1 AgentDirectory Service,
4.1.2 Service Directory Service
41.3 Messagetransport
4.1.4 Agent Communication Language (ACL)

42 Agents.
421 Personalagent
422 Meetingagent

4.3 Meeting scheduling protocol
4.3.1 Initiationphaseo
4.3.2 Finding and reserving a meetingtimeslot
4.3.3 Possible concurrencyissues

4.4 Timeslotselection
4.41 Satisfaction data evaluation

Contents 6
4.5 Conclusion 48

5 Implementation and Evaluation 49
51 Environment 49
5.2 Implementationapproach 49
5.3 Importantimplementationdetails 52
5.4 Evaluation. 53
5.4.1 Single participant scenario 53

5.4.2 Fourparticipantsscenario 56

5.4.3 Four participants scenario - variations 60

5.5 Conclusion 61

6 Conclusion 62
Bibliography 65
Glossary 69
List of figures 70
List of listings 4
List of tables 72

1 Introduction

The notion of computer systems that assist the user in tedious everyday tasks grows
more important every day in today’s fast moving domestic and professional life, and
its importance is well reflected in the computer science research community. Yorik
Wilks, an important contributor in the field, has extensively researched the key so-
cial, psychological, ethical and design issues that arise when admitting “Artificial
Companions” into our society. Artifical companion systems are cognitive techni-
cal systems, which fully adapt their functionality to the abilities, preferences and
requirements of their user. As such, a companion system should be capable of au-
tonomously providing a reliable service, cooperating with the user where necessary.
In 2009 the University of Ulm, the Otto-von-Guericke University in Magdeburg as
well as the Leibniz-Institute for Neurobiology, inspired by the work of Wilks, founded
the special research field “transregio 62”, which focuses on the field of companion
technology and has resulted in more than 350 publication to date. (SFB Transregio
62, 2012).

When speaking of tedious everyday responsibilities, one might reach out to the
task of meeting scheduling as an example. For every group effort that is to be
performed, meetings need to be held in order to divide effort into smaller assign-
ments, distribute them across group members and later to synchronize the group’s
progress. Complex tasks or deep organizational hierarchies might even require
several division steps until the individual can begin its work. From these observa-
tions as well as case studies covering the subject (e.g. Romano and Nunamaker
(2001)), one can deduce that meetings are very commonly held in today’s working
environments, and thus many meetings need to be scheduled.

Meeting scheduling has received a large amount of attention from researchers in
the past, and most of the systems that have been developed are based on the idea
of autonomous entities that, by collaborating with each other, are capable of solving
certain tasks. These entities are often called agents and their concept is very similar
to the one of companion systems. Systems of multiple agents are often used for
this kind of negotiation problem, because the abstraction of an agent representing
a person’s calendar and preferences is very close to the way humans communicate
and negotiate when scheduling a meeting.

1 Introduction 8

In the course of this thesis, a multi-agent system capable of autonomously schedul-
ing meetings will be devised, based on the requirements that will be gathered while
analyzing the task of meeting scheduling. The focus will lie on the system’s design,
with the goal of providing a flexible foundation architecture which future research
can be based upon.

Outline

In Chapter 2 an overview of existing research on the topic of multi-agent meeting
scheduling is given, positioning this thesis within the context of previous work.

Chapter 3 then analyzes the task of meeting scheduling based on a scenario ex-
tracted from previous research. The scenario analysis is performed to better under-
stand the complexities of meeting scheduling and thus, in Section 3.3, be able to
extract the requirements for a computer system capable of automatically scheduling
meetings, which are then summarized in Section 3.5.

On the basis of these requirements, a multi-agent meeting scheduling system is de-
signed in Chapter 4. In this chapter, the agent communication layer serving as the
foundation for the system is described in Section 4.1, followed by an explication of
the agents that the communication layer accommodates (Section 4.2). The chapter
is concluded by an explanation of the devised meeting scheduling protocol used by
the agents (Section 4.3), as well as an exemplary technique on the evaluation of
multiple meeting time proposals (i.e. which meeting time proposal is best suited for
all participants) in Section 4.4.

The multi-agent system designed in Chapter 4 is implemented as a prototype in
Chapter 5, giving a short overview of the implementation environment (implemen-
tation language, employed frameworks, etc. [Section 5.1]) and the development ap-
proach (Section 5.2). Subsequently, the prototype implementation will be evaluated
by means of the requirements gathered in Chapter 3, focusing on the confirmation
of the design’s hypothetical flexibility established in the previous chapter.

A summary of the conducted work and its results is presented in Chapter 6, along
with future prospects and ideas on how the devised system architecture might be
enhanced to overcome current limitations and make it easier adaptable to future
requirements.

2 Literature Review

In his book “Society of Mind”, Minsky (1988) uses the term “agent” not to refer
to a certain component of a computer system, but to a more abstract notion of
a “mindless” process (when observed individually) that, when interconnected with
many other such processes, forms an intelligent entity or “a mind” which is able
to perform complex tasks. Consequently, in a computer system context, a (Multi-)
Agent System can be seen “as a loosely coupled network of problem solvers agents
(section 4.2) that work together to solve problems that are beyond the individual
capabilities or knowledge of each problem solver”. (Jennings et al., 1998)

Meeting scheduling, that is, the activity of finding an appropiate time for a meeting,
often with many participants, is a problem that requires the collaboration of many
different entities in order to be successful. As such, its automation is a good exam-
ple of how the inherent complexity of a problem can be distributed accross several
problem solvers, thus simplifying the task each problem solver has to solve. The re-
search field of automated meeting scheduling is large and many contributions have
been made over the years. According to a survey by Kincaid et al. (1985), basic
electronic calendars became widely available in business environments sometime
between 1982 and 1985. Said survey also indicates that even then, the inclusion
of an automated meeting scheduling system was a feature that users desired in
the context of an electronic calendar system. This is unsurprising, given the fact
that managers and executive staff spent close to 50% of their time in meetings (Te-
ger, 1983; Mintzberg, 1973), and those meetings need to be scheduled, which is a
very time consuming task when done manually (i.e. face-to-face, by telephone or
by email), and the complexity of finding a mutually satisfactory time rises with the
number of participants (Crawford and Veloso, 2005b).

Early automated scheduling systems include the Amoeba Diary System introduced
by Johansen and Anshus (1988), which is not fully distributed however, “since it
contains a so-called ‘global-module’ which acts as a centralized scheduling man-
ager” (Mattern and Sturm, 1989). Another early representative is the Eden Shared
Calendar System presented by Holman and Almes (1985) which is part of The
Eden Project, an experiment in designing, building and using distributed computing
systems. Because of the experimental nature of the project, the developed calen-
dar system was mainly intended to evaluate the Eden system’s hospitability though

2 Literature Review 10

(Black, 1986). Mattern and Sturm (1989) are arguably the first to implement a fully
distributed appointment scheduling system based on the notion of agents commu-
nicating solely through message passing, where every agent in the system belongs
to a specific user and manages its user’s private calendar and preferences. The
developed prototype is said to be able to automatically schedule and re-schedule
meetings using several different heuristics, none of which, unfortunately, are ex-
plained in detail. However, the mentioned heuristics are all based on the user’s
preferences, underlining the importance of knowing them in order to achieve a sat-
isfactory scheduling result. Since then, the importance of knowing and improving
the understanding of user preferences has been acknowledged by many sources
(Oh and Smith, 2004; Crawford and Veloso, 2005a,b; Chun et al., 2003), which
exclusively focus on the best way of learning and using the user’s preferences to
achieve optimal scheduling results.

As previously mentioned, early sources on the subject of meeting scheduling focus
more on the distributed nature of the problem, paying almost no attention to the
heuristics and algorithms involved in the scheduling process. Later works focus
more on these formerly overlooked areas: Bui et al. (1995) formalize the problem
of meeting scheduling, presenting an incremental negotiation scheme and process
in the context of an agent-oriented application. In their approach, attributes are
grouped hierarchically and are then negotiated in a top-down fashion. For exam-
ple the part of a week might be scheduled first (early or late), then the exact day,
morning or afternoon and finally the exact meeting time. Chun et al. (2003) take a
different approach denoted “relaxation”, in which the agents gradually “relax” their
preferences (therefore widening the search) until a mutually acceptable solution is
found.

However, few of the aforementioned sources give any insight into their meeting
scheduler’s system design, only exposing the predominant system features without
giving an architectural overview of what has been designed and implemented.

In this thesis, a slightly different approach is taken. Based on the selection and
combination of existing techniques, an overall multi-agent meeting scheduling sys-
tem design is developed, focusing on flexibility to accomodate different scheduling
techniques such as heuristics and preference estimation methods.

3 Analysis

During the course of this thesis, a multi-agent system capable of automated meet-
ing scheduling will be designed and subsequently evaluated by means of a proto-
type implementation. The system’s design will have a strong focus on behavioral
flexibility, meaning that core modules implementing the agents’ behaviors will be
independently replaceable, thus resulting in a design that is both apt for further re-
search and implementations destined for the end-user. As a multi-agent system, it
will be capable of carrying out its functionality in a distributed manner without the
requirement of any centralized entity. For such a system to be devised, the common
approach to meeting scheduling, as it is carried out without the aid of automated
systems, must be analyzed, with the objective of gathering the main requirements
for successful automated meeting scheduling.

The presented meeting scheduling approach on which this analysis is based, is an
aggregation of many published works on the subject of meeting scheduling?, and
as such it is considered the common-sense meeting scheduling scenario for the
purpose of this thesis on which all further effort is based.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL’, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL’ in all
following sections of this thesis are to be interpreted as described in RFC 2119.
(Bradner, 1997)

'The difficulty in citing concrete sources for the aggregation lies in the fact that much of the in-
formation presented is only implicitly contained in the published works, and much of it has been
conceived by cross-referencing works of different authors in the course of the creation of this the-
sis. Influential works include Crawford and Veloso (2005c); Chun et al. (2003); Bui et al. (1995).
It should also be noted that every source that has influenced the following analysis in any way is
cited in the bibliography section of this thesis.

3 Analysis 12

3.1 Meeting scheduling

When a meeting needs to be held, commonly a single person is assigned to invite
all other people who are to come to the meeting (meeting invitees) and, in the end,
to choose a time for the meeting to be held. This person is called the “meeting
initiator”, who usually is a meeting invitee himself, or acts on behalf of one (e.g. a
personal assistant or a team leader).

The meeting initiator is assumed to be aware of the constraints that have to be sat-
isfied for the meeting to be successful, especially personal (i.e. which invitees have
to attend the meeting) and time contraints (e.g. when is the latest possible time for
the meeting to be held or when is the latest possible time at which a decision must
have been reached). The difficulty for the meeting initiator now lies in the selection
of a proper time for the meeting, so that at least all required invitees are able to
attend, and at best all invitees are satisified with the time that’s been decided.

If the meeting to be planned lies sufficiently far in the future or if its importance
is high enough so that the meeting initiator can assume that the invitees will re-
schedule meetings which collide with the one being scheduled, he can simply
choose a fixed time for the meeting and communicate it to all invitees. This tech-
nigue is commonly used for large meetings, e.g. talks and conferences. Given that
there is no distributed effort involved in finding a feasible time using this approach,
it is not further discussed here.

In this thesis, the typical approach for meetings that involve the need for a con-
sensus on the decided meeting time is referred to as the communication centered
approach, given that the meeting initiator “manually” communicates with all invitees
in order to find a suitable meeting time.

3 Analysis 13

3.2 Communication centered meeting scheduling

In the communication centered meeting scheduling approach, the initiator first
chooses an initial time proposal, based on the constraints of the meeting and his
own preference, of which he believes that it has a high probability of being accepted
by the meeting invitees. He also checks whether or not all invitees actually want to
attend the meeting in question, and discards those from the scheduling process
who do not. All invitees that have explicitly stated their interest in attending a given
meeting are regarded as “meeting participants”.

The initiator now inquires if the proposed time satisfies the participants. If it does
not, the initiator may ask for any number of counter-proposals in order to select
a new proposal. If all participants are satisfied, the meeting scheduling process
was successful. If one or more participants rejected the proposal, a new one must
be chosen, based on the information that the meeting initiator has acquired so far.
It is important to note that very often the response of a participant regarding its
satisfaction for a proposal won’'t be “I am free” or “I am not free”, but something
more vague, for example: “I could make it if need be, but | would really prefer
another time”. Such a response is very difficult to represent in a formal manner due
to the fact that the rationale behind the statement is unbeknownst to the initiator.
Thusly, if several such responses are given by different participants, comparison
between them poses a problem.

After a viable time for the meeting has been found and all participants have been
notified, it is possible that the circumstances surrounding the meeting change, mak-
ing it necessary to re-schedule or, if no alternative time can be found, cancel the
meeting entirely. Re-scheduling a meeting is no different from the original schedul-
ing process, except for the consideration of the information that has already been
collected in the previous scheduling iteration.

The communication centered approach to meeting scheduling often requires sev-
eral rounds of negotiation with all participants in order to reach a consensus (Chun
et al., 2003), and as such can be very time consuming when done manually.

3 Analysis 14

3.3 Requirements analysis

In this section the previously described meeting scheduling approach is analyzed,
extracting from it the requirements for a software system capable of automatically
scheduling meetings.

3.3.1 Stakeholders

Meeting initiator The meeting initiator is the person in charge of scheduling a
meeting. He has to be able to start a new meeting scheduling process, sup-
plying the information available to him (see “3.3.6 Information necessary for
scheduling”). He must be able to rely on the correct functionality of the sys-
tem. Otherwise, the resulting meeting times would have to be checked with
every participant, which would lessen the system’s benefit. The initiator may
also be a meeting participant.

Meeting invitee A meeting invitee is a person invited to a meeting who has not yet
stated if he wants to follow that invitation or not. At the very least, it must be
possible for him to state whether or not he wants to attend the meeting.

Meeting participant After stating the intention to attend a meeting, an invitee is
considered to be a meeting participant. Every meeting participant’s interests
must be represented by the system in order to achieve a fair meeting schedul-
ing result (see also “3.3.6 Scheduling fairness”). The participants rely on the
system’s impartiality, except for the participants’ priorities set by the meeting
initiator. They also rely on the system’s correctness, especially in the sense
that the system must never falsely assume a positive response for any pro-
posal, because that would lead to meetings being scheduled at unfeasible
times.

3.3.2 Terminology

Meeting proposal A meeting proposal is sent to an invitee asking him to attend a
meeting at a proposed meeting time. It also has to contain additional informa-
tion about the meeting, such as “location” or “topic”, so that the recipient may
decide if he wants to attend the meeting or not.

Meeting counter-proposal The answer to a meeting proposal, in case the recipi-
ent of the latter is not able to attend the meeting at the proposed time. It must
contain an alternate date and time at which the sender would like the meeting

3 Analysis 15

to be held. It may contain additional proposals such as an alternate location
for the meeting.

3.3.3 Information necessary for scheduling

Participant priority The system must know about the attendance priority of ev-
ery participant, that is, how important the presence of a participant is for the
success of the meeting. The priority enables the meeting initiator to add the
notion of “bias” to the scheduling process, which, by itself and if implemented
correctly, should be impartial by default.

Participant calendar In order to decide whether or not a participant is free for a
given time, the system must have the means to query a participants avalil-
ability for any given time inside the time span in which the meeting is being
scheduled.

Participant preferences Each person has her own unique set of personal and
business priorities, preferences and constraints, which are usually much more
complex than “free/not free” (Chun et al., 2003), and much work has been
dedicated to devise approaches capable of learning a user’s preferences (Oh
and Smith, 2004; Crawford and Blum, 2009; Crawford and Veloso, 2005a).

It is therefore essential that the meeting scheduling system is aware of such
user preferences by being able to accommodate different, isolated preference
retrieval methods that can be easily replaced without modifying other parts of
the system. This will allow the the system to reach meeting time consensuses
that all participants are satisfied with, depending on the quality of the data
retrieved from the preferences module.

3.3.4 Scheduling process

A generic, non-optimized meeting scheduling process extracted from the scenario
is depicted in Figure 3.1.

In this process, the meeting initiator, after having gathered all information relevant
to the meeting, picks any meeting proposal. This proposal is then sent to an invitee
(the order in which invitees are selected is not relevant to the process). Said invi-
tee now evaluates the meeting proposal and decides to send one of the following
responses:

3 Analysis 16

¢ Arejection is sent in case the invitee does not want to attend the meeting. In
that case, that invitee is deleted from the list of invitees by the meeting initiator
and does not receive any more messages for the event being scheduled.

¢ A counter-proposal is sent in case the proposal can not be accepted, but
the invitee wishes to attend the meeting (she now is considered a meeting
participant). Given that the proposal that has been sent is now no longer
feasible, a new meeting proposal is picked by the meeting initiator (which
improves his proposal by the knowledge gained in the last scheduling “round”),
and the scheduling process is started over.

e An approval is sent, notifying the meeting initiator that the proposed meeting
time is viable for the participant.

If a counter-proposal is received, the process is started over, beginning with the
selection of a new proposal, based on the information that has been gathered in
previous iterations. After all participants have accepted a proposal, the meeting
time that was decided is communicated to all participants. In case the meeting
needs to be re-scheduled, the entire meeting scheduling process starts over.

3 Analysis

Meeting information

Schedule meeting

. Contains all information

H supplied by the meeting

H initiator, such as time

! constraints, invitee priority,
list of invitees, etc pp

Meeting initiator Meeting invitee

meeting
proposal

Pick meeting

14 iterative Invi N
| nvitees |
| Send rejection e et
| counter-proposal approval
| Propose meeting Meeting
| to invitee proposal
| |
| |
| Meeting
Remove invitee proposal
| rejection
| |
| |
Start anew with Update meeting |
updated information with Meeting
| information new knowledge counter-proposal
| |
| |
| |
IMED(ES Meeting proposal
| accepted '9 propo:
| proposal
|
\

All participants have accepted the
proposal, all other invitees have
been removed

Communicate decided

meeting time to all
participants

 Wait for meeting to be
\ held
Meeting needs re-scheduling

Meeting has been held

®

Figure 3.1: Scheduling process represented in UML activity diagram notation

3 Analysis 18

3.3.5 Scheduling conflicts

When scheduling a meeting, with increasing number of participants, the probability
that the intersection of free meeting slots of all participants will yield any result
decreases exponentially. As an example, the average time spent in meetings per
week in a high-technology coorporation by management level staff is 8.4 hours,
the average meeting duration being 60 minutes (Romano and Nunamaker, 2001).
Assuming a 40 hour week (i.e. 5 days of 8 hours), this accounts for 21% of their
total work time.

As an example, a meeting of one hour should be scheduled in the described envi-
ronment. Assuming that said meeting is the “last” meeting of the week to be sched-
uled, that is, statistically 7.4 hours (the total average of 8.4 hours minus the one
hour meeting) have already been scheduled, and further assuming that the meet-
ings that have already been scheduled are distributed evenly accross the week, the
probability of a free time slot being available to seven people (the average number
of meeting participants in said corporation) is about 24%, and only 5% for a larger
meeting of 14 participants, as described by the following function:

7.4h participants
Prreo(participants) = (1 _ 40_h)

L S O S
5 10 15 20

Figure 3.2: Plot of Pp..(participants) in [0, 20]

However, these probabilites completely disregard every other aspect (except for the
meetings) of the participants’ week schedules, such as their personal preferences,

3 Analysis 19

lunch breaks, regular work time, etc. Therefore it can be assumed that the actual
probability for finding a free meeting slot is much lower. As a result, in order to be
of any use in practice, the system must be able to handle scheduling conflicts, for
example by re-scheduling existing meetings or by discarding participants of lower
priority.

3.3.6 Scheduling fairness

The absence of any bias other than the one explicitly stated by the meeting initiator
through the invitee priority must be guaranteed by the system, because otherwise
the subset of participants who the system is biased against will be dissatisfied with
the scheduling result. However, in this context, fairness does not only refer to the
absence of bias, but also to the existence of a guarantee that the preferences of
every participant, weighted by its priority, will not be ignored by the scheduling sys-
tem. In other words, a “fair’ scheduling system will always honor the preferences of
every participant, even if that means that the overall scheduling result might be less
optimal. If an unfair result is explicitly desired, it can be achieved by adjusting the
priority of any given invitee to give him an advantage/disadvantage.

3 Analysis 20

3.4 Existing techniques

Meeting scheduling is a member of the class of resource scheduling problems that
is known to be computationally intractable, and hence requires heuristics to reduce
the computational effort (Sugumaran, 2011). The existing techniques can be di-
vided in two basic categories: centralized and distributed.

3.4.1 Centralized techniques

Centralized meeting scheduling techniques assume that all information necessary
for the meeting scheduling process is available in a central location, at which the
meeting scheduling will be executed.

An example of a centralized meeting scheduling system is the one developed by
Sugihara et al. (1989), which treats meeting scheduling as a timetable rearrange-
ment problem. Given a timetable of meetings as well as an additional meeting to
be scheduled, their system focuses on rearranging the timetable so that the num-
ber of persons who have to change their schedule is minimized. This approach,
however, completely disregards priorities for meetings and participants as well as
participant preferences. Sugumaran et al. (2003) devised a similar approach which
mainly differs in their use of the A*-Algorithm to find the best timetable rearrange-
ment solution.

In conclusion, centralized meeting scheduling systems require all data on meetings
and participants to be known to the system, which can be difficult to accomplish
because the data has to be kept in sync with the users’ calendars. It may also
be undesirable from a privacy point of view, because people might not be willing
to disclose their full calendars to a third party. On the other hand, the meeting
scheduling process in a centralized system requires no constant communication
between autonomous entities to gather the necessary data, and as such it has the
potential to deliver a much faster response.

3.4.2 Distributed approach

The vast majority of work published on meeting scheduling focuses on an approach
using autonomous agents to solve the scheduling problem. In this approach, the
users’ calendar and preferences are located at a location of their choice, together
with one or more autonomous agents which are in charge of communicating with
other such agents in order to schedule a meeting.

3 Analysis 21

A non-automatic system, i.e. one that aids the meeting scheduling process carried
out by the users rather than conducting it by itself, was developed by Biswas and
Bhonsle (1992) In their system, which is distributed in the sense that the negoti-
ation software instances are located on many different nodes, participants asyn-
chronously reply to meeting scheduling requests until a meeting consensus has
been found. Their work also addresses the question on how the meeting schedul-
ing process can be carried out despite inaccuraccies in users’ calendars and the
temporary inavailability of some of the system’s nodes.

Mattern and Sturm (1989) developed a truly distributed and automatic meeting
scheduling system based on the notion of agents, taking into account important
aspects of meeting scheduling such as conflict resolution and participant prefer-
ences. The resulting prototype system also featured a GUI resembling traditional
paper calendars in order to simplify use of the system. While their work often men-
tions meeting time proposal and conflict resolution heuristics, these are never ex-
plained. Bui et al. (1995) take the inverse approach, ommitting most of the details
on their meeting scheduling system itself while focusing on the formalization of the
scheduling problem as well as their scheduling heuristics.

In summary, distributed meeting scheduling has the advantage that the location of a
users’ information can be chosen by him and must not be synchronized with a cen-
tralized system, protecting the users’ privacy. The distributed nature also makes it
possible to implement a system that works despite the failure of single nodes, given
its absence of a single point of failure. As a result, however, distributed scheduling
systems require a large amount of communication between the distributed entities
in order to reach a meeting scheduling consensus. The reason why such a large
amount of the work on meeting scheduling uses multi-agent system is the fact that
it is very easy to represent the problem as it is carried out by humans, by replacing
them with autonomous agents, which results in an abstraction that is easily com-
prehensible.

3 Analysis 22

3.5 Conlusion

As the scenario analysis shows, meeting scheduling is a highly distributed process
in its nature, in the sense that much communication between different autonomous
entities is necessary in order for it to be successful when carried out manually. It
is important to note that, in the context of meeting scheduling, “successful” does
not mean “finding a viable time”, but “finding a satisfactory time for all participants”.
The problem with finding such a time is that it is difficult to estimate how satisfied
a user might be with a given proposal, making it necessary to have very detailed
information on the user’s preferences in order to really reach a satisfactory result.
Previous work on the subject has never focused on a flexible architecture for ac-
comodating different scheduling techniques, always resulting in very specialized
systems of which many have been developed in the past. Therefore, the aim of this
thesis is to provide a base multi-agent architecture and negotiation protocol to be
used when implementing future meeting scheduling systems, resulting in extensible
implementations that can be interfaced with one another. Said system must be able
to accomodate implementations which meet all of the following requirements:

The system must:

1. be architecturally based on the multi-agent paradigm

2. provide the meeting initiator with the means to trigger a new meeting schedul-
ing process, supplying the necessary data to the system

3. be able to schedule meetings for any number of participants, resolving
scheduling conflicts if necessary

4. provide the means to easily exchange the implementational units that define
the system’s scheduling behavior.

5. make it possible to exchange the methods of calendar data and user prefer-
ences retrieval

The scheduling protocol must:

1. cover the entire meeting scheduling process

2. not make any assumptions about the heuristics that are used to carry out the
scheduling process

4 Design

In this chapter, a system capable of multi-agent meeting scheduling based on the
requirements gathered in chapter 3 is devised, an overview of which can be ob-
served in Figure 4.1. It consists of three major components: the Agent Communi-
cation Layer, the Personal Agent and the Meeting Agent.

The Agent Communication Layer, which provides the living environment as well as
the basic language for the autonomous agents that will be in charge of scheduling
the meetings, is briefly explained in the first section, followed by an explication of
the personal- and meeting agents’ design. Lastly, the agent dialogues (i.e. the
meeting scheduling protocol) is described, laying the foundation for the prototype
implementation to be developed in the next chapter.

Participant PC

<<component>> E’
Calendar Software

)

ICalendarConnector

<<component>> El
PersonalAgent

o)

IServiceDirectoryService

Ne

<<component>> El

Meeting Initiator PC

<<component>> E’
Calendar Software

)

ICalendarConnector

<<component>> El <<component>>
PersonalAgent MeetingAgent

9 IServiceDirectoryService 9 IServiceDirectoryService

Agent Communication Layer

<<component>>
Agent Communication Layer

gl

Figure 4.1: UML deployment diagram of the scheduling system

4 Design 24

4.1 Agent Communication Layer

The agent communication layer is the foundation for agent discovery and commu-
nication throughout the meeting scheduling system, and is designed as a subset of
the FIPA Abstract Architecture, which aims to provide a standard for inter-operable
agent applications and systems (Foundation for Intelligent Physical Agents, 2002a,
p.3). It consists of four components as shown in Figure 4.2, and is capable of
providing the following answers for every agent it contains:

Who am 1? - Agent identity

Where am |? - Agent location

What am | capable of? - Agent capabilities

How do | communicate with others? - Agent communication

<<component>> E
Agent Communication Layer

<<component>> <<component>>
MessageTransport AgentDirectory
<<component>> @ <<component>>
ACL ServiceDirectory

Figure 4.2: Component view of the Agent Communication Layer

These components, which cover all of the questions mentioned above, will be ex-
plained briefly in this section. For an in-depth explanation of the components the
following FIPA specifications should be consulted:

e Abstract Architecture Specification (Foundation for Intelligent Physical Agents,
2002a)

e ACL Message Structure Specification (Foundation for Intelligent Physical
Agents, 2002b)

e Communicative Act Library Specification (Foundation for Intelligent Physical
Agents, 2002c)

© 0w 9 O o ks W N =

e e e
BWw N = O

Jun
ot

4 Design 25

4.1.1 Agent Directory Service

The agent directory service enables an agent to search for other agents it wishes
to interact with. Upon agent registration, an agent directory entry is created, which
must at least contain a globally uniqgue name and an agent locator for the agent. It
may also contain additional attributes that provide more information about an agent,
such as information about the capabilities or the type of an agent.

The agent locator consists of a set of transport descriptions, which in turn are made
up of a transport type and a transport address. Depending on what transports a
given agent supports, it can then choose through which transport to communicate
with an agent retrieved from the agent directory service. An example of an agent
directory entry can be observed in Listing 1.

Listing 1: Example of an agent directory entry in JSON representation

{

"agent-name": "public@x3ro.de",
"agent-locator": [
{
"transport-type": "akka.actor.Actor",
"transport-specific-address": "akka://my-system/user/public@x3ro.de"
}

1,

// The entry may contain additional descriptive attributes.
"agent-attributes": {

"agent-type": "personal-agent",

"rescheduling-support": "true"

4.1.2 Service Directory Service

The service directory service provides agents with the ability to discover other ser-
vices, such as the Message Transport Service and the Agent Directory Service.
An agent must bootstrap agent communication by means of the Service Directory
Service, which is therefore a mandatory parameter when creating a new agent.
Analogous to the agent directory, the service directory contains service directory
entries. An entry referencing an agent directory service is illustrated in Listing 2.

4 Design 26

Listing 2: Example of a service directory entry in JSON representation

1 {

2 "service-name": "dir-service-1",

3 "service-type": "org.fipa.standard.service.agent-directory-service",
4 "service-locator": [

5 {

6 "signature-type": "akka.actor.TypedActor",

7 "service-signature": "net.jenss.thesis.agent.AgentDirectory",
8 "transport-specific-address": "akka://agent-system/user/dir-service-1"
9 b
10]

11}

4.1.3 Message transport

The message transport is possibly the most complex part of the agent subsys-
tem, as it realizes the actual communication between the agents, and as such is in
charge of intricate tasks such as guaranteeing successful message transportation
as well as message validity. Given the inherent complexity of this module as well
as the wide range of implementations that are possible, the message transport will
not be further discussed, as such a digression would go beyond the scope of this
thesis. An abstract explanation of the message transport may consulted in Section
“4.5 - Agent Messages” of Foundation for Intelligent Physical Agents (2002a).

4 Design 27

4.1.4 Agent Communication Language (ACL)

The agent communication language provides the basic structure and vocabulary
for the language that the agents communicate with. FIPA defines a conversation
between two agents as a series of “communicative acts”, each identified by its “per-
formative” or type of the communicative act. The performative is the only mandatory
parameter that every communicative act must contain. The following optional pa-
rameters are also important for the purpose of this thesis:

e Content

e Sender and Receiver, in order to route the messages to the correct destination
and to know which agent gave the received answer.

e The Conversation-ld is used to differentiate responses belonging to multiple
meeting scheduling processes running in parallel.

The FIPA Communicative Act Library Specification (Foundation for Intelligent Physi-
cal Agents, 2002c) provides a number of generic, well defined performatives, a sub-
set of which is used in the meeting scheduling protocol. This subset is subsequently
presented along with a brief description on the semantics of the performatives.

Performative | Semantics

Accept The action of accepting a previously submitted proposal

Cancel The action of an agent informing another agent that the former
does not wish the latter to continue performing a given action

Confirm The sender agent informs the receiving agent that a previously
sent proposition or request is true

Disconfirm The sender agent informs the receiving agent that a previously
sent proposition or request is false

Failure The action of an agent informing another agent that an action or
request has failed

Inform The sender informs the receiver that a given proposition is true

Propose The act of submitting a proposal to another agent, proposing to
perform some action

Request The sender requests the receiver to perform an action

Table 4.1: FIPA ACL performatives used in this works’ meeting scheduling protocol

4 Design 28

These performatives form the foundation vocabulary for the meeting scheduling
protocol presented later in this chapter.

4.2 Agents

The agents within the meeting scheduling system are autonomous entities, which,
in communication with each other, are able to negotiate a meeting time for any given
meeting, as long as a possible time for such a meeting exists under consideration
of every agents’ owner preferences. The agents are divided into two types with
different reponsabilities: Meeting Agents and Personal Agents, the former be-
ing in charge of conducting the meeting scheduling process (thus being the active
component) whereas the latter must simply respond to questions that the meeting
agent asks. This division is based mainly on the work of Chun et al. (2003) as well
as other systems which feature a similar component division, such as Mattern and
Sturm (1989).

The reasons for this design decision are manifold. For one, the division allowed
a very cohesive design of both agents, resulting in a clean separation of meeting
scheduling (active) and informative (passive) functionality. The eventuating compo-
nents are smaller, thus easier to understand, modify and maintain.

An active component conducting the negotiation process is also necessary in order
to reduce the negotiation complexity. As an example of a negotiation process not
featuring such a component, one might imagine trying to schedule a meeting of
several participants by sending emails, without a single person managing the pro-
posals. The participants could first reach an agreement in groups of two, and then
propose their agreed time to a third participant, and so on. Such an approach, how-
ever, will lead to an incredibly large amount of emails being generated (and time
taken), given the fact that every scheduling conflict, of which there will be many
(Section 3.3.5 Scheduling conflicts), will result in the meeting scheduling process
beginning anew.

The central role of the meeting agent as the active component in charge of manag-
ing the scheduling process, inquiring information from all participants of the event
to be scheduled, can be seen as an analogy to the very similar meeting scheduling
approach by humans. This similarity allows the construction of a meeting schedul-
ing protocol that is also similar to the way humans interact when trying to find a time
for a meeting.

4 Design 29

4.2.1 Personal agent

This section covers the personal agent’s architecture. The personal agent acts as
a passive representative of a single user and could, for example, run as a service
on that user’s PC (thus the name “personal”). As such, it must have knowledge
of the user’s preferences and his current calendar, enabling it to initiate a meeting
scheduling process (triggered explicitly by the user) and to automatically respond
to meeting proposals and other requests sent by the meeting agent, acting as an
exclusively passive component. By only responding to specific meeting proposals
the user’s calendar data and preferences are kept as private as possible. The
personal agent is a passive component because it only responds to inquiries made
by the meeting agent, but never initiates a communication by itself. An architectural
overview of the personal agent can be seen in Figure 4.3.

The personal agent has two interfaces that connect it with its environment, the
IPersonalAgentConfiguration and the underlying agent system bootstrapped by
the IServiceDirectoryService.

Component configuration

The IPersonalAgentConfiguration interface allows configuration of all sub-
components inside the personal agent, hence providing the flexibility to config-
ure custom sub-component implementations without actually exposing them to
the environment of the personal agent. Since it should be possible to configure
all sub-components, those must implement a common configuration interface:
IConfiguration (Listing 3).

The IPersonalAgentConfiguration interface, in contrast to IConfiguration, al-
lows to address the component of which a configuration parameter should be set or
retrieved (as in Listing 4, which shows the target component mechanism using an
enumeration).

Design 30

<<component>> El
PersonalAgent System

<<component>> a <<component>> E
PreferencesConnector CalendarConnector
@ IPreferencesConnector @ ICalendarConnector
<<component>> E
CalendarAnalyzer

All components implement
IConfiguration, which is accessed O
by the ConfigurationManagement. \J
These connections are omitted for
the sake of clarity

ICalendarAnalyzer

<<component>> gl <<component>> gl
ConfigurationManagement NegotiationControl

éﬁ/ IPersonalAgentConfiguration O IServiceDirectoryService
—

(!
L

IPersonalAgentConfiguration f\ IServiceDirectoryService

Figure 4.3: Overview of the personal agent’s architecture

Listing 3: The IConfiguration Interface of the meeting scheduling system

1 trait IConfiguration {

© 0w N o oA W N

=
= O

12
13

Jk*

* Sets a configuration parameter tdentified by "name" to the given wvalue.
* Q@return FALSE on success, otherwise FALSE

*/

def set(name:String, value:String) :Boolean

J**

* Retrieve a configuration parameter identified by "mame".
* @return The value for the given parameter or

* None if no such parameter was set.

*/

def get(name:String):Option[String]

© 00 9 O o A W N =

4 Design 31

Listing 4: The IPersonalAgentConfiguration Interface of the Personal Agent System

object Component extends Enumeration {
type Component = Value
val NegotiationControl, CalendarAnalyzer, [...] = Value
}
trait IConfiguration {
def set(target:Component, name:String, value:String) :Boolean
def get(target:Component, name:String) :0ption[String]
3

Calendar Analyzer

The calendar analyzer component is responsible for supplying the NegotiationControl
with information about the user’s calendar and preferences. Therefore, all deci-
sions made by the NegotiationControl component should be solely based on its
configuration and the information received through the CalendarAnalyzer. Listing 5
shows the ICalendarAnalyzer interface, featuring methods to check if there is any
free slot for a meeting, get the best free slot available or rate a given time slot
according to the user’s preferences.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

4 Design 32

Listing 5: The ICalendarAnalyzer Interface of the Personal Agent System

trait ICalendarAnalyzer {
VAT
* Retrieves the best free timeslot for this meeting.
*/
def getBestFreeSlot(
m:Meeting,
priorityThreshold:Double
) :Option[MeetingTimeProposal]

/o *
* Checks whether or not there is _any_ time slot that fits the needs of the
* given meeting
*/

def hasFreeTimeSlot(m:Meeting, priorityThreshold:Double):Boolean

VELS
* Returns a rating for the given time slot according to the user’s calendar
* and preferences
*/
def rateTimeSlot(
m:Meeting,
mtp:MeetingTimeProposal,
priorityThreshold:Double
) :Double
}

The priorityThreshold parameter defines which meeting slots should be consid-
ered free even if there are meetings already scheduled, based on the priority of the
meeting (e.g. if threshold were 0.5, all meetings with a priority of [0.0,0.5] would
be considered free). This allows the personal agent to gradually “relax” its prior-
ity preference if no meeting time consensus can be found, at the cost of having
to re-schedule an already existing meeting. For example, if a meeting with prior-
ity 0.4 is to be scheduled, the personal agent could start by sending proposals for
time slots with no meetings scheduled (priorityThreshold = 0.0), and if none are
found, gradually increase the priorityThreshold parameter until a meeting to be
re-scheduled is found.

The components supplying information to the CalendarAnalyzer are connected via
the IPreferences- and ICalendarConnector interfaces. These are the most essen-
tial parts of the personal agent, given that they are the foundation for its reasoning
process about time slots, which ultimately decides when a meeting will be sched-
uled. Depending on the implementation of these components, only a few of the

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

4 Design 33

questions that may be answered implicitly by these interface through the satisfac-
tion values are:

¢ Do | already have a meeting scheduled here, and how important is it to me?
e Would I rather have a break at this time, instead of scheduling a meeting?

e What is my general preference for this time interval?

The ICalendarConnector interface (Listing 6) provides information about a user’s
calendar to the personal agent. It features a method to check whether or not the
user has meetings scheduled in a given time interval, and if so, retrieve their priori-
ties (priorityAt), and one to retrieve all possible time slots for of a given duration
in a given interval (slotsInInterval).

Listing 6: The ICalendarConnector Interface of the Personal Agent System

trait CalendarConnector {
VLS
* Returns the priorities of any meeting scheduled in the time range beginning
* at the "start" instant and lasting as long as "duration”. If multiple
* meetings are scheduled in the given interval, their priorities will be
* returned in chronologtcal order.

*/

def priorityAt(start:ReadableInstant, duration:ReadablePeriod):Option[List[Double]]

VLTS
* Retrieves all time slots in the given interval, and the priority of the event
* scheduled at the time slots, if any. The granularity parameter spectifies the
* steps in which slots are retrieved, for example with a granularity of 15
* minutes, a slot beginning at every full 15 minutes would be retrieved.
*/
def slotsInInterval(
interval:ReadableInterval,
slotLength:ReadablePeriod,
granularity:ReadablePeriod
) :SortedMap [ReadableInstant, Option[Double]]
}

The IPreferencesConnector interface enables the personal agent to retrieve addi-
tional satisfaction information for any given time frame, independently of the calen-
dar information. These preferences might be manually entered by the user (as in
Mattern and Sturm (1989)) or, for example, be retrieved from a neural network fed
with historical data on scheduled meetings as proposed by Lai et al. (2009). The
decoupling of the source of the preference information makes it easy to replace it,

N o o A W N

4 Design 34

or even add multiple such sources which could then be compared. The exact way
in which preferences are determined is, however, not a part of this thesis.

Listing 7: The IPreferencesConnector Interface of the Personal Agent System

trait IPreferencesConnector {
Jk*
* Retrieves the expected satisfaction for a meeting of length "duration”
* scheduled beginning at the instant "start".
*/
def getSatisfaction(start:ReadableInstant, duration:ReadablePeriod) :Double

4.2.2 Meeting agent

The meeting agent is the active component of the meeting scheduling architecture.
It is in charge of finding a satisfactory meeting time for a number of participants by
inquiring and evaluating information from the personal agents. For every meeting to
be scheduled, a new meeting agent is created by the personal agent of the meeting
initiator, passing it the necessary information to initiate the scheduling process. A
meeting agent only ever schedules a single meeting, but it is not destroyed until the
meeting has been actually held. This allows the meeting agent to monitor events
that might affect the meeting as well as re-schedule the meeting if need be (Chun
et al., 2003), which would be more complex if a new meeting agent would have to be
created, given that the existing one still holds all the information on the previously
completed scheduling process. An overview of the meeting agent’s architecture is
shown in Figure 4.4.

The meeting agent features the same configuration method as the personal
agent (4.2.1 Component configuration), except for the interface that con-
nects the configuration management component to the environment, which is
IMeetingAgentConfiguration. The connection to the multi-agent subsystem is
also the same as in the personal agent.

In order to explain the components and interfaces that make up the meeting agent,
some of the messages of the scheduling protocol need to be covered first, given that
they are used in the interfaces as well. These messages are MeetingTimeProposal,
MeetingTimeProposals as well as Meeting. The latter is an object that contains
all information about a certain meeting that is being scheduled (the exact struc-
ture is explained in 4.3 Meeting scheduling protocol). A MeetingTimeProposal is

4 Design 35

<<component>> @
MeetingAgent System

TimeSlotSelector DecisionMaker

<<component>> @ O) <<component>> @

ITimeSlotSelector

All components implement B O
IConfiguration, which is accessed by \J
the ConfigurationManagement. These ..
connections are omitted for the sake IDecisionMaker
of clarity
1
1
\
<<component>> E <<component>>
ConfigurationManagement SchedulingControl

@ IMeetingAgentConfiguration @
IServiceDirectoryService
1 1
LT L1
O IMeetingAgentConfiguration f \ IServiceDirectoryService

Figure 4.4: UML component diagram of the meeting agent system

made up of start and end date/time as well as a satisfaction value for the meet-
ing time proposal. Lastly, a MeetingTimeProposals message is simply a list of
MeetingTimeProposal objects.

There are also two structures used in the interfaces that are never sent as mes-
sages: The MeetingInformation object is comprised of all information that has
been received by the meeting agent since the beginning of the scheduling process
(as can be seen in Listing 8), and it is the basis for all decisions it makes.

The behavior of the meeting agent's communication component, the
SchedulingControl, is controlled by the DecisionMaker component. After ev-
ery scheduling iteration (i.e. after every participant’s personal agent has responded
to an inquiry), the SchedulingControl component asks the DecisionMaker to make
a decision on how the scheduling process should continue. Depending on the re-
turned Decision object, the SchedulingControl then takes the desired action. The
MeetingAgentState field of the Decision object defines the next desired action
and takes a value that identifies one of the SchedulingControl states shown in the

© 0 N O oA W N =

e s e
0 N o kA W N = O

1
2
3
4
5
6
7

4 Design 36

Listing 8: Structure of the Meetinglnformation object

type ProposalMap = Map[AgentDirectoryEntry, MeetingTimeProposals]
type Proposallist = List[MeetingTimeProposall
type Messagelist = List[CommunicativeAct]

class MeetingInformation(
meeting:Meeting,
messageHistory:MessageMap,
messagesSincelastDecision:MessageMap,

// The number of responses expected for the current scheduling iteration. This

// field ts necessary to see if a given iteration has been completed, as otherwise
// the meeting agent would always have to watt until the tteration timeout is reached
// until the next decision can be made.

expectedResponses:Int,

proposals:ProposalMap,

acceptedProposals:ProposallMap,

confirmedReservations:Map[ActorRef, List[Reservation]]

diagram in Figure 4.5. Along with the next step that the SchedulingControl should
take, the Decision object also contains the messages to be sent specifically to
one recipient (the addressed field) and to be broadcasted to all participants (the
broadcast field). The SchedulingControl will then send these messages, take the
designated state and, after completion, ask the DecisionMaker t0 make the next
decision. The DecisionMaker itself bases part of its decision on the data analy-
sis supplied by the TimeSlotSelector component, which tells the DecisionMaker
which of a given set of time slots is the most favorable. lts interface is comprised
of a single method selectBestTimeSlot which receives a set of proposals and
returns the best one (as can be observed in Listing 9).

Listing 9: The ITimeSlotSelector interface which controls selection of the best time slots

trait ITimeSlotSelector {
VLS
* Selects the best meeting time proposal (based on satisfaction ratings)
* of a set of proposals.
*/
def selectBestTimeSlot (proposals:ProposallMap) :MeetingTimeProposal
b

4 Design 37

T

Received | Timeout

Received / Timeout
Wait for ratings
Received / Timeout

Wai for meeting changes Wait for ReservationConfs finished
Wait for prioposals

s e 8

Meeting must be re-scheduled

Figure 4.5: Diagram of the states that the SchedulingControl component can take
after a decision has been made by the DecisionMaker

Listing 10: The IDecisionMaker interface that controls the SchedulingControl’s behavior

class Decision(

nextState:MeetingAgentState,
broadcast:0Option[CommunicativeAct],
addressed:0ption[Map[AgentDirectoryEntry, CommunicativeAct]]

trait IDecisionMaker {
VAL
* Evaluates the current state of meeting time proposals in order to decide what action
10 * should be taken next.
11 */
12 def evaluate(mi:MeetingInformation):Decision

13 }

1
2
3
4
5)
6
7
8
9

4 Design

38

4.3 Meeting scheduling protocol

In this section, a generalized distributed meeting scheduling process is depicted,
based on the FIPA Communicative Acts described in 4.1.4 Agent Communication
Language (ACL). The messages being sent by the agents are defined and sub-
sequently put into context of the scheduling process carried out by the “Initiator
Agent” (1A), the “Meeting Agent” (MA) and the “Participant Agent” (PA) as illustrated

1.2: Confirm(Reservation)

Finding a meeting time

Reservation of the meeting time

in Figure 4.6.

Initiator Meeting Participant
Agent Agent Agent
I I I
| | |
: 1: Request(Meeting) : :
|_|_| 1.1: Inform(Meeting) :

|

|

| alt

I — 1.2: Cancel(Meeting)

I < — — —]
|

|

| R _
|

: 1.3: Propose(MeetingTimeProposals)

| < _________________________
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Figure 4.6: Overview of the meeting scheduling process

4.3.1 Initiation phase

The meeting scheduling process is initiated with a Request (Meeting) message be-
ing sent by the IA to the MA and is structured as shown in Listing 11.

The UUID' is expected to be unique within the universe of scheduled meetings

Universally Unique Identifier: An identifier that has a unique value within some defined universe.

© 00 9 O o A W N =

[
(=}

4 Design 39

Listing 11: A Meeting object must contain all information necessary to schedule a meeting

Meeting(
uuid:String,
duration:Duration,
whenToSchedule: Interval,
priority:Double,
participants:List[AgentDirectoryEntry],
metadata:Map[String, Any],
initialProposals:List[MeetingTimeProposall],
timezone:DateTimeZone

by the system, so that any meeting scheduling request may be uniquely identified.
A Meeting request must contain information on the duration of the meeting to be
scheduled (e.g. 2 hours), the time interval in which the meeting shall take place
(e.g. between 2012-12-01 and 2013-01-15) and the priority given to the meeting
by the owner of the IA, ranging from 0.0 (lowest) to 1.0 (highest). It must also
hold a map of participants invited, mapping each to their respective attendance
priorities.

Additionally, the IA may submit a list of initial MeetingProposals that should
be proposed to the invitees before any proposal generated by the MA. Fi-
nally, it may contain meta-information on the meeting stored in the metadata
field. However, there is no guarantee that the MA or the PA will recognize
or abide by any meta-information submitted. An example of metadata supplied
iS Map ("number-of-proposals" — 4), whose semantics could be that every PA
should respond with four meeting proposals when prompted.

The MA then informs all PAs of the upcoming meeting scheduling process, which
the PAs either “Cancel”, discarding them from the process, or accept, by responding
with a list of at least one of their most favorable time proposals for the meeting at
hand (note that there is no definition on how many time proposals must be sent,
this is decided by every agent individually).

All PAs either cancelling or accepting a meeting scheduling request concludes the
initiation phase.

4.3.2 Finding and reserving a meeting time slot

After successful initiation, the MA (in collaboration with all PAs) tries to find a mutu-
ally acceptable time slot to schedule the meeting, as shown in Figure 4.7.

4 Design 40

One run of the meeting time search process is exemplified in the following conver-
sation between Alice, representing the Meeting Agent, as well as Bob and Carol,
representing two Invitee Agents. For the purpose of this example it is assumed that
Alice speaks directly to Bob and Carol, that is, only the addressed person is able to
hear what Alice says and only Alice is able to hear their responses.

(01) Alice: Bob and Carol, would you like to meet on Monday at 19:007

(02) Bob : No, I can’t make it on Monday, but I could make it on Tuesday at 18:00.
(03) Carol: Yes, I could make it on Monday at 19:00.

(04) Alice: Carol, how about Tuesday at 18:007

(05) Carol: Tuesday at 18:00 would be okay.

(06) Alice: Bob and Carol, would you like to meet on Tuesday at 18:007

(07) Bob : Yes, I could make it on Tuesday at 18:00.

(08) Carol: Yes, I could make it on Tuesday at 18:00.

(09) Alice: Bob and Carol, please reserve Tuesday at 18:00 for the meeting.
(10) Bob : I’ve reserved Tuesday at 18:00.

(11) Carol: I’ve reserved Tuesday at 18:00.

(12) Alice: Bob and Carol, the meeting is scheduled for Tuesday at 18:00.

That conversation is equivalent to the following messages being sent from the MA
(Alice) to the PAs (Bob and Carol) and back:

| Sender | Recipient | Message

1 | Alice Bob, Carol | Propose(MeetingTimeProposal)

2 | Bob Alice Propose(MeetingTimeProposal)

3 | Carol Alice Accept(MeetingTimeProposal)

4 | Alice Carol Request(MeetingTimeProposalRating)
5 | Carol Alice Inform(MeetingTimeProposalRating)
6 | Alice Bob, Carol | Propose(MeetingTimeProposal)

7 | Bob Alice Accept(MeetingTimeProposal)

8 | Carol Alice Accept(MeetingTimeProposal)

9 | Alice Bob, Carol | Request(Reservation)

10 | Bob Alice Confirm(Reservation)

11 | Carol Alice Confirm(Reservation)

12 | Alice Bob, Carol | Confirm(Reservation)

Table 4.2: Example of meeting scheduling message sequence

4 Design 41

The time slot search begins with the MA selecting a MeetingTimeProposal (see
Listing 12 for a structural view of the mentioned messages) to propose to all PAs.
If all PAs accept the proposal, the reservation process is initiated, otherwise the
PAs respond with a list of counterproposals. After a response from all PAs has
been received by the MA, the newly acquired data is evaluated. While evaluating,
the MA might need additional data that it can request from specific PAs by sending
Request (MeetingTimeProposals) Or Request (MeetingTimeProposalRating) mes-
sages. After the evaluation, the MA selects a new proposal which is then once again
proposed to all PAs. This process is repeated until either all PAs have accepted the
proposal or no more meeting proposals remain.

After a proposal has been accepted by all PAs, a three-way handshake reserva-
tion is carried out in order to assure that a time slot is not accidentally assigned
to multiple meetings. The MA sends a Request (Reservation) messages to all
PAs, which reply either with a Confirm(Reservation) in case the time slot is still
available and not reserverd, or a Disconfirm(Reservation) otherwise. If all PAs
confirm the reservation, the MA then broadcasts a Confirm(Reservation) mes-
sage itself, giving final confirmation over the meeting time and thus concluding the
meeting scheduling process. The reservation process is additionally depicted in
Figure 4.8.

Listing 12: Structure of the messages sent in the time slot search process

class MeetingTimeProposal(
begin:ReadableDateTime,
end:ReadableDateTime,
satisfaction:Double

)

class MeetingTimeProposals(
meeting:Meeting,
proposals:List[MeetingTimeProposal]
)

// The rating message does not contatin additional information, and thus only
// exists to distinguish between proposal and rating request.
class MeetingTimeProposalRating(

proposal:MeetingTimeProposal

)

case class Reservation(
meeting:Meeting,
proposal:MeetingTimeProposal,
reservedUntil:ReadableDateTime

4 Design

42

1: Propose(MeetingTimeProposal) |

[Meeting time proposal is accepted]

2: Accept(MeetingTimeProposal)

[
R e e e P R]
| [Meeting time proposal is not accepted]
|
|
|

3: Propose(MeetingTimeProposals)

4: EvaluateProposals

|

|

|

|
4.1: Request(MeetingTimeProposalRating) >4Ii

4.2: Inform(MeetingTimeProposalRating)
__________________________ I
|
|

4.3: Request(MeetingTimeProposals)

4.3.1: Inform(MeetingTimeProposals) i
|
|
|

5: Propose(MeetingTimeProposal) I

. g
|

|

Figure 4.7: UML sequence diagram of the meeting time search protocol

4 Design 43

Meeting Participant
Agent Agent

Assuming a valid proposal has already been found, i.e. a
Accept(MeetingProposal) has been sent from the Invitee Agent
to the Meeting Agent

1: Request(Reservation) I

[Time slot could not be reserved]

|
|
1
o)
i
|

A th!s point, thg 2: Disconfirm(Reservation)
meeting agent tries €

tofindanew F----
proposal

[Time slot can be reserved]

The reservation is
B 3: Confirm(Reservation)

now confirmedand | | 1. 3Confirm(Reservation) |
the Invitee Agent will |---- -

not allow another |
meeting to be }
I
|

scheduled in the

——t—

-
until "reservedUntil" Reservation is repeated for all invitees. Depending on the
is reached ¢ reservation outcome, the following alternatives are possible

reserved time slot]

Q0
-

[All reservations were successful]

4: Confirm(Reservation)

E______

Scheduling process completed successfully

[At least one reservation failed]

5: Cancel(Reservation)

R W — \ — — — —

[y

Figure 4.8: UML sequence diagram of the meeting time slot reservation process

4 Design 44

4.3.3 Possible concurrency issues

By performing a three-way handshake when reserving the meeting time slot after a
meeting proposal has been confirmed, the scheduling protocol makes sure that no
two meetings are accidentally scheduled for the same time. When multiple meet-
ing scheduling processes led by different meeting agents are performed in parallel
however, this might lead to competitive behavior between multiple agents, which
can result in non-optimal solutions or no solution at all being found by the agents.
For the purpose of this thesis and the prototype implementation, it will be assumed
that only a single meeting scheduling process will run for every time interval. Given
that this is not a solution to the problem, subsequent work based on this thesis
might concern itself with the extension of the existing technique allowing an arbi-
trary number meetings to be scheduled for any given time interval, for example by
enabling the meeting agents to communicate among one another in order to coor-
dinate parallel meeting scheduling process.

4 Design 45

4.4 Time slot selection

In order to provide a meeting scheduling result that satisfies all attendees, an ap-
proach for determining overall user (de-)satisfaction will be devised in this section.
This technique is specifcally designed as an example of how data might be evalu-
ated in a multi-agent meeting scheduling system, specifically the TimeSlotSelector
component of the meeting agent, and does not aspire to be a unique contribution,
given that similar topics have been extensively covered in both the field of math-
ematics and computer science (non-linear optimization, dynamic programming,
etc.)

As an example, the satisfaction data on four time slots given by three users’ per-
sonal agents (as shown in Table 4.3) will be examined. The satisfaction data that
would serve as input to the subsequently devised technique is a result of the rea-
soning process of the personal agents as it is covered in 4.2.1 Calendar Analyzer.

Slot 1 | Slot2 | Slot 3 | Slot 4
User1 | 1.0 0.0 0.1 0.3
User2 | 0.7 095 |0.05 |05
User 3 | 0.1 0.0 0.2 0.6

Table 4.3: Satisfaction data to be examined
The satisfaction values in the cells shown in Table 4.3 lie in the interval [0, 1] and
have the following semantics:
e 1.0 — very satisfied with the proposal
¢ 0.5 — indifferent

e 0.0 — very unsatisfied with the proposal

To demonstrate how the different techniques affect the selection outcome, each of
the timeslots has a distinct characteristic:

In slot 1 two users are satisfied, while one is very unsatisfied.

In slot 2 a single user is very satisfied while two are completely unsatisfied.

In slot 3 all three users are mostly unsatisfied.

In slot 4 all three users are close to indifference.

4 Design 46

4.4.1 Satisfaction data evaluation

As a first step, an arithmetic mean was applied to the data. If the mean value was
decisive for the selection, Slot 1 would be chosen as the highest rated slot, which
sacrifices the satisfaction of User 3 almost entirely. This effect can be seen in Ta-
ble 4.4, where Slot 1 yields the highest mean value.To prevent this from happening,
the concept of benefit is introduced, which is defined as the distance of a given
satisfaction value from 0.5, i.e. user indifference:

Benefit(x) =z —0.5
Vo € [0,1] : Benefit(z) € [-0.5,0.5]

Given that the benefit yields positive and negative values, an arithmetic mean is not
applicable. Because of this, the negative benefit average (NBA) and the positive
benefit average (PBA) is used, where the former is the average of the benefit
values below zero and the latter averages all values equal to and above zero, as
can be seen in Listing 13.

Listing 13: Positive and negative benefit average calculation

Precondition: Slot must be a bag of n satisfaction values

1 function POSITIVEBENEFITAVG(Slot)
2 b+ O

3 fori+ 1tondo

4 A < Benefit(Slot;)

5 if A > 0 then

6 <+ dU{A}

7

1 o s
return i - > i 0

8 function NEGATIVEBENEFITAVG(Slot)

9 0+ O

10 fori«+ 1tondo

11 A < Benefit(Slot;)
12 if A < 0then

13 J+—dU{A}

1 |91
14 return - > ity 0

It is important to note that when averaging the benefits, the number of values in the
entire slot is used as the divisor, and not the cardinality of §, because otherwise the

4 Design

47

positive benefit average function would not be monotonically increasing. This effect
can be observed in Figure 4.9 and Figure 4.10.

Figure 4.9: Plot of the positive ben-
efit average function for
two users using the §
cardinality when averag-
ing (not monotonically in-

Figure 4.10: Plot of the positive ben-

efit average function for
two users using the Slot
cardinality when aver-
aging (monotonically in-

creasing) creasing)
Slot1 | Slot 2 | Slot 3 | Slot 4
User1 | 1.0 0.0 0.1 0.3
User2 | 0.7 0.95 |0.05 |05
User 3 | 0.1 0.0 0.2 0.6
Mean | 0.6 0.31 | 0.12 |0.46

Table 4.4: Satisfaction data with applied mean

Table 4.5 shows the Benefit function applied to each satisfaction value as well as
the calculated positive and negative benefit averages, showing that while Slot 1
has a higher overall satisfaction, the desatisfaction is also greater than in Slot 4.
Using this data, fine-grained decisions can be made based on the satisfaction and
desatisfaction of meeting attendees, so that, depending on the strategy that the
meeting initiator agent pursues, it can now decide whether or not it wants to accept
the desatisfaction of some for the overall satisfaction of others.

Based on the benefit averages, two simple proposal selection strategies can then

be employed:

Most satisfied users Maximize the number of satisfied users by picking a Slot with
a high positive benefit average. A parameter for this strategy is the minimum

4 Design 48

Slot 1 | Slot2 | Slot 3 | Slot 4
User1 | 0.5 -0.5 -0.4 -0.2
User2 | 0.2 045 |-0.45 | 0.0
User3 | -0.4 -0.5 -0.3 0.1

PBA 0.23 | 0.15 |0.0 0.03
NBA | -0.13 | -0.33 | -0.38 | -0.07

Table 4.5: Benefit data with positive and negative benefit average

acceptable negative benefit average, which controls how desatisfied the agent
allows some users to be for the advantage of others.

Least unsatisfied users Minimize the number of unsatisfied users by sacrificing
high satisfaction ratings for some users, i.e. pick the time slot with the negative
benefit average closest to 0, and, if several such slots exists, pick the one with
the highest positive benefit average.

4.5 Conclusion

In this chapter, a generic architecture for a meeting scheduling system has been
devised, based on an agent communication layer specified by the Foundation of
Intelligent Physical Agents (FIPA). The main design decision was the separation of
passive personal agent and active meeting agent, which subsequently allowed a
comprehensible scheduling protocol to be constructed. Lastly, a technique for best
time slot selection was presented.

The following section will concern itself with the implementation and evaluation of
a prototype based on the devised architecture. Said prototype will implement the
scheduling protocol as well as time slot selection mechanism, demonstrating the
feasibility of the components.

5 Implementation and Evaluation

This chapter addresses the implementation and evaluation of a multi-agent meeting
scheduling system prototype implemented based on the requirements compiled in
Chapter 3 (Analysis) as well as the design decisions made in Chapter 4 (Design).

The implementation is a proof-of-concept, intended to evaluate the system architec-
ture and gain a better understanding of the inherent complexity that lies in design-
ing and implementing a fully distributed agent based system capable of scheduling
meetings, and to investigate the design’s ability to accommodate different agent
behavior implementations.

5.1 Environment

Scala 2.9 was chosen as the implementation language for the prototype. Given that
Scala runs on the JVM', it is highly portable and able to use the large amount of
freely available Java libraries. According to Martin Odersky, lead designer of Scala,
it is an excellent basis for concurrent, parallel and distributed computing (Odersky,
2011).

The agent communication layer was implemented using “Akka”, a library for building
concurrent and distributed applications in Java and Scala using Actors?.

5.2 Implementation approach

For the prototype, a behavior-driven development (BDD) technique was employed.
Being derived from test-driven development with a focus on high-level behavioral
details, BDD style development allowed for an easy translation of the specifications

Java Virtual Machine: The code execution component of the Java software platform, which has
been ported to many different environments.

2Actor: An actor is a computational entity which has its own thread of control, manages its own
internal state and communicates with other actors by explicitly sending messages. (Lauterburg
et al., 2009)

o U R W N

5 Implementation and Evaluation 50

introduced in Section 4.3 (Meeting scheduling protocol) into a code based specifi-
cation that the prototype can be tested against as the implementation progresses.
The test framework used for this task was ScalaTest.

The test suite for the Meeting Agent serves as a good example for the developed
tests, which are the following:

Listing 14: Behavioral tests for the Meeting Agent component

A meeting agent

- must process meeting requests

- must send out meeting proposals

- must no longer propose to participants who opted out of the meeting

- must request meeting proposal rating after timeout if not all invitees respond
- must send reservation request after a proposal has been accepted

The scenarios roughly relate to the three phases of scheduling process:

e Initiation phase (line 2 and 3)
e Meeting time slot finding phase (line 3-5)

e Meeting time slot reservation phase (line 6)

Behavior-driven test scenarios are usually written in a blackbox style, i.e. dis-
regarding implementation details and simply testing the output given a series of
inputs. The test scenario in Listing 15 serves to illustrate that technique. The
withTestSetup method is invoked prior to the test in order to initialize the environ-
ment, including the Meeting Agent itself, the Meeting object and a list of example
MeetingTimeProposals. The test then sends a MeetingTimeProposals message to
the Meeting Agent and expects a single MeetingTimeProposal in response. Given
that all three participants send the same proposal, the MA is expected to propose
the proposal it just received.

BDD makes it easy to write down and test the designed behavior, and, if behavioral
changes are necessary, backport those into the architectural behavior specifica-
tion. Test-driven development in general is useful because it enables fast testing of
implementation changes against the entire specification.

5 Implementation and Evaluation

51

Listing 15: Example test taken from the Meeting Agent test suite

© e N O R W N =

NN NN NN B e R e s s e s e
R % N R O © W N O A W N M O

[\
[=2]
—

"A meeting agent" must {
"send out meeting proposals" in withTestSetup {
(ma, probel, probe2, meeting, proposals) => {

val mtps = MeetingTimeProposals(
meeting,
List (proposals.last)

)

val msg = Propose(
Content ("meeting-time-proposals", mtps) inReplyTo(meeting.uuid)

)

val expectedResponse = Propose(
Content ("meeting-time-proposal", proposals.last) inReplyTo(msg)
)

ma ! msg
probel.send(ma, msg)
probe2.send(ma, msg)

expectMsg (expectedResponse)
probel.expectMsg(expectedResponse)
probe2.expectMsg(expectedResponse)

5 Implementation and Evaluation 52

5.3 Important implementation details

For the prototype implementation, the calendar data and preferences are retrieved
by using the iCalendar file format, that is, the iCalendarConnector class imple-
ments both PreferencesConnector and CalendarConnector. The preferences re-
trieval from the iCalendar format was implemented using a calendar extension with
the name of X-Preference, i.e. the satisfaction values are hardcoded in the cal-
endar. A more advanced PreferencesConnector implementation could feature, for
example, mechanisms of preference estimation.

It is important to note that the agent communication and scheduling protocol im-
plementation accounts for the largest part of the implementation work. The en-
tire implementation, without tests, has about 2000 lines of code (LOC), of which
only 600 LOC account for the agent behavior, that is, the PreferencesConnector,
CalendarConnector and CalendarAnalyzer implementations of the personal agent
system as well as the DecisionMaker and TimeSlotSelector implementations of
the meeting agent. This shows that once a foundation implementation of the sys-
tem has been written, one can focus on the important behavioral elements of the
system without worrying about the underlying modules, given that those don’t have
to be modified in order to implement different scheduling algorithms and heuris-
tics.

5 Implementation and Evaluation 53

5.4 Evaluation

In order to evaluate the implementation, different meeting scheduling scenarios will
be examined, analyzing the conversations between the agents that occur in the
scheduling process.

5.4.1 Single participant scenario

The first scenario requires the meeting agent to find a free meeting time slot for a
single person. This scenario serves as a good example of a simple conversation
held between the personal agent and the meeting agent, and it verifies the basic
scheduling functionality. The scenario is based on the calendar and preferences
shown in Figure 5.1.

Mon Apr 8 — Thu Apr 11, 2013 (Berlin)
Mon 4/8 Tue 4/9 Wed 4/10 Thu 4/11

10am
11am

12pm

2pm
3pm
4pm
5pm
6pm
7pm

8pm

Figure 5.1: Four-day example calendar and preferences of a single person.

1
2

5

7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

5 Implementation and Evaluation 54

The message log for this scenario can be observed in Listing 16. Said log begins
after the MA has broadcasted the meeting request, and thus the MA waits for pro-
posals from the PA. The PA then sends a proposal for 2013-04—-11 at 13:00, given
that it is the earliest fitting time slot with the highest preference value. After receiv-
ing the proposal, the MA decides that it will propose the proposal it just received
as a time for the meeting (which will obviously succeed), and then again enter the
WaitingForProposals state. The PA accepts the message (line 22), and the MA
then decides to try to reserve the proposal that was accepted. After receiving the
Confirm(Reservation) messages in line 47, it sends a Confirm(Reservation) of
its own, thus concluding the scheduling process, which the PA states in line 75.

Listing 16: Message log for the single participant scenario

MA :: Waiting for proposals.
MA :: Received proposals from PersonalAgent: MeetingTimeProposals(
List(MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.6))
)
MA :: Deciding next action because we received responses from all
participants
MA :: Deciding next action through the DecisionMaker
MA :: Performing next action: Decision(
WaitingForProposals(),
Some (
Propose(
meeting-time-proposal, 44b90..,
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.6)
), Id: 8
), None
) for participants: List(Agent(PersonalAgent))
MA :: Broadcasting the following message to 1 recipients: Propose(
meeting-time-proposal, 44b90..,
MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.6),

Id: 8)
MA :: Waiting for proposals.
MA :: Received Accept(proposal) from PersonalAgent:
MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.6)
MA :: Deciding next action because we received responses from all participants
MA :: Deciding next action through the DecisionMaker
MA :: Performing next action: Decision(
WaitingForReservationConfirmation(),
Some (
Request(
reservation, 44b90..,
Reservation(

Meeting(44b90..),
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z

), Id: 11

37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

5 Implementation and Evaluation 55

MA

MA
MA

MA
MA

MA

MA
PA

), None
) for participants: List(Agent(PersonalAgent))

:: Broadcasting the following message to 1 recipients: Request(

reservation, 44b90..,

Reservation(
Meeting(44b90..),
MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z

), Id: 11)

:: Now waiting for reservation confirmations.
:: Received reservation confirmation from sender PersonalAgent: Reservation(

Meeting(44b90..),
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z

)

:: Deciding next action through the DecisionMaker
:: Performing next action: Decision(

WaitingForMeetingChanges(),

Some (
Confirm(
reservation, 44b90..,
Reservation(
Meeting(44b90..),
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z
), Id: 14
)
) ,None

) for participants: List(Agent(PersonalAgent))

: Broadcasting the following message to 1 recipients: Confirm(

reservation, 44b90..,
Reservation(
Meeting(44b90..),
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z
), Id: 14
)

:: Now waiting for meeting changes
: Meeting Meeting(44b90..) successfully scheduled to

MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0)

As can be seen in the previous log, most of the log messages are recorded by
the meeting agent. However, that is a minor implementational decision and has no
further importance in the context of the scheduling process.

5 Implementation and Evaluation 56

5.4.2 Four participants scenario

In order to evaluate the agents’ behavior when scheduling a meeting with more
than one participant, the four-day calendar shown in Figure 5.2 will be used. For
this scenario, only one of the participants’ agents has explicitly defined preferences
(through the iCalendarConector). The other agents use a dummy implementation
of the PreferencesConnector interface, which results in a satisfaction value of 0.5
for all meeting time slots in which no meeting has been scheduled yet.

, Test3 Mon Apr 8 — Thu Apr 11, 2013 (Berlin)
Mon 4/8 Tue 4/9 Wed 4/10 Thu 4/11
8 S
am Busy BusyBusy BusyBu
Bus s
gamy_ 8am - 9: gzm -
9am {12pm 30am 12pm
10am
11am
12pm —~
1 —— R
pm Busy BusyBu BusyBu

Busy sy sy
1pm - 1pm - 4: 1pm -
2pm (6pm 30pm 6pm

3pm

4pm

5pm

6pm

7pm

Figure 5.2: Four-day example calendar used for evaluation. The earliest time slot
available for all participants is thursday at 18:00h

Given that the entire message log is too large to include, selected messages from
the process, that give insight into the scheduling behavior, will be shown. In this sce-
nario, the initial proposals made by the four PAs have no intersection, and therefore
the meeting agent must inquire more information about their calendars. In the pro-
totype implementation, the MA tries to find a meeting time slot by simply asking the
PAs for proposals until a consensus is found. While this is not the most efficient

© 00w 9 O U ks W N =

10

[
-

13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

5 Implementation and Evaluation 57

technique, it demonstrates that the devised scheduling protocol is capable of fulfill-
ing its purpose. More complex heuristics may then be implemented in the MA. The
following log messages represent the initial phase of the scheduling process:

Listing 17: Initial messages from the four participants scenario

MeetingAgent :: Waiting for proposals.

MeetingAgent :: Received proposals from sender PersonalAgent2: MeetingTimeProposals(
List (MeetingProposal (2013-04-08T12:00:00.000+02:00, 0.5))

)

MeetingAgent :: Received proposals from sender PersonalAgent3: MeetingTimeProposals(
List(MeetingProposal (2013-04-08T08:00:00.000+02:00, 0.5))

)

MeetingAgent :: Received proposals from sender PersonalAgent: MeetingTimeProposals(
List (MeetingProposal (2013-04-08T20:00:00.000+02:00, 0.5))

)

MeetingAgent :: Received proposals from sender PersonalAgent: MeetingTimeProposals(
List(MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.6))

)

Given that the proposals have no intersection, the MA now inquires ratings for all
four proposals, beginning with the one with the highest ratings, in order to see if
any of them is accepted by all four participants. The following log shows the rating
inquiry for the first proposal.

Listing 18: Inquiry of meeting time proposal ratings by the Meeting Agent

MeetingAgent :: Performing next action: Decision(
WaitingForRatings(3),
None,
Some (
Map (
PersonalAgent2 -> Request(
meeting-time-proposal-rating, b6b27..,
MeetingTimeProposalRating(
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0)
), Id: 11),
[...]
)
)
)
MeetingAgent :: Now waiting for proposal ratings.
MeetingAgent :: Received meeting time proposal ratings from sender PersonalAgent2:

MeetingTimeProposalRating(
MeetingProposal(2013-04-11T13:00:00.000+02:00, 0.0)
)

20
21
22
23
24
25
26
27

Nl = S A

LT T T S S S o
AW N B O © N A W N = O

5 Implementation and Evaluation 58

MeetingAgent :: Received meeting time proposal ratings from sender PersonalAgent3:
MeetingTimeProposalRating(
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.5)
)
MeetingAgent :: Received meeting time proposal ratings from sender PersonalAgenté4:
MeetingTimeProposalRating(
MeetingProposal (2013-04-11T13:00:00.000+02:00, 0.0)
)

As can be seen in the log, two of the PAs rate the meeting time proposal with a
satisfaction value of 0.0, meaning that they have already a meeting scheduled at
the time. As a result, the MA continues to inquire additional proposals and rat-
ings, until a consensus is found. In the example, this consensus is 2013-04—-11 at
18:00h. The last rounds of negotiation for this scenario can be observed in List-
ing 19. PersonalAgent1 proposes the soon-to-be final time slot in line 2, which is
then proposed to all other agents, because it is the highest rated time slot available.
Given that all PAs are free at the suggested time, it is accepted by all (line 16—23)
and subsequently reserved by the MA (line 26—49). Finally, the MA confirms the
meeting in line 52 whereupon the PAs report the successfully scheduled proposal
in line 61-71.

Listing 19: Conclusion of the four participant scenario

MeetingAgent :: Now waiting for proposal ratings.
MeetingAgent :: Received meeting time proposal ratings from sender PersonalAgentl:
MeetingTimeProposalRating(MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.6))
MeetingAgent :: Deciding next action through the DecisionMaker
MeetingAgent :: Performing next action: Decision(
WaitingForProposals(),
Some (
Propose(
meeting-time-proposal, b6b27..,
MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.6), Id: 458)
) ,None
)
)
MeetingAgent :: Broadcasting the following message to 4 recipients: Propose(meeting-time-proposa
MeetingAgent :: Waiting for proposals.
MeetingAgent :: Received Accept(proposal) from sender PersonalAgent2:
MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.5)
MeetingAgent :: Received Accept(proposal) from sender PersonalAgent3:
MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.5)
MeetingAgent :: Received Accept(proposal) from sender PersonalAgent4:
MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.5)
MeetingAgent :: Received Accept(proposal) from sender PersonalAgentl:

MeetingProposal(2013-04-11T18:00:00.000+02:00, 0.6)

MeetingAgent :: Deciding next action because we received responses from all participants

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

5 Implementation and Evaluation 59

MeetingAgent :: Deciding next action through the DecisionMaker

MeetingAgent :: Performing next action: Decision(
WaitingForReservationConfirmation(),

)

MeetingAgent :: Broadcasting the following message to 4 recipients: Request(
reservation,

b6b27. .,

Reservation(

Meeting(b6b27..),
MeetingProposal (2013-04-11T18:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z

), Id: 464

)
MeetingAgent :: Now waiting for reservation confirmations.
MeetingAgent :: Received reservation confirmation from sender PersonalAgent2:

Reservation(...)

MeetingAgent :: Now waiting for reservation confirmationms.
MeetingAgent :: Received reservation confirmation from sender PersonalAgent3:

Reservation(...)

MeetingAgent :: Now waiting for reservation confirmations.
MeetingAgent :: Received reservation confirmation from sender PersonalAgent4:

Reservation(...)

MeetingAgent :: Now waiting for reservation confirmationms.
MeetingAgent :: Received reservation confirmation from sender PersonalAgentl:

Reservation(...)

MeetingAgent :: Deciding next action through the DecisionMaker

MeetingAgent :: Performing next action: Decision(WaitingForMeetingChanges(), ...)

MeetingAgent :: Broadcasting the following message to 4 recipients: Confirm(
reservation,

b6b27. .,

Reservation(Meeting(b6b27..),
MeetingProposal(2013-04-11T18:00:00.000+02:00, 0.0),
2013-04-11T22:00:00.000Z

), Id: 470

)
MeetingAgent :: Now waiting for meeting changes

PersonalAgent :: Meeting Meeting(b6b27..) successfully scheduled to MeetingProposal(
2013-04-11T18:00:00.000+02:00, 0.0

)

PersonalAgent :: Meeting Meeting(b6b27..) successfully scheduled to MeetingProposal(
2013-04-11T18:00:00.000+02:00, 0.0

)

PersonalAgent :: Meeting Meeting(b6b27..) successfully scheduled to MeetingProposal(
2013-04-11T18:00:00.000+02:00, 0.0

)

PersonalAgent :: Meeting Meeting(b6b27..) successfully scheduled to MeetingProposal(
2013-04-11T18:00:00.000+02:00, 0.0

)

© 0w 9 O o s W N =

== e
No= O

5 Implementation and Evaluation 60

5.4.3 Four participants scenario - variations

If the meeting were to be scheduled in the first three days of the week depicted
in Figure 5.2 (in contrast to four days that were used in the previous section), a
meeting time consensus could not be found, because the first meeting time slot that
is available for all PAs is on the fourth day. Given that the prototype implementation
does not support conflict resolution, this results in the MA reporting a failed meeting
scheduling process:

Listing 20: Scheduling failure variation of the four participant scenario

MeetingAgent :: Waiting for proposals.
PersonalAgent :: No further meeting time proposals for Meeting(ad35a..).
MeetingAgent :: Received failure from sender PersonalAgentl:
Failure(Meeting(ad35a..))
MeetingAgent :: Deciding next action through the DecisionMaker
MeetingAgent :: Performing next action: Decision(AbortScheduling(), ...)
MeetingAgent :: Broadcasting the following message to 4 recipients: Failure(
meeting,
ad35a. .,
Meeting(ad35a..),
Id: 51

In order to provide an example of the designs flexibility, a slightly different example
of the DecisionMaker will be used, which simply discards meeting participants that
report a meeting scheduling failure such as the one previously shown. The other
modules of the MA, that is the TimeSlotSelector and the SchedulingControl, were
not modified for this task. Using the modified DecisionMaker results in the following
log excerpt:

Listing 21: Discarding conflicting participant in four participant scenario

MeetingAgent :: Waiting for proposals.
PersonalAgent :: No further meeting time proposals for Meeting(2fdc3..).
MeetingAgent :: Received failure from sender PersonalAgentl:
Failure(Meeting(2£fdc3..))
MeetingAgent :: Deciding next action through the DecisionMaker
MeetingAgent :: Removing PersonalAgentl from the list of participants
MeetingAgent :: Performing next action: Decision(
WaitingForProposals(),
Some (
Propose(

meeting-time-proposal, 2fdc3..,
MeetingProposal (2013-04-08T20:00:00.000+02:00, 0.5), Id: 51)

14
15
16
17
18
19
20
21
22
23

5 Implementation and Evaluation 61

),

None
)
MeetingAgent :: Broadcasting the following message to 3 recipients:
Propose(
meeting-time-proposal,
2fdc3. .,
MeetingProposal (2013-04-08T20:00:00.000+02:00, 0.6),
Id: 51

In this log excerpt, instead of aborting the meeting scheduling process when Per-
sonalAgent1 reports a failure, the agent is simply removed from the list of par-
ticipants. After removing the agent, the MA then continues with a new proposal
for the remaining agents. Such a modification of the MA’s behavior by means of
the DecisionMaker component is an example of how, without modifying the core
communication functionality of a meeting agent (located in the SchedulingControl
module), its behavior can be easily modified.

5.5 Conclusion

In this chapter, a prototype implementation of the previously devised architecture for
a meeting scheduling system based on the multi-agent paradigm has been devised
and evaluated. In order to provide some context for the evaluation, the implemen-
tation environment and approach was described. Subsequently, the prototype was
evaluated by means of two example scenarios:

e The single participant scenario was used to provide a clear overview of
the conversation between a meeting agent and a personal agent. Such an
overview is difficult to achieve with a larger scenario, given that the amount of
messages generated increases dramatically.

e A scenario with four participants scheduling a meeting on a four-day calendar.
This scenario served to provide a view into the negotiation process that is
carried out, and how it can be influenced by changing the implementations of
some of the meeting agents’ modules.

The evaluation shows that the prototype implementation based on the devised sys-
tem architecture is capable of autonomously scheduling meetings, and that it is pos-
sible to exchange the agents’ scheduling behavior by selectively modifying agent
modules.

6 Conclusion

The purpose of this thesis was to provide a flexible multi-agent architecture for an
automated meeting scheduling system. To achieve this goal, the state of the art in
multi-agent based meeting scheduling had to be collected in the literature review.
Subsequently, the gained knowledge was then molded into a scenario which laid
the foundation for the requirements analysis. In the design chapter, an architecture
for a system capable of automated meeting scheduling based on the notion of multi-
agents was then devised along with a generic meeting scheduling communication
protocol. The focus was laid on the architectures ability to accommodate different
behaviors and data evaluation methods. Lastly, a proof-of-concept implementation
for said architecture was developed and evaluated based on the previously estab-
lished requirements, demonstrating the design’s feasibility.

In summary it can be said that the goals of this thesis have been reached by pro-
viding a flexible architecture for future meeting scheduling systems and proving that
the resultant implementation is capable of housing different behavioral elements
without requiring excessive implementational effort.

Ultimately, another step was taken in the direction of automating a specific tedious
every day task in the professional and personal life of many people, with the greater
goal of reaching a state where users no longer think of such computer systems as
mere tools, but as their “technological companions” which adapt themselves reliably
to their users’ abilities, preferences and requirements.

6 Conclusion 63

Outlook

Though the basic mechanisms in meeting scheduling are relatively easily captured,
the more intricate and implicit processes taking place when someone makes a de-
cision about whether or not to schedule a meeting at a given time are more difficult
to grasp.

As an example, in this thesis, the user’s preferences have been regarded as a
very abstract piece of information, some numerical value, even though it can be
considered one of, if not the most vital information when scheduling a meeting. A
few approaches for preferences retrieval have been mentioned, including machine
learning and aided user input, but the possibilites for enhancements in this area
are enormous. For instance, let’s take the location of two given meetings X and Y.
If these two meetings are scheduled close to one another, they should preferably
take place at the same location, and if not, the time gap between the two meetings
must allow the participant to travel from meeting X’s location to meeting Y’s location.
Additionally, the scheduling system must ensure that no other meeting is scheduled
in the time gap that is reserved for travel. To increase the complexity, one could
also assume that a meeting must be scheduled which requires the participant to
travel by plane and which takes about three days. One could also assume that a
return flight after three days is many times as costly as a return flight after seven
days, and a system aware of that fact could book a return flight after seven days
and schedule a number of networking appointments in the remaining in order to
increase efficiency.

The previous example might seem overly specific, yet such complex evaluations
are very important if a system is really to be accepted as a replacement for a job
as important as a personal secretary, rather than as a tool that aids the scheduling
processes, which leads to several questions that remain to be answered, such as:

e Is it generally possible to develop a system that is able to perform complex
tasks like scheduling meetings autonomously without constant supervision of
the results?

¢ And if so, would people be willing to completely delegate a task as important
as the organization of their weekly schedule to a computer system?

In the narrower context of this thesis there are also several questions that remain
unanswered as well as features that remain to be devised, which would serve as
excellent starting points for further research and development, in addition to the
vast field of preference estimation:

e How can efficient conflict resultion strategies be incorporated into the pre-
sented meeting scheduling system design and communication protocol?

6 Conclusion 64

e How can scheduling fairness be obtained if the assumptions that personal
agents give truthful answers for their satisfaction values is discarded?

e How can meetings be re-scheduled if that would improve the overall satisfac-
tion for the personal agent’s user, and how can the cost of re-scheduling a
meeting be weighted against the benefit the arises from such a re-scheduling
process?

e How could a “final approval” mechanism be provided to the user? That is,
a mechanism that asks the user for final confirmation after the automated
meeting scheduling process has completed. This is an important question,
because such a mechanism could dramatically increase the acceptance of
the system and at the same time provide information for machine learning
mechanisms in order to improve the next scheduling process. Said mecha-
nism would have to present all information of and surrounding the scheduled
meeting to the user in a clearly laid out way, for example on the user’s smart-
phone device in order to reach him more quickly than on a desktop computer.

e ltis not currently possible for someone to join a meeting on one’s own initiative
or to be invited by a participant of the meeting which is not the meeting initiator.

e The negotiation process devised in this thesis is one dimensional, whereas
human negotiation processes are almost always multidimensional. For exam-
ple, someone might put up with an unsatisfactory meeting time, considering
that the last time the meeting was held, the time was very satisfactory for
him while being unsatisfactory for the other participants (global optimum in-
stead of only local considerations). Therefore, an important question is: How
can multidimensional scheduling techniques be integrated into the meeting
scheduling process in general, and into the devised system in particular?

In conclusion, it can be said that the presented meeting scheduling system architec-
ture can serve as a solid foundation for further research, which is urgently needed
in this research field.

Bibliography

Biswas, J. and Bhonsle, S. (1992). Distributed scheduling of meetings: a case study
in prototyping distributed applications, Proceedings of the Second International
Conference on Systems Integration pp. 656—665.

URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=217265

Black, A. P. (1986). The Eden Project: Overview and Experiences, Autumn’86
Conference Proceedings: Manchester, UK, EUUG (Society). Autumn Conference
and European UNIX Systems User Group. Autumn Conference, Manchester, UK,
pp. 177—189.

URL.: http://books.google.de/books?id=iFDmNQAACAAJ

Bradner, S. (1997). Key words for use in RFCs to Indicate Requirement Levels.
URL: http://www.ietf.org/rfc/rfc2119.1xt (last accessed: 2012-05-05)

Bui, H., Venkatesh, S. and Kieronska, D. (1995). A multi-agent incremental negoti-
ation scheme for meetings scheduling, Proceedings of Third Australian and New
Zealand Conference on Intelligent Information Systems. ANZIIS-95 pp. 175-180.
URL.: http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=705736

Chun, A., Wai, H. and Wong, R. Y. (2003). Optimizing agent-based meeting
scheduling through preference estimation, Engineering Applications of Artificial
Intelligence 16(7-8): 727—743. ISSN: 09521976.

URL: http://linkinghub.elsevier.com/retrieve/pii/S0952197603001167

Crawford, E. and Blum, M. (2009). Learning to Improve Negotiation in Semi-
Cooperative Agreement Problems Manuela Veloso , Chair, Doctoral thesis,
Carnegie Mellon University, Pittsburgh, PA.

URL: http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/2009/
CMU-CS-09-111.pdf

Crawford, E. and Veloso, M. (2005a). Learning Dynamic Preferences in Multi-Agent
Meeting Scheduling, Intelligent Agent Technology, IEEE/WIC/ACM International
Conference on pp. 3—6.

URL: http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=
1565590

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=217265
http://books.google.de/books?id=iFDmNQAACAAJ
http://www.ietf.org/rfc/rfc2119.txt
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=705736
http://linkinghub.elsevier.com/retrieve/pii/S0952197603001167
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/2009/CMU-CS-09-111.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/2009/CMU-CS-09-111.pdf
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1565590
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1565590

Bibliography 66

Crawford, E. and Veloso, M. (2005b). Learning Dynamic Time Preferences in
Multi-Agent Meeting Scheduling Elisabeth Crawford, Technical Report July,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=
html&identifier=ADA457066

Crawford, E. and Veloso, M. (2005c). Learning to select negotiation strategies
in multi-agent meeting scheduling, Progress in Artificial Intelligence Volume
380: 584-595.

URL: http://www.springerlink.com/index/7210140k27370611.pdf

Foundation for Intelligent Physical Agents (2002a). FIPA Abstract Architecture
Specification - SCO0001L.
URL.: http://fipa.org/specs/fipa00001/SC00001L.pdf

Foundation for Intelligent Physical Agents (2002b). FIPA ACL Message Structure
Specification - SC00061G.
URL: http://www.fipa.org/specs/fipa00061/SC00061G.pdf

Foundation for Intelligent Physical Agents (2002c). FIPA Communicative Act Library
Specification - SC00037J.
URL: http://www.fipa.org/specs/fipa00037/index.html

Holman, C. and Almes, G. (1985). The Eden Shared Calendar System, TR 85-05-
02, Technical Report, University of Washington, Seattle.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). A Roadmap of Agent Re-
search and Development, Autonomous Agents and Multi-Agent Systems 1(1): 7—
38. ISSN: 1387-2532.

URL: http://www.springerlink.com/content/1387-2532/1/1/

Johansen, D. and Anshus, O. (1988). A Distributed Diary Application, in A. Cerveira
(ed.), Computer Communication Systems, Elsevier Science Publishers, Amster-
dam, pp. 77-82.

Kincaid, C. M., Dupont, P. B. and Kaye, A. R. (1985). Electronic Calendars in the
Office : An Assessment of User Needs and Current Technology, ACM Transac-
tions on Information Systems 3(1): 89—102. ISSN: 1046-8188.

URL: http://www.sis.pitt.edu/~dist/coursePages/IS2470/p89kincaid.pdf

Lai, T. E. N., Selamat, M. H. and Muda, Z. (2009). IMROVING AGENT-BASED
MEETING SCHEDULING, Journal of Theoretical and Applied Information Tech-
nology 6(2): 156—164.

URL: http://www.jatit.org/volumes/research-papers/Vol6No2/3Vol6No2.pdfhttp://
www.jatit.org/volumes/sixth_volume_2 2009.php

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA457066
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA457066
http://www.springerlink.com/index/7210140k27370611.pdf
http://fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://www.fipa.org/specs/fipa00037/index.html
http://www.springerlink.com/content/1387-2532/1/1/
http://www.sis.pitt.edu/~dist/coursePages/IS2470/p89kincaid.pdf

Bibliography 67

Lauterburg, S., Dotta, M., Marinov, D. and Agha, G. (2009). A Framework for State-
Space Exploration of Java-Based Actor Programs, 2009 IEEE/ACM International
Conference on Automated Software Engineering pp. 468—479.

URL.: http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=5431748

Mattern, F. and Sturm, P. (1989). Automatic distributed calendar and appoint-
ment system, Microprocessing and Microprogramming 27(1): 455—-462. ISSN:
01656074.

URL: http://dx.doi.org/10.1016/0165-6074(89)90091-4;

Minsky, M. L. (1988). The society of mind, Simon & Schuster Inc., New York. ISBN:
0-671-60740-5.
URL: http://www.amazon.com/Society-Mind-Marvin-Minsky/dp/0671657135

Mintzberg, H. (1973). The Nature of Managerial Work, Longman, New York. ISBN:
978-0060445560.
URL: http://www.amazon.de/Nature-Managerial-Work-Henry-Mintzberg/dp/
0060445564

Odersky, M. (2011). Why Scala?
URL.: http://blog.typesafe.com/why-scala (last accessed: 2012-08-28)

Oh, J. and Smith, S. F. (2004). Learning calendar scheduling preferences in hierar-
chical organizations, Proceedings of 6th International Workshop on Preferences
and Soft Constraints (CP’04) .

URL: http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6462&
rep=rep1&type=pdf

Romano, N. C. and Nunamaker, J. F. (2001). Meeting Analysis : Findings from
Research and Practice, Proceedings of the 34th Hawaii International Conference
on System Sciences, Vol. 00, pp. 1-13.

URL: http://www.okstate.edu/ceat/msetm/courses/etm5221/Week1Challenges/
MeetingAnalysisFindingsfromResearchandPractice.pdf

SFB Transregio 62 (2012).
URL.: http://www.sfb-trr-62.de/ (last accessed: 2012-12-16 16:10)

Sugihara, K., Kikuno, T. and Yoshida, N. (1989). Meeting Scheduler for Office Au-
tomation, IEEE Transactions on Software Engineering 15(10): 1141—-1146.
URL.: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=559760

Sugumaran, M. (2011). A Design of Centralized Meeting Scheduler with Distance
Metrics, International Journal of Computer Science and Information Technologies
2(3): 1001-1006. ISSN: 0975-9646.

URL.: http://ijcsit.com/docs/Volume2/vol2issued/ijcsit2011020313.pdf

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431748
http://dx.doi.org/10.1016/0165-6074(89)90091-4;
http://www.amazon.com/Society-Mind-Marvin-Minsky/dp/0671657135
http://www.amazon.de/Nature-Managerial-Work-Henry-Mintzberg/dp/0060445564
http://www.amazon.de/Nature-Managerial-Work-Henry-Mintzberg/dp/0060445564
http://blog.typesafe.com/why-scala
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6462&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6462&rep=rep1&type=pdf
http://www.sfb-trr-62.de/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=559760

Bibliography 68

Sugumaran, M., Easwarakumar, K. S. and Narayanasamy, P. (2003). A New Ap-
proach for Meeting Scheduler using A * -Algorithm, TENCON 2003. Conference
on Convergent Technologies for Asia-Pacific Region 1.

URL: http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=
1273357

Teger, S. L. (1983). Factors Impacting the Evolution of Office Automation, Proceed-
ings of the IEEE 71(4): 503-511.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1273357
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1273357

Glossary

Actor
An actor is a computational entity which has its own thread of control, man-

ages its own internal state and communicates with other actors by explicitly
sending messages. (Lauterburg et al., 2009). 49

Java Virtual Machine
The code execution component of the Java software platform, which has been

ported to many different environments.. 49

Universally Unique Identifier
An identifier that has a unique value within some defined universe.. 38

List of Figures

3.1 Scheduling process represented in UML activity diagram notation. . 17
3.2 Plot of Pyee(participants) in [0,20] 18
4.1 UML deployment diagram of the scheduling system 23
4.2 Component view of the Agent Communication Layer 24
4.3 Overview of the personal agent’s architecture 30
4.4 UML component diagram of the meeting agent system 35
4.5 Diagram of the states that the SchedulingControl component can

take after a decision has been made by the DecisionMaker 37
4.6 Overview of the meeting scheduling process 38
4.7 UML sequence diagram of the meeting time search protocol 42

4.8 UML sequence diagram of the meeting time slot reservation process 43
4.9 Plot of the positive benefit average function for two users using the §

cardinality when averaging (not monotonically increasing) 47
4.10 Plot of the positive benefit average function for two users using the

Slot cardinality when averaging (monotonically increasing) 47
5.1 Four-day example calendar and preferences of a single person. . . . 53

5.2 Four-day example calendar used for evaluation. The earliest time
slot available for all participants is thursday at 18:00h 56

List of listings

AWM=

© 00 NO O

11

12
13

14
15
16
17
18
19
20
21

Example of an agent directory entry in JSON representation.
Example of a service directory entry in JSON representation

The IConfiguration Interface of the meeting scheduling system

The IPersonalAgentConfiguration Interface of the Personal Agent
System . ..
The ICalendarAnalyzer Interface of the Personal Agent System . . .
The ICalendarConnector Interface of the Personal Agent System . .
The IPreferencesConnector Interface of the Personal Agent System
Structure of the MeetingInformation object
The ITimeSlotSelector interface which controls selection of the best
timeslots
The IDecisionMaker interface that controls the SchedulingControl’s
behavior
A Meeting object must contain all information necessary to schedule
ameeting
Structure of the messages sent in the time slot search process . . .
Positive and negative benefit average calculation

Behavioral tests for the Meeting Agent component
Example test taken from the Meeting Agent test suite
Message log for the single participant scenario
Initial messages from the four participants scenario.
Inquiry of meeting time proposal ratings by the Meeting Agent
Conclusion of the four participant scenario.
Scheduling failure variation of the four participant scenario
Discarding conflicting participant in four participant scenario

26
30

31
32
33
34
36

36

37

List of Tables

41

4.2
4.3
4.4
4.5

FIPA ACL performatives used in this works’ meeting scheduling pro-

tocol 27
Example of meeting scheduling message sequence 40
Satisfaction datato be examined 45
Satisfaction data with applied mean 47
Benefit data with positive and negative benefit average 48

Versicherung uber die
Selbststandigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prifungsord-
nung nach §16(5) APSO-TI-BM ohne fremde Hilfe selbststandig verfasst und nur
die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn nach aus an-
deren Werken enthommene Stellen habe ich unter Angabe der Quellen kenntlich
gemacht.

Hamburg, 27.12.2012
Ort, Datum Unterschrift

	Introduction
	Literature Review
	Analysis
	Meeting scheduling
	Communication centered meeting scheduling
	Requirements analysis
	Stakeholders
	Terminology
	Information necessary for scheduling
	Scheduling process
	Scheduling conflicts
	Scheduling fairness

	Existing techniques
	Centralized techniques
	Distributed approach

	Conlusion

	Design
	Agent Communication Layer
	Agent Directory Service
	Service Directory Service
	Message transport
	Agent Communication Language (ACL)

	Agents
	Personal agent
	Meeting agent

	Meeting scheduling protocol
	Initiation phase
	Finding and reserving a meeting time slot
	Possible concurrency issues

	Time slot selection
	Satisfaction data evaluation

	Conclusion

	Implementation and Evaluation
	Environment
	Implementation approach
	Important implementation details
	Evaluation
	Single participant scenario
	Four participants scenario
	Four participants scenario - variations

	Conclusion

	Conclusion
	Bibliography
	Glossary
	List of figures
	List of listings
	List of tables

